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D Discussion

In this section we discuss various extensions and their implications, as well as the social plan-

ner’s problem. For generality, we base the discussion on the generalized model introduced in the

Appendix.

D.1 Heterogeneous WoM Cost

In Section B, we have entirely focused on homogeneous costs of talking, in order to emphasize

the core trade-off faced by a firm when encouraging senders to engage in WoM. In the Online

Appendix, we consider an extension in which different senders have different costs of talking. With

heterogeneous costs of talking, the optimal reward scheme is more complicated as it can be used to

fine-tune the amount of WoM, while with homogeneous costs either everyone or no one talks. We

analyze the optimal scheme for a fairly general class of cost distribution G, and discuss how our

results from Section B change. Here, we summarize the main findings of that section.

We show that the results from Section B are robust in the following sense. Free contracts are

not optimal for large α because in that case the benefit of free contracts given by (1− α)r is small

compared to the cost CF ∗. Referrals and free contracts remain strategic substitutes. We also show

how the homogeneous cost case can be thought of as the limit of models with heterogeneous costs.

New insights can be derived in the heterogeneous cost model with respect to the reward scheme.

The optimal reward scheme is not constant in α when a free contact is offered (as it is when the

cost of talking is homogeneous), but is increasing in α. The reason is that expected profits are

higher with higher α and hence, the seller has a stronger incentive to increase WoM. If no free
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contracts are offered, in addition to the aforementioned effect, there is an opposing effect (that is

present also with homogeneous costs), as the seller only needs to pay less to senders if the expected

externalities are large in order to induce the same number of senders to talk. Thus, if no free

contracts are offered the effect of α on rewards is ambiguous, where rewards are decreasing in α if

costs are sufficiently homogeneous.

D.2 Continuous Type Space

In the model with two receiver types, the optimal scheme results in the low-type customers experi-

encing zero value from the product, a feature that may not be realistic. Our intention in the main

section was to provide the simplest model that highlights the role of free contracts as a way to

incentivize WoM, and the unrealistic feature is an artifact of the simplification, not an implication

of the effect we want to highlight. The aim of this section is to make this claim formal.

To this end, we provide an alternative model with a continuous type space and characterize

the optimal scheme. In particular, the characterization shows that under an open set of param-

eter values, conditional on a customer purchasing a free contract (which happens with positive

probability), with probability one the customer receives a strictly positive value from the product.

Formally, let us consider the same model as in the main section with a continuum of receiver

types. The receivers’ types θ are uniformly distributed on [0, 1] and type θ’s valuation for quantity

q is given by

vθ(q) =


0 if q = 0

θ ln (q + 1)−K if q > 0

for some constant K > 0 that is independent of θ and q. Since limq↘0 vθ(q) = −K, one can think

of K as the fixed cost of starting to use the product. To simplify the exposition, let us assume

c < K < − ln(c) − 1 + c and c < 1. Moreover, let us define, for θ ∈ (0, 1], q(θ) = e
K
θ − 1 which

is the smallest quantity that must be offered to a type-θ receiver to make her indifferent between

using the product and not. Note that q(θ) > 0 for all θ ∈ (0, 1] and the receivers with θ = 0 would

not like to use the product for any q ≥ 0. For simplicity, let us also assume N = 1.
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The seller solves

Π∗(ξ) = max
pξ(·), qξ(·), θξ, Rξ

1{a1=Refer} ·
( ∫ 1

θ
ξ

(pξ(θ)− qξ(θ)c) dθ −Rξ
)

(12)

where pξ ∈ R[0,1] and qξ ∈ R[0,1]
+ are integrable functions, θ

ξ
∈ [0, 1], and Rξ ∈ R subject to the

receiver’s incentive compatibility and participation constraints which are given by1

max{vθ(qξ(θ)), 0} − pξ(θ) ≥ max{vθ(qξ(θ′)), 0} − pξ(θ′) ∀θ, θ′ (θ-type’s IC)

max{vθ(qξ(θ)), 0} − pξ(θ) ≥ 0 ∀θ ≥ θ
ξ

(θ-type’s PC)
(13)

and the sender’s incentive compatibility (IC) constraint which is given by

a1 = Refer if and only if ξ ≤ r(1− θ
ξ
) +Rξ. (14)

Define a strengthening of the constraint (14) by imposing a condition that the sender must talk,

i.e.,

a1 = Refer holds and ξ ≤ r(1− θ
ξ
) +Rξ. (14’)

We denote by Π̃(ξ) the optimal profit of the problem (12) subject to (13) and (14’).

In order to characterize the optimal scheme, we first define several notations. First, for ξ = 0,

there exists a unique (up to measure-zero set of θ) solution to (12) subject to (13) and (14’), which

satisfies

q∗0(θ) :=


q∗∗(θ) if θ ≥ θ∗

0

0 if θ < θ∗
0

(15)

where

q∗∗(θ) :=
2θ − 1

c
− 1

and a θ∗
0

which is the unique solution to (2θ − 1)
[
ln
(

2θ−1
c

)
− 1
]
−K + c = 0 (we will prove this

below).

1Note that an analogous result to Lemma 1 holds in this setup.
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Second, let us denote by θ′ the unique solution to q∗∗(θ′) = q(θ′). Finally, if

(2θ′ − 1)

[
ln

(
2θ′ − 1

c

)
− 1

]
−K + c+ r ≤ 0, (16)

let θ′′ denote the unique value of θ that solves (2θ−1)
[
ln(2θ−1

c )− 1
]
−K+ c+ r = 0, which always

exists.

Proposition 7. Let ξ > 0.

(i) Whenever Π̃(ξ) > 0, there exists a unique solution (up to measure-zero set of types)2 to the

problem (12) subject to (13) and (14), and it is a solution to (12) subject to (13) and (14’).

(ii) There is a unique solution (up to measure-zero set of types) to the problem (12) subject to (13)

and (14’) given by (p∗ξ(·), q∗ξ (·), θ
∗
ξ
, R∗ξ). It has the following properties:

1. If ξ < r(1− θ∗
0
), then neither a free contract nor reward is offered, i.e., p∗ξ(θ) > 0 if and only

if q∗ξ (θ) > 0, and R∗ξ = 0. Moreover, q∗ξ (·) = q∗0(·) for θ ∈ [0, 1] and θ∗
ξ

= θ∗
0
.

2. Suppose r(1− θ∗
0
) ≤ ξ.

(a) If (16) is satisfied, then the following hold.

i. No free contract is offered, i.e., p∗ξ(θ) > 0, if and only if q∗ξ (θ) > 0.

ii. q∗ξ (θ) = q∗∗(θ) for θ ≥ θ∗
ξ

and q∗ξ (θ) = 0 otherwise.

iii. θ∗
ξ

= θ′′

iv. A positive reward is offered, i.e., R∗ξ = ξ−r(1−θ∗
ξ
) > 0, if and only if ξ > r(1−θ′′).

(b) If (16) is not satisfied, then there exists a θξ > θ′ such that the following hold.3

i. For θ > θξ, no free contract is offered, i.e., p∗ξ(θ) > 0. For θ ∈ [θ∗
ξ
, θξ], a free

contract is offered, i.e., p∗ξ(θ) = 0. Otherwise, p∗ξ(θ) = 0.

ii. q∗ξ (θ) = q∗∗(θ) for θ > θξ, q
∗
ξ (θ) = q(θ∗

ξ
) for θ ∈ [θ∗

ξ
, θξ], and q∗ξ (θ) = 0 otherwise.

iii. θ∗
ξ
< θ′.

iv. A positive reward is offered, i.e., R∗ξ = ξ−r(1−θ∗
ξ
) > 0, if and only if ξ > r(1−θ∗

ξ
).

2It is not payoff-relevant for the firm if for a zero-mass of types a different contract satisfying the constraints is
offered.

3The type θξ is determined such that
2θξ−1

c
= q(θ∗

ξ
).
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The proof is presented at the end of this section. The proposition highlights that, as in the

two-type case that we consider in the main analysis, the optimal scheme exhibits a rich pattern

of the use of free contracts and referral rewards. In particular, it allows for the parameter regions

such that both are used, only free contracts are used, only referral rewards are used, and none are

used. To see our main point about the size of the surplus the receiver purchasing a free contract

experiences, first note that a free contract is offered under an open set of parameter values because

it is offered whenever r(1− θ∗) ≤ ξ holds and (16) is not satisfied, and those conditions hold (case

2b of Proposition 7) for an open set of parameter values. Second, whenever a free contract (q(θ∗
ξ
), 0)

is offered, it is purchased with a positive probability as all types [θ
ξ
, θξ] purchase that contract and

θ
ξ
< θξ, but everyone but θ

ξ
receives strictly positive surplus vθ(q(θξ)) from it.

