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D Partition-Confirmed Equilibrium

RPCE is an analog of RSCE in games with terminal node partitions and reduces to RSCE

if the partitions are discrete. Here we define and analyze an analog of SCE that reduces

to SCE in games with discrete terminal node partitions.

For π ∈ Π, let H(π) denote the information sets reached with positive probability

given π.

Definition D.1. π∗ is a partition-confirmed equilibrium (PCE) if there exist a

belief model V and an actual version profile v∗ such that the following three conditions

hold:

1. π∗ is generated by v∗;

2’. For each i and vi = (πi, pi), there exists µi such that (ii) πi is a best response to µi

at H(πi, π−i) for all π−i in the support of b(µi).

3. For all i, v∗i is self-confirming with respect to π∗;

Remark D.1.

(a) Condition (1) says that the equilibrium strategy profile is generated by the specified

belief model.

(b) Condition (2’) ensures that players optimize against their beliefs at the “on-path”

information sets. This is one of the conditions that we strengthened in our main

solution concept.

(c) Note that the above definition requires neither observational consistency nor coher-

ent beliefs.

(d) If we define CE as an m∗ ∈ M such that (m∗i , gi(m
∗)) is g-rationalized by some

µ ∈ ∆(M−i) for all i, then the relationship between between PCE and conjectural

equilibrium (CE), where for all i, is analogous to that between RPCE and RCE.

(e) As PCE does not suppose knowledge of opponents’ payoff functions, each player’s

PCE strategies are affected by terminal node partitions for reasons that are different

from those for RPCE: First, reasons (i) [opponents’ partitions], (iii) [virtual mixing],

and (iv) [incorrect beliefs] discussed in Section F.2 of this Appendix will have no

bite. Second, we will see in Example 12 that a player can believe that an opponent

uses a dominated strategy because condition (2’) does not require µi be coherent

with pi.

2



The next example shows that adding the coherent belief condition to the PCE concept

may rule out some outcomes even though adding it to SCE has no effect.

Example 12.

x

Figure 12

In Figure 12, the terminal node partition is that both players observe the exact ter-

minal node reached except that player 1’s partition does not reveal player 2’s play if she

plays Out.

First we argue that (Out, L) is a sensible outcome in this game if players do not know

their opponents’ payoff functions. To see this, note that L is a best response against Out,

which player 2 indeed observes. Out is not a best response against L, but player 1 does

not observe player 2’s play when she plays Out, so she may well believe that player 2

is playing R. In this case the expected payoff from playing In is −1, so playing Out is

indeed a best response against such a belief.

Indeed, the following belief model and actual versions support this outcome as a PCE:

V1 = {v′1}, v′1 = (Out, v′2);

V2 = {v′2}, v′2 = (L, v′1);

The actual version profile is (v′1, v
′
2).

However, if we add the coherent belief condition by replacing condition (2’) with

condition (2) (i.e., requiring that the µi to which πi is a best response is coherent with

pi), this outcome is no longer supported in PCE. To see this, notice that the best response

condition ensures that all versions of player 2 play L, as it is the dominant strategy. If

we impose coherent beliefs, player 1’s belief has to be a convex combination of player
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2’s strategies specified in player 2’s possible versions. Hence player 1 must believe that

player 2 will play L with probability 1. But then the best response against this belief is

In, invalidating the candidate outcome (Out, L).

This is in contrast with DFL’s Theorem 2.1, which shows that adding the belief-

closed condition (which fills the role of our coherent belief condition) to the SCE concept

does not restrict the set of possible outcomes. In their context players know opponents’

play on the equilibrium path. Thus if a player’s belief about an opponent’s play at an

information set h corresponds to a dominated strategy, then h must lie off the path of

play. This conclusion fails if players do not observe all on-path play, which is why adding

the coherent belief condition matters for PCE but not SCE.1

We note that, if the terminal node partitions were discrete, player 1 could not play In

in any PCE. So terminal node partitions allow extra actions not only under RPCE but

also under PCE.

