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1 Introduction

In elections, candidates’ policy announcements are often ambiguous. In the gubernatorial election in

2014 for Tokyo, Japan, Yoichi Masuzoe and Morihiro Hosokawa fought a close campaign. Although

Masuzoe has been seen as the strongest candidate from the outset of the campaign, Hosokawa

became popular in the middle of the campaign period when he announced opposition to the restart

of nuclear power generation. Then Masuzoe, who originally had not specified his policy about

nuclear power generation, clarified his position to aim at a gradual phase-out of nuclear power. As

a result, Masuzoe won against Hosokawa.1

The reason for such ambiguity has long been discussed in the politics and economics literature.

For example, in the context of US presidential election, Shepsle (1972, page 555) quoted Nicholas

Biddle, the manager of William Henry Harrison’s campaign for the US presidency in 1840-1841,

who advised Harrison in these words: “Let him say not a single word about his principles, or his

creed - let him say nothing - promise nothing. Let no Committee, no convention - no town meeting

ever extract from him a single word, about what he thinks now, or what he will do hereafter.”2

This paper has two main objectives. The first is to explain the phenomenon just described. That

is, we explain why candidates use ambiguous language in campaigns, and why it is sometimes refined

subsequently, as in the Tokyo gubernatorial election. The second objective is somewhat ambitious:

Despite the apparent importance of election campaigns on the electoral outcome and the fact that

the campaigns are dynamic in nature, there seem to be no models of dynamic campaigns in the

literature, to the best of our knowledge.3 One possible reason is that there is no obvious way to

model campaigns in a way that would give rise to dynamic strategic considerations. We aim to fill

this gap, by proposing a tractable model in which candidates face dynamic strategic considerations.

We propose a “policy announcement game,” in which candidates strategically use ambiguous

language which, in equilibrium, is sometimes refined subsequently. In our model, each of two

candidates obtains opportunities to announce their policies according to a Poisson process over a

1Tokyo Shimbun argued on January 8, 2014 that Masuzoe was seen as the strongest candidate, Tokyo Mix News
reported on January 14, 2014 that Hosokawa clarified his policy about nuclear power, and Asahi Shimbun reported
on January 15, 2014 that Masuzoe declared that he supported a gradual phase-out of nuclear power.

2McGrane, Reginald Charles C. (ed.), The Correspondence of Nicholas Biddle. Boston, New York: The Houghton
Mifflin Company, 1919.

3By a model of dynamic election campaigns, we mean a model with a single election; in particular, when we speak
of “models of dynamic election campaigns,” we are excluding models that have primaries and the general election.
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campaign period until a predetermined election date. The assumption of Poisson opportunities is

a simple way to represent the situation in which administrative procedures to obtain an internal

approval of a change in the policy announcement may not be always successful, or candidates may

not always be able to communicate with the voters about such changes even if these procedures go

through. Moreover, voters may not be convinced by such announcements.4 At each opportunity,

candidates can either clarify their policies or keep their language ambiguous. Once a candidate has

made his or her policy clear, he or she cannot change the specified policy afterwards.5 We first show

that, if two candidates are perfectly symmetric, there are no interesting strategic considerations.

Specifically, each candidate makes his or her policy clear as soon as possible. Next we show that,

if one candidate is slightly stronger than the other (has more valence), there are rich strategic

considerations involved in equilibrium. For example, the weak candidate will not make his policy

clear in the early stages of the election campaign.6 This is because if he does so, then the strong

candidate will simply copy that policy afterwards (as Masuzoe did in the Tokyo gubernatorial

election), so that the weak candidate will certainly lose. Depending on the environment, the strong

candidate may also have an incentive to use ambiguous language, if she expects a sufficient benefit

from copying the weak candidate’s policy near the election date.

Our work shows that a candidate’s valence leads to ambiguous language in dynamic election

campaigns. Let us now position our work in the literature with respect to these two factors.

In the standard simultaneous-move Hotelling-Downs model with valence candidates, there exists

no pure strategy equilibrium: the strong candidate always wants to copy the weak candidate’s

policy, while the weak candidate does not want to be copied, just as in the “matching pennies”

game. There are two approaches to addressing this issue. The first approach is to assume that the

strong candidate is the incumbent and the weak candidate is the entrant (Bernhardt and Ingberman

(1985), Berger et al. (2000)). In this approach, a typical result is that the strong candidate positions

her policy close to the median voter and the weak candidate positions his policy at a slight distance

from the strong candidate’s policy, where the distance between the two policies is determined by

4A richer modeling of administrative procedure or dynamics of voter beliefs would generate a more accurate
prediction, but we assume these away and try to concentrate on the key effects by investigating what we can say in
our simplest framework. As it turns out, the result that comes out from our simple setting is quite rich.

5This assumption is also made for simplicity as a first step to tackle this problem. We discuss this issue in the
conclusion.

6For ease of exposition throughout the paper, we use feminine pronouns to refer to the strong candidate and
masculine pronouns to refer to the weaker candidate.
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the degree of asymmetry between candidates’ valences. The second approach is that of Aragonès

and Palfrey (2002), who consider the simultaneous-move game seriously and characterize a mixed

equilibrium.7 They show that the strong candidate assigns high probabilities to the platforms which

are close to the location of the median voter with high probabilities while the weak candidate assigns

small probabilities to such platforms. Although these two approaches give us an understanding of

what the equilibrium behavior looks like in an electoral situation with valence candidates, in both

these models the order of policy announcements is exogenously given by the modelers. In contrast,

we view our work as endogenizing the order of policy announcements.8

The mechanism that generates ambiguous policy announcements in our model is starkly different

from those presented in the existing literature. For example, Shepsle (1972) and Aragonès and

Postlewaite (2002) assume that candidates choose their policy positions simultaneously and once

and for all.9 Ambiguity occurs because voters are assumed to possess convex utility functions

and therefore prefer uncertainty, that is, ambiguous policy announcements. On the other hand,

ambiguity in our model arises from dynamic strategic interactions in an election campaign: each

candidate’s strategic concern about the opponent’s future play causes ambiguity. In particular,

we do not assume convexity; rather, in one of the variants of our model, we show that ambiguity

occurs even when voters have concave utility functions.

Before proceeding to the details, we wish to emphasize that we do not aim to provide a model

and results that are definitive. Rather, we view them as suggestive. Our whole objective is to

formalize ambiguity as a result of valence and dynamic strategic considerations, and perhaps more

importantly, to provide a basis for future research on dynamic campaigns by proposing a tractable

model to analyze issues arising from the dynamic nature of election campaigns. To this end, we

keep our model as simple as possible to highlight the effect of dynamics.

1.1 Literature Review

In the introduction, we have already identified existing work on models with valence candidates,

as well as a few papers on ambiguous policy announcements. Ambiguous policy announcements

7More specifically, Aragonès and Palfrey (2002) characterize the unique equilibrium in a discrete policy space and
consider a limit as the discrete space approximates the standard continuous policy space.

8This answers the question posed by Aragonès and Palfrey (2002), who ask “What is the correct sequential model.”
9We will discuss more papers on ambiguity in the literature review section.
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have received much attention in the literature, so in this section we discuss some of these papers

and compare them with our work. We also compare our model with recent theoretical models that

have features similar to ours.

Ambiguity papers:

Page (1976, 1978) proposes a theory that attributes ambiguity to the fact that candidates

have limited resources to make their policy positions precise, and to voters’ limited capacity to

understand these positions. In our model, however, voters are capable of understanding what the

candidates are announcing. Candidates do have a positive probability of not being able to have

any chance to make a policy announcement, but we obtain ambiguity even in the limit as this

probability shrinks to zero.

Glazer (1990) argues that, if candidates do not have control over which policy to specify when

they intend to make a policy announcement, they may prefer being ambiguous.10,11 Ambiguity

occurs when either (i) the policy space consists of unequally dispersed points; (ii) the median voter

is assumed to believe that a policy resulting from an ambiguous announcement is close enough to

her bliss point; or (iii) in a sequential-announcement model, each candidate has private information

about the position of the median so that observing the opponent’s position gives new information.

None of these assumptions drives the conclusion in our model.

Alesina and Cukierman (1990) and Aragonès and Neeman (2000) show that ambiguity occurs

in elections if candidates prefer to keep the freedom to choose their policies after being elected,

even though voters would prefer that their candidates commit themselves to precise policies before

the election. That is, the driving force of ambiguity is different from office motivation. In contrast,

we derive ambiguity from pure office motivation.

When the selection of candidates consists of more than one step, as is true for the US presidential

election with its primaries and general elections, Meirowitz (2005) shows that candidates announce

ambiguous policies in the earlier stages if voter preferences are unknown at the beginning but

10It is true that even in our model, even if a candidate intends to specify his of her policy from the outset, he or
she cannot do so with positive probability. However, such a probability goes to zero as the length of the campaign
phase goes to infinity.

11Glazer (1990) claims that the assumption that candidates have no control over policies represents a situation
in which candidates are uncertain about the median voter’s preferences. He models the candidate’s problem as a
binary-choice problem between being ambiguous and being umambiguous. For the median voter’s preference to be
uncertain, there should be more than one policy positions. With multiple positions, even if the preferences of the
median voter are uncertain, a candidate’s incentive to deviate from being ambiguous would be higher if he/she could
control which policy to deviate to.
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are revealed by the result of the earlier stages. In our model, no new information arrives about

voter preferences and ambiguous policies are purely the result of the strategic interaction between

candidates.12

In the base model, we find that ambiguity is likely when the probability distribution of the

median voter’s position is close to uniform. Although we view our results as only suggestive,

this result is consistent with the empirical finding by Campbell (1983), who suggests that opinion

dispersion has a strong positive effect on the ambiguity in candidates’ language. See Section 5.2 for

the discussion of the empirical implications.

Revision games and related models:

To formally model the dynamics of policy announcements, we employ a framework with con-

tinuous time, a finite horizon, and a Poisson revision process. This modeling device has been

extensively explored recently. The revision games in Kamada and Kandori (2013) and Calcagno,

Kamada, Lovo and Sugaya (2014) consider settings in which players obtain opportunities to revise

their preparation of actions according to Poisson processes, and the final revised action profile is

played at the predetermined deadline.13 In these papers, revisions of actions are not restricted,

in the sense that players can freely choose their actions from a fixed action space at each oppor-

tunity to move, as opposed to our assumption that once candidates make their policy platform

clear, they cannot change it afterwards. The other difference is in the nature of the game analyzed:

these papers analyze games in which cooperation and coordination are at issue, while we analyze a

constant-sum game. This leads to, among other things, a difference in the effects of heterogeneity

in arrival rates, which we discuss in Section 5.3.

As for the idea of announcing ambiguous language in expectation of future events, Gale’s (1995,

2001) model of “monotone games” also considers a similar problem. In his model, at each period,

players can only (weakly) increase their actions. In effect, in each period players therefore commit

to a smaller and smaller subset of their action spaces, and they will never be able to “expand” that

subset (thus, the revisions are called restricted). The main difference is that he analyzes “games

with positive spillover” played over an infinite horizon and show that collusive outcomes can be

12Alesina and Holden (2008) show that candidates announce ambiguous policies even without primaries if (i)
candidates have policy motivation, (ii) the policy motivation is their private information unknown to the voters, and
(iii) campaign contributions from the voters to the candidates affect the electoral outcomes. In contrast, we assume
that candidates are purely office motivated and this is common knowledge among the candidates and the voters.

13Ambrus and Lu (2013) consider a bargaining model in a similar fashion.
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achieved, while we analyze a constant-sum game played over a finite horizon and show that there

exists an (essentially) unique equilibrium.

The paper proceeds as follows. In Section 2, we introduce the model of a policy announcement

game. Section 3 analyzes the case in which there is no campaign phase, i.e., the policy announcement

occurs simultaneously and once and for all. Section 4 analyzes the dynamic model. In Section 4.1,

we establish that if two candidates are perfectly symmetric, then both candidates would want to

be clear as soon as possible. In Section 4.2, we establish that if one candidate is slightly stronger

than the other, then there are rich strategic considerations driving the incentive for each candidate

to announce ambiguous policies. Therefore, we conclude that the key assumption for ambiguous

policies is valence. In Section 5, we compare the dynamic model with the one-shot game and

offer the empirical implications. We also discuss the robustness of our ambiguity result to model

specifications by analyzing other variants of the model, such as those with heterogeneous arrival

rates, generalized payoff structures, and synchronous announcements. Section 6 concludes. The

appendix contains a proof of a lemma on continuous-time backward induction that we use repeatedly

in the proofs and a proof for the result for the base model (Proposition 3). All the proofs not

provided in the main text or in the appendix are provided in the online appendix (starting from

page 40).

2 The Model - Policy Announcement Game

There are two candidates, S and W , interpreted as a “strong candidate” and a “weak candidate,”

respectively.14 The base model is particularly simple, so as to highlight the complexity introduced

by the campaign phase into an election model. Specifically, the policy platform consists of two

points X := {0, 1}. Notice that this is the minimal environment in which we could potentially have

strategic ambiguity. Section 5.4 presents a general version of the model that involves many other

cases, such as a continuous policy space.

In our policy announcement game, time is continuous and flows from −T to 0 where T > 0

is large. Imagine that 0 is the fixed election date and the campaign starts at −T . For each

−t ∈ [−T, 0], according to the Poisson process with arrival rate λ > 0, each candidate obtains

14As before, for ease of exposition, we use feminine pronouns to refer to S and masculine pronouns to refer to W .
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an opportunity to announce a nonempty subset of X that we call a “policy set.” In this section,

we assume that the Poisson processes are independent between the candidates. In particular, this

implies that policy announcements are asynchronous. The case of synchronous announcements is

discussed in Section 5.5.

The set of candidate i’s possible announcements at time −t depends on i’s own past policy

announcement: If i has already announced {0} in the past, then i can only announce {0}. Similarly,

if i has already announced {1} in the past, then i can only announce {1}. However, if i’s policy

set has been only {0, 1} in the past, then i can announce either {0}, {1}, or {0, 1}. Thus, once the

candidates specify their platforms, they cannot change them later. We let the policy set at time

−T be exogenously given to be {0, 1}.

Here, we interpret announcing {0, 1} as announcing the “ambiguous policy” while announcing

{0} or {1} is seen as specifying a policy platform. To simplify the exposition, we will occasionally

use “enter” to denote the act of announcing either {0} or {1}.

The result of the election is determined by the voter distribution over the policy space {0, 1}

and (XS , XW ), where Xi with i ∈ {S,W} is candidate i’s most recently announced policy at time

0 (the election date). During the campaign, the voter distribution is unknown but the distribution

of the median voter is known to follow the probability mass function: f(0) = p, f(1) = 1−p, where

p ∈ (0, 1
2).15

Let us now specify the voters’ utility function and behavior rules. If a candidate i ∈ {S,W}

wins the election and implements policy x ∈ {0, 1}, then a voter with position y ∈ {0, 1} obtains

the payoff of

u(|x− y|) + δ · Ii=S ,

where u(0) > u(1) and 0 ≤ δ < (u(0) − u(1))/2. The voters believe that, if candidate i has

specified a policy x ∈ {0, 1}, then x will be implemented. If candidate i with the ambiguous policy

Xi = {0, 1} wins, then the voters believe the policies {0} and {1} will be implemented with equal

probability 1
2 .16 The voters are sincere, that is, they each vote for the candidate who, if elected,

maximizes their expected payoff. The candidate with more votes wins. (In the case of a tie, each

15In our two-policy model, given a realization of the voters’ positions, the platform with voters with a share more
than 1

2
(which we assume to exist with probability one) is the position of the median voter.

16The model is not a knife-edge case with respect to this assumption. For an open set of environments, our main
results are unchanged.
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{XS , XW }
at the deadline

Voters at 0
vote for

Voters at 1
vote for

S’s expected
utility

W ’s expected
utility

{0, 1} , {0, 1} S S 1 0

{0, 1} ,{0} W S 1− p p

{0, 1} , {1} S W p 1− p
{0} , {0, 1} S W p 1− p
{0} , {0} S S 1 0

{0} , {1} S W p 1− p
{1} , {0, 1} S S 1− p p

{1} , {0} W S 1− p p

{1} , {1} W S 1 0

Figure 1: Voter behaviors and the expected payoffs

candidate wins with probability 1/2.) Note that δ is the utility in having S as a winner, that is, S

is stronger than W by nature (valences) for δ ≥ 0.

The candidate who obtains more votes wins, and obtains the payoff of 1, while the other

candidate obtains the payoff of 0; these are the only payoffs that they receive in this model. Hence

we are assuming purely office motivated candidates. Each candidate’s objective is to maximize the

expected payoff, that is, their objective is to maximize their probability of winning. We summarize

in Figure 1 the voters’ behaviors and the resulting expected payoffs for the candidates, given these

specifications and δ > 0. Note that the environment just specified is the one in which we can apply

the median voter theorem; that is, without valence, the candidate who specifies the policy at the

position of the median voter wins with positive probability.