Proof. (Proposition 7) Part (i) is straightforward, so we prove part (ii). Fix a solution to the

problem (12) subject to (13) and (14’) and denote it by (p∗ξ(·), q∗ξ (·), θ
∗
ξ
, R∗ξ). We first rewrite

the firm’s problem. To this end, let us denote the utility received by type θ under the contract

(pξ(θ), qξ(θ)) by U(θ) = vθ(qξ(θ))−pξ(θ). Then, by a standard argument in mechanism design, the

receivers’ IC constraints can be rewritten as

U(θ) =

∫ θ

θ
ξ

ln(qξ(θ̃) + 1)dθ̃ + U(θ
ξ
)

for θ ≥ θ
ξ
, qξ(·) being non-decreasing and qξ(θ) ≥ q(θ) for θ ≥ θ

ξ
. The PC constraint and optimality

then imply U(θ∗
ξ
) = 0. Then, the seller’s objective function can be rewritten by substituting

U(θ) = vθ(qξ(θ))− pξ(θ) into
∫ 1
θ
ξ

(pξ(θ)− qξ(θ)c) dθ:

∫ 1

θ
ξ

(θ ln(qξ(θ) + 1)−K − qξ(θ)c) dθ =

∫ 1

θ
ξ

(θ ln(qξ(θ) + 1)−K − U(θ)− qξ(θ)c) dθ −
∫ 1

θ
ξ

∫ 1

θ
ξ

1{θ̃≤θ} · ln(qξ(θ̃) + 1)dθ̃ dθ =

∫ 1

θ
ξ

((2θ − 1) ln(qξ(θ) + 1)−K − qξ(θ)c) dθ
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yielding

Π̃(ξ) = max
θ
ξ

max
qξ(·), Rξ

∫ 1
θ
ξ

((2θ − 1) ln(qξ(θ) + 1)−K − qξ(θ)c) dθ −Rξ (17)

subject to

qξ(·) being non-decreasing and qξ(θ) ≥ q(θ) for θ ≥ θ
ξ
, (13’)

(14’) and p∗(θ) = v(qξ(θ))−
∫ θ
θ
ξ

ln(qξ(θ̃) + 1)dθ̃.

Next, we solve this maximization problem for ξ = 0. Point-wise maximization of the integral

with respect to q0(θ) for a fixed θ results in the first-order condition given by 2θ−1
q0(θ)+1 − c = 0,

i.e., q0(θ) = 2θ−1
c − 1 and a second-order condition given by − 2θ−1

(q0(θ)+1)2
< 0. Thus, the solution

of the first-order condition gives a maximum if θ > 1
2 and otherwise the unique solution of the

maximization problem is q0(θ) = 0.

If we plug this into (2θ − 1) ln(q0(θ) + 1)−K − q0(θ)c, we get for θ > 1
2 ,

(2θ − 1)(ln((2θ − 1)/c)− 1)−K + 1

which is strictly greater than zero for θ = 1 if − ln(c) − 1 − K + c > 0 which we assumed. It is

exactly zero at some θ∗
0

as long as K > c. Thus, (15) is a solution to the maximization problem

as it is increasing. Also, note that θ′ given by q0(θ′) = q(θ′) is well defined as the equation has a

unique solution no more than 1 as long as K < − ln(c) which is implied by the parameter restriction

K < − ln(c)− 1 + c and c < 1. Then, q∗0(θ) > q(θ) if and only if θ > θ′.

Part 1: If ξ < r(1− θ∗
0
), then the unconstrained solution (the solution to (12) subject to (13))

is also achievable with the constraint (the solution to (12) subject to (13) and (14’)), so it is the

unique optimum and no free contracts or rewards are provided under the optimal scheme.

Part 2: If ξ ≥ r(1 − θ∗
0
), then profits are zero unless some reward is paid or the good is sold

to more buyers. It is immediate that the sender’s IC (14’) must be binding. To find the optimal

scheme, we can, hence, substitute ξ − r(1− θ
ξ
) for Rξ in the optimization problem, yielding

Π̃(ξ) = max
θ
ξ

max
qξ(·)

∫ 1
θ
ξ

((2θ − 1) ln(qξ(θ) + 1)−K − qξ(θ)c+ r) dθ − ξ
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subject to (13’), R∗ξ = ξ − r(1 − θ
ξ
) and p∗(θ) = v(qξ(θ)) −

∫ θ
θ
ξ

ln(qξ(θ̃) + 1)dθ̃. Point-wise maxi-

mization of ((2θ − 1) ln(qξ(θ) + 1)−K − qξ(θ)c+ r) with respect to qξ(θ) yields q∗ξ (θ) = q∗∗(θ) for

θ ≥ θ∗
ξ

where θ∗
ξ

solves

(2θ − 1) ln

(
2θ − 1

c

)
−K − 2θ + 1− c+ r = 0

as long as the solution satisfies q∗∗(θ∗
ξ
) ≥ q(θ∗

ξ
) (i.e., θ∗

ξ
≥ θ′), which is equivalent to (16).

Otherwise, since q(·) is strictly decreasing, we need to apply bunching and offer a free contract

at the bottom because the pointwise solution max{q∗∗(θ), q(θ)} is decreasing for θ ∈ (0, θ′). More

precisely, there exist θξ and θ∗
ξ

such that for θ ∈ [θ∗
ξ
, θξ], a free contract is offered, i.e., p∗ξ(θ) = 0

and q∗ξ (θ) = q(θ∗
ξ
) for θ ∈ [θ∗

ξ
, θξ] under the optimal scheme.

A strictly positive reward is paid if and only if ξ is strictly higher than the induced externalities

r(1− θ∗
ξ
). This concludes the proof of (ii).

D.3 Two-Sided Externalities

In the main analysis we assumed that only the senders receive externalities, and claimed that even

if we assumed the receivers would receive externalities as well, the essence of the analysis would

not change. The goal of this subsection is to make this formal. Consider a model as in Section 2,

with an additional feature that if receiver i uses the product, she receives externalities r. In this

model, for each θ ∈ {H,L}, if a type-θ receiver uses quantity q, she experiences utility vθ(q) + r.

Note that this is a change that shifts the valuation functions by a constant, i.e., they change

from vθ(q) to vθ(q) + r for each θ = H,L. Hence, it does not alter the nature of the optimal

contract scheme under each fixed r, assuming that our restrictions are met for the new valuation

functions. This implies that all comparative statics with respect to parameters that are not r (e.g.,

Proposition 6) are robust. Below we show that our main comparative statics with respect to r

(provided in Theorem 4) goes through as well.4

Note that Theorem 4 states that the use of free contracts is optimal if and only if the condition

r ∈
[
CF ∗

1−α ,
ξ−CF ∗

α

]
is met. Then, the use of rewards is determined by conditions given by the

bounds independent of the size of r (the conditions are r < ξ in the presence of free contracts and

4We keep assuming that our restrictions are satisfied after the shifts of the valuation functions.
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r < ξ
α otherwise, and ξ and ξ

α do not depend on r). It is immediate that the same characterization

goes through in our modified model, but now the size of CF ∗ depends on r. If we show that CF ∗

is nonincreasing and CF ∗ + αr is nondecreasing in r, then the region of r such that free contracts

are used is still given by a convex interval, guaranteeing that the essence of the comparative statics

does not change. We first show that CF ∗ is strictly decreasing in r. To show this, let us write

down the modified CF ∗ as follows:

CF ∗(r) = α(vH(q(r)) + r) + (1− α)cq(r),

where CF ∗(r) and q(r) denote the cost of free contracts under r and the break-even quantity for

low-types under r (i.e., vL(q(r)) + r = 0), respectively. It is immediate that the second term is

strictly decreasing in r because v′L(q) is strictly increasing in q and thus q(r) is strictly decreasing

in r. The first term is strictly decreasing in r for the following reason: Take r and r′ with r < r′.

Then, by the assumption that v′H(q) > v′L(q) and the definition of the q(·) function, it must be the

case that:

(vH(q(r′)) + r′)− (vH(q(r)) + r) <
(
vL(q(r′))− vL(q(r))

)
+ (r′− r) =

(
(−r′)− (−r)

)
+ (r′− r) = 0

Overall, CF ∗(r) is strictly decreasing in r. We next show that CF ∗(r) + αr is strictly increasing

in r under an additional assumption about the valuation functions. Specifically, suppose that

2v′L(q) > v′H(q) + 1−α
α c for all q > 0. That is, the marginal values of the two types are not

too different from each other, which ensures that the information rent vH(q(r)) does not vary

too much with r. Then, taking the first-order condition of CF ∗ with respect to r and by noting

q′(r) = − 1
v′L(q(r))

(by the Implicit Function Theorem), one can show that CF ∗(r) + αr is strictly

increasing in r. All in all, free contracts are used if and only if r is in a convex interval.