Condition (3) is the “self-confirming” part of the equilibrium concept. Notice that

this condition is imposed only for actual versions. However, imposing the self-confirming

condition for all versions does not restrict the set of equilibria.

Theorem D.1. The set of PCE does not change if we replace condition (3) with the

following:

For all i and vi, vi is self-confirming with respect to π∗.

Proof. Fix a PCE π∗, generated by the actual version profile v∗ and a belief model V .

Construct the pair of actual version profile v∗ and V̂ in the same way as in the proof of

Part 1 of Theorem 3, where we replace d with Di in condition (3’). By definition, the new

actual version v∗ generates π∗. For each i and vi = (πi, pi) that still exists in V̂i, we did

not change πi, so the best response condition holds under the belief µi, under which the

best response condition holds in the original belief model.

Finally, all remaining versions satisfy the self-confirming condition by the construction

of V̂i and the (extended notion of) perfect recall.

The intuition for this result is simple: Since PCE does not require coherent beliefs,

eliminating the hypothetical versions (who may not satisfy the self-confirming condition)

does not invalidate the belief model. As stated in the main text, the distinction between

conditions (3) and (3’) described in Example 11 relies on the fact that RSCE requires

common knowledge of rationality (at reachable nodes). Theorem D.1 implies that this

type of examples indeed does not exist if we consider (non-rationalizable) SCE.

1Note that the belief model we presented satisfies observational consistency.
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E An Epistemic Interpretation of Observational Con-

sistency

In this section we use an epistemic model to make our interpretation of observational

consistency precise.

Dekel and Siniscalchi (2012) model interactive knowledge with an epistemic type struc-

ture. This is a tuple T = (I, (X−i, Ti, βi)i∈I) where X−i is the space over which i has

uncertainty and Ti is the set of i’s types. Each βi : Ti → ∆(X−i × T−i) specifies i’s

beliefs. For our purpose, it is natural to define Xi = Πi × Pi where Pi is the set of i’s

possible terminal node partitions, and let X−i = Π−i × P−i. Type ti is said to believe

E−i ⊆ X−i × T−i if βi(ti)(E−i) = 1.

Whether a player’s belief is self-confirming depends on the actual play of the others,

so to define the event “player i believes that her opponents are self-confirming” we will

define a belief operator on events in Ω := X × T .2 Let Ωi = Xi × Ti, so Ω = ×i∈IΩi.

Typical elements in Ωi and Ω are denoted ωi and ω, respectively. To do so, for E ⊆ Ω let

Y−i(E;ωi) = {ω−i|(ωi, ω−i) ⊆ E} be the projection of ({ωi} × Ω−i) ∩E on Ω−i. Then we

define Bi(E) = {ωi ∈ Ωi|ti(ωi) believes Y−i(E;ωi)} where ti(ωi) is ωi’s type.

For any E ⊆ Ω, let B(E) = ×i∈IBi(E): this is the set of states where all players

believe E. Notice that it may be the case that B(E) 6⊆ E. This is essential, as we wish

to allow players to have incorrect beliefs about each other’s strategies.

Let Bn(E) = B(Bn−1(E)) with B0(E) = E, and let CB(E) = ∩∞n=1B
n(E): this is the

set of states where E is “common belief.” We let CK(E) = E ∩CB(E): this is the set of

states where E is true and is a common belief; that is, it is “common knowledge.”3 Define

also Ki(E) = (Bi(E)× Ω−i) ∩ E ⊆ Ω.

Consider any finite product set Ω̄ = ×j∈IΩ̄j ⊆ Ω such that Ω̄ is common knowledge

at each ω ∈ Ω̄, that is, CK(Ω̄) = Ω̄. Each ω ∈ Ω̄ is called a state.