In what follows, we will analyze the subgame perfect equilibria of this game. To formally define

strategies in our setting, we first define history. A history for candidate i is denoted by:

((
tkS , x

k
S

)kS
k=0

,
(
tkW , x

k
W

)kW
k=0

, t, zi

)
,

where −T < −t1i < ... < −tkii < −t for i = S,W ; xki ∈ 2X \ {∅} for all k and i = S,W ; and

zi ∈ {yes, no}. The interpretation is that −tki is the time at which candidate i receives his or

her k’th revision opportunity, and xki is the policy set that i has chosen at time −tki . The third

element t denotes the current remaining time, and the indicator zi expresses whether there is an

opportunity for candidate i at time −t. The set of histories in which candidate i for i = S,W has
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S \W {0} {1} {0, 1}
{0} 1, 0 p, 1− p p, 1− p
{1} 1− p, p 1, 0 1− p, p
{0, 1} 1− p, p p, 1− p 1, 0

Figure 2: The one-shot game

received ki opportunities in the past is denoted H
(kS ,kW )
i . The set of all histories for candidate i is

Hi :=
⋃∞
kS=0

⋃∞
kW=0H

(kS ,kW )
i .

A strategy for candidate i is denoted by σi : Hi → ∆({0}, {1}, {0, 1}), with two restrictions:

First, σi(hi) = xkii where ki is specified in the first or second element of hi if the fourth element

in hi specifies zi = no. That is, if there is no opportunity at −t, then for notational convenience,

we specify that the candidate takes the same policy as specified in the last opportunity. Second, if

zi = yes, then the strategy σi(hi) must put probability zero on x ∈ 2X if x 6⊆ xkii . This constraint

implies that once a candidate specifies a policy, he/she cannot change it later.

Let Σi be the set of all strategies of candidate i. Let ui(σ|hi) be candidate i’s continuation

payoff given history hi ∈ Hi and the continuation strategy profile σ ∈ ΣS × ΣW .17 A strategy

profile (σ1, σ2) is a subgame perfect equilibrium if, for each i = S,W , the strategy σi maximizes

ui(σ|hi) for every hi ∈ Hi.
18

3 The One-Shot Case

To better understand the incentive problems that candidates face, let us first demonstrate what

would happen if our game were the one-shot simultaneous-move game. If δ = 0 (i.e., the candidates

are symmetric), then since the median voter is located with a higher probability at {1}, both

candidates take {1}. Hence, the symmetric candidates do not use ambiguous language.

On the other hand, if δ > 0 (i.e., the candidates are asymmetric with respect to valence), then

they use ambiguous language. To see this, note that the game can be represented by the payoff

matrix as shown in Figure 2.

17This is well-defined because Hi is a countable union of subsets of a finite-dimensional space.
18To be precise, since candidate i at time −t does not know if the opponent has received an opportunity at the

same time, there is no proper subgame. However, since such an event occurs with probability zero, we simply call it
a subgame perfect equilibrium.
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By inspection one can show that there is a unique (completely mixed) Nash equilibrium in this

game. In this equilibrium, S and W take {0}, {1}, and {0, 1} independently with probabilities

(
p2

1− p+ p2
,

(1− p)2

1− p+ p2
,
p (1− p)

1− p+ p2

)
and

(
(1− p)2

1− p+ p2
,

p2

1− p+ p2
,
p (1− p)

1− p+ p2

)
. (1)

Here, in the first (or second) parenthesis, the first, second, and the third elements are probabilities

that S (or W ) takes {0}, {1}, and {0, 1}, respectively.

This means that even without the dynamic considerations, candidates face the incentive to use

ambiguous language. This deserves an explanation. We first note that a simple calculation shows

that if δ = 0, there is a unique Nash equilibrium, in which both candidates choose policy {1}.

The situation changes once δ becomes positive. Notice that, in equilibrium with δ > 0, clearly no

candidate uses a pure strategy. So suppose that S mixes between the two unambiguous policies

while assigning zero probability to the ambiguous policy. In this case, {0, 1} dominates both {0}

and {1} for W for the following reason. Fix the realization of S’s mixture xS ∈ {0, 1}. For each

{x} = {0}, {1} that W specifies, (i) if x is different from xS , then both {x} and {0, 1} allow W to

win if and only if the median voter is at x; and (ii) if x is equal to xS , then only {0, 1} allows W

to win with positive probability. Hence, {0, 1} dominates {x} = {0}, {1} for W .

If W takes the ambiguous policy {0, 1} with positive probability, then the ambiguous policy

{0, 1} also becomes attractive for S, because if both candidates take {0, 1}, then S wins for sure.

This is the main intuition for why both candidates assign positive probabilities to the ambiguous

policy.

Thus, our model predicts ambiguous policy announcements even without a dynamic compo-

nent.19 However, this is only a part of our story. What we will show in the main section (Section

4) is that the candidates face complicated dynamic incentive problems in our policy announcement

game. Specifically, the candidates’ incentives to announce ambiguous policies change over time.

4 The Dynamic Case

Now we turn to the dynamic model. In the first subsection we consider the case of δ = 0 as a

benchmark case. It turns out that there are no strategic incentives to announce the ambiguous

19To the best of our knowledge, this analysis itself is new.
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policy {0, 1}. Then, in the second subsection, we consider the case of δ > 0, and demonstrate that

candidates face complicated strategic considerations that are absent in the model with δ = 0.

4.1 The Benchmark Case: Perfectly Symmetric Candidates

Suppose that δ = 0. The following proposition gives us a stark result:

Proposition 1 Suppose δ = 0. Then, each candidate announces {1} as soon as possible in equi-

librium.

Proof. Fix t, and suppose that at each time −s > −t, if each candidate has an opportunity to

enter, then he/she enters at 1. Then, at time −t, entering at 1 gives a payoff strictly greater than

1
2 , entering at {0} gives p < 1

2 , and not entering gives the payoff of 1
2 by symmetry. Thus, entering

at 1 is the strict best-response. Therefore, by the continuity of expected payoffs in probability, for

sufficiently small ε > 0, it is strictly optimal to enter at 1 for all −τ ∈ (−t− ε,−t]. By a backward

induction argument, we obtain the desired result.20

This negative result is very general. In particular, it is straightforward to verify that the result

holds also in the other versions of our model that we will present in Section 5. Hence, the assumption

of δ > 0 is the key for the ambiguous policy announcements. From the next subsection on, we will

demonstrate that (i) the above simple argument breaks down once we introduce asymmetry with

respect to candidates’ valence, and (ii) candidates face complicated dynamic incentive problems.

4.2 The Cases with Valence Candidates

In this section, we demonstrate that if δ > 0, then there are rich strategic considerations involved in

equilibrium, which involve ambiguous policy announcements. Therefore, a small valence matters.

Let us start with the following lemma. It states that, if S has an opportunity to enter after W

has entered at x ∈ {0, 1}, then S enters at x and wins for sure.21 On the other hand, if W has an

opportunity to enter after S has entered at x ∈ {0, 1}, then W is indifferent between announcing

{0, 1} and entering at x′ ∈ {0, 1}\{x}. These two conclusions imply that, since the median is more

likely to be at {1} (p < 1
2), if a candidate enters before the opponent, he/she enters at {1}.

20A formal backward induction argument in continuous time is given by Lemma 1 of Calcagno, Kamada, Lovo and
Sugaya (2013), which is reproduced as Lemma 9 in the appendix for readers’ convenience. We use this lemma in
proving other propositions too.

21Recall that the term “enter” means “clarify the policy” or “announce the policy {0} or {1}.”
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Lemma 2 In any subgame perfect equilibria, the following are true:

1. Given that W has already entered, S enters at the same platform as soon as possible for all t.

2. Given that S has already entered, W is indifferent between announcing {0, 1} and entering at

the platform different from S for all t.

3. If a candidate i enters before the opponent, then i enters at {1}.

From now on, we assume that after S’s entry, W will not enter. The uniqueness results in this

paper are up to this assumption.

The above lemma pins down the equilibrium behaviors on and off the equilibrium path except

when no candidates have yet entered. It also says that if both are still using ambiguous language

and a candidate i enters, then i enters at {1}. Hence, in the following analysis, we consider the

incentives to enter at {1} in such a situation.

Before presenting the characterization of the equilibrium, we first provide the basic intuition.

For the time being, consider the case with p = 1
2 .22 Suppose that at time −t, both S and W have

previously announced {0, 1}. If there is no further revision, W ’s payoff is 0. So W needs to specify

his policy to obtain a positive payoff. Thus, W announces {0} or {1} at some point, if he can.

Since {0} and {1} are symmetric with p = 1
2 , assume without loss of generality that W announces

{1} when he clarifies his policy.

On the other hand, S does not have an incentive to specify her policy until W specifies his

policy; this is because she gets 1
2 for sure by specifying her policy, while using ambiguous language

gives her either 1
2 or 1 with the latter taking place with positive probability (when W does not

enter afterwards and when W enters and S copies his policy).

If W announces {1} in an early stage of the campaign, then the probability with which S enters

afterwards is high. So W wants to postpone announcing. But waiting too much is not optimal for

W either, since if he does not have a chance to revise his policy set, W gets the payoff of 0. So

there should exist a “cutoff,” −t∗, until which W announces {0, 1} and after which W announces

{1} when he gets an opportunity of policy announcement.

22Strictly speaking, since p < 1
2
, this is actually outside of the model, but we consider such a case to provide the

intuition. The same comment applies to the case p = 0 that we consider next.
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Recall that we do not have this type of strategic consideration when δ = 0. The reason that

the simple argument in the proof of Proposition 1 breaks down is that the continuation payoff after

taking each action is different once we introduce valence. For example, W expects a payoff close to

zero if he specifies some policy when the deadline is far away, as opposed to the payoff equal to 1
2

when δ = 0.

Next, consider the case with p = 0. In this case, S would want to commit to {1} as soon as

possible, because she can then obtain the payoff of 1, which is the highest possible payoff. Since

S’s strategy is stationary and W can win if and only if he enters at {1} and S does not have an

opportunity, W also enters at {1} as soon as possible.

The next proposition fully characterizes the form of the equilibrium, which we prove to be

unique, for each p ∈ (0, 1
2) \ { 1

1+e}. Suppose that the current policy set of each candidate is {0, 1}.

The equilibrium strategy of W is to wait until a finite cutoff and to enter as soon as possible after

that cutoff. In contrast to the case of p = 0, the cutoff is finite for any strictly positive p because

the probability that the median voter is at 0 is strictly positive. The equilibrium strategy for S

depends on the value of p. If p is close to 1
2 (part 1 of Proposition 3), S does not enter until W

enters for the same reason as when p = 1
2 . On the other hand, for small p (part 2 of Proposition

3), S enters when the deadline is far away as when p = 0, but does not do so when the deadline is

close. The value p = 1
1+e corresponds to the cutoff at which S’s incentive changes. The intuition

for the ambiguity near the deadline when p is close to 0 is as follows: If S obtains an opportunity

at −t when the deadline is close, then the probability with which W has a chance to announce his

policy afterwards is small. So it is likely that W uses ambiguous language at the deadline. Thus,

keeping ambiguous language is profitable for S, because by doing so, S gets the payoff of 1 with a

high probability.

Moreover, the equilibrium is essentially unique. We say that the equilibrium is essentially

unique if there exists a finite set {t1, t2, ..., tk} (possibly an empty set) such that, for each subgame

perfect equilibrium σ and σ′, each player i, and each history hi with t /∈ {t1, t2, ..., tk}, we have

σi(hi) = σ′i(hi). That is, each subgame perfect equilibrium coincides except for finitely many

timings.

Proposition 3 For each p 6= 1
1+e , the equilibrium is essentially unique.23 In this equilibrium, the

23If p = 1
1+e

, then there is indeterminacy about S’s equilibrium strategy at all −t < −t∗ since she is indifferent.
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following are satisfied if the previous policy sets are both {0, 1}:

1. If p > 1
1+e , there exists t∗ := 1

λ such that the following hold:

(a) S announces {0, 1} for all −t ∈ (−∞, 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−t∗) and {1} for all −t ∈ (−t∗, 0].

2. If p < 1
1+e , then there exist tS and tW (that depend on p) such that the following hold:

(a) S announces {1} for all −t ∈ (−∞,−tS) and {0, 1} for all −t ∈ (−tS , 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−tW ) and {1} for all −t ∈ (−tW , 0].

(c) Moreover, dtS
dp < 0 and dtW

dp > 0.

Note that the cutoffs are independent of T . Hence, when T and p are large, we expect that

candidates use ambiguous language for most of the campaign period. Note that stretching T and

enlarging λ with the same ratio are equivalent. Hence, this also implies that for fixed length

of campaign period T , if we consider the situation in which the opportunities arrive frequently,

candidates spend most of the time in T on using ambiguous languages.

In Figure 3, we depict the times t∗, tS , and tW that appear in Proposition 3, for different values

of p. For example, p = .4 (> 1
1+e) corresponds to part 1 of the proposition. In this case, there is

one point at which the graph in the figure intersects with the p = .4 line, so as a result, the time

spectrum is divided into two regions: In the left region, no candidate enters. In the right region, S

does not enter while W enters. When p = .2 (< 1
1+e), there are two intersections, and as a result

the time spectrum is divided into three regions: In the left-most region, S enters while W does not

enter. In the middle region, both candidates enter. Finally, in the right-most region, S does not

enter while W enters.

Notice that this particular model predicts that when the distribution of voters is ex ante very

skewed (p is very small), S enters as soon as possible, so if T is large, then there would be almost

no ambiguity in equilibrium. This hinges on our assumption that even if W enters after S, S does

not incur any loss. In Section 5.4, we show that if there is a small loss, then S prefers to use

ambiguous language until some point in time that does not depend on the horizon length T , and

so the modified model is consistent with ambiguity even if the distribution of voters is ex ante very
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Figure 3: Cutoffs for the base model

skewed. Despite this feature, we believe that the simple base model provides a basic intuition about

the dynamic incentives that candidates face. The basic take-away is that the nature of the election

game with valence leads candidates to strategically “time” their announcements, since the benefit

and cost of maintaining flexibility of choice varies over time. The benefit comes from the fact that

the election game is constant-sum, so it is better to be a second-mover. On the other hand, the

cost comes from the difference in valence. For example, the weak candidate does not want to end

up in making the same choice (that is, taking {0, 1}) as the strong candidate. This is the general

trade-off of timing strategies faced by electoral candidates, and our model succinctly captures such

a trade-off.

5 Discussions

This section provides discussions of our model. In the first subsection we compare the outcome

of our dynamic game with that of the one-shot game analyzed in Section 3, and discuss how the
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addition of the campaign phase changes the likelihood of eventual ambiguity and the welfare of

candidates.

Next, in Section 5.2, we derive empirical implications of our model. Although we see these

finding as only suggestive, these results are consistent with the empirical findings such as Campbell

(1983).

The dynamic model we have analyzed so far was kept as simple as possible to highlight the

complexity added by the fact that candidates face dynamic incentive problems. In the remaining

three subsections (5.3-5.5), we extend and modify this model in various directions, to examine ro-

bustness of our prediction that candidates use ambiguous language at early stages of the campaign,

and also to discuss the new implications that arise in the respective models.

5.1 The One-Shot Game versus the Dynamic Game

Let us now compare the ex ante probability distribution of the policy profile in our model with

that of the one-shot simultaneous-move game with the same payoff structure. Given Proposition

3, the limit ex ante distribution of the policy profile at the election date and the expected payoffs

as T →∞ are calculated as follows:

1. If p > 1
1+e , W announces {1} after −t∗ = − 1

λ and S tries to copy W ’s policy after W enters.

Hence, the following three cases are possible:

(a) W cannot enter and ({0, 1} , {0, 1}) is realized. The probability of this event is e−λt
∗

=

e−1. The payoff profile in this case is (1, 0).24

(b) W enters and S cannot enter afterwards, and ({0, 1} , {1}) is realized. The probability

of such an event is e−λt
∗

= e−1. The payoff profile in this case is (p, 1− p).25

(c) Both candidates enter and ({1} , {1}) is realized. The probability of this event is 1 −

2e−λt
∗

= 1− 2e−1. The payoff profile in this case is (1, 0).

24Throughout the paper, the first component of a payoff vector denotes S’s payoff, and the second component
denotes W ’s payoff.

25To see how the probability is calculated, note that nobody enters until −t∗ and that W is indifferent at −t∗.
Hence, W ’s expected payoff from the entire game is the one given by W ’s entry at −t∗. This payoff is equal to
1 − p times the probability with which S cannot enter after −t∗. Hence, W ’s equilibrium payoff is (1 − p) · e−λt

∗
.

In equilibrium, W gets a positive payoff of 1 − p only when he enters and S cannot enter afterwards. Hence, the
equilibrium payoff can also be written as 1 − p times the probability that W enters and S cannot enter afterwards.