Note that this analysis provides an interesting observation that the cost of free contracts de-

creases in the size of externalities because both the production cost and the information rent

decrease. The reason is that if low types receive externalities it becomes easier for the firm to make

them willing to use the product (implying low production cost) and high types have less incentives

to switch to the low-type contract at such a level of quantity provided to low types (implying lower

8



information rent).

To sum up, the model of two-sided externalities provides qualitatively equivalent comparative

statics as our main model with one-sided externalities.

D.4 Quantity-Dependent Externalities

The main analysis is based on a model in which the magnitude of externalities is captured by a

single parameter r. As Theorem 4 shows, this is the key parameter that determines the optimal

scheme. However, one can imagine that a Dropbox user who wants to refer his co-author receives

higher positive externalities from joint usage if the co-author uses Dropbox more. The objective

of this section is to formalize the idea of quantity-dependent externalities and discuss how such

dependencies affect our predictions.

To this end, consider a function r̄ : R+ → R+ that assigns to each quantity level consumed the

value of externalities generated. We employ the normalization that r̄(0) = 0. Note that our main

model corresponds to the case in which r̄(q) = r for all q > 0. In this section we assume that r̄ is

differentiable, strictly concave, r̄′(q) > 0 for all q ≥ 0 and limq→∞ r̄
′(q) = 0.

Fix an optimal scheme ((p̄∗L, q̄
∗
L), (p̄∗H , q̄

∗
H), R

∗
). Then, the L-type’s PC constraint and the H-

type’s IC constraint must be binding. First, consider the case when the sender’s IC constraint is

binding. In that case, (generically) positive rewards are being paid. Then, if a contract is offered to

the low types (q̄∗L > 0), then the optimal scheme must satisfy the following first-order conditions:

α(v′H(q̄∗H)− c+ r̄′(q̄∗H)) = 0

and q∗L ∈ {0, q} (as in the main model) if

(1− α)(v′L(qL)− c+ r̄′(qL)) + α(v′L(qL)− v′H(qL)) < 0 (18)

holds for qL = q, and q∗L satisfies the above inequality with equality otherwise.5 For simplicity, we

focus the discussion on the case when the inequality in (18) is satisfied for qL = q.

Otherwise, the contract has a positive price. If low types are not served under the optimal

5The solution exists and is unique as we assume r̄ is strictly concave and the limit of its slope is zero.
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contract scheme, then only the first-order condition for q∗H need be satisfied. Thus, as in the

main model, there are only three possible levels of realized externalities corresponding to the three

contracts that the firm optimally chooses conditional on rewards being paid, rH := r̄(q̄∗H), rL := r̄(q)

and r̄(0) = 0. Note that in this case, q∗H ≤ q̄∗H holds because r̄′(q̄∗H) > 0 and v′H is decreasing.

If the sender’s IC constraint is not binding, then the sender’s IC can be ignored and thus, the

optimal contract is the same as in the main model, and in particular, q̄∗H = q∗H . Let us denote the

externalities received if the high type’s contract is purchased by rh := r̄(q∗H).

Here we consider how the conditions for offering free contracts change. In the absence of free

contracts, expected externalities are given by αrH , while in the presence of free contracts, expected

externalities are given by αrH + (1 − α)rL. Now, consider part 2 of Theorem 4. It says that, for

free contracts to be used in the optimal scheme, two conditions have to be met: r(1 − α) ≥ CF ∗

and ξ − αr ≥ CF ∗. The first inequality says that the cost of free contracts has to be no more

than the increment of the expected externalities. The second says that it has to be no more than

the rewards necessary to be paid to compensate for the difference between the cost of talking and

the externalities that are generated anyway by high types, in the absence of free contracts. Since

the first inequality automatically holds when the sender’s IC constraint does not bind, and the

second inequality automatically holds when the sender’s IC constraint binds, these conditions can

be rewritten as:

rL(1− α) ≥ CF ∗ and ξ − αrh ≥ CF ∗.

Since CF ∗ is unchanged, these conditions imply that low externalities for low types and high

externalities for high types both reduce the set of parameters for which free contracts are optimally

offered. Thus, free contracts can be optimal only if the dependence of the magnitude of externalities

does not vary too much with the quantity consumed by the receivers. Our main analysis corresponds

to the (extreme) case with constant r̄ functions, and hence best captures the role of free contracts.

D.5 Informed Senders

To simplify the analysis, in the main analysis we assume that each sender has the same information

about the type of his receiver as the firm. However, in some markets one can imagine that senders

have better information about their friends’ willingness to pay than the firm. The objective of
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this section is to consider a model that accommodates this possibility, and to discuss robustness of

and difference from the results of the main analysis. Specifically, let us assume that each sender

independently observes a signal s ∈ {sL, sH} about his receiver. If the receiver’s type is θ = H,

the sender sees a signal s = sH with probability β ∈
(

1
2 , 1
)
, and if the receiver’s type is θ = L, the

sender sees a signal s = sH with probability 1−β.6 Thus, by Bayes rule, a sender who has received

a signal sH believes that the probability of facing a H-type receiver is αH = αβ
αβ+(1−α)(1−β)(> α),

while a sender who has received a signal sL instead believes that the probability of facing a H-type

receiver is αL = α(1−β)
α(1−β)+(1−α)β (< α).

How does the firm’s optimization problem change? The firm’s objective function is a weighted

sum of the profit generated by WoM of senders who have received a high signal and the profit

generated by WoM of senders who have received a low signal. The two profit functions are as in

(4) with the fraction of high valuation receivers being αH and αL, respectively. More precisely, a

fraction αβ + (1 − α)(1 − β) of senders have received a high signal sH and the expected profits

generated by those senders is just (4) with the fraction of H-type receivers being αH . A fraction

α(1− β) + (1− α)β of senders has received a low signal and the profit generated by those senders

is (4) with the fraction of H-type receivers being αL. Note that the receivers’ constraints remain

unchanged. However, the firm now faces two IC constraints for the senders - one for the senders

who observed sH and one for the senders who observed sL.

An important difference to the model we consider in the main part is that Lemma 1 is not valid

anymore as the firm can utilize the informational differences with the reward scheme.

Proposition 8 (Rewards with informed senders). 1. Suppose that all senders choose “Refer”

under the optimal scheme.

(a) If the firm does not offer free contracts, then the optimal reward scheme R satisfies

R(H) ≤ R(L) with the inequality being strict if r ∈ (0, ξ
αL

).7

(b) If the firm offers free contracts, then the optimal reward scheme R satisfies R(H) =

R(L) = max{ξ − r, 0}.
6If β = 1

2
was the case, then senders and the firm would have exactly the same information about receivers. Our

main model corresponds to this case.
7R(H) = ξ − r < R(L) = ξ for ξ ≥ r and R(H) = 0 ≤ R(L) = max

{
ξ−αLr
1−αL

, 0
}

for ξ < r.
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2. Suppose that senders who received sH choose “Refer” but other senders choose “Not” under

the optimal scheme.

(a) If the firm does not offer free contracts, then there exists an optimal reward scheme

R such that R(H) > R(L) = 0. Moreover, any optimal reward scheme R satisfies

R(H) > R(L)− r.

(b) If the firm offers free contracts, then there exists an optimal reward scheme R such that

R(H) > R(L) = 0. Moreover, any optimal reward scheme R satisfies R(H) > R(L).

Each of the four cases arises given a nonempty parameter region that we compute in the proof

of Proposition 9 presented at the end of this section.8 An important implication of this proposition

is that, if the firm wants to incentivize all senders to talk, then she must pay more for referrals of L-

type receivers than for H-type receivers because L-type senders’ expected externalities are low. In

contrast, if the firm is better off excluding senders who received signal sL, then one optimal scheme

only rewards referrals of premium users. Note that if the firm wants to induce sL-senders to talk,

it should also induce sH -senders to talk because it is cheaper to provide incentives to sH -senders

and they talk to a better pool of receivers.