For the following discussion it is convenient to introduce the notion of information sets

hi(ωi), the set of states that i thinks possible. That is,

hi(ωi) = {(ωi, ω
′
−i)|βi(ti(ωi)) assigns positive probability to ω′−i}.

Note that given the restriction to the finite set Ω̄, for any given E ⊆ Ω̄, we have that

Bi(E) = {ωi ∈ Ωi|hi(ωi) ⊆ E}.
Let a generic element of Ωi = Xi × Ti be ωi = ((πi(ωi), Pi(ωi)), ti(ωi)), where πi(ωi) ∈

2Here we extend the framework of Dekel and Siniscalchi (2012), in which i’s belief operator Bi depends
only on Ω−i.

3Notice that since we do not require B(E) ⊆ E, CK(E) may be different from CB(E).
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Πi and Pi(ωi) ∈ Pi are i’s strategy and partition at ωi, respectively.4 Denote by π(ω) =

(πi(ωi))i∈I the strategy profile for all players at ω, and P−i(ω−i) and P (ω) are partition

profiles for i’s opponents and for all players respectively.

Given Ω̄, construct a belief model V Ω̄ = (V Ω̄
i )i∈I such that #Ω̄i = #V Ω̄

i for each i

and for each ωi in Ω̄i there is a vi(ωi) = (πi(ωi), pi(ωi)), where pi(ωi) is a probability

distribution over V Ω̄
−i corresponding to βi(ti(ωi)). From here on, we only consider states

in Ω̄, and we simply write V for V Ω̄.

We define the following sets:

ESC
i = {ω|(πi(ωi), pi(ωi)) is self-confirming with respect to π(ω)

under partition Pi(ωi) under belief model V }.

ESC
−i =

⋂
j 6=i

ESC
j and ESC =

⋂
j∈I

ESC
j .

EOC
i = {ω|(πi(ωi), pi(ωi)) is observationally consistent

under partition P−i(ω−i) under belief model V }.

Ei(Pi) = {ωi|P (ωi) = Pi}, E−i(P−i) = ×j 6=iEj(Pj) where P−i = ×j 6=iPj.

The next theorem states that the set of states where player i has correct beliefs about

the partitions and believes that other players satisfy the self-confirming condition is the

same as the set of states where player i has correct beliefs about the partitions and are

observationally consistent.

Theorem E.1. For each i ∈ I, ⋃
P−i∈P−i

Ki

(
Ω̄i × E−i(P−i)

)∩(Bi(E
SC
−i )× Ω̄−i

)
=

 ⋃
P−i∈P−i

Ki

(
Ω̄i × E−i(P−i)

)∩EOC
i .

Proof. Fix ω ∈
⋃

P−i∈P−i
Ki

(
Ω̄i × E−i(P−i)

)
. We will show that ω ∈ Bi(E

SC
−i ) × Ω̄−i if

and only if ω ∈ EOC
i .

First, ω ∈ Bi(E
SC
−i )×Ω̄−i is equivalent to the condition that for every ω′−i that βi(ti(ωi))

assigns positive probability for any j 6= i, a version (πj(ω
′
j), pj(ω

′
j)) is self-confirming with

respect to π(ωi, ω
′
−i) under partition Pj(ω

′
j) under belief model V . Second, ω ∈ EOC

i

is equivalent to the condition that, if βi(ti(ωi)) assigns positive probability to ω′−i, then

for any j 6= i, version (πj(ω
′
j), pj(ω

′
j)) is self-confirming with respect to π(ωi, ω

′
−i) under

4Recall that ti(ωi) is ωi’s type.
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partition Pj(ωj) under belief model V .

The two conditions are different only in the partition that they consider, so the result

holds if we prove Pj(ωj) = Pj(ω
′
j), and this follows from Ki(E) ⊆ E so that for any P−i,

i’s belief about the other players’ partitions is correct on Ki(Ω̄i × E−i(P−i)).