Therefore, the probability of the event is (1−p)·e−λt
∗

(1−p) = e−λt
∗

= e−1.
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Overall, the probability distribution over outcomes at the election date is

(Pr({0, 1}, {0, 1}),Pr({0, 1}, {1}),Pr({1}, {1})) = (e−1, e−1, 1− 2e−1).

2. If p < 1
1+e , then the probability of S’s entering first goes to 1 as T →∞. After S’s entry, W

is indifferent between entering and not entering. The expected payoff profile is (1− p, p).

Thus, in the equilibrium under p > 1
1+e , the probability of each candidate taking the ambiguous

policy at the election date is at least e−1. We note that this probability is higher than the probability

assigned to {0, 1} in the one-shot case, which is p(1−p)
1−p+p2 for each p. That is, we find that ambiguity

is more likely in the dynamic game. The basic intuition for this result is that in the dynamic game

with p > 1
1+e , the only occasion on which S stops using ambiguous language is when W has already

specified his policy, and W tries to minimize the probability that such an occasion will occur. This

is why ambiguity is likely in the dynamic game than in the one-shot game.

Notice that the probability distribution over outcomes at the election date corresponds to

a correlated strategy profile. This is because the sequential nature of the game serves as the

correlation device. On the other hand, by definition, in the unique Nash equilibrium in the one-

shot simultaneous-move game, the strategies are given by an independent mixture (cf. (1) of Section

3).

Now let us move on to the analysis of expected payoffs. In the one-shot game, the expected

payoff profile is (
1− p

1− p+ p2
,

p2

1− p+ p2

)
.

In the dynamic game, by the above calculation, the expected payoff profile in the limit as T →∞

is (
1− (1− p)e−1, (1− p)e−1

)
if p > 1

1+e ;

(1− p, p) if p ≤ 1
1+e .

Above we include the case of p = 1
1+e since the equilibrium payoff is unique although there is

multiplicity of equilibrium (cf. footnote 23).26 Figure 4 graphs S’s expected payoffs for different

values of p. Notice that the payoff in the one-shot game is decreasing in p, while the payoff in

the dynamic game takes its minimum at p = 1
1+e . The latter payoff exceeds the former when p is

26See also the proof of Proposition 3.
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sufficiently large. This can be explained as follows: When p is small, S gives up on copying W ’s

policy, and simply goes for the policy {1}, which guarantees her the payoff of 1−p. In the one-shot

game, however, the equilibrium is mixed, as we have seen in Section 3; S must thus be getting the

payoff greater than 1− p which she can guarantee by taking policy {1}. This is why when p < 1
1+e ,

S is worse off in the dynamic game. Thus, the fact that the moves are sequential helps W in the

dynamic game.

However, when p becomes large, the value of committing to {1} become small, and hence S

tries to match W in the dynamic game (Case 1). In the dynamic game, the only case in which S

loses is when she cannot enter after W ’s entry, and S’s payoff when only W enters is p, which is

increasing in p. Since the probabilities that S cannot enter after W are independent of p in this

region (since W enters at −t∗ = − 1
λ , which is independent of p), S’s payoff is increasing in p in this

region. Eventually, her payoff exceeds that of the one-shot case. In other words, the relative cost

for waiting vanishes as the difference between policies 0 and 1 becomes negligible, which is why the

dynamic game is favorable to S when p is high.

The following proposition summarizes the findings so far:

Proposition 4 The following are true in equilibria.

1. If p > 1
1+e , the probability of ambiguity is greater in the dynamic game than in the one-shot

game.

2. There exists p∗ ∈ ( 1
1+e ,

1
2) such that S is strictly better off in the dynamic game than in the

one-shot game if p > p∗, and she is strictly worse off if p < p∗.27

5.2 Empirical Implications

In this section, we derive empirical implications of our base dynamic model. We see these results

as only suggestive, but as will be seen, it is possible to enrich the model by incorporating various

features (such as heterogenous arrival rates, general utilities from the outcomes, and so forth).

Hence, if one wants to conduct empirical research, then it will be possible to extend the model to

27p∗ is a solution to the equation 1−p
1−p+p2 = 1 − (1 − p)e−1 that is unique in the domain ( 1

1+e
, 1). Numerically, it

is about 0.4069.
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Figure 4: S’s expected payoffs in the one-shot game and in the dynamic game (blue: S’s expected
payoff in the one-shot game; red: S’s expected payoff in the dynamic game)

incorporate more characteristics and to derive the testable implication from such a general model,

as we do here for the base model.

First, we show that ambiguity is likely when the probability distribution of the median voter’s

position is close to uniform, that is, when p is close to 1
2 . Specifically, fix a horizon length T ∈ ( 1

λ ,∞).

Let pW be the p such that tW = T .28 By definition. pW < p∗. Proposition 3 implies the following:

1. For p ∈ (0, 1
2) \ {p∗}, the probabilities of W and S announcing the ambiguous policy are both

nondecreasing in p.

2. For p ∈ (0, pW ), the probability of W announcing the ambiguous policy is constant in p, and

that of S announcing the ambiguous policy is strictly increasing in p.

28Such pW exists and is unique due to Proposition 3 2(c) and t∗ = 1
λ

.
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3. For p ∈ (pW , p∗), the probabilities of W and S announcing the ambiguous policy are both

strictly increasing in p.

4. For p ∈ (p∗, 1
2), the probabilities of W and S announcing the ambiguous policy is constant in

p.

Hence, roughly, as the position of the median voter becomes more unpredictable, the proba-

bility of ambiguous policy announcement at the election date increases. This is consistent with

Campbell (1983) who suggests that opinion dispersion has a strong positive effect on the ambiguity

in candidates’ language.

Next, suppose that there are two candidates 1 and 2, and outside researchers know p > 1
1+e

but do not know which candidate is strong and which candidate is weak. They have a prior that

assigns positive probability to both candidate 1’s being strong and candidates’ 2’s being strong. If

the researchers can observe the campaign phase, the first entrant can be inferred to be weak (and

if there is no entrance, then the posterior about valence is the same as the prior). If, on the other

hand, they cannot observe the campaign phase but only the final policy choices by the candidates,

then if only one candidate enters, then such a candidate can be inferred to be weak. Otherwise,

the posterior about valence is the same as the prior.

5.3 Heterogeneous Arrival Rates

In this section we discuss the effect of heterogeneous arrival rates. Let the arrival rate for candidate

i be λi > 0, and allow for the possibility that λS 6= λW . We define

r =
λS
λW

as the relative frequency of the opportunities to enter between the candidates.

First, it is straightforward to show that the basic structure of the equilibrium does not change

even if λS 6= λW : the equilibrium behaviors after some candidate has already entered are the same

as before. When both candidates are announcing the ambiguous policy, there exist p∗ and t∗ such

that if p > p∗, then W enters if −t < −t∗, he does not if −t > −t∗, and S never enters. If p < p∗,

then W enters after some cutoff and S enters as soon as possible until another cutoff. The former

cutoff for W to start entering precedes in time the latter for S to stop entering.
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When r 6= 1, the cutoff p∗ can be calculated as

p∗ =
r

r
1−r

1 + r
r

1−r
,

and the expected payoff profile for S and W when p > p∗ is

(
1− r

r
1−r , r

r
1−r
)
.

Note that these values converge to the ones in the base model as r → 1.

Since r
r

1−r is decreasing in r = λS
λW

, it follows that p∗ is decreasing in r and S’s payoff is

increasing in r. Thus, having a relatively higher arrival rate makes the candidate better off. This is

intuitive. With W ’s strategy being fixed, if S has a higher arrival rate, she has a greater chance to

copy W ’s position. In contrast, with S’s strategy being fixed, if W has a higher arrival rate, then he

can wait longer at the policy profile {0, 1} to reduce the probability of being copied afterwards. Of

course W ’s strategy is not constant in the former case and S’s is not in the latter, so determination

of the equilibrium strategy profile is more complicated, but these are the main driving force of the

comparative statics.

Note that Calcagno, Kamada, Lovo, and Sugaya (2014) show that having a higher arrival rate

makes the player worse off since it decreases his/her commitment power. The difference is in the

nature of the stage game being analyzed. Calcagno, Kamada, Lovo, and Sugaya (2014) analyze

coordination games. Hence, player i’s ability to commit to an action ai can help induce his or her

opponent to take aj such that (ai, aj) constitutes a Nash equilibrium. On the other hand, in this

paper, the game is a constant-sum game, so being unable to change an action over a longer time

means that the player can react to the opponent less quickly and suffers a low payoff with a larger

probability.

5.4 A Generalized Model

The simple model presented in Section 2 was intended to provide a basic intuition for the dynamic

incentive problems faced by candidates. This section extends this base model to more general cases.

In particular, we assume that the model specification is the same as in the base model, except that

the arrival rates and the payoff functions are more general: S’s arrival rate is λS > 0, W ’s arrival

22



rate is λW > 0, and

(S’s payoff,W ’s payoff) =



(α, 1− α) if only W enters;

(1− β, β) if only S enters;

(1− γ, γ) if S enters and then W enters;

(1, 0) if W enters and then S enters, or if neither enters.

We assume α ∈ [0, 1) and β, γ ∈ [0, 1].29

Note that the crucial assumptions that we make here are (i) the payoff from the game is

determined solely by the policy sets at the election, (ii) S wins for sure if S and W choose the

same policy, and (iii) the position in the policy space that S enters does not depend on the timing

of entry30; these are the only restrictions that we impose. These assumptions are satisfied in our

base model, with λS = λW = λ and α = β = γ = p.

Moreover, the specification fits other cases as well. For example, this general model can be

applied to the case of a continuous policy space, the model that the literature on elections often

considers. Specifically, the set of possible policy announcements is {x}x∈[0,1] ∪ [0, 1]. That is, we

allow the candidates to announce either a specific policy x ∈ [0, 1] or an ambiguous policy [0, 1].

Analogous to the base model, the policy set at time −T is [0, 1]. If candidate i wins the election

and implements policy x ∈ [0, 1], then the voter’s utility with position y ∈ [0, 1] is defined as

u(x, y) + δ · Ii=S , where the utility function u is strictly concave with respect to x (i.e., the voters

are risk-averse). If a candidate with the ambiguous policy [0, 1] wins, then the voter believes that

the candidate will implement the policies in [0, 1] according to the uniform distribution. Hence,

the expected payoff is
∫ 1

0 u(x, y)dx + δ · Ii=S .31 The probability distribution of the median voter

is uniform over the policy space [0, 1]. Again, we assume that the valence term is δ > 0, but is

sufficiently small so that W at 1
2 beats S with the ambiguous policy.32,33

29We assume α 6= 1 because otherwise W obtains the payoff of 0 in any equilibrium.
30(i) and (ii) imply that W ’s payoff is independent of the timing of his entry. This is because since W loses if S

enters afterwords by (ii), when W chooses his policy to enter, he can condition on the event that S will not enter
afterwards. Under such an event, by (i), W ’s payoff is determined solely by his policy announcement. Hence, the
maximized payoff for W from his entry is independent of its timing.

31The integral is well-defined because u is concave and thus it is measurable.
32Specifically,

∫ 1

0
u(x, y)dx+ δ < u( 1

2
, y) for all y. Note that such a δ > 0 exists by the strict concavity of u.

33As we mentioned in the introduction, if we assume convexity, ambiguity does not need valence: if candidates are
symmetric, it is optimal for a candidate to announce [0, 1] when the opponent is announcing { 1

2
}.
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In this model with the continuous policy space, if S enters before W does, she enters at policy 1
2

regardless of the timing of her entry. This is because (i) this policy uniquely maximizes her payoff

if W enters afterwards, and (ii) it guarantees the payoff of 1 if W does not enter. If W enters

before S does, he enters at a policy around 1
2 regardless of the timing of her entry. This is because

(i) if S enters afterwards then S copies W ’s policy so W loses for sure, and (ii) if S does not enter

afterwards, policies around 1
2 guarantee the payoff of 1 since voters are risk-averse.

In this class of model, we obtain the following result. To state our result, we define three

pieces of notation. First, write Qt = (E,N) if in all subgame perfect equilibria, (i) S enters if

she receives an opportunity at t when W has not entered, and (ii) W does not enter if he receives

an opportunity at t when S has not entered. That is, the first element Qt denotes S’s action at

time −t and the second element denotes W ’s action at the same time. The symbol E stands for

“entering” and the symbol N stands for “not entering.” Define Qt = (E,E), Qt = (N,E), and

Qt = (N,N) analogously.

Second, we define functions

fS(t) : =


1

1−r
(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{γ−β,0}

1−α if r 6= 1;

λW te
−λW t − β+(1−e−λW t) max{γ−β,0}

1−α if r = 1,

fW (t) : =


1

1−r
(
e−λSt − e−λW t

)
− e−λSt if r 6= 1;

λW te
−λW t − e−λW t if r = 1,

where r = λS
λW

as before.34

Finally, let tS be the smallest positive solution for fS(t) = 0 (if there is no solution, then define

tS = ∞); and let tW be the smallest positive solution for fW (t) = 0 (since fW (t) is negative for

sufficiently small t > 0, positive for sufficiently large t, and continuous, there always exists a positive

solution).35

The equilibrium behavior is characterized as follows:

Proposition 5 For any parameter profile (r, α, β, γ), S enters at the same position as W once W

has entered but S has not. In addition, the following hold.

34One can show that fS(t) and fW (t) are continuous in r at r = 1.
35The smallest positive solutions always exist because fS and fW are both continuous.
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1. If β ≥ γ, then

(a) If −tS < −tW , then Qt = (N,E) for all −t ∈ (−tW , 0]; and Qt = (N,N) for all

−t ∈ (∞,−tW ).

(b) If −tS > −tW , then there exists t∗ ∈ (tS ,∞) such that Qt = (N,E) for all −t ∈ (−tS , 0];

Qt = (E,E) for all −t ∈ (−t∗,−tS); and Qt = (E,N) for all −t ∈ (−∞,−t∗).

2. If β < γ, then

(a) If −tS < −tW , then Qt = (N,E) for all −t ∈ (−tW , 0]; and Qt = (N,N) for all

−t ∈ (∞,−tW ).

(b) If −tS > −tW , there exists t∗∗ ∈ (tS ,∞) such that Qt = (N,E) for all −t ∈ (−tS , 0];

Qt = (E,E) for (−t∗∗,−tS). The equilibrium behavior for −t < −t∗∗ depends on the

details of the parameters, but the following properties hold:

i. There exists t∗∗∗W ∈ [t∗∗,∞) such that W does not enter for all −t ∈ (−∞,−t∗∗∗W );

and

ii. There exists r̄ ≤ 1 such that r ≥ r̄ if and only if there exists t∗∗∗S ∈ [t∗∗,∞) such

that S does not enter for all −t ∈ (−∞,−t∗∗∗S ).

3. All the time-cutoffs described above are independent of T .

This means that, for a sufficiently long election campaign phase, W uses ambiguous language

(and for many cases S uses such language as well) for a long time during the early stages of the

election campaign, but the candidates’ incentive to do so changes as the election date approaches.

This basic pattern is common across a wide range of parameter specifications, although the exact

way the incentives change varies across different specifications. Notice that in the base model, the

parameters satisfy β = γ. In this case, if p is very small, then S enters as soon as possible. Thus,

Proposition 5 claims that, if S expects even the slightest cost of W entering after her own entry

(i.e., β < γ), then she will not wish to enter when the election date is far away.

Recall that the model includes the case of a continuous policy space with a concave payoff

function. Thus, the proposition implies that the essence of our result is orthogonal to the convexity
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of payoff functions. This is in contrast to the models of Shepsle (1972) and Aragonès and Postlewaite

(2002) in which the convexity of payoff functions is essential to the ambiguous policy announcement.

We now offer comparative statics of the cutoff timing with respect to the parameter values:

Proposition 6 The following comparative statics hold:

1. For each (α, β, γ), there exists r∗ ∈ (0,∞) such that −tS < −tW if and only if r∗ < r.

2. For each (r, β, γ), there exists α∗ ∈ [0, 1) such that −tS < −tW if and only if α∗ < α.

3. For each (r, α, γ), there exists β∗ ∈ [0, 1) such that −tS < −tW if and only if β∗ < β.

4. For each (r, α, β), there exists γ∗ ∈ [0, 1] such that −tS < −tW if and only if γ∗ < γ.

5. For each (r, α, β), there exists γ̄ ∈ [0, 1) such that, for each γ̄ < γ, there exists −t̄ such that

S does not enter at all −t < −t̄.

Part 1 of this proposition implies that, for sufficiently large r, Case 1(a) or 2(a) in Proposition

5 apply. Intuitively, since S can move quickly compared to W , W enters only if the deadline is

very close (−tW is close to 0).

Parts 2 and 3 imply that for sufficiently large α or β, Case 1(a) or 2(a) in Proposition 5 apply.