Solving the full problem is a daunting task because there are multiple cases to analyze depending

on which type of senders are encouraged to talk. If the monopolist decides to encourage every sender

to talk, the choice between free contracts and referral rewards can be tricky: offering free contracts

can be very attractive in a market with fraction αL of high types but not attractive in a market

with fraction αH of high types. As the firm cannot differentiate between buyers who have generated

a high signal versus a low signal, it needs to trade off the benefits in both markets when deciding

whether to offer free contracts. One can, however, easily derive the following results for the extreme

cases:

Proposition 9 (Signal strength). 1. If ξ − r < α(p∗H − cq∗H), then there exists β̄ < 1 such that

for all β > β̄, the unique optimal menu of contracts is given by ((0, 0), (p∗H , q
∗
H)), and there

exists an optimal reward scheme R, which satisfies R(L) = 0. If ξ − r ≥ α(p∗H − cq∗H), then

for any β ∈ (1
2 , 1), the firm cannot make positive profits.

8The proof for Proposition 8 is presented at the end of this section, too.
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2. Suppose that there exists a unique optimal menu of contracts ((pL, qL), (pH , qH)) in the model

without signals. Then, for all r 6∈
{
ξ
α ,

CF ∗

1−α ,
ξ−CF ∗

α

}
, there exists β̄ > 1

2 such that for all

β ∈ (1
2 , β̄), there exists a unique optimal menu of contracts and it is ((pL, qL), (pH , qH)).

Part 1 shows that, if the signal strength β is too large, free contracts are not used by the seller.

Part 2 then shows that the model we analyze in the main section without signals is reasonable

when we think of the introduction of a new product category because in such a case β would be

close to 1
2 .

Proof. (Proposition 8) 1. If all senders choose Refer, the IC constraints for all senders— those

who see sH and those who see sL— must be satisfied. (a) Without free contracts, the senders’ IC

constraints are given by:

ξ ≤ αHr + (αHR(H) + (1− αH)R(L)) and ξ ≤ αLr + (αLR(H) + (1− αL)R(L)).

The optimal reward conditional on these constraints minimizes referral reward payments by making

both senders’ IC constraints binding whenever possible. The firm is able to do this if and only if

r ≤ ξ and in that case the optimal reward scheme is given by R(H) = ξ − r and R(L) = ξ. If

r > ξ, it is optimal to set R(H) = 0 and R(L) = max
{
ξ−αLr
1−αL , 0

}
.

(b) With free contracts, the senders’ IC constraints are given by:

ξ ≤ r + (αHR(H) + (1− αH)R(L)) and ξ ≤ r + (αLR(H) + (1− αL)R(L)).

Thus, it is optimal to set R(H) = R(L) = max{ξ − r, 0}.

2. If senders who saw sL do not talk, then only the IC constraint of a sender who sees sH must

be satisfied and the IC constraint of the sender who sees sL must be violated.

(a) Without free contracts, the firm minimizes reward payments subject to these constraints by

minimizing αHR(H) + (1−αH)R(L) (i.e., making the IC for the sender with sH binding whenever

possible) such that

αLr + (αLR(H) + (1− αL)R(L)) < ξ ≤ αHr + (αHR(H) + (1− αH)R(L)).
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First, note that these inequalities imply R(H) > R(L) − r. Second, if a referral scheme with

R(H),R(L) ≥ 0 that satisfies these inequalities exists (this is the case whenever ξ
αL
− r ≥ 0), then

the referral scheme given by R(L) = 0, R(H) = max{ ξ
αH
− r, 0} must maximize the seller’s profits:

The seller cannot increase profits by decreasing αHR(H) + (1− αH)R(L).

(b) With free contracts, the constraints become

r + (αLR(H) + (1− αL)R(L)) < ξ ≤ r + (αHR(H) + (1− αH)R(L)),

which imply R(H) > R(L). By an analogous argument as in (a), a reward scheme satisfying these

constraints exists if and only if ξ − r ≥ 0 and in that case the scheme given by R(H) = ξ−r
αH

,

R(L) = 0 maximizes profits.

Proof. (Proposition 9) 1. First, note that any optimal scheme results in one of the following

three types of behaviors by the senders: Either (i) no senders talks, or (ii) all senders talk, or (iii)

only senders who have received a sH signal talk.9

If ξ− r ≥ α(p∗H − cq∗H), then for all β ∈ (1
2 , 1) the firm cannot make positive profits. We assume

from now on ξ − r < α(p∗H − cq∗H). We will show that for sufficiently large β, the firm can make

positive profits, i.e., that we are in case (ii) or (iii).

Fix β ∈ (1
2 , 1). If ξ − rαL ≤ 0, then all senders talk even without any reward payments as long

as H-type receivers consume a positive quantity. Thus, we are in case (ii), and so for any optimal

scheme ((pH , qH), (pL, qL),R), R(L) = 0 and qL = 0 hold.

We assume from now on that rαL < ξ < α(p∗H − cq∗H) + r. Under a reward scheme R with

R(L) = 0 (as specified in Proposition 8) and R(H) = max{ξ−αHr,0}
αH

, the senders who have seen sH

talk, while senders who have seen sL do not talk.

Next we show that, there exists β̄ < 1 such that for all β > β̄, it is not optimal to offer free

contracts and the firm always chooses to be in case (iii). For this purpose, we compute the profits

from cases (ii) and (iii).

• Case (iii): Since αH → 1 as β → 1, there exists β̄ < 1 such that for all β > β̄, it

9Note that there is no optimal scheme in which sL-senders talk while sH -senders do not talk. This is because
αH > αL and thus, given a scheme ((pH , qH), (pL, qL),R) where only sL-senders talk, the seller can strictly increase
profits by choosing a reward scheme R′ with R′(H) = R′(L) = αLR(H) + (1− αL)R(L) while holding the menu of
contracts fixed. Under this scheme, both sender types talk.
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is not optimal to offer free contracts by the analysis in Section B. Thus, the profits are

given by αβ(p∗H − cq∗H)− (αβ + (1− α)(1− β)) max{ξ − αHr, 0}, which is greater than zero

for sufficiently large β because it converges to Π
∗
H ≡ α(p∗H − cq∗H) − αmax{ξ − r, 0} ≥

max{α(p∗H − cq∗H)− (ξ − r), α(p∗H − cq∗H)} > 0 as β → 1.

• Case (ii): We consider two cases: ξ ≥ r and ξ < r.

– ξ ≥ r: By Proposition 8, without free contracts, profits are given by α(p∗H−cq∗H)−(ξ−αr)

and with free contracts they are given by α(p∗H − cq∗H)−CF ∗− (ξ− r). Both profits are

strictly smaller than Π
∗
H .

– ξ < r: Without free contracts, profits are given by α(p∗H−cq∗H)−(1−α) max
{
ξ−αLr
1−αL , 0

}
and with free contracts, they are α(p∗H − cq∗H)−CF ∗. Both profits converge to numbers

that are smaller than Π
∗
H as β → 1.

Hence, there exists β̄ < 1 such that for all β > β̄, it is not optimal to offer free contracts and the

firm always chooses to be in case (iii). This concludes the proof.

2. If β = 1
2 , then one can immediately see from the expressions above that profits coincide with

the ones in the main section. Thus, by continuity, for any r < ξ
α , there exists a β̄ > 1

2 such that

for all β ∈ (1
2 , β̄), r < ξ

αL
and r < ξ

αH
. Similarly, for any r ∈

(
ξ
αL
, CF

∗

1−αL

)
, there exists a β̄ > 1

2

such that for all β ∈ (1
2 , β̄), r ∈

(
ξ
αL
, CF

∗

1−αL

)
and r ∈

(
ξ
αH
, CF ∗

1−αH

)
. Analogous conclusions hold for

intervals
(
CF ∗

1−α ,
ξ−CF ∗

α

)
and

(
ξ−CF ∗

α ,∞
)

. Thus, there exists a β̄ > 1
2 such that for all β ∈ (1

2 , β̄),

the same analysis as in the main section applies for β.

D.6 Multiple Senders per Receiver

In the main model, we consider a stylized network structure between senders and receivers, i.e.,

receiver i is connected only to sender i, and vice versa. In reality, however, it is possible that

a receiver is connected to multiple potential senders of the same information. Similarly to the

discussion in the Online Appendix where the receiver can learn from an advertisement, a receiver

has multiple sources of information if there are multiple senders. Such a situation can arise when

senders and receivers are connected through a general network structure.

In this section we discuss how the predictions change when there are multiple senders per

receiver. To make our point as clear as possible, let us assume that once a receiver adopts a
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product, each sender who talked to the receiver experiences the same externalities of r. That is, if

there are m senders for a given receiver, then the total externalities generated by the receiver are

mr. The reward can be conditioned on the set of senders who talked.

Let m > 1 be the number of senders connected to a given receiver. Suppose that, when there

is only one sender, R is the optimal expected referral reward. The conclusion in Lemma 1 (or the

analysis in the Online Appendix on advertising) entails that, by paying R in expectation to each

sender, the firm can give the same incentive of talking to the senders. However, such an adjustment

changes the firm’s total payment. This is because the expected payment of referral reward is no

longer R, but mR.