We note that if we did not suppose that player i has a correct belief about the oppo-

nent’s partitions, then ω ∈ Bi(E
SC
−i )× Ω̄−i and ω ∈ EOC

i would not be equivalent. To see

this, consider the following example.

Example 13 (Incorrect Belief about the Opponent’s Partition).

Figure 13

Consider the two-player game in Figure 13. Here, only player 1 has a move, and

chooses between L and R. Formally, we let player 2 play the action a in his singleton

action set, and let player 1’s partition be P′1. There are two possible terminal node

partitions for player 2 over the two terminal nodes: P′2 and P′′2. Suppose the state space

is5

Ω̄1 = {ω′1, ω′′1} with ω′1 = ((L,P′1), ω′2), ω′′1 = ((R,P′1), ω′2);

Ω̄2 = {ω′2, ω′′2} with ω′2 = ((a,P′2), ω′′1), ω′′2 = ((a,P′′2), ω′′1).

Note that at states (ω′1, ω
′′
2) and (ω′′1 , ω

′′
2), player 1 has an incorrect belief about player

2’s partition if P′2 6= P′2.

First suppose that P′2 is the discrete partition and P′′2 is the the trivial partition.

Consider ESC
2 . Since player 2 has the trivial partition at ω′′2 , any belief is self-confirming,

5We abuse notation and denote a point belief in a particular state of the opponent by that state, e.g.
ω′1 = ((L,P ′1), ω′2) means ω′1 = ((L,P ′1), δω′

2
) where δx is the Dirac measure concentrated on x.
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so all states involving ω′′2 are in ESC
2 . At ω′2 player 2 has the discrete partition and believes

ω′′1 is present. Thus ESC
2 = {(ω′1, ω′′2), (ω′′1 , ω

′
2), (ω′′1 , ω

′′
2)}. Next consider B1(ESC

2 ). To see

what is in this set, we consider h1(ω1) for each ω1 ∈ Ω̄1. First, h1(ω′1) = {(ω′1, ω′2)} 6⊆ ESC
2

because at ω′1 player 1 thinks (only) ω′2 is present. Second, h1(ω′′1) = {(ω′′1 , ω′2)} ⊆ ESC
2

because ω′′1 thinks (only) ω′2 is present. So B1(ESC
2 ) = {ω′′1}, hence B1(ESC

2 ) × Ω̄2 =

{(ω′′1 , ω′2), (ω′′1 , ω
′′
2)}. Finally, consider EOC

1 . Again, since ω′′2 has the trivial partition, all

the states involving ω′′2 are in EOC
1 . Since ω′2 thinks (only) ω′′1 is present, (ω′′1 , ω

′
2) is in EOC

1

but (ω′1, ω
′
2) is not, so EOC

1 = {(ω′1, ω′′2), (ω′′1 , ω
′
2), (ω′′1 , ω

′′
2)}, and hence B1(ESC

2 ) × Ω̄2 )
EOC

1 .

Next suppose that P′2 is the trivial partition and P′′2 is the the discrete partition. Pro-

ceeding as above, we can compute that ESC
2 = {(ω′1, ω′2), (ω′′1 , ω

′
2), (ω′′1 , ω

′′
2)}, B1(ESC

2 ) =

{ω′1, ω′′1}, and EOC
1 = {(ω′1, ω′2), (ω′′1 , ω

′
2), (ω′′1 , ω

′′
2)}. Hence, B1(ESC

2 )× Ω̄2 ( EOC
1 .

The definition of observational consistency does not refer to the partitions of i’s op-

ponents who i thinks are possible. On the other hand, ωi can be either in Bi(E
SC
−i ) or

not depending on such partitions. The theorem and counterexample show that the in-

terpretation of observational consistency as meaning that i believes the opponents are

self-confirming implicitly assumes that i has the correct belief about the opponents’ par-

titions.

Now we consider higher order belief. The next theorem states that RPCE implies

common belief of the partition structure and the self-confirming condition.