To see the intuition, notice that high α implies that S gets a high payoff when only W enters, and

high β implies that S gets a low payoff when only S enters. Hence, in these situations, S has a

small incentive to enter.

If β ≥ γ, since W never enters after S enters, the value of γ does not affect the cutoff times. On

the other hand, if β < γ, Part 4 implies that for sufficiently large γ, Case 1(a) or 2(a) in Proposition

5 apply. Intuitively, high γ implies that S gets a small payoff when W enters after S’s entry. In

such a situation, S has a small incentive to enter.

Part 5 implies that, if γ is sufficiently large, then S does not enter if the election is sufficiently

far away. To see this, consider the extreme case with γ = 1. In this case, S’s payoff is zero if S

enters first and then W enters afterwards. Hence, if S enters when the election is far away, then

with a high probability W will enter and S’s payoff is close to zero. Therefore, in equilibrium S

does not enter when the election is far away.
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Remark 7 The numbers tS and tW that appear in Proposition 5 are only implicitly defined as the

smallest solutions of fS(t) = 0 and fW (t) = 0, respectively. There is a sufficient condition to ensure

that −tS < −tW . The sufficient condition is that φ < 0, where36

φ :=


− γ

1−α if γ > β and r < 1− 1−α
γ−β ;

emax{ γ−β1−α ,0}−1 − max{β,γ}
1−α if r = 1;(

1
r −

1−r
r max

{
γ−β
1−α , 0

}) r
r−1 − max{β,γ}

1−α otherwise.

In fact, we use the condition in Remark 7 to show that r∗ is finite and α∗ and β∗ are strictly

less than 1 in Proposition 6. Moreover, Part 5 of Proposition 6 ensures the existence of γ̄ such that

γ > γ̄ implies S does not enter if the deadline is far. In total, if at least one of these parameters is

sufficiently high then there is a long period of no entry by any candidate.

Recall that in the base model, r = 1 and α = β = γ = p. Proposition 3 implies that for

sufficiently large p, there is a cutoff time −t∗ such that no candidate enters for all −t < −t∗. The

specification of the base model implies that the three parameters α, β, and γ move simultaneously

as p varies, so it is not possible in the base model to examine the effects of individual parameters.

Proposition 6 ensures that if at least one of these parameters is sufficiently high, then no candidate

enters when the deadline is far, as in the case of high p’s. In addition, in Section 5.3, we define p∗

to be a cutoff of p such that p > p∗ implies the existence of t∗ with which (i) no candidate enters for

all −t < −t∗ and (ii) W enters and S does not for all −t > −t∗. Part 1 of Proposition 6 generalizes

the claim that p∗ is decreasing in r (and it approximates 0 as r → ∞). Overall, the insight from

the base model carries over to the general setting.

5.5 Synchronous Policy Announcements

So far, we have assumed that candidates’ policy announcements are asynchronous. In practice, not

all the announcements are asynchronous; for example, televised political debates would be better

modeled as synchronous policy announcements. To understand the role of the move structure on our

ambiguity result, in this section we consider the case in which all the opportunities are synchronous.

That is, time flows from −T to 0 and, according to the Poisson process with arrival rate λ, both

36One can show that φ is continuous in r at r = 1.
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of the candidates receive opportunities to announce their policy platforms simultaneously. We

will show that the ambiguous policy announcements are robust to this setting. The very basic

intuition— S wants to wait for W who does not want to be copied, which makes both candidates

announce ambiguous policies when the election date is still far away— is the same as in the base

model, but the detailed equilibrium structure is different. In particular, candidates use mixed

strategies at any time point close to the election date.

We assume the same voter’s utility and the same distribution of the median voter as in the

original model explained in Section 2. For sufficiently small valence, the payoffs at the deadline 0

are given by the payoff matrix in Figure 2.

In this model, it is straightforward to see that parts 1 and 2 of Lemma 2 continue to hold.

Therefore, the only relevant state is the state in which no player has entered so far. Assume

for now that a Markov perfect equilibrium exists, and fix one of them.37 Let V i
t be the value of

candidate i when no one has yet entered at −t and an opportunity to enter arrives at −t but actions

have not been taken. Note that this value is independent of the other histories since we condier a

Markov equilibrium. Suppose neither candidate enters at −t. Then, if they have an opportunity

at −τ > −t, they will then get (V S
τ , V

W
τ ). Otherwise, {0, 1}, {0, 1} will be realized at time 0 and

they will get (1, 0). Hence, the value profile of choosing {0, 1}, {0, 1} at time −t is38

(∫ t

0
λe−λτV S

t−τdτ + e−λt,

∫ t

0
λe−λτV W

t−τdτ

)
.

For other action profiles, parts 1 and 2 of Lemma 2 determine the value profile. As in the

base model, the game has a constant sum since the winning probabilities must sum up to 1, so it

suffices to keep track of S’s payoffs. Specifically, when the candidates have an opportunity at −t,

S’s payoffs for the choices of policy platforms are given by the payoff matrix in Figure 5. and V S
t

37We will show in Proposition 8 that a subgame perfect equilibrium exists, all subgame perfect equilibria are
essentially Markov, and they have a unique continuation payoff at each time.

38The integration is well-defined because V it is continuous in t for each i ∈ {S,W} for the following reason: Let
WS
t be S’s continuation payoff at time −t when no opportunity arrives. Since expected payoffs are continuous in

probability, WS
t is continuous in t.

In Markov equilibria, the continuation play after taking ({0, 1}, {0, 1}) at −t and that after not receiving an
opportunity are the same. Hence, we can replace the right-bottom entry of the payoff matrix with WS

t in Figure 5.
Since the minimax value of a constant-sum normal-form game is continuous in its payoff function, this means that
the expected payoff from the Nash equilibrium of the game in Figure 5 is also continuous in t. Since by definition
V St is the expected payoff from the Nash equilibrium of the game, V St is continuous in t. Since VWt = 1− V St , both
integrations in these payoffs are well-defined.
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S \W {0} {1} {0, 1}
{0} 1 p p

{1} 1− p 1 1− p
{0, 1} 1− pe−λt 1− (1− p) e−λt

∫ t
0 e
−λτλV S

t−τdτ + e−λt

Figure 5: The payoff matrix at time −t

is the unique minimax value of this constant-sum game.

Unfortunately, a complete characterization of the equilibria for all parameter values is hard to

obtain. However, we can show that a Markov perfect equilibrium exists (and so does a subgame

perfect equilibrium), and the Markov perfect equilibrium value V S
t is unique. Moreover, all the sub-

game perfect equilibria are essentially Markov, meaning that for each subgame perfect equilibrium

σ, there exists σ′ such that the following two conditions are satisfied:

1. For each i ∈ {S,W} and ht, candidate i’s continuation payoff at ht given strategy profile σ

coincides with the one given σ′.

2. For each ht, if the minimax strategy profile is unique in the payoff matrix represented by

Figure 5, then (σS(ht), σW (ht)) = (σ′S(ht), σ
′
W (ht)).

Moreover, we provide two analytical results on the basic dynamics of the equilibrium behaviors.

Proposition 8 A Markov perfect equilibrium exists and the Markov perfect equilibrium value V S
t

is unique. Moreover, all the subgame perfect equilibria are essentially Markov. In addition, in each

subgame perfect equilibrium, the following are true:

1. There exists t∗ > 0 such that for all time −t ∈ (−t∗, 0], both candidates use completely mixed

strategies conditional on the event that the opponent has not entered.

2. There exists t∗∗ < ∞ such that for all −t < −t∗∗, the probability with which a candidate

enters at {0} or {1}, conditional on the event that the opponent has not entered, is zero.

Part 1 of the proposition states that if the election date is close, both candidates have to

mix. This is in stark contrast to the asynchronous case, but is a natural consequence of the game

representation above. The continuation payoff matrix approaches the original payoff matrix in the
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one-shot game whose unique equilibrium is completely mixed, and by the upper hemi-continuity of

the set of Nash equilibria, the result holds.

Part 2 of the proposition shows the robustness of our ambiguity result with respect to the move

structure. The intuition is the same as before. If W enters at −t sufficiently far from the election

date with positive probability, then it is optimal for S to wait and try to copy W ’s policy later.

Given this, W does not enter. S gains a lot by copying W ’s policy, so she has an option value of

waiting. Thus S does not enter either, when the election date is sufficiently far away.

As part 1 shows, the equilibrium involves mixing when the election date is close if opportunities

arrive simultaneously. The mixing probabilities have to change over time, since the Nash equilibrium

of the game matrix above changes as t changes. The transition of mixing probabilities is complicated

and the incentive problems faced by the two candidates are subtle. We illustrate its complexity

with an example with spacific p and λ in Section 7.7 in the appendix.

6 Conclusion

We proposed a model of a “policy announcement game” in which candidates stochastically obtain

opportunities to announce their policies. We showed that, if two candidates are perfectly symmetric,

they specify their policy positions as soon as possible. On the other hand, if one candidate is slightly

stronger than the other, both candidates may have incentives to defer a clear announcement of their

policies, depending on the opponent’s latest announcement and the time left until the election.

We have introduced the first model of dynamic campaigns into the literature on elections by

analyzing one particular simple setting, and have demonstrated that candidates face nontrivial

dynamic incentive problems. Our work raises a wide range of new questions. Here we mention

a few of them. First, we restricted ourselves to the case in which policies are either perfectly

ambiguous or perfectly precise. One could allow for “intermediate language” (e.g., by letting the

candidates choose any subintervals of [0, 1] for the initial opportunity and then any subintervals

included in their most recent announcements from the second opportunity on) and analyze how

gradually candidates shift from ambiguous to clear policy language over the course of the campaign.

Second, it would be more realistic to assume that policy announcements are sometimes synchronous

and sometimes asynchronous. This problem seems nontrivial, as Ishii and Kamada (2011) show
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in their analysis of revision games with synchronous and asynchronous revisions. However, there

should remain the incentive to announce ambiguous policy when the deadline is far. Third, we

restricted ourselves to the case in which, once a candidate commits to a particular policy, he or

she cannot overturn it later. Although we believe that this is a reasonable starting point for

analysis, one could also assume that candidates can change their policies if they are willing to

incur a “reputational cost” for announcing “inconsistent” policies. The idea is that if a candidate

overturns his or her policy announcement, voters would infer that it is likely that the candidate

would change it even after the election. Fourth, it would be interesting to enrich the model by

assuming that the median voter’s position gets gradually revealed over the course of the campaign

(for example, because of polls), so that candidates have an additional reason to wait.

Finally, our work raises empirical questions as well. First, our model predicts different patterns

for the timing of policy clarification for different parameter values such as p, which measures

how much uncertainty candidates face with respect to the position of the median voters. One

may want to test whether this prediction is supported by the data.39 Second, in our analysis we

have essentially assumed that λT is large so that candidates have sufficiently many chances to

announce their policies and successfully communicate with the voters about such policies. It would

be desirable to examine whether this assumption is correct in real election campaigns.
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7 Appendix

7.1 Backward Induction Argument for Proposition 1

Lemma 9 Suppose that for any t, there exists ε > 0 such that statement At′ is true for all t′ ∈

(t− ε, t] if statement At′′ is true for any t′′ > t. Then, for any t, statement At is true.

Proof. Suppose that the premise of the lemma holds. Let −t∗ be the supremum of −t such that

At is false. If t∗ = ∞, we are done. So suppose that t∗ < ∞. Then it must be the case that for

any ε > 0, there exists −τ ∈ (−t∗ − ε,−t∗] such that Aτ is false. But by the definition of t∗, there

exists ε̃ > 0 such that statement Aτ is true for all −τ ∈ (−t∗ − ε̃,−t∗] because the premise of the

lemma is true. This is a contradiction.
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7.2 Proof of Proposition 3

Let ht =
((
tkS , x

k
S

)kS
k=0

,
(
tkW , x

k
W

)kW
k=0

, t
)

be the public history at −t, where −tkj is the time at

which candidate j receives his or her k’th revision opportunity; xkj is the policy set that j has

chosen at time −tkj ; and t denotes the current remaining time. For notational convenience, let

θ(ht) = (xkSS , x
kW
W ) be the profile of policy sets that are chosen most recently.

From Lemma 2, the following statements are true at ht:

• If θ(ht) = ({x}, {0, 1}) with x ∈ {0, 1} and if W can move, then W is indifferent between

entering at x′ ∈ {0, 1} with x′ 6= x and announcing {0, 1}. S wins if and only if the median

is located at x.

• If θ(ht) = ({0, 1}, {x}) with x ∈ {0, 1} and if S can move, then S enters at x and wins.

When −t is sufficiently close to the deadline 0, then at ht with θ(ht) = ({0, 1}, {0, 1}), the

following are true:

• If W can move, then W enters at 1. Note that, since −t is sufficiently close to zero, with a

high probability there is no more opportunity to announce a policy. Hence, {1} gives W the

payoff close to p, {0} gives W the payoff close to 1 − p, and {0, 1} gives W the payoff close

to zero. S wins if and only if the median voter is located at 0.

• If S can move, then S does not enter. Note that, since −t is sufficiently close to zero, with a

high probability there is no more opportunity to announce a policy. Hence, {1} gives S the

payoff close to p, {0} gives S the payoff close to 1−p, and {0, 1} gives S the payoff close to 1.

Let us define V S(ht) as S’s continuation payoff at −t when ht is the public history and no

candidates receive an opportunity at −t. Note that it is always true that V W (ht) = 1− V S(ht).

From the above argument, for −t sufficiently close to zero, for each ht, we have

V S(ht) = 1− (1− p)λt exp(−λt) if θ(ht) = ({0, 1}, {0, 1}) ; and

V S(ht) = 1− (1− p) exp(−λt) if θ(ht) = ({0, 1}, {1}) .
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Subtracting these from 1, we obtain

V W (ht) = (1− p)λt exp(−λt) if θ(ht) = ({0, 1}, {0, 1}) ; and

V W (ht) = (1− p) exp(−λt) if θ(ht) = ({0, 1}, {1}) .

Given the above value functions, at ht with θ(ht) = ({0, 1}, {0, 1}), the following conclusions

hold:

• If W can move, then W enters at 1 as long as the following holds:

(1− p)λt exp(−λt) < (1− p) exp(−λt)⇔ t <
1

λ
.

• If S can move, then S does not enter as long as the following holds:

1− (1− p)λt exp(−λt) > the value of entering at {1}

⇔ 1− (1− p)λt exp(−λt) > 1− p

⇔ 1 >
p

1− p
> λt exp(−λt).

To fully characterize the candidates’ strategies, we examine the following three possible cases.

Case (1): p
1−p > exp(−1).

Let t∗ be 1
λ . Note that W becomes indifferent between entering at 1 and announcing {0, 1} at

−t∗. We will now show that the following claims hold for each −t < −t∗:

• If S can move, then S has a strict incentive to announce {0, 1}.

• If W can move, then W has a strict incentive to announce {0, 1}.

First, by continuity, there exists −t̄ < −t∗ such that for all −t ∈ (−t̄,−t∗) and all ht with

θ(ht) = ({0, 1}, {0, 1}), if S can move at ht, then S has a strict incentive to announce {0, 1}.

Given S’s strategy above, W can ensure that θ(ht∗) = ({0, 1}, {0, 1}) by not entering for all

−t ∈ (−t̄,−t∗). On the other hand, W ’s payoff for entering at 1 monotonically decreases as −t
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decreases. Since W is indifferent between entering at 1 and having θ(ht) = ({0, 1}, {0, 1}) at −t∗,

W has a strict incentive to announce {0, 1}.

Similarly, we can show that if both S and W have a strict incentive to announce {0, 1} for all

time in (−t,−t∗), then there exists ε > 0 such that for each −t′ ∈ (−t− ε,−t], both S and W has

the strict incentive to announce {0, 1}. By Lemma 9, we have shown the claims.

Case (2): p
1−p < exp(−1).

In this case, there exists tS such that p
1−p = λtS exp(−λtS) and tS < 1

λ . Moreover, by the

implicit function theorem, we have

dtS
dp

= −
dλtS exp(−λtS)

dtS

d
(

p
1−p

)
dp

= − (1− p)2 λe−λtS (1− λtS) < 0. (2)

At −tS , S becomes indifferent between entering at 1 and announcing {0, 1}. By continuity, at ht

with −t < −tS sufficiently close to −tS and θ(ht) = ({0, 1}, {0, 1}), if W can move, then W strictly

prefers entering at 1.

Let us now consider the candidates’ incentive for entering when −t < −tS . The payoff of S

entering at {1} and ensuring 1− p is always strictly greater than her payoff of announcing {0, 1}.

To see why, suppose that S announces {0, 1} at −t. To calculate S’s payoff for announcing {0, 1},

we have the following three subcases to consider.

(a) If W can move next by −tS , then one strategy that W can take is to always announce {0, 1}.