This implies that the firm becomes reluctant to use referral rewards. More precisely, if the

optimal reward level is zero in the model with one sender per receiver, then it is still zero in the

model with multiple senders per receiver. At the same time, free contracts become relatively more

attractive as it incentivizes senders in the same way as with only one sender. Thus, when there are

multiple senders per receiver, the range of parameter values such that only free contracts are used

becomes wider because free contracts can substitute referral rewards.

D.7 Social Optimum

In order to understand the monopolist’s strategy better, we consider the social planner’s solution

and compare it with the solution obtained in the main section. Specifically, we consider a social

planner who has control over the senders’ actions ai ∈ {Refer,Not} and the quantities qL and qH

offered to receivers, while she does not have control over receivers’ choice of whether to actually

use the product after it is allocated.10 Rewards and prices do not show up in the social planner’s

problem because they are only transfers between agents.

We start with two basic observations. First, whenever WoM takes place under the monopolist’s

solution, there is a surplus from WoM. Hence, it is also in the social planner’s interest to encourage

WoM. Second, under the monopolist’s optimal scheme, free contracts always make senders weakly

better off by increasing the probability of receiving externalities, high-type receivers better off

10In the classic setup of Maskin and Riley (1984), all buyers get positive utility from using the product, and thus,
they always use the product after purchase. If we were to allow the social planner to have control over the use of the
product and v′L(q) < c for all q > 0, then she would have low types use just a little bit of the quantity and generate
the externalities r, which we view as implausible.
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by reducing the price due to the information rent, and low-type receivers indifferent because their

participation constraint is always binding. This implies that, if the monopolist firm optimally offers

free contracts, then it is also socially optimal to offer it. We summarize these two observations in

the following proposition:

Proposition 10. 1. If there exists a monopolist’s solution under which ai = Refer for all i,

then there exists a social planner’s solution that entails ai = Refer for all i.

2. If there exists ((0, q), (p̃∗H , q
∗
H), R) ∈ S for some R under the monopolist’s solution, then there

exists a social planner’s solution that entails qL = q.

The converse of each part of the above proposition is not necessarily true, i.e., the monopolist

may be less willing to encourage WoM than the social planner or not offer free contracts despite

it being socially optimal. To see this clearly, we further investigate the social planner’s problem in

what follows.

Conditional on free contracts being offered, the welfare-maximizing menu of quantities (qH , qL)

is exactly the same as the menu offered by the monopolist in the main section. To see why, first

note that, as in the classic screening problem in Maskin and Riley (1984), the monopolist’s solution

results in no distortions at the top, i.e., v′(qH) = c. Conditional on selling to the low types, the

low-type quantity qL under the second best in Maskin and Riley (1984) is distorted to deter high

types to switch to the contract offered to low types. This means that the social planner’s solution

dictates that low types receive more quantity in the first best than in the second best. In our

problem, however, the welfare-maximizing quantity cannot be strictly higher than q because the

marginal cost c is higher than the marginal benefit v′L(q) for all q ≥ q (Assumption 2), and the

incentive-compatible quantity cannot be strictly lower than q because the low types would not use

the product for qL < q.

Finally, whether or not the sender talks under the social planner’s solution depends on the

comparison between the total benefit from talking and the cost of talking, ξ: In total, WoM is

efficient if and only if

α(vH(q∗H)− cq∗H + r) + (1− α) max{r − cq, 0} ≥ ξ. (19)
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Note that there are two social benefits of WoM. First, WoM creates network externalities because

the senders and receivers become aware of each other using the product. Second, it creates gains

from trade because some high-valuation buyers learn about the product.

In the monopolist’s solution, free contracts are not used if r < CF ∗

1−α . Substituting the definition

of CF ∗ shows that this is equivalent to r − cq < α
1−αvH(q). Since the social planner uses free

contracts if 0 < r− cq, the monopolist uses free contracts too little from the social planner’s point

of view conditional on it being socially optimal to encourage WoM if r is high, and α or vH(q) is

high. The reason is as follows. On the one hand, high externalities r imply a high additional benefit

r from having a receiver using the product, so that the social planner wants all receivers to use

the product. However, such r pertains to the senders and the monopolist cannot extract the entire

corresponding surplus. On the other hand, the monopolist is reluctant to use free contracts if the

information rent necessary to induce high types to purchase a premium contracts is high relative

to the number of low types who choose the free contracts. The “per low-type” information rent

α
1−αvH(q) is high if α or vH(q) is high.

D.8 Effect of Advertising

In this section, we investigate how the optimal incentive scheme changes if the firm can also engage

in classic advertising. Formally, consider the situation in which the firm has an option to conduct

costly advertising before WoM takes place. The firm spends a ∈ R+ for advertising and this is

observed by all senders but not by any receivers. Then, each receiver independently becomes aware

of the product prior to the communication stage with probability p(a), where p(0) = 0 and p(a) > 0

for a > 0. The firm simultaneously chooses a menu of contracts, a reward scheme, and advertising

spending. We assume that the sender does not observe whether the receiver is already aware of

the product and only enjoys externalities if the receiver starts using the productand she engages

in WoM (independently of whether the receiver learns through advertising and/or WoM) since

otherwise she cannot know whether the receiver uses the product or not. The reward scheme is

now a function R : {L,H} × {A,N} → R+. Here, R(θ,A) denotes the reward paid to the sender

whose receiver purchases the contract offered to θ-types and becomes aware of the product through

advertising. Similarly, R(θ,N) denotes the reward paid to the sender whose receiver purchases the
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contract offered to θ-types and does not become aware of the product through advertising.11

Having completely specified the model with advertising, let us now analyze it. Note first that

Lemma 2 again holds without any modification. Suppose now that the reward scheme R and

the advertising level a is part of the optimal scheme, and all senders choose Refer under such

an optimal scheme. We assume a > 0 and derive a contradiction. To show this, consider the

following modification of the scheme. First, let R ≡ α (p(a)R(H,A) + (1− p(a))R(H,N)) + (1 −

α) (p(a)R(L,A) + (1− p(a))R(L,N)) be the expected reward, and construct a new reward scheme

R′ such that R′(θ, x) = R for all θ = H,L and x = A,N . As in Lemma 1, this new scheme also

satisfies the constraints and gives rise to the same expected profit, so it is optimal, too. Now,

consider changing a > 0 to a new advertising level a′ = 0. With the new scheme (R′, a′), the

constraints are still satisfied; in particular all the senders choose Refer. Also, the expected profit

to the monopolist increases by a > 0. This contradicts the assumption that the original scheme

with (R, a) is optimal. All in all, this argument implies that either (i) the firm chooses a positive

advertising level and no WoM takes place or (ii) WoM takes place and a = 0. Note that, in case

(i), compared to the model in Section 2, advertising either substitutes WoM or allows the firm to

inform some receivers if encouragement of WoM was too expensive.

D.9 Dynamic Extension

Our base model assumes a static environment, in which the receiver does not become a sender. A

full analysis of a dynamic extension of the model is beyond the scope of this paper, but here we offer

a simple dynamic model in a stationary environment to demonstrate the robustness of our results

to dynamic extensions. Specifically, our objective is to show that coexistence of a free contract and

referral rewards in the optimal scheme.

Specifically, suppose that time is discrete and double infinite, t = . . . ,−2,−1, 0, 1, 2, . . . . Before

the entire dynamic process starts, the seller offers a scheme ((pL, qL), (pH , qH), R) ∈ R5
+. At each

time t, there are a continuum of customers who know the product and consume a positive amount,

and their measure is denoted by µt > 0. Each of them talks to another new customer, so that

measure µt of new customers are informed. Among the customers who are informed, a fraction ρ

11We assume that the externalities r do not depend on a. Such dependence may arise if WoM is conducted with
self-enhancement motive as in Campbell et al. (2015). In such a model, r would be decreasing in a, and advertising
becomes an even less attractive option for the firm than in the current model.
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of them drop out from the market for some exogenous reason. Then, depending on the menu of

contracts offered by the seller, each new customer makes a purchase decision. Finally, there is also

an inflow of customers of size S, who know the product and make purchase decisions depending

on the menu of the contract. The sum of the measures of the customers knowing the product and

consuming a positive amount is then denoted µt+1. In total, each customer lives for two periods

unless the customer drops out of the market with probability ρ.

We are interested in the steady state of this process, i.e. µt+1 = µt. The seller’s objective is to

maximize the per-period profit, which we define to be the per-customer profit times stationary µt.