Theorem E.2. If π∗ is a RPCE of an extensive-form game with partition P ∗, then there

exists a state space Ω̄ and a state ω ∈ CK(ESC)∩CK(E(P∗)) ⊆ Ω̄ such that π(ω) = π∗.

Proof. Fix an extensive-form game with terminal node partition P∗ and consider a belief

model Ṽ and actual versions profile v∗ that supports π∗ as a RPCE. For each player i, let

V̂i be the set of hypothetical versions in Ṽ such that, for each vi ∈ V̂i, there is no version

vj whose conjecture assigns positive probability to vi. Then it must be the case that the

belief model V̄ = (Ṽi \ V̂i)i∈I also supports π∗ a a RPCE under P∗.

Construct Ω̄ such that V Ω̄ = V̄ , with a restriction that Pi(ωi) = P∗i for all ωi ∈ Ω̄i for

all player i.6 Denote by ωvi
i the state for player i that corresponds to vi ∈ V̄i.

First, since by construction P (ω) = P∗ for all ω ∈ Ω, it is immediate that CK(E(P∗)) =

Ω̄.

Second, we prove that (ω
v∗i
i )i∈I ∈ CK(ESC). To see this, note that P (ω) = P∗ for all

ω ∈ Ω̄ implies that
⋃

P−i∈P−i
Ki(Ω̄i×E−i(P−i)) = Ω̄. Also, as in RPCE all versions satisfy

6It is straightforward that such Ω̄ exists and is unique.
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the observational consistency condition under P∗, EOC
i = Ω̄i for each i. By Theorem E.1,

these facts imply that
(
Bi(E

SC
−i )× Ω̄−i

)
= Ω̄ for all i, that is, Bi(E

SC
−i ) = Ω̄i.

Now, let us show that Bi(E
SC
i ) = Ω̄i. For this to be the case, we must have that

for each ωi ∈ Ω̄i, if ωi assigns positive probability to some ω′−i, then Di(πi(ωi), π−i) =

Di(πi(ωi), π−i(ω
′
−i)) for all π−i such that π−i = π−i(ω−i) for some ω−i in the support of

pi(ωi). This is immediate if pi(ωi)’s support is a singleton, namely, {ω′−i}. If the support

is not a singleton, then it suffices if Di(πi(ωi), π−i) is constant across all π−i such that

π−i = π−i(ω−i) for some ω−i in the support of pi(ωi). But this holds because by the

construction of V̄ , for vi ∈ V̄i such that ωi = ωvi
i , either vi ∈ ESC

i or there is some vj ∈ V̄j
whose conjecture assigns positive probability to vi. Hence the claim holds regardless of

whether the support of pi(ωi) is a singleton or not.

Since Bi(E
SC
−i ) = Bi(E

SC
i ) = Ω̄i for each i, it follows that Bi(E

SC) = Ω̄i for each i.

Hence, CB(ESC) =
⋂∞

n=1B
n(ESC) = Ω̄. Thus it remains to show that ω ∈ ESC for some

ω. But because the actual version v∗i for each i satisfies the self-confirming condition,

(ω
v∗j
j )j∈I ∈ ESC

i for each i. Therefore, we have (ω
v∗i
i )i∈I ∈ ESC .

As we have already concluded that CK(E(P∗)) = Ω̄, we have that (ω
v∗i
i )i∈I ∈ CK(ESC)∩

CK(E(P∗)), completing the proof.

To sum up this subsection, Theorem E.1 shows that the observational consistency

condition corresponds to players having correct beliefs about the terminal-node partitions

and believing that the other players’ beliefs are self-confirming, and Theorem E.2 shows

that RPCE implies that there is common knowledge of the partition structure and the

terminal node partitions. Thus the RPCE definition captures the idea that a player

can make predictions about other players’ actions based on her knowledge of things she

does not directly observe but can infer from her observations and her beliefs about other

players’ payoffs and observation structures.

F The Effect of Changes in Terminal