The following two cases are possible: If S enters at {1} by −tS , W gets p. If S does not enter

by −tS , by the definition of −tS (that is, S is indifferent between {1} and {0, 1} at −tS),

S gets 1 − p and W gets p. In both cases, W gets at least p. Furthermore, if W can get a

revision opportunity close to −tS , W gets more than p since W strictly prefers entering at

{1} to announcing {0, 1}. Overall, W gets more than p, which means S gets less than 1− p.

(b) If S can move next by−tS , S enters and gets 1−p. Here, we assume the “inductive hypothesis”

that S will enter for −τ ∈ (−t,−tS).40

40Formally, we can use Lemma 9 for this step.
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(c) If no candidate can move by −tS , then by definition, S gets 1− p.

Therefore, the value of announcing {0, 1} is strictly less than 1− p.

We now consider W ’s incentive at −t < −tS . Suppose that W enters at each −τ > −t. Given

this continuation strategy profile, if W enters, then W ’s payoff is equal to

(1− p) e−λt

since W receives 1− p if and only if S cannot enter afterwords. On the other hand, if W does not

enter, W ’s payoff is equal to

∫ t−tS

0
e−2λτλ (1− p) e−λ(t−τ)dτ + p

(
1−

∫ t−tS

0
λe−2λτdτ

)
.

Here we used the fact shown above that S enters for each − (t− τ) < −tS when W has not

entered. Note that e−2λτ is the probability that no candidates enters until − (t− τ), that λdτ is

the probability with which W can enter at − (t− τ), and that (1− p) e−λ(t−τ) is W ’s payoff when

W enters at − (t− τ). Hence,
∫ t−tS

0 e−2λτλ (1− p) e−λ(t−τ)dτ is W ’s payoff when W enters first by

−tS .

At time −t, the probability that W does not enter first by −tS is 1−
∫ t−tS

0 λe−2λτdτ . There are

two possible cases: (i) S enters by −tS . In this case, S’s payoff is 1− p and W ’s payoff is p. (ii) S

does not enter by −tS . Since S is indifferent between entering and not entering at −tS , S’s payoff is

1− p and W ’s payoff is p. In both cases, therefore, W ’s payoff is p. Hence, p
(

1−
∫ t−tS

0 λe−2λτdτ
)

is W ’s payoff when W does not enter first by −tS .

Hence, W enters if and only if

(1− p) e−λt ≥
∫ t−tS

0
e−2λτλ (1− p) e−λ(t−τ)dτ + p

(
1−

∫ t−tS

0
λe−2λτdτ

)

⇔

(1− p) e−λt ≥ (1− p)
(
e−λt − e−λ(2t−tS)

)
+ p

(
1− 1

2

(
1− e−2λ(t−tS)

))
⇔

e−λ(2t−tS) ≥ p

1− p
1

2

(
1 + e−2λ(t−tS)

)
.
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Since p
1−p = λtSe

−λtS by definition, this inequality is equivalent to

e−λ(2t−tS) ≥ λtSe−λtS
1

2

(
1 + e−2λ(t−tS)

)
⇔

e−2λt ≥
1
2λtS

1− 1
2λtS

e−2λtS .

Taking the log of both sides and rearranging, we obtain

t ≤ tS −
1

2λ
log

(
1
2λtS

1− 1
2λtS

)
.

Hence, there exists tW such that

tW = tS −
1

2λ
log

(
1
2λtS

1− 1
2λtS

)

and, at −tW , W is indifferent between entering at {1} and announcing {0, 1}.

Note that, for −t < −tW , W always prefers {0, 1}. To see this, note that the payoff of W

entering at 1 monotonically decreases if −t becomes smaller; this is because (i) W gets the payoff

of 0 if S has at least one revision opportunity after −t and otherwise his payoff is 1 − p > 0, and

(ii) the probability of S having at least one opportunity monotonically increases as −t becomes

smaller. In addition, assuming that W does not enter until −tW , W ’s payoff is the same. Hence,

it is a strict best response for W not to enter.

Moreover, we have
dtW
dp

=
dtW
dtS

dtS
dp

=

(
1− 1

λtS (2− λtS)

)
dtS
dp

.

Recall that λtS ∈ (0, 1). Hence, we have

√
λtS (2− λtS) <

1

2
(λtS + (2− λtS)) = 1,

and so
1

λtS (2− λtS)
> 1.
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Therefore, together with (2), we have

sign
dtW
dp

= sign

(
1− 1

λtS (2− λtS)

)
sign

dtS
dp

= 1. (3)

The inequalities (2) and (3) prove part 2(c) of Proposition 3.

Case (3): p
1−p = exp(−1).

At time −t∗ = 1
λ with θ(ht∗) = ({0, 1}, {0, 1}), S is indifferent between “entering at {1} and

thereby ensuring 1 − p,” and “announcing {0, 1}.” At the same time, W is indifferent between

entering at {1} and {0, 1}.

For −t < −t∗, when W can move, his value of not entering is at least p since he gets p if S

enters at {1} by −t∗. If S does not enter by −t∗, by the definition of −t∗, S gets 1− p and W gets

p. On the other hand, entering at {1} gives W the payoff of 1 − p times the probability of S not

having any future revision opportunity, which is equal to (1−p) exp(−λt) < (1−p) exp(−λt∗) = p.

Therefore, W strictly prefers not entering.

Given this, S is always indifferent between “entering at {1} and thereby ensuring 1 − p,” and

“announcing {0, 1}.”
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FOR ONLINE PUBLICATION

7.3 Proof of Proposition 5

7.3.1 Uniqueness of the Value Function

We will first show uniqueness of the value functions. The uniqueness implies that, if we show that

an action is a unique best response in one equilibrium, then such an action is the unique best

response in all the equilibria.

As in the proof of Proposition 3, let

ht =

((
tkS , x

k
S

)kS
k=0

,
(
tkW , x

k
W

)kW
k=0

, t

)
(4)

be the public history at −t. Let θ(ht) = (xkSS , x
kW
W ) ∈ {E,N} × {E,N} be the action profile that

is chosen most recently. Here, E means “entering” and N means “not entering.” Let θi(ht) = xkii

be candidate i’s element of θ(ht). Define V S(σ, ht) to be S’s continuation payoff at ht when σ is

a strategy profile, ht is the public history at −t, and no candidates receive an opportunity. As in

the proof of Proposition 3, V W (ht) = 1 − V S(ht). On the other hand, let WS(σ, ht, i, θi) be S’s

continuation payoff at −t when ht is the public history at −t and candidate i ∈ {S,W} has an

opportunity and takes θi ∈ {E,N} at −t.

We first show that there exists a function vSt (·) such that for each equilibrium strategy σ and

each history ht, we have V (σ, ht) = vSt (θ(ht)).
41 Moreover, for each σ, ht, and i ∈ {S,W}, we also

have WS(σ, ht, i, θi) = vSt (θi, θj(ht)).

If θ(ht) = (N,E), then S enters as soon as possible. Hence, for each ht with θ(ht) = (N,E),

we have

V S(ht) = α+
(

1− e−λSt
)

(1− α) .

Let vSt (θ) = α+
(
1− e−λSt

)
(1− α) for θ = (N,E).

On the other hand, if θ(ht) = (E,N), then W enters (or does not enter) if γ > β (or γ < β).

Hence, for each ht with θ(ht) = (E,N), we have V S(ht) = 1− βt with

βt = β +
(

1− e−λW t
)

max {γ − β, 0} .

41The proof technique follows the one developed in Kamada and Muto (2014).
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Let vSt (θ) = 1− βt for θ = (E,N).

Hence, we have V (σ, ht) = vSt (θ(ht)) if θ(ht) 6= (N,N). The above argument also implies that

WS(σ, ht, i, θi) = vSt (θi, θj(ht)) with j 6= i if θ(ht) 6= (N,N). Therefore, we concentrate on the case

with θ(ht) = (N,N) or the case in which candidate i who has an opportunity at −t takes N .

For each ht with θ(ht) = (N,N), let WS
t (σ, ht, i) be S’s continuation payoff when candidate

i ∈ {S,W} receives an opportunity and takes N at −t, and the candidates take the strategy profile σ

such that σ|ht,zi=yes,N is subgame perfect in the subgame at which ht is the public history and candi-

date i has an opportunity and takes N . Here, σ|ht,zi=yes,N is the continuation strategy in such a sub-

game. Moreover, let W̄S
t be the supremum of S’s continuation payoff: W̄S

t ≡ supσ,ht,iW
S
t (σ, ht, i),

where the supremum is taken over all the possible histories and strategies such that ht is the pub-

lic history at −t, candidate i receives an opportunity and takes N , and σ|ht,zi=yes,N is subgame

perfect in the subgame after (ht, zi) = (yes,N) (henceforth, analogous restrictions on the domains

over which supremums and infimums are taken apply whenever we take supremums and infimums).

Similarly, let WS
t be the infimum of S’s continuation payoff: WS

t ≡ infσ,ht,iW
S
t (σ, ht, i). Let wSt

be the difference between the supremum and infimum: wSt ≡ W̄S
t −WS

t . Note that wS0 = 0.

We first show that wSt is continuous in t. To this end, let V S
t (σ, ht) be S’s payoff when there is

no opportunity at −t and the candidates take the strategy profile σ such that σ|ht,no is subgame

perfect in the subgame at which ht is the public history and zS = zW = no at −t. Here, σ|ht,no
is the continuation strategy in such a subgame. Note that V S

t (σ, ht) is continuous in t given

σ since expected payoffs are continuous in probability. Hence, W̄S,no
t ≡ supσ,ht V

S
t (σ, ht) and

WS,no
t ≡ infσ,ht V

S
t (σ, ht) are continuous, where the supremum and infimum are taken over all the

possible histories and strategies such that ht is the public history at −t, zS = zW = no, and σ|ht,no
is subgame perfect in the subgame after (ht, zS = zW = no).

To show wSt is continuous in t, it suffices to show that W̄S
t = W̄S,no

t and WS
t = WS,no

t . To see

this, let σ|ht,zi=yes,N be the continuation equilibrium strategy in the subgame after (ht, zi = yes,N).

Let us define σ̃ as the strategy profile such that, in the subgame after (ht, zS = zW = no), the

candidates follow the strategy profile σ|ht,zi=yes,N . That is, they take actions as if candidate i

had an opportunity and took N at −t. Since the strategic environment in the subgame after

(ht, zS = zW = no) is the same as in the one after (ht, zi = yes,N), this continuation strategy profile

is subgame perfect in the subgame after (ht, zS = zW = no) if σ|ht,zi=yes,N is subgame perfect in

41



the subgame after (ht, zi = yes,N). Therefore, for each ht and WS
t (σ, ht, i) such that σ|ht,zi=yes,N

is subgame perfect, WS
t (σ, ht, i) = V S

t (σ̃, ht) holds and σ̃|ht,no is subgame perfect. Therefore, we

have W̄S
t = W̄S,no

t and WS
t = WS,no

t . The equality WS
t (σ, ht, i) = V S

t (σ̃, ht) also implies that

WS
t (σ, ht, i) does not depend on i. Hence, we will write WS

t (σ, ht) to denote WS
t (σ, ht, i) from now

on.

We will now show that wSt = 0 for each t ≥ 0. To this end, fix −τ ∈ (−t, 0] arbitrarily. In

addition, we introduce the following notation: Let zi,τ ′ ∈ {yes, no} represent whether candidate i

receives an opportunity at −τ ′. For example, zi,τ ′ = no for each i ∈ {S,W} and −τ ′ ∈ (−t,−τ) and

zS,τ = yes represents the event that S receives the first opportunity after −t at−τ . Given zi,t = yes,

since the Poisson process is asynchronous, zj,τ = no with probability one for j 6= i. Moreover, let

WS
t (σ, ht | τ, i) be candidate S’s continuation payoff at −t given σ and ht, conditional on zi′,τ ′ = no

for each i′ ∈ {S,W} and −τ ′ ∈ (−t,−τ) and zi,τ = yes.

Suppose that S receives an opportunity at −τ for the first time after −t: zi,τ ′ = no for each

i ∈ {S,W} and −τ ′ ∈ (−t,−τ) and zS,τ = yes. Then, S’s continuation payoff WS
t (σ, ht | τ, S)

varies at most by wSτ . To see why, note that if zS,τ = yes, then candidate S’s continuation payoff

of taking E at −τ is equal to vτ (E, θW (hτ )) irrespective of σ, and this is equal to vτ (E,N) because

θW (ht) = N and we assume zW,τ ′ = no for each −τ ′ ∈ (−t,−τ) and zW,τ = no with probability

one. On the other hand, S’s continuation payoff of taking N at −τ is WS
τ (σ, hτ ). Hence, S’s

continuation payoff after S takes an optimal action varies at most by

sup
σ,ht,σ̂,ĥt

∣∣∣WS
t (σ, ht | τ, S)−WS

t (σ̂, ĥt | τ, S)
∣∣∣ ≤ wSτ .

Symmetrically, suppose that W receives an opportunity at −τ for the first time after −t:

zi,τ ′ = no for each i ∈ {S,W} and −τ ′ ∈ (−t,−τ) and zW,τ = yes. Then, S’s continuation payoff

WS
t (σ, ht | τ,W ) varies at most by wSτ . To see why, note that if zW,τ = yes, then candidate W ’s

continuation payoff of taking E at −τ is equal to 1 − vτ (θS(hτ ), E) irrespective of σ, and this is

equal to vτ (N,E) because θS(ht) = N and we assume zS,τ ′ = no for each −τ ′ ∈ (−t,−τ) and

zS,τ = no with probability one. On the other hand, W ’s continuation payoff of taking N at −τ is

42



1−WS
τ (σ, hτ ). Hence, S’s continuation payoff after W takes an optimal action varies at most by

sup
σ,ht,σ̂,ĥt

∣∣∣1−WS
t (σ, ht | τ,W )−

(
1−WS

t (σ̂, ĥt | τ,W )
)∣∣∣ ≤ wSτ .

On the other hand, let WS
t (σ, ht | no) be candidate S’s continuation payoff at 0 given σ and ht,

conditional on the event that no opportunity comes after −t (that is, zi′,τ ′ = no for each i′ ∈ {S,W}

and −τ ′ ∈ (−t, 0]). Since candidate S wins for sure, we have

sup
σ,ht,σ̂,ĥt

∣∣∣WS
t (σ, ht | no)−WS

t (σ̂, ĥt | no)
∣∣∣ = 0.

Since the probability that some candidate i receives the first opportunity after −t at some

−τ ∈ (−t, 0] (that is, zi,τ ′ = no for each i ∈ {S,W} and −τ ′ ∈ (−t,−τ) and zi,τ = yes for some

−τ ∈ (−τ, 0] and i ∈ {S,W}) is 1− exp(− (λS + λW ) t), we have

wSt ≤ (1− exp(− (λS + λW ) t))× max
τ≤t

wSτ︸ ︷︷ ︸
Supremum difference

in WS
t (σ,ht|τ,i)

+ exp(− (λS + λW ) t)× 0

= (1− exp(− (λS + λW ) t)) max
τ≤t

wSτ .

Fix w̄ > 0 arbitrarily, and let t̄ be the minimum of t such that wSt ≥ w̄: t̄ ≡ mint≥0,wSt ≥w̄ t. The

minimum exists since wSt is continuous with respect to t. In other words, we have

max
τ≤t̄

wSτ ≤ w. (5)

Since wS0 = 0 and wSt is continuous in t, we have t̄ > 0. Hence, there exists ε > 0 such that

1
1−exp(−(λS+λW )t̄) ≥ 1 + ε. Since wSt̄ ≤ (1− exp(− (λS + λW ) t̄)) maxτ≤t̄w

S
τ , we have

max
τ≤t̄

wSτ ≥ (1 + ε) w̄, (6)

which is a contradiction to (5).

Therefore, there exists vSt (N,N) such that WS
t (σ, ht, i) = V S

t (σ, ht) = vSt (N,N) for each equi-

librium σ, history ht with θ(ht) = (N,N), and t.
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In total, we have proven that there exists vSt (θ) such that for each θ ∈ {E,N} × {E,N}, each

equilibrium strategy profile σ, each history ht, and each i ∈ {S,W}, we have V S(σ, ht) = vSt (θ(ht))

and WS(σ, ht, i, θi) = vSt (θi, θj(ht)).

We will now prove the statements in Proposition 5. Note that S enters and receives a payoff

of 1 if S can move after W enters. In addition, by the same proof as the one for Proposition 3, if

−t is close to zero, then Qt = (N,E). Below, we consider the transition of Qt in the following two

cases: β ≥ γ and β < γ.

7.3.2 Case 1: β ≥ γ

In this case, for all −t, W does not enter after S enters. (If β = γ, then W is indifferent. The

following analysis goes through when β = γ regardless of W ’s strategy after S enters.)