There are two differences from the static (full) model. First, the total population size is larger

if a contract is offered to the L-type compared to if the L-type does not purchase in equilibrium.

To see this, suppose first that the menu of contracts is such that the L-type customers do not make

a purchase. Let µH := µt for each t in this case. Then,

(1− ρ)αµH + αS = µH , or µH =
S

ρ+ ( 1
α − 1)

.

Second, let µHL := µt for each t be the population size at each period when the menu of contracts

is such that the both types make a purchase. Then,

(1− ρ)µHL + S = µHL, or µHL =
S

ρ
,

hence µH < µHL.

The second difference is the participation constraint of the receiver. When deciding between

purchasing and not, the receiver has to take into account the surplus from talking in the next

period. Especially, if a free contract is used, this surplus may be strictly positive.

One can solve this model analytically for each parameter combination. In particular, for param-

eter combinations specifying a niche market and a not-too private product, one can show that both

a free contract and referral rewards are used in an optimal scheme (e.g., any parameter combina-

tions around α = 0.05, r = 58, and ρ = 0.8). Although we do not present the full characterization

for the entire parameter space as it is beyond the scope of this paper, this demonstrates that the

key insights and tradeoffs are also present in a dynamic environment, showing the robustness of
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our results in a generalization to a dynamic model.

E Heterogeneous Costs of WoM

In this Online Appendix, we consider the case with heterogeneous costs of talking. Specifically, we

assume that, after each sender i sees the menu of contrast, he privately observes his cost of talking

ξi, drawn from an independent and identical distribution with a cumulative distribution function

G : R+ → [0, 1]. The firm maximizes the expected profits where the expectation is taken with

respect to G. We restrict attention to twice differentiable G with G′ = g satisfying g(ξ) > 0 for all

ξ ∈ R+ and

Assumption 4. G is strictly log-concave, i.e., g
G is strictly decreasing.

This condition is satisfied by a wide range of distributions such as exponential distributions, a

class of gamma, Weibull, and chi-square distributions, among others. Note that those restrictions

are sufficient to imply the conditions for the existence result (Proposition 5) which are stated in

the proof of Proposition 5.

Section E.1 characterizes the optimal scheme. Section E.2 conducts comparative statics of the

optimal scheme. Section E.3 contains all the proofs for these results. Section E.4 discusses how the

main model with homogeneous costs can be viewed as a limit of models with heterogeneous costs.

E.1 Properties of Optimal Contracts

First, we characterize the optimal reward. If free contracts are offered, it acts as a substitute for

reward payments, which results in higher optimal rewards absent free contracts. The following

proposition provides conditions under which a positive reward is optimally offered.

Lemma 5 (Optimal Reward). In the model with heterogeneous costs, there exists rfree and rnot free

with rnot free > rfree such that the following are true:

1. If r < rfree, then ((pL, qL), (pH , qH), R) ∈ S implies R > 0.

2. If rfree ≤ r < rnot free, then ((pL, qL), (pH , qH), R) ∈ S implies either R > 0 and qL = 0, or

R = 0 and qL = q.
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3. If rnot free ≤ r, then ((pL, qL), (pH , qH), R) ∈ S implies R = 0.

In order to prove this, we fix a menu of contracts with and without free contracts satisfying the

conditions in Lemma 2 and solve for the optimal reward scheme. That is, conditional on offering

free contracts (qL = q), we define the maximal profit under (r, α) by

Πfree(r, α) = max
R≥0

([
π((0, q), (p̃∗H , q

∗
H))−R

]
·G(r +R)

)
and conditional on offering no free contracts (qL = 0), define the maximal profit under (r, α) by

Πnot free(r, α) = max
R≥0

([π((0, 0), (p∗H , q
∗
H))−R] ·G(αr +R)) .

Let us also define the unique optimal reward given that free contracts are offered and that no free

contracts are offered by Rfree(r, α) and Rnot free(r, α), respectively.

There are three reasons why rnot free > rfree holds. As opposed to a situation without free

contracts, with free contracts, (i) positive quantity is offered to low types, (ii) information rent is

provided to high types, and (iii) the sender receives full externalities conditional on talking. All

these effects reduce the incentive to provide referral rewards. Note that rnot free corresponds to ξ
α

in the homogeneous model, while rfree corresponds to ξ. In the homogeneous-cost setting, only

reason (iii) affected the comparison of rfree and rnot free. The effects (i) and (ii) were present, but

they only determined whether offering free contracts generates nonnegative profits.

The following theorem summarizes some general properties of optimal contracts. Unlike Theo-

rem 4, it is not a full characterization, but it shows that many features of the optimal scheme with

homogeneous cost carries over to the ones for heterogeneous costs.

Theorem 5 (Optimal Contracts). The following claims hold in the model with heterogeneous costs:

1. (Positive profits) Πnot free(r, α) > 0 for all r ∈ [0,∞) and α ∈ (0, 1).

2. (Using both rewards and free contracts) There exists ((0, q), (p̃∗H , q
∗
H), R) ∈ S such that

R > 0 (i.e., it is optimal to provide both free contracts and rewards) if and only if

rfree > r ≥ CF ∗

1− α
. (20)
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3. Suppose that G(ξ)
g(ξ) is convex.

(a) (Free vs. no free contracts) There exist r, r ∈ [CF
∗

1−α ,∞) such that there exists

((0, q), (p̃∗H , q
∗
H), R) ∈ S for some R ≥ 0 (i.e., it is optimal to provide free contracts) if

and only if r ∈ [r, r].

(b) (Never free contracts) If CF ∗

1−α > rnot free, then [r, r] = ∅.

First, unlike in the homogeneous-cost model, profits without offering free contracts are always

positive: With homogeneous costs, profits without free contracts are negative when the share of

high types are low, so the expected externalities are low. This is because low expected externalities

imply that a sufficient size of reward is necessary to encourage WoM, but such a cost cannot be

compensated by the profits generated by only a small fraction of high types. With heterogenous

costs, there always exists some fraction of customers with sufficiently small WoM costs, who do not

need to be rewarded to initiate referrals.

Part 2 of the proposition shows that even with heterogeneous costs we can derive necessary

and sufficient conditions for a combination of free contracts and rewards programs to be offered.

As with homogeneous cost, free contracts are only optimal for sufficiently large externalities r and

rewards are only offered for sufficiently small externalities.

For a full characterization of the optimal menu of contracts, it is useful to impose the additional

assumption that G
g is convex. This condition is, for example, satisfied by the exponential distribu-

tion. Given this assumption, free contracts are only offered for an intermediate connected range of

externalities r. We can extend these results qualitatively as follows.

Remark 4. If we do not impose G
g to be convex, one can still show that limr→0 Πnot free(r, α) >

limr→0 Πfree(r, α) and limr→∞Πnot free(r, α) > limr→∞Πfree(r, α), i.e., free contracts can only be

optimal if r is not too large and not too small.

Remark 5. With homogeneous cost ξ > 0, r, rfree, r and rnot free correspond to CF ∗

1−α , ξ, ξ−CF ∗
α ,

and ξ̄
α , respectively. In Section E.4, we formalize this correspondence by considering a limit of

models with heterogeneous costs converging to the one with the homogeneous cost.

Table 2 summarizes the results of Lemma 5 and Theorem 5 for the case when G(ξ)
g(ξ) is convex.
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Externalities r < rfree rfree < r < rnot free rnot free < r

Referral rewards Yes No or Yes No

Free contracts No ⇔ r < CF ∗

1−α Yes No Yes ⇔ r is small

Table 2: Comparative Statics with respect to r with heterogeneous WoM costs

E.2 Comparative Statics

Deriving precise comparative statics in the heterogeneous setup is daunting. While it is straightfor-

ward to show that Πnot free(r, α) and Πfree(r, α) are increasing in the size of externalities (r) and the

fraction of the high types (α), it is hard to pin down how the comparison between these two values

are affected as we change parameters (r and α). Nevertheless, using the partial characterization of

the optimal contracts we can make comparative statics to understand robustness and changes of

our results with the introduction of heterogeneity of WoM costs.

Proposition 11 (Market Structure and Free Contracts). The following claims hold in the model

with heterogeneous costs for any fixed r ∈ [0,∞). limα→0 Πnot free(r, α) > limα→0 Πfree(r, α) and

limα→1 Πnot free(r, α) > limα→1 Πfree(r, α).12

The intuition for Proposition 11 is as follows. The only reason to offer free contracts is to

boost up the expected externalities by (1 − α)r, and such boosting is not significant if α is high,

hence offering free contracts is suboptimal in those cases. With homogeneous costs, we showed

in Section B that free contracts are optimal only when α is small. Similarly, with heterogeneous

costs, a free contract cannot be optimal for high α. Moreover, if α is too small, Πfree(r, α) < 0

holds because there are too few high types to compensate for the high cost of free contracts, and

Πnot free(r, α) > 0 holds because a strictly positive share of senders with very small WoM cost talk

by part 1 of Theorem 5. This effect was not present with homogeneous costs, where the seller does

not incentivize WoM at all, resulting in Π∗ = 0.

The previous arguments imply that if there exists a set of parameters such that free contracts

are optimal, then the choice of free versus non-free contracts is non-monotonic with respect to both

r and α.

The comparative statics of the optimal reward scheme is more intricate with heterogeneous

costs of WoM as the sender can fine-tune the number of senders that she wants to incentivize to
12These limits exist because of the monotonicity in α.
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engage in WoM.

Proposition 12 (Optimal Reward Scheme). Let r < rfree. Then, the following hold in the model

with heterogeneous costs:

(i) Rfree(r, α) is increasing in α. Rnot free(r, α) is increasing in α if and only if αrĜ′(αr+Rnot free(r, α)) <

Πclassic, where we define Ĝ(ξ) ≡ G(ξ)
g(ξ) for all ξ ∈ R+.

(ii) Rfree(r, α) and Rnot free(r, α) are decreasing in r.

(iii) Referrals and free contracts are strategic substitutes, i.e. Rfree(r, α) < Rnot free(r, α) for all

r ∈ (0, rnot free) and α ∈ (0, 1).

Although part (ii) has the same prediction as in the case with homogeneous WoM costs, the

prediction in part (i) is different. We first explain the comparative statics regarding Rfree(r, α).

Under homogeneous costs, every sender talks and every receiver buys anyway under the usage of

free contracts, so α does not affect the optimal reward level. With heterogeneous costs, however,

the firm needs to tradeoff the gain and loss of increasing the rewards. The gain is the additional

receivers who hear from the senders who start talking due to the increase of the rewards. The loss

is the additional payments. The gain is increasing in α, so the firm has more incentive to raise the

rewards.

The relationship of the optimal reward and α conditional on no free contracts being offered is

ambiguous because two forces are present. First, higher α means more benefit from the receivers,

and this contributes to the incentive to raise the rewards. On the other hand, higher α means more

expected externalities, so there is less need to bribe a given sender. This contributes to lowering

the rewards. Naturally, the second effect dominates when senders are relatively homogeneous, and

indeed the optimal reward is strictly decreasing when G is completely homogeneous as in the main

analysis. To formalize this idea, define

HMG ≡ sup
x

(
G

g

)′
(x)

which can be interpreted as a measure of homogeneity of costs. If HMG is large, it means that

there is a small range of costs of WoM that are held by many senders and HMG goes to infinity

in the limit as G converges to the completely homogeneous one. An implication of the condition

in part (i) of Proposition 12 is that there exists HMG > 0 such that if HMG < HMG, then
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Rnot free(r, α) is increasing in α.

Recall that both free contracts and positive rewards are used if and only if r ∈ [CF
∗

1−α , r
free).

Proposition 13 (Market Structure and Using Both Rewards and Free Contracts). The following

claims hold in the model with heterogeneous costs:

1. CF ∗

1−α and rfree are strictly increasing in α.

2. CF ∗

1−α is strictly increasing and rfree is strictly decreasing in c.

As in the homogeneous-cost model, free contracts can only be optimal if the size of externalities

r is larger than CF ∗

1−α . Since this number is increasing in α, free contracts are optimal for small r

in niche markets with small α. Thus, free contracts and referral rewards should be jointly used in

niche markets (small α) if externalities are rather small, while they should be used in mass (larger

α) markets if externalities are comparably larger.

With homogeneous costs, all receivers use the product under free contracts. Thus, what corre-

sponds to rfree (which is ξ) does not vary with α or c. With heterogenous costs, however, it varies

with these parameters. This is because the increase in α or decrease in c contributes to an increase

of the expected profit per receiver, which increases the firm’s incentive to offer referral rewards.

E.3 Proofs

Proof. (Lemma 5) First, we show the existence of unique cutoffs rfree and rnot free. The first-order

condition of Πfree(r, α) with respect to R is that (i) R = 0 or (ii) R > 0 and

g(r +R) ·
[
π((0, q), (p̃∗H , q

∗
H))−R− G(r +R)

g(r +R)

]
= 0.

Note that the expression in the bracket on the left-hand side is strictly decreasing given Assumption

4 and varies continuously from ∞ to −∞ as R varies from −∞ to ∞. Hence, the optimal reward

is always unique in R. Also, the same argument implies that there exists a unique r such that

π((0, q), (p̃∗H , q
∗
H)) − G(r)

g(r) = 0. Let this unique r be rfree. That is, the left-hand side of the first-

order condition is nonpositive and thus Rfree(r, α) = 0 if and only if r ≥ rfree.

Analogously, conditional on offering no free contracts (qL = 0), the optimal reward is unique

in R and there exists a unique r such that π((0, 0), (p∗H , q
∗
H)) − G(αr)

g(αr) = 0. We denote this r by
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rnot free. As before, we have that Rnot free(r, α) = 0 if and only if r ≥ rnot free.

Finally, we show that rfree < rnot free. To see this, note that Assumption 4 implies G(αr)
αr < G(r)

r

for r > 0 and α ∈ (0, 1). Together with π((0, 0), (p∗H , q
∗
H)) > π((0, q), (p̃∗H , q

∗
H)) , rfree < αrnot free

follows by Assumption 4 and the definitions of rfree and rnot free. Since α < 1, this implies rfree <

rnot free.

Proof. (Theorem 5)

1. By Assumption 3, π((0, 0), (p∗H , q
∗
H)) > 0 holds. Also, since g(ξ) > 0 for all ξ ∈ R+, G(ξ) > 0

for all ξ > 0. Hence, for any r ∈ [0,∞) and α ∈ (0, 1), [π((0, 0), (p∗H , q
∗
H))−R] ·G(αr+R) > 0

holds if R ∈ (0, π((0, 0), (p∗H , q
∗
H))). Thus, Πnot free(r, α) > 0.

2. Note that the use of both, free contracts and positive rewards, is optimal only if r < rfree.

Also, r < rfree implies that rewards are positive. Furthermore, in that case the maximiza-

tion problems defining Πfree(r, α) and Πnot free(r, α) both have inner solutions, so the two

maximization problems can be rewritten as:

Πfree(r, α) = maxx∈R(Afree − x) ·G(x)

Πnot free(r, α) = maxx∈R(Anot free − x) ·G(x)
(21)

where Afree = π((0, q), (p̃∗H , q
∗
H))+r and Anot free = π((0, 0), (p∗H , q

∗
H))+αr. Thus, Πfree(r, α) ≥

Πnot free(r, α) if and only if

π((0, q), (p̃∗H , q
∗
H)) + r ≥ π((0, 0), (p∗H , q

∗
H)) + αr.

This is equivalent to r ≥ CF ∗

1−α . Also, by part 1 of the current theorem, Πfree(r, α) ≥

Πnot free(r, α) implies Πfree(r, α) > 0. Overall, there exists an optimal scheme such that

both free contracts and positive rewards are used if and only if r ∈ [CF
∗

1−α , r
free).

3. Consider a variable

Πfree(r, α)

Πnot free(r, α)
. (22)

This variable is well-defined because the denominator is always strictly positive by part 1 of

the current theorem.
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Step 1: Note that for r ≥ rnot free, Lemma 5 shows that the rewards are zero in any optimal

scheme. Hence, Πfree = π((0, q), (p̃∗H , q
∗
H)) · G(r) and Πnot free = π((0, 0), (p∗H , q

∗
H)) · G(αr)

hold, and thus (22) is differentiable with respect to r. If G
g is convex, then

∂

∂r

Πfree(r, α)

Πnot free(r, α)
=

∂

∂r

π((0, q), (p̃∗H , q
∗
H)) ·G(r)

π((0, 0), (p∗H , q
∗
H)) ·G(αr)

=(
G(αr)
g(αr) − α

G(r)
g(r)

)
· π((0, q), (p̃∗H , q

∗
H)) · g(r) · g(αr)

[π((0, 0), (p∗H , q
∗
H))] ·G(αr)2

< 0.

Thus, when r ≥ rnot free, either (i) free contracts are not optimal for any r ∈ [rnot free,∞),

or (ii) there exists a r′ ≥ rnot free such that there exists an optimal scheme in which free

contracts are offered for r ∈ [rnot free, r′], and no free contracts are offered under any optimal

scheme for r > r′. It must be the case that r′ <∞ because

lim
r→∞

π((0, q), (p̃∗H , q
∗
H)) ·G(r)

π((0, 0), (p∗H , q
∗
H)) ·G(αr)

=
π((0, q), (p̃∗H , q

∗
H))

π((0, 0), (p∗H , q
∗
H))

< 1.