First, let us consider S’s incentive. At time −t, if W has not entered, S’s payoff is 1 − β if S

enters; if S does not enter, then her payoff is 1−(1− α)
∫ t

0 e
−λSτλW e

−λW (t−τ)dτ , given Qτ = (N,E)

for all −τ ∈ (−t, 0). Hence, S enters if and only if

1− β ≤ 1− (1− α)

∫ t

0
e−λSτλW e

−λW (t−τ)dτ.

This is equivalent to fS(t) ≤ 0 where

fS(t) =

 1
1−r

(
e−λSt − e−λW t

)
− β

1−α if r 6= 1

λW te
−λW t − β

1−α if r = 1
. (7)

Recall that we define tS as the smallest positive solution for fS(t) = 0 in Section 5.4. If there is no

solution, then we define tS =∞. Note that the function fS is continuous, so the smallest positive

solution always exists or there is no solution.

Second, let us consider W ’s incentive. At time −t, if S has not entered, W ’s payoff is

(1− α) e−λSt if W enters; if W does not enter, then his payoff is (1− α)
∫ t

0 e
−λSτλe−λW (t−τ)dτ ,

given Qτ = (N,E) for −τ ∈ (−t, 0). Hence, W enters if and only if

(1− α) e−λSt ≥ (1− α)

∫ t

0
e−λSτλW e

−λW (t−τ)dτ
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⇔

fW (t) ≤ 0, where fW (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1

λW te
−λW t − e−λW t if r = 1

.

Recall that we define tW as the smallest solution for fW (t) = 0 in Section 5.4:

 1
1−r

(
e−λStW − e−λW tW

)
− e−λStW = 0 if r 6= 1,

λW te
−λW tW − e−λW tW = 0 if r = 1.

(8)

Since fW (t) is continuous, negative for sufficiently small t > 0, and positive for sufficiently large t,

there exists the smallest positive t such that fW (t) = 0.

The transition of Qt depends on the relationship between tS and tW . Recall that (i) at −t <

−tW , W has a strict incentive not to enter assuming that S will not enter after −t, and that (ii)

at −tW < −t, he has a strict incentive to enter under the same assumption. Also, at −t < −tS , S

has a strict incentive to enter assuming that W will enter after −t, and (ii) at −tS < −t, she has

a strict incentive not to enter under the same assumption.

Case 1(a): −tS < −tW .

This inequality means that W ’s cutoff −tW is closer to the deadline than S’s cutoff (if any)

−tS . Between (−∞,−tW ), S never enters since her payoff for not entering is constant over this

time interval and that for entering is constant too as W never enters after S’s entry. Hence, in

total,

• Qt = (N,E) for −t ∈ (−tW , 0].

• Qt = (N,N) for −t ∈ (−∞,−tW ).

Hence, part 1(a) of Proposition 5 holds.

Case (1)(b): −tS > −tW .

This inequality means that S’s cutoff −tS is closer to the deadline than W ’s cutoff −tW . At

−t < −tS , W enters if and only if

(1− α) e−λSt ≥
∫ t−tS

0
e−(λS+λW )τ

(
λSβ + λW (1− α) e−λS(t−τ)

)
dτ + e−(λS+λW )(t−tS)β
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⇐⇒

gW (t) ≡ e−(λS+λW )(t−tS)

(
1

1 + r
β − (1− α) e−λStS

)
+

r

1 + r
β ≤ 0.

Here, we use the fact that, since S is indifferent between entering and not entering at −tS , her

payoff at −tS is 1− β if no candidates enter by −tS . Hence, W ’s payoff is β if no candidates enter

by −tS .

At t = tS , we have

gW (tS) = β − (1− α) e−λStS

= (1− α)

(
β

1− α
− e−λStS

)
.

Since tS is the solution for fS(t) = 0, we have

β

1− α
=

 1
1−r

(
e−λSt − e−λW t

)
if r 6= 1,

λW te
−λW t if r = 1.

Hence, we have

gW (tS) =

 (1− α)
(

1
1−r

(
e−λStS − e−λW tS

)
− e−λStS

)
if r 6= 1

(1− α)
(
λW te

−λW tS − e−λStS
)

if r = 1

= (1− α) fW (tS).

Since we assume tS < tW , we have fW (tS) < 0. Hence, we have

gW (tS) = β − (1− α) e−λStS = (1− α) fW (tS) < 0.

This implies the following two claims. First, since

1

1 + r
β − (1− α) e−λStS = β − (1− α) e−λStS − r

1 + r
β < 0,

gW (t) is increasing in t. Second, W strictly prefers to enter at −tS : gW (tS) < 0. Moreover,

gW (∞) = r
1+rβ > 0. Therefore, there exists a unique solution for gW (t) = 0 such that t ∈ (tS ,∞).

Let t∗ be the unique solution.
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On the other hand, S always prefers entering at −t < −tS as long as W prefers entering at

the same time −t for the following reason. Since S (weakly) prefers entering at −tS , if W has not

entered by −tS , S’s payoff at −tS is no more than 1− β. (Even if S enters by −tS , S gets at most

1−β.) That is, W can guarantee β if W does not enter until −tS . The fact that W prefers entering

implies that W ’s payoff when W can enter before S is no less than β. Therefore, S’s payoff when

W can enter before S is no more than 1 − β. On the other hand, by entering, S can guarantee a

payoff of 1− β. Hence, entering is S’s strict betst response at −t.

Given the above characterization of t∗, the transition of Qt is as follows:

• Qt = (N,E) for −t ∈ (−tS , 0].

• Qt = (E,E) for −t ∈ (−t∗,−tS).

• Qt = (E,N) for −t ∈ (−∞,−t∗). In this region, no candidate changes their actions. To see

this, first observe that S’s incentive at −t ∈ (−∞,−t∗) is the same as −t = −t∗ since (i) W

does not enter before S enters for −t ∈ (−∞,−t∗) and (ii) W does not enter after S enters.

Second, we show that W ’s incentive does not change. Consider the following two possibilities

of the realization of S’s opportunities: (i) If S can enter by −t∗, then entering at −t gives

W the payoff of 0 while not entering until −t∗ gives him at least the payoff of β. (ii) If S

cannot enter by −t∗, then W is indifferent between entering and not entering at −t∗. Hence,

conditional on the event that S cannot enter by −t∗, not entering is one of W ’s optimal

actions at −t. Since S can enter by −t∗ with positive probability, not entering is W ’s strict

best response.

Hence, part 1(b) of Proposition 5 holds.

7.3.3 Case 2: γ > β

In this case, for all −t, W enters after S enters. The value profile when only S enters at −t is given

by (1− βt, βt) with

βt = β +
(

1− e−λW t
)

(γ − β) . (9)
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When we replace β with βt in (7), the analysis for the case with β ≥ γ implies the following: Given

Qτ = (N,E) for −τ ∈ (−t, 0), at time −t, S does not enter if and only if fS(t) ≤ 0, where

fS (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− βt

1−α if r 6= 1

λW te
−λW t − βt

1−α if r = 1
. (10)

Recall that we define tS as the smaller positive solution for fS(t) = 0 in Section 5.4. If there is no

solution, then we define tS =∞.

On the other hand, given Qτ = (N,E) for −τ ∈ (−t, 0), at time −t, W enters if and only if

fW (t) ≤ 0, where

fW (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1

λW te
−λW t − e−λW t if r = 1

.

Recall that we define tW as the smallest solution for fW (t) = 0 in Section 5.4:

 1
1−r

(
e−λStW − e−λW tW

)
− e−λStW = 0 if r 6= 1,

λW te
−λW tW − e−λW tW = 0 if r = 1.

Since fW (t) is continuous, negative for sufficiently small t, and positive for sufficiently large t, there

exists the smallest t such that fW (t) = 0.

The transition of Qt depends on the relationship between tS and tW .

Case 2(a): −tS < −tW

This inequality means that W ’s cutoff −tW is closer to the deadline than S’s cutoff (if any)

−tS . In this case, S does not enter for any −t since (i) S’s payoff for not entering does not change

between (−∞,−tW ) and (ii) S’s payoff for entering βt decreases as −t decreases from (9) (recall

γ > β). Hence,

• Qt = (N,E) for −t ∈ (−tW , 0].

• Qt = (N,N) for −t ∈ (−∞,−tW ).

Hence, part 2(a) of Proposition 5 holds.
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Case 2(b): −tS > −tW

This inequality means that S’s cutoff −tS is closer to the deadline than W ’s cutoff −tW . In

this case, there exists ε > 0 such that Qt = (E,E) for all −t ∈ (−tS − ε,−tS). Hence, as part

2(b) of Proposition 5 states, there exists t∗∗ with 0 < tS < t∗∗ such that (i) Qt = (N,E) for all

−t ∈ (−tS , 0], and (ii) Qt = (E,E) for all −t ∈ (−t∗∗,−tS).

The equilibrium behavior for −t < −t∗∗ depends on the details of the parameters, but we can

derive the differential equation that characterizes the transition. Let xt be W ’s continuation payoff

at time −t when W has entered and S has not entered at −t; let yt be W ’s continuation payoff at

time −t when W has not entered and S has entered at −t; and let zt be W ’s continuation payoff

at time −t when no candidate has entered at −t.

Suppose xt, yt, and zt satisfy the following differential equations:

dxt
dt

= λS (0− xt) , (11)

dyt
dt

= λW max {γ − yt, 0} , (12)

dzt
dt

= λW max {xt − zt, 0}+ λS min {yt − zt, 0} , (13)

with this initial condition:

x0 = 1− α, y0 = β, z0 = 0.

Since this system of ordinary differential equations satisfies Lipschitz continuity, there exists a

solution. Such a solution is an equilibrium payoff for the following reasons : Equation (11) means

that whenever S can enter after W enters, W ’s payoff is 0. Equation (12) means that when W can

enter after S enters, W enters if and only if his payoff for entering γ is bigger than the payoff for

not entering yt. In addition, the first term of (13) means that when W can enter, W enters if and

only if his payoff for entering xt is bigger than the payoff for not entering zt. The second term of

(13) means that when S can enter, S enters if and only if her payoff for entering 1 − yt is bigger

than her payoff for not entering 1 − zt (that is, yt is smaller than zt). Since we have shown the

uniqueness of the value function, the solution for the system of (11), (12), and (13) is the unique

equilibrium payoff.

Consider the transition of zt. At t = 0, z0 < min {x0, y0}. Hence, by continuity, there exist
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t+ > 0 and ε > 0 such that zt+ ≥ ε. Note that zt is nondecreasing if zt ≤ yt. Hence, zt ≥

min {ε, yt} ≥ min {ε, β} since yt is nondecreasing in t and y0 = β. On the other hand, xt converges

to zero as t→∞. Hence, for sufficiently small −t, zt (W ’s continuation payoff for not entering) is

larger than xt (W ’s continuation payoff for entering). Therefore, there exists t∗∗∗W ∈ [t∗∗,∞) such

that W does not enter for all −t ∈ (−∞,−t∗∗∗W ). Hence, part 2(b)i of Proposition 5 holds.

To show that there exists r̄ ≤ 1 such that r ≥ r̄ if and only if there exists t∗∗∗S ∈ [t∗∗,∞) such

that S does not enter for all −t ∈ (−∞,−t∗∗∗S ), we prove the following three claims:

1. [r̄ ≤ 1] For r ≥ 1, there exists t∗∗∗S ∈ [t∗∗,∞) such that S does not enter for all −t ∈

(−∞,−t∗∗∗S ).

2. [cutoff from below] If there does not exist t∗∗∗S ∈ [t∗∗,∞) such that S does not enter for all

−t ∈ (−∞,−t∗∗∗S ) for (λS , λW ), then such t∗∗∗S does not exist for (λ′S , λW ) with λ′S < λS .

3. [cutoff from above] If there exists t∗∗∗S ∈ [t∗∗,∞) such that S does not enter for all −t ∈

(−∞,−t∗∗∗S ) for (λS , λW ), then such t∗∗∗S exists for (λ′S , λW ) with λ′S > λS .

[Proof of “r̄ ≤ 1”] To analyze the conditions under which there exists t∗∗∗S ∈ [t∗∗,∞) such that S

does not enter for all −t ∈ (−∞,−t∗∗∗S ), let us consider a sufficiently large t. Since xt is sufficiently

small compared to zt for sufficiently large t, the first term of (13) is zero. Hence, as long as yt ≤ zt,

we have
dzt
dt

= λS (yt − zt) .

Since
dzt
dt

+ λSzt = λSyt,

we have

eλStzt = C +

∫ t

a
eλSτλsyτdτ, (14)

where a is the supremum of τ with xτ ≥ zτ , and C is determined by the condition xa = za. As we

have shown above, a is finite, and so is C.

To show that we have zt < yt for sufficiently large t for each (λS , λW ) with λS ≥ λW , we

consider the following two cases: r > 1 and r = 1. Suppose first that r > 1. The second term of
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(14) can be explicitly written as follows:

∫ t

a
eλSτλsyτdτ =

∫
eλSτλs

(
β +

(
1− e−λW τ

)
(γ − β)

)
dτ

=
r

1− r
(γ − β) e(λS−λW )t + γeλSt

− r

1− r
(γ − β) e(λS−λW )a − γeλSa.

Hence, the payoff zt is characterized as follows:

zt = Cae
−λSt + γ +

r

1− r
(γ − β) e−λW t, (15)

with

Ca = C − r

1− r
(γ − β) e(λS−λW )a − γeλSa.

On the other hand, the payoff yt is characterized as follows:

yt = β +
(

1− e−λW t
)

(γ − β) .

Therefore, the difference between zt and yt (as long as yt ≤ zt) is:

zt − yt = Cae
−λSt +

1

1− r
(γ − β) e−λW t.

As a result, whether there exists t∗∗∗S ∈ [t∗∗,∞) such that S does not enter for all −t ∈ (−∞,−t∗∗∗S )

or not depends on

lim
t→∞

(
Cae

−λSt +
1

1− r
(γ − β) e−λW t

)
. (16)

If r > 1, for sufficiently large t, the second term of (16) dominates. Since r > 1 for this case,

(16) is negative for sufficiently large t. That is, there exists −t∗∗∗S such that S does not enter for

−t ∈ (−∞,−t∗∗∗S ), as stated in part 2(b)ii of Proposition 5.

We now consider the case with r = 1. In this case, we can write λS = λW = λ. The second

term of (14) can be explicitly written as follows:

∫ t

a
eλSτλsyτdτ = −λ (t− a) (γ − β) + γ

(
eλt − eλa

)
.
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Hence, the payoff zt is characterized as

zt = γ + e−λt
(
C − λ (t− a) (γ − β)− γe−λa

)
.

On the other hand, again, the payoff yt is characterized as

yt = γ + e−λt (β − γ) .

Therefore, the difference between zt and yt (as long as yt ≤ zt) is:

zt − yt = e−λt
(
C − λ (t− a) (γ − β)− γe−λa − (β − γ)

)
.

For sufficiently large t, the term −λ (t− a) (γ − β) dominates the other terms in the parentheses,

and so zt − yt < 0. That is, there exists −t∗∗∗S such that S does not enter for −t ∈ (−∞,−t∗∗∗S ), as

stated in part 2(b)ii of Proposition 5.

[Proof of “cutoff from below”] We show that, if there does not exist t∗∗∗S ∈ [t∗∗,∞) such that

S does not enter for all −t ∈ (−∞,−t∗∗∗S ) for (λS , λW ), then such t∗∗∗S does not exist for (λ′S , λW )

with λ′S < λS .

To show this monotonicity, we first arbitrarily fix λW . Note that xt and yt are independent of

λS . Let zt(λS) be the value of zt, given λS for the fixed λW . For sufficiently small t, zt(λS) < zt(λ
′
S).

Define t∗ ≡ inft {zt(λS) ≥ zt(λ′S)} ∈ R+ ∪ {+∞}.

If t∗ = +∞, then we have zt(λS) ≤ zt(λ
′
S) for all λ′S < λS . Since yt is independent of λS , we

are done. Hence, we concentrate on the case with t∗ <∞.

At −t∗, it must be the case that zt∗(λS) = zt∗(λ
′
S) and żt∗(λS) ≥ żt∗(λ

′
S).42 From zt∗(λS) =

42The first equality follows from the continuity of zt with respect to t. The second inequality follows from the first
equality and the definition of the derivative: for sufficiently small ε > 0,

żt∗(λS) ≈ zt∗(λS)− zt∗−ε(λS)

ε
,

żt∗(λ′S) ≈ zt∗(λ′S)− zt∗−ε(λ′S)

ε

=
zt∗(λS)− zt∗−ε(λ′S)

ε
.

Since zt∗−ε(λ
′
S) > zt∗−ε(λS), it follows that żt∗(λS) ≥ żt∗(λ′S).
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zt∗(λ
′
S), we have

żt∗(λS) = λW max {xt∗(λS)− zt∗(λS), 0}+ λS min {yt∗ − zt∗(λS), 0}

żt∗(λ
′
S) = λW max

{
xt∗(λ

′
S)− zt∗(λ′S), 0

}
+ λ′S min

{
yt∗ − zt∗(λ′S), 0

}
= λW max

{
xt∗(λ

′
S)− zt∗(λS), 0

}
+ λ′S min {yt∗ − zt∗(λS), 0} .

Note that, by definition, we have xt∗(λ
′
S) > xt∗(λS). Given this inequality, the following two cases

are possible:

1. If xt∗(λS) ≥ zt∗(λS), then we have λW max {xt∗(λS)− zt∗(λS), 0} < λW max {xt∗(λ′S)− zt∗(λS), 0}.

In addition, we have λS min {yt∗ − zt∗(λS), 0} ≤ λ′S min {yt∗ − zt∗(λS), 0}. Hence, we have

żt∗(λ
′
S) > żt∗(λS). This is a contradiction.

2. If xt∗(λS) < zt∗(λS), then we consider the following subcases:

(a) If yt∗ > zt∗(λS), then we have

λS min {yt∗ − zt∗(λS), 0} < λ′S min {yt∗ − zt∗(λS), 0} .

Since we have

λW max {xt∗(λS)− zt∗(λS), 0} ≤ λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
,

we have żt∗(λ
′
S) > żt∗(λS). This is a contradiction.

(b) If yt∗ ≤ zt∗(λS), then we have

λW max {xt∗(λS)− zt∗(λS), 0} = 0

and

λS min {yt∗ − zt∗(λS), 0} = 0.

Therefore, żt∗(λS) = 0. For t > t∗, since xt(λS) is decreasing in t and yt is increasing

in t, we have żt(λS) = 0. Hence, S does not enter for −t < −t∗. This contradicts the
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assumption that there does not exist t∗∗∗S ∈ [t∗∗,∞) such that S does not enter for all

−t ∈ (−∞,−t∗∗∗S ) for λS .

[Proof of “cutoff from above”] We prove that if S does not enter for sufficiently large t for a

pair (λS , λW ), then S does not enter for sufficiently large t for all the pairs (λ′S , λW ) with λ′S > λS .

This proof is symmetric to the one for “cutoff from below.” We first arbitrarily fix λW . Again,

xt and yt are independent of λS . Let zt(λS) be the value of zt, given λS for the fixed λW . For

sufficiently small t, zt(λS) > zt(λ
′
S). Define t∗ ≡ inft {zt(λS) ≤ zt(λ′S)} ∈ R+ ∪ {+∞}.

If t∗ = +∞, then we have zt(λS) ≥ zt(λ
′
S) for all λ′S < λS . Since yt is independent of λS , we

are done. Hence, we concentrate on the case with t∗ <∞.

At −t∗, it must be the case that zt∗(λS) = zt∗(λ
′
S) and żt∗(λS) ≤ żt∗(λ

′
S) by an argument

analogous to footnote 42. From zt∗(λS) = zt∗(λ
′
S), we have

żt∗(λS) = λW max {xt∗(λS)− zt∗(λS), 0}+ λS min {yt∗ − zt∗(λS), 0}

żt∗(λ
′
S) = λW max

{
xt∗(λ

′
S)− zt∗(λ′S), 0

}
+ λ′S min

{
yt∗ − zt∗(λ′S), 0

}
= λW max

{
xt∗(λ

′
S)− zt∗(λS), 0

}
+ λ′S min {yt∗ − zt∗(λS), 0} .

Note that, by definition, we have xt∗(λ
′
S) < xt∗(λS). Given this inequality, the following two cases

are possible:

1. If xt∗(λS) > zt∗(λS), then we have λW max {xt∗(λS)− zt∗(λS), 0} > λW max {xt∗(λ′S)− zt∗(λS), 0}.

In addition, we have λS min {yt∗ − zt∗(λS), 0} ≥ λ′S min {yt∗ − zt∗(λS), 0}. Hence, we have

żt∗(λ
′
S) < żt∗(λS). This is a contradiction.

2. If xt∗(λS) ≤ zt∗(λS), then we have

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
≤ λW max {xt∗(λS)− zt∗(λS), 0} = 0

and so

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
= λW max {xt∗(λS)− zt∗(λS), 0} = 0.

We consider the following subcases:
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(a) If yt∗ > zt∗(λS), then we have

λS min {yt∗ − zt∗(λS), 0} > λ′S min {yt∗ − zt∗(λS), 0} .

Hence, we have żt∗(λ
′
S) < żt∗(λS). This is a contradiction.

(b) If yt∗ ≤ zt∗(λS), then we have

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
= 0

and

λ′S min
{
yt∗ − zt∗(λ′S), 0

}
= λ′S min {yt∗ − zt∗(λS), 0} = 0.

Therefore, żt∗(λ
′
S) = 0. For t > t∗, since xt(λ

′
S) is decreasing in t and yt is increasing in

t, we have żt(λ
′
S) = 0. Hence, S does not enter for −t < −t∗ with λ′S , as desired.

In the proof above, all the time-cutoffs described above are finite and independent of T , as

stated in part 3 of Proposition 5.

7.4 Proof of Remark 7

Before proving Proposition 6, we prove Remark 7. It suffices to show that φ < 0 implies tS =∞.

By definition, we can write

fS (t) =

 1
1−r

(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{(γ−β),0}

1−α if r 6= 1,

λW te
−λW t − β+(1−e−λW t) max{(γ−β),0}

1−α if r = 1.

If 1
r −

1−r
r

max{(γ−β),0}
1−α ≤ 0, then

fS (t) =
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

=
1

1− r
e−λSt +

(
max {(γ − β) , 0}

1− α
− 1

1− r

)
e−λW t − β + {max (γ − β) , 0}

1− α

is always decreasing in t. Since fS (0) = − β
1−α , we have fS (t) < 0 for all t. Hence, we have tS =∞,

as desired.
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Hence, for the rest of the proof, we focus on the case in which 1
r −

1−r
r

max{(γ−β),0}
1−α > 0. Then,

the first- and second- order conditions for fS(t) imply that fS(t) is single-peaked at

tpeak =


log

(
1
r
− 1−r

r
max{(γ−β),0}

1−α

)
λW−λS if r 6= 1,

1
λW

(
1− max{(γ−β),0}

1−α

)
if r = 1.

For r 6= 1, since

fS (t) =
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

=

(
1

1− r

(
re−λSt − e−λW t

)
+
e−λW t max {(γ − β) , 0}

1− α

)
− 1

1− r
(r − 1) e−λSt − β + max {(γ − β) , 0}

1− α

= − 1

λW
f ′S (t) + e−λSt − max {β, γ}

1− α
,

substituting f ′S(tpeak) = 0 and tpeak =
log( 1

r
− 1−r

r
γ−β
1−α )

λW−λS into fS(t) yields

fS(tpeak) = e
−λS

log

(
1
r−

1−r
r

max{(γ−β),0}
1−α

)
λW−λS − max {β, γ}

1− α

= e−r
log

(
1
r−

1−r
r

max{(γ−β),0}
1−α

)
1−r − max {β, γ}

1− α

= e
log

(
1
r
− 1−r

r
max{(γ−β),0}

1−α

) r
r−1

− max {β, γ}
1− α

=

(
1

r
− 1− r

r

max {(γ − β) , 0}
1− α

) r
r−1

− max {β, γ}
1− α

= φ.

Therefore, if φ < 0, then there is no solution for fS (t) = 0 and so tS =∞, as desired.

On the other hand, for r = 1, since

fS (t) = λW te
−λW t −

β +
(
1− e−λW t

)
max {(γ − β) , 0}

1− α

= − 1

λW
f ′S (t) + e−λW t − max {β, γ}

1− α
,
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substituting f ′S(tpeak) = 0 and tpeak = 1
λ

(
1− max{(γ−β),0}

1−α

)
into fS(t) yields

fS(tpeak) = e
−λW 1

λW

(
1−max{(γ−β),0}

1−α

)
− max {β, γ}

1− α

= e
max{(γ−β),0}

1−α −1 − max {β, γ}
1− α

= φ.

Therefore, if φ < 0, then there is no solution for fS (t) = 0 and so tS =∞ holds, as desired.

7.5 Proof of Proposition 6

Recall that tS is the smallest positive solution for fS(t) = 0 where

fS(t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{(γ−β),0}

1−α if r 6= 1,

λW te
−λW t − β

1−α if r = 1,
(17)

while tW is the smallest solution for fW (t) = 0 where

fW (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1,

λW te
−λW t − e−λW t if r = 1.

(18)

We prove each part of the proposition in what follows.

7.5.1 Proof of Part 1 of Proposition 6

When we change r, without loss, we keep λW fixed and make λS larger. First, note that, for

sufficiently large r, φ is negative:

lim
r→∞

(
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

}) r
r−1

− max {β, γ}
1− α

= −max

(
γ − β
α− 1

, 0

)
− max {β, γ}

1− α
< 0.

Hence, for sufficiently large r, we have −tW > −tS .
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On the other hand, since

lim
r→0

(
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

)

= lim
r→0

1

1− r

(
e−rλW t − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

= 1− e−λW t −
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

and

lim
r→0

(
1

1− r

(
e−λSt − e−λW t

)
− e−λSt

)
= lim

r→0

(
1

1− r

(
e−rλW t − e−λW t

)
− e−rλW t

)
= −e−tλW

hold for each t, limr→0 tS < ∞ and limr→0 tW = ∞. Hence, for sufficiently small r, we have

−tW < −tS .

Therefore, we are left to show that

∂ (−tW )

∂r
− ∂ (−tS)

∂r
> 0.

To this end, in (17) and (18), when λS goes up with λW fixed, the first terms in fS(t) and fW (t)

move in the same way while the second terms (−β+(1−e−λW t) max{(γ−β),0}
1−α in fS (t) and −e−λSt in

fW (t)) become larger only in fW (t). Hence, we have ∂(−tW )
∂r − ∂(−tS)

∂r > 0, as desired.

7.5.2 Proof of Part 2 of Proposition 6

First, note that, for sufficiently large α, φ is negative for the following reason: If r 6= 1, since

lim
α→1

(
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

})
< 0,

φ < 0 in the limit as α→ 1. If r = 1, since

lim
α→1

(
e−max{ γ−β1−α ,0} − max{β, γ}

1− α

)
< 0,
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φ < 0 in the limit as α→ 1. Hence, for sufficiently large α, we have −tW > −tS .

Therefore, we are left to show that

∂ (−tW )

∂α
− ∂ (−tS)

∂α
> 0.

In (17) and (18), when α goes up, only the second terms −β+(1−e−λW t) max{(γ−β),0}
1−α and β

1−α in

fS(t) become smaller, while fW (t) is unchanged. Hence, we have ∂(−tW )
∂α − ∂(−tS)

∂α > 0, as desired.

To see why −tS becomes smaller (that is, tS becomes larger), we examine fS(t) in (17). Notice

that 1
1−r

(
e−λSt − e−λW t

)
is single-peaked at log λW−log λS

λW−λS . The term λW te
−λW t is single-peaked at

t = 1
λW

. Since
β+(1−e−λW t) max{(γ−β),0}

1−α and β
1−α become larger, the smallest positive number such

that 1
1−r

(
e−λSt − e−λW t

)
= β

1−α increases.

7.5.3 Proof of Part 3 of Proposition 6

First, note that, for sufficiently large β, φ is negative: If r 6= 1, since

lim
β→1

((
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

}) r
r−1

− max {β, γ}
1− α

)

=

(
1

r

) r
r−1

− 1

1− α

≤ max
r

(
1

r

) r
r−1

− 1

1− α

= 1− 1

1− α
< 0,

φ < 0 in the limit as β → 1. If r = 1, since

lim
β→1

(
e−max{ γ−β1−α ,0} − max{β, γ}

1− α

)
= 1− 1

1− α
< 0,

φ < 0 in the limit as β → 1. Hence, for sufficiently large β, we have −tW > −tS .

Therefore, we are left to show that

∂ (−tW )

∂β
− ∂ (−tS)

∂β
< 0.
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In (17) and (18), when β goes up, the second terms −β+(1−e−λW t) max{(γ−β),0}
1−α and − β

1−α in fS(t)

become smaller while fW (t) is unchanged. Hence, by the same proof as in the case where α

increases, −tW − (−tS) increases. Hence, we have ∂(−tW )
∂β − ∂(−tS)

∂β > 0, as desired.

7.5.4 Proof of Part 4 of Proposition 6

It suffices to show that

∂ (−tW )

∂γ
− ∂ (−tS)

∂γ
= 0 if γ ≤ β

∂ (−tW )

∂γ
− ∂ (−tS)

∂γ
> 0 if γ > β.

In (17) and (18), if β ≥ γ, then neither fS(t) nor fW (t) depends on γ. Hence, we have ∂(−tW )
∂γ −

∂(−tS)
∂γ = 0. Hence, let us focus on the case γ > β. If γ goes up in (17) and (18), then the second

term −β+(1−e−λW t) max{(γ−β),0}
1−α in fS(t) becomes smaller while fW (t) is unchanged. Hence, by the

same proof as in part 3 of Proposition 6, −tW − (−tS) increases, which means ∂(−tW )
∂γ − ∂(−tS)

∂γ > 0,

as desired.

7.5.5 Proof of Part 5 of Proposition 6

Fix (r, α, β). If β = 1, then part 3 of Proposition 6 ensures that, for each γ, we have −tS < −tW ,

and so S does not enter at −t < −tW . Hence, let us focus on the case with β < 1. Take γ̄

sufficiently large so that, for each γ > γ̄, we have γ > β and

1− γ < min
{

1− e−λS , e−λW
}
. (19)

For each γ > γ̄, once S enters before W , W will enter afterwards if W has an opportunity.

Hence, S’s payoff of entering at −t is equal to

(
1− e−λW t

)
(1− γ) + e−λW t. (20)

We want to show that S’s payoff of not entering at −t is higher than
(
1− e−λW t

)
(1− γ) + e−λW t.

A possible strategy that S can take if she does not enter at −t is not to enter until −1. With
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this strategy, if W has entered by −t = −1, then S’s payoff is no less than 1−e−λS since S gets one

if S can enter between −t and 0. If W has not entered, then S’s payoff is no less than e−λW since

S can ensure, by not entering until the deadline, that she gets one if W cannot enter. In total, S’s

payoff is no less than

min
{

1− e−λS , e−λW
}
.

By (19), this payoff is higher than (20) for sufficiently large t. Hence, S is better off by not entering

at −t for sufficiently large t, as desired.

7.6 Proof of Proposition 8

We first show the result that will be useful for the following proof. Fix t arbitrarily. Suppose that

the candidates play the one-shot constant-sum game, where S’s payoff is given by

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λτ 1− (1− p) e−λτ w

Let V (w) be the unique minimax value given w. We will show that

∣∣V (w)− V
(
w′
)∣∣ ≤ ∣∣w − w′∣∣ (21)

for each w and w′. Without loss, we can assume w ≥ w′.

We first derive an upper bound for V (w)− V (w′). By Minimax Theorem, we can assume that

W moves first to minimize S’s payoff and then S moves to maximize S’s payoff. Let σW (w) be an

optimal strategy for W given w. When W takes the same strategy σW (w) given w′, then S can

improve her payoff compared to V (w) at most by w − w′. Hence, V (w)− V (w′) ≤ w − w′.

We second derive a lower bound for V (w) − V (w′). By Minimax Theorem, we can assume

that S moves first to maximize S’s payoff and then W moves to minimize S’s payoff. Let σS(w)

be an optimal strategy for S given w. When S takes the same strategy σS(w) given w′, then W

can improve his payoff at most by w − w′. Hence, V (w)− V (w′) ≥ − (w − w′). In total, we have

shown (21).
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We now show that Markov equilibria exist for each T . Consider the following functional equation

f : Given vS : [0, T ]→ [0, 1] such that vS is continuous in t, f(vS)(t) is equal to the unique minimax

value of the following payoff matrix

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λt 1− (1− p) e−λt
∫ t

0 e
−λτλvS(t− τ)dτ + e−λt

If vS is continuous, then each element of the payoff matrix is continuous in t, and f(vS)(t) is

also continuous in t. Hence, f is the mapping from the set of continuous functions such that

vS : [0, T ]→ [0, 1] to itself.

Consider the sup norm:
∥∥vS − v̂S∥∥ ≡ supt∈[0,T ]

∣∣vS(t)− v̂S(t)
∣∣. Given this norm, the mapping

f is contraction. To see why, note that, for each t ∈ [0, T ], we have

∣∣f(vS)(t)− f(v̂S)(t)
∣∣ ≤ ∣∣∣∣∫ t

0
e−λτλ

(
vS(t− τ)− v̂S(t− τ)

)
dτ

∣∣∣∣
≤ sup

t∈[0,1]

∣∣vS(t)− v̂S(t)
∣∣ ∫ t

0
e−λτλdτ

=
(

1− e−λT
)∥∥vS − v̂S∥∥ .