We let r̄ = r̄′ in case (ii).

Step 2: Next, we consider the following three different cases: CF ∗

1−α < rfree, CF
∗

1−α ∈ [rfree, rnot free],

and CF ∗

1−α > rnot free.

• Let CF ∗

1−α < rfree. Then, it follows from part 2 of the current theorem that no free

contracts are offered for r < CF ∗

1−α and free contracts are offered for r ∈ [CF
∗

1−α , r
free]. For

r ∈ [rfree, rnot free],

∂

∂r

Πfree(r, α)

Πnot free(r, α)
=

∂

∂r

[π((0, q), (p∗H , q
∗
H))] ·G(r)

maxR∈R[π((0, 0), (p∗H , q
∗
H))−R] ·G(αr +R)

=(
G(αr+Rnot free(r,α))
g(αr+Rnot free(r,α))

− αG(r)
g(r)

)
· π((0, q), (p∗H , q

∗
H)) · g(r) · g(αr +Rnot free(r, α))

[π((0, 0), (p∗H , q
∗
H))−Rnot free(r, α)] ·G(αr +Rnot free(r, α))2

.

Note that Πnot free(r, α) is differentiable in r by the Envelope Theorem. Moreover, if

G(αr+R)
g(αr+R) − α

G(r)
g(r) < 0, then αr +R < r because G(ξ)

g(ξ) is increasing in ξ by Assumption 4.

Moreover, Rnot free(r, α) is differentiable in r by the implicit function theorem applied to

the first-order condition of Πnot free and, letting Ĝ(ξ) := G(ξ)
g(ξ) for all ξ,

∂

∂r
Rnot free(r, α) = − αĜ′(αr +Rnot free(r, α))

1 + Ĝ′(αr +Rnot free(r, α))
< 0.
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Thus,

∂

∂r

(
G(αr +Rnot free(r, α))

g(αr +Rnot free(r, α))
− αG(r)

g(r)

)
=

α
(
Ĝ′(αr +Rnot free(r, α))− Ĝ′(r)

)
+ Ĝ′(αr +Rnot free(r, α))

∂

∂r
Rnot free(r, α) =

α

(
Ĝ′(αr +Rnot free(r, α))− Ĝ′(r)− Ĝ′(αr +Rnot free)2

1 + Ĝ′(αr +Rnot free(r, α))

)
< 0.

Thus, if the derivative of (22) is negative at r′ ∈ [rfree, rnot free] then (22) is decreasing

for all r ∈ [r′, rnot free]. Together with Step 1, this implies the following. In case (i),

there exists r ∈ [rfree, rnot free) such that free contracts are offered in an optimal scheme

if and only if r ∈ [CF
∗

1−α , r]. In case (ii), the current analysis shows that it is optimal to

offer free contracts for all r ∈ [rfree, rnot free], so free contracts are offered if and only if

r ∈ [CF
∗

1−α , r], where r is the variable that we defined in Step 1.

• Let CF ∗

1−α ∈
[
rfree, rnot free

]
. In that case, offering free contracts is not optimal for any

r < rnot free. Then, either free contracts are not optimal for any r or by the same

argument as above, if free contracts are not used in an optimal scheme for r = r′ then

they are not used in any optimal scheme for any r > r′. This proves the desired claim

for this case.

• If CF ∗

1−α > rnot free, then offering free contracts is not optimal for any r < rfree. For

r ∈
[
rfree, rnot free

]
free contracts are also not optimal because

1 >
maxR∈R[π((0, q), (p̃∗H , q

∗
H))−R] ·G(r +R)

maxR∈R[π((0, 0), (p∗H , q
∗
H))−R] ·G(αr +R)

≥
[π((0, q), (p̃∗H , q

∗
H))] ·G(r)

maxR∈R[π((0, 0), (p∗H , q
∗
H))−R] ·G(αr +R)

.

The first inequality follows from the proof of part 2 of the current theorem. For r ≥

rnot free, offering free contracts is never optimal by Step 1.

This concludes the proof.
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Proof. (Proposition 11) First, note that we can write the limiting profits as

lim
α→1

Πfree(r, α) = max
x≥r

(p̃∗H − cq∗H + r − x)G(x) <

lim
α→1

Πnot free(r, α) = max
x≥r

(p∗H − cq∗H + r − x)G(x).

It follows immediately from part 1 of Theorem 5 that there exist α′ > 0 and ε > 0 such that

Πfree(r, α) + ε < Πnot free(r, α) for any α ∈ (0, α′), hence the limit result as α→ 0 holds.

Proof. (Proposition 12) Applying the implicit function theorem to the first-order conditions of

Πfree and Πnot free gives us:

(i) Rfree(r,α)
∂α = −p∗H−q

∗
Hc−vH(q)+cq

−1−Ĝ′(r+R)
> 0 and

∂Rnot free(r, α)

∂α
= −

p∗H − q∗Hc− rĜ′(αr +R)

−1− Ĝ′(r +R)

which is strictly greater than zero if and only if rĜ′(αr+Rnot free(r, α)) < p∗H − q∗Hc, or αrĜ′(αr+

Rnot free(r, α)) < Πclassic.

(ii) Rfree(r,α)
∂r = − −Ĝ′(R+r)

−1−Ĝ′(R+r)
< 0 and Rnot free(r,α)

∂r = − −αĜ
′(R+αr)

−1−Ĝ′(R+αr)
< 0 because Ĝ′(x) > 0 for all

x > 0, so −1− Ĝ′(x) < 0.

(iii) First, note that for r > rfree, referral rewards are always zero when free contracts are offered,

i.e., the statement is trivially true. If r ≤ rfree, then the optimal reward with free contracts

Rfree(r, α) satisfies the first-order condition:

Rfree(r, α) = π((0, q), (p̃∗H , q
∗
H))− G(r +Rfree(r, α))

g(r +Rfree(r, α))
. (23)

By the first-order condition for the maximization problem for the case with no free contracts with

respect to the reward, the solution Rnot free(r, α) must satisfy:

g(αr +Rnot free(r, α)) ·
(
π((0, 0), (p∗H , q

∗
H))−Rnot free(r, α)− G(αr +Rnot free(r, α))

g(αr +Rnot free(r, α))

)
= 0.
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Since g(·) > 0, this implies that

π((0, 0), (p∗H , q
∗
H))−Rnot free(r, α)− G(αr +Rnot free(r, α))

g(αr +Rnot free(r, α))
= 0. (24)

Now, substitute Rnot free(r, α) by the expression for Rfree(r, α) given by (23) on the left hand side

of (24), to obtain:

π((0, 0), (p∗H , q
∗
H))− π((0, q), (p̃∗H , q

∗
H)) +

G(r +Rfree(r, α))

g(r +Rfree(r, α))
− G(αr +Rfree(r, α))

g(αr +Rfree(r, α))
.

This is strictly positive by log-concavity of G (Assumption 4) and because π((0, 0), (p∗H , q
∗
H)) >

π((0, q), (p̃∗H , q
∗
H)). Noting that the left hand side of (24) is strictly decreasing in referral rewards,

the optimal reward without free contracts Rnot free(r, α) is strictly greater than Rfree(r, α).

Proof. (Proposition 13) The comparative statics with respect to CF ∗

1−α are straightforward from

the formula of CF ∗. The ones for rfree follow from the first-order condition with respect to rewards

that appears in the proof of Lemma 5 and Assumption 4.

E.4 Homogeneous Costs as the Limit of Heterogeneous Costs

Consider a sequence {Gn}∞1 that converges pointwise to the G defined by G = 1{ξ̄≤ξ} such that for

each n, Gn is twice differentiable with (Gn)′(ξ) = gn(ξ) > 0 for all ξ, and Assumption 4 holds. Let

the set of all such sequences be G. The set G is nonempty. For example, consider {Gn}∞1 such that

for each n ∈ N, Gn is a normal distribution with mean ξ̄ ≥ 0 and variance 1
n truncated at ξ = 0.

By inspection one can check that {Gn}∞1 ∈ G. For any given Gn, we can define rn, rfree,n, r̄n, and

rnot free,n. Then, the following statement can be shown: For any {Gn}∞1 ∈ G,

lim
n→∞

rn =
CF ∗

1− α
, lim

n→∞
rfree,n = ξ̄, lim

n→∞
r̄n =

ξ̄ − CF ∗

α
, and lim

n→∞
rnot free,n =

ξ̄

α
.
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