The first inequality follows from (21). Hence, there exists a unique fixed point v̄S for the mapping

f . When we define V S
t = v̄S(t) for each t, such V S

t is the equilibrium value. Moreover, taking the

minimax strategy of the game

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λt 1− (1− p) e−λt
∫ t

0 e
−λτλV S

t−τdτ + e−λt

(22)

in each period t is an equilibrium. Therefore, the existence is proven.

Next, we will prove that the equilibrium value in the subgame perfect equilibrium is unique.
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Let h<−t be the history before time −t:

h<−t =

((
tk, xkS , x

k
W

)K
k=0

)
,

where −T < −t1 < ... < −tk < −t and xki ∈ 2X \ {∅} for all k and i = S,W . The interpretation is

that −tk is the time at which the candidates receive their k’th revision opportunity, and xki is the

policy set that i has chosen at time −tki .

Intuitively, the same proof as in the proof of Proposition 5 establishes the uniqueness, with ht

in (4) replaced with h<−t. In addition, since the opportunity arrives synchronously, we consider the

event such that the candidates receive an opportunity at −t and both of them take {0, 1}, instead

of zi = yes (that is, candidate i receives an opportunity) and i taking N .

The formal proof proceeds as follows. Let W̃S
t (σ, h<−t) be S’s payoff when both candidates

take {0, 1} at −t and take a strategy σ such that σ|h<−t,yes,{0,1},{0,1} is subgame perfect in the game

after (h<−t, yes, {0, 1}, {0, 1}), where σ|h<−t,yes,{0,1},{0,1} denotes a continuation strategy defined

for such a subgame given by restriction of σ on such a subgame. That is, h<−t is the record of

what has been observed before −t, yes means that the candidates receive an opportunity at −t,

and both of them take {0, 1} at −t. Moreover, let W̄S
t be the supremum of S’s continuation payoff:

W̄S
t ≡ supσ,h<−t W̃

S
t (σ, h<−t), where the supremum is taken over all the possible histories and

strategies such that h<−t is the history at −t, the candidates receive an opportunity at −t, and

both of them take {0, 1}, and σ|h<−t,yes,{0,1},{0,1} is subgame perfect after (h<−t, yes, {0, 1}, {0, 1}).

Similarly, let WS
t be the infimum of S’s continuation payoff: WS

t ≡ infσ,h<−t W̃
S
t (σ, h<−t). Let

wSt be the difference between the supremum and infimum: wSt ≡ W̄S
t −WS

t . Note that wS0 = 0

since the game that the candidates play at time 0 has a unique equilibrium payoff because it is a

constant-sum game.

We first show that wSt is continuous in t. To this end, as we do in footnote 38, let WS
t (σ, h<−t)

be S’s payoff when there is no opportunity at −t and the candidate takes a strategy σ such that

σ|h<−t,no is subgame perfect in the game after (h<−t, no) (that is, h<−t is what has been observed

before −t and no means that the candidates do not receive an opportunity at −t). As seen in

footnote 38, WS
t (σ, h<−t) is continuous in t given σ. Hence, W̄S,no

t ≡ supσ,h<−tW
S
t (σ, h<−t) and

WS,no
t ≡ infσ,h<−tW

S
t (σ, h<−t) are continuous, where supremum and infimum are taken over all the

63



possible histories and strategies such that there is no opportunity at −t and σ|h<−t,no is subgame

perfect.

To show wSt is continuous in t, it suffices to show that W̄S
t = W̄S,no

t and WS
t = WS,no

t . Let

us define σ̃ as the strategy such that, after (h<−t, no), the candidates at time −τ follows the

strategy σ|h<−t,yes,{0,1},{0,1}. That is, they take actions as if there were an opportunity at −t and

both of them took {0, 1} at −t. Since the strategic environment is the same between (h<−t, no)

and (h<−t, yes, {0, 1}, {0, 1}), this continuation strategy is subgame perfect after (h<−t, no) if

σ|h<−t,yes,{0,1},{0,1},ht,τ is subgame perfect after (h<−t, yes, {0, 1}, {0, 1}, ht,τ ). Therefore, for each

W̃S
t (σ, h<−t) such that σ|h<−t,yes,{0,1},{0,1} is subgame perfect, there exists σ̃ such that W̃S

t (σ, h<−t) =

WS
t (σ̃, h<−t) and σ̃|h<−t,no is subgame perfect. Therefore, we have W̄S

t = W̄S,no
t and WS

t = WS,no
t .

We will now show that wSt = 0 for each t ≥ 0. To this end, fix −τ ∈ (−t, 0] arbitrarily. Suppose

that the candidates receive an opportunity at −τ for the first time after −t, that is, zτ ′ = no for

each −τ ′ ∈ (−t,−τ) and zτ = yes. Here, zt ∈ {yes, no} represents whether the candidates receive

an opportunity at −t. Let WS
t (σ, ht | τ) be S’s continuation payoff from −τ , conditional on that

zτ ′ = no for each −τ ′ ∈ (−t,−τ) and zτ = yes. This S’s continuation payoff from −τ , denoted by

WS
t (σ, ht | τ), varies at most by wSτ by (21).

On the other hand, let WS
t (σ, ht | no) be candidate S’s continuation payoff at 0 given σ and

ht, conditional on that no opportunity comes after −t (that is, zτ = no for each −τ ∈ (−t, 0]). By

definition, this difference is equal to wS0 = 0.

Since the probability that the candidates receive the first opportunity after −t at −τ ∈ (−t, 0]

is 1− exp(−λt) (that is, zτ ′ = no for each −τ ′ ∈ (−t,−τ) and zτ = yes for some −τ ∈ (−τ, 0]), we

have

wSt ≤ (1− exp(−λt))× max
τ≤t

wSτ︸ ︷︷ ︸
Supremum difference

in WS
τ (σ,h<τ |τ)

+ exp(−λt)× 0

= (1− exp(−λt)) max
τ≤t

wSτ .

The same proof as in (6) with λS + λW replaced with λ establishes the uniqueness. Let V S
t be

the unique value. Given V S
t , the candidates at −t play the constant-sum game with payoff matrix

(22). Hence, as long as the minimax strategy for (22) is unique, the strategies for the candidates
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are unique. Hence, the equilibrium is essentially Markov.

Now we prove parts 1 and 2. Part 1 holds since (i) each candidate takes a completely mixed

strategy at −t = 0 and (ii) the payoff function is continuous in t. Hence, we focus on proving part

2.

In equilibrium, there are following three possibilities:

1. S takes a pure strategy {x} at −t. W then takes {x′} or {0, 1}, with x′ = {0, 1} \ {x}. For x

to be optimal, it must be the case that x = 1. Consider the following two possible subcases:

(a) If W takes a pure strategy {x′}, then S takes {x′}. This is a contradiction.

(b) If W takes {0, 1} with positive probability, then the payoff of S’s taking {0, 1} is 1 − p

if W enters at x′ = 0, and strictly greater than 1 − p if W takes {0, 1}. To see this,

we calculate S’s payoff for taking each action when W takes {0, 1}. Conditional on W

taking {0, 1}, S’s payoffs are given by the following table:

S \W {0, 1}

{0} p

{1} 1− p

{0, 1}
∫ t

0 e
−λτλV S

t−τdτ + e−λt

Since S can always enter at {1} and thereby guarantee payoff 1−p, it follows that V S
t−τ ≥

1 − p for all τ . Therefore,
∫ t

0 e
−λτλV S

t−τdτ + e−λt ≥
(
1− e−λt

)
(1− p) + e−λt > 1 − p.

This means it is a strict best response for S to announce {0, 1}. This is a contradiction.

2. S takes a mixed strategy only over {0} and {1} at −t. It is then a strict best response for W

to take {0, 1} since the probability of S and W entering at the same platform would then be

zero. This means it is a strict best response for S to announce {0, 1} by the same argument

as above. This is a contradiction.

3. S takes {0, 1} with positive probability. In order to show that it is a strict best response for

W to take {0, 1}, we compare W ’s payoff for entering at {x} at −t and that of taking {0, 1}

in the following three possible subcases:
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(a) Conditional on the event that S enters at {x} at −t, W gets zero if W enters at {x}.

Compared to this, announcing {0, 1} is strictly better for W since that gives him at least

1− p.

(b) Conditional on the event that S enters at {x′} at −t, W gets p by entering at {x} if

x = 0, and gets 1− p if x = 1. Announcing {0, 1} also gives W the same payoff.

(c) Conditional on the event that S does not enter, W gets at most pPr (S will not have an opportunity) =

p exp (−λt) by entering at {x}. On the other hand, consider the strategy in which W

announces {0, 1} until −t̄ = − 1
λ . If player S has entered by −t̄, W will get at least 1−p.

Otherwise, when the candidates have an opportunity to enter at −s ≥ −t̄, then the value

for S should be less than the minimax value of the following constant-sum game.

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−1 1− (1− p) e−1 1

This is because this payoff matrix is the same as the original payoff matrix except that

we replace the payoffs when S takes {0, 1} with higher payoffs. The value is bounded

away from 1, which means the payoff for W is bounded away from 0. Let v be this

lower bound. When we take into account the probability of the candidates having an

opportunity between −t̄ and 0, the expected payoff is no less than
(
1− e−1

)
v. For

sufficiently large t, p exp (−λt) < min
{

1− p,
(
1− e−1

)
v
}

, which means taking {0, 1} is

strictly better.

To summarize Case 3, since we assume that S takes {0, 1} with a positive probability, it

follows that {0, 1} is a strict best response for W for sufficiently large t.

Let us consider S’s incentive, given that W takes {0, 1}. Recall that S’s payoffs given that W
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takes {0, 1} for sure are given by the following table:

S \W {0, 1}

{0} p

{1} 1− p

{0, 1}
∫ t

0 e
−λτλV S

t−τdτ + e−λt

For the same reason as in Case 1(b) above, S should take {0, 1} with probability 1.

7.7 An Example of Equilibrium Dynamics with Simultaneous Arrivals

As part 1 of Proposition 8 shows, equilibria in the synchronous announcement model involve mixing

when the election date is close. The mixing probabilities have to change over time, since the

Nash equilibrium of the game matrix in Figure 5 changes as t changes. The transition of mixing

probabilities is complicated. We illustrate its complexity in the numerical results for p = 0.45 and

λ = 1. This example illuminates the subtle incentive problems faced by the two candidates.

The values of S when she takes {0, 1} against various announcements of W are as depicted in

Figure 6 as a function of −t. Note that S’s payoffs at policy profiles ({0, 1}, {0}) and ({0, 1}, {1})

at −t increase as −t decreases since the probability with which S can enter afterwards and copy

W ’s policy increases. On the other hand, S’s payoff at ({0, 1}, {0, 1}) at −t decreases since the

weight for the highest payoff 1 decreases.

Figure 7 depicts S’s and W ’s strategies as functions of −t. When −t is sufficiently close to zero,

each candidate mixes over all the announcements, as we stated in part 1 of Proposition 8. Now we

consider the strategies of the candidates one by one for time −t close to the deadline.

(α) Consider the transition of S’s strategy. Since S’s mixing probability is determined in order

to make W indifferent between his actions, we hypothetically fix S’s mixing probability over

time and examine how W ’s incentive changes over time; we then use this transition of W ’s

incentive to determine how S’s mixing probability should change over time.

To this end, suppose that S enters at x ∈ {0, 1} with the same probability at time 0 and

time −t < 0. Then, it must be the case that W ’s incentive to enter at x is weaker at time −t

than at time 0. To show this, we compare W ’s payoff for taking each action at time 0 with
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Figure 6: S’s value V S
t in the synchronous model when the candidates do not receive an opportunity

at −t given W ’s most recent announcement, given that S has been taking {0, 1}. For example, the
blue line corresponds to S’s value given that W has taken {0} and S has been taking {0, 1}.

his payoff at time −t < 0. At time 0, entering at x gives W a positive payoff if and only if

S either enters at the other point or takes {0, 1}; but taking {0, 1} gives W a positive payoff

if and only if S does not take {0, 1}. On the other hand, at time −t, entering at x gives W

a positive payoff if and only if S either enters at the other point at −t or “takes {0, 1} and

cannot enter until the deadline”; but taking {0, 1} gives W a positive payoff if S does not take

{0, 1}. Furthermore, if both take {0, 1} at −t, then the payoff depends on the continuation

play after −t but is weakly higher than the payoff for both candidates taking {0, 1} at time

0.

To summarize, W ’s payoff for entering at x is smaller at time −t < 0 than at time 0 while

W ’s payoff for taking {0, 1} is no less at time −t < 0 than at time 0, if S entered at x with

the same probability over time. Hence, to incentivize W to enter at x, S should reduce the

probability of her taking x ∈ {0, 1} over time.

(β) Consider the transition of W ’s strategy. In an approach similar to Argument (α) with the
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Figure 7: Strategies in the synchronous model

roles of S and W reversed, suppose that W enters at x ∈ {0, 1} with the same probability

over time [−t, 0]. Given this assumption about W ’s strategy, we will show that S’s incentive

to enter at x is stronger at time 0 than at time −t.

To compare S’s payoff for each action at time 0 with her payoff at time −t, we first show

that S’s payoff for entering at x ∈ {0, 1} is the same between time −t and time 0. At time

0, entering at x gives S a positive payoff if and only if either W takes x or the median voter

is at x. At time −t, entering at x gives S a positive payoff if and only if either W takes x or

the median voter is at x. Since we assume that W enters at x with the same probability at

both times 0 and −t, the two payoffs are the same.

Next, we show that S’s payoff for taking {0, 1} is lower at time 0 than at time −t. Playing

{0, 1} at time 0 gives S the mixed-strategy equilibrium payoff in the one-shot game. If there

is no opportunity after time −t, then since we assume that W enters at x ∈ {0, 1} with the

same probability between time 0 and time −t, S’s expected payoff for taking {0, 1} is the

same as this mixed-strategy equilibrium payoff. If there is an opportunity to enter, S’s payoff

for taking {0, 1} depends on W ’s realized action at time −t. If W takes {0, 1} at time −t,

then S’s payoff again corresponds to the mixed-strategy equilibrium payoff at time 0.43 On

43Here, we assume that this another opportunity to enter is the last opportunity until the deadline because the
probability to have one more opportunity is small for −t close to 0.
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the other hand, if W specifies his policy, then S’s payoff is 1. Since W ’s strategy assigns a

strictly positive probability to specifying his policy, S’s expected payoff for taking {0, 1} is

lower at time 0 than at time −t.

The above comparison implies that S’s payoff for entering at x would be constant but S’s

payoff for taking {0, 1} would increase as −t becomes smaller, if W took each action with the

same probability between time 0 and time −t. Hence, in order to incentivize S to enter at x,

W should increase the probability of his taking x as −t becomes smaller, so that both S and

W enter at x with a higher probability. Therefore, W puts higher probabilities on {0} and

{1} as −t becomes smaller.

Now we consider the candidates’ strategies for times further away from the deadline.

Around −t = −0.7, the constraint that the probability of {0, 1} is nonnegative binds for W .

As −t becomes further away from the deadline than such a cutoff time, W cannot increase the

probability of entering both at {0} and {1}. Then, as seen in the comparison of S’s payoff above

(Argument (β)), entering becomes less attractive for S. Since the median voter is located with a

lower probability at {0}, S stops entering at {0}.

Now let us consider the transition of the mixing probabilities in the time interval (−1,−0.7).

Again, as seen in the comparison of S’s payoff above, W increases the probability of entering at

{1} as −t becomes smaller in order to incentivize S to enter at {1}. On the other hand, as seen in

the comparison of W ’s payoff above (Argument (α)), S reduces the probability of taking {1} as −t

becomes smaller in order to incentivize W to enter at {1}.

Consider the incentive at −t < −1. For each time −t ∈ (−1, 0], W is indifferent between

{0} and {0, 1}. As in the comparison of W ’s payoff above, if S took each action with the same

probability between times −1 and −t < −1, W ’s incentive to enter at x ∈ {0, 1} would decrease

as −t becomes smaller. As −t gets smaller, this incentive gets even weaker since if S has not yet

specified her policy, then S can enter with a higher probability later and W ’s risk of being copied

by S later goes up. In general, entering at {0} is less attractive for W than entering at {1} since the

median voter is less likely to be at policy 0. Hence, there is a time −t̄ such that for each −t < −t̄,

W strictly prefers {0, 1} to {0}.

Again, as seen in Argument (α) (that is, the comparison of W ’s payoff), as −t becomes smaller,

S reduces the probability of taking {1} in order to incentivize W to enter at {1}. Finally, the
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probability of S taking {0, 1} hits 1. If −t gets further away from the deadline, then no player

enters.

To wrap up the discussion, although the exact transition of incentives is complicated, the basic

reason for the ambiguous policy announcements with synchronous arrivals is the same as in the

case with asynchronous arrivals— S wants to wait for W who does not want to be copied, which

makes both candidates announce ambiguous policies when the election date is still far away.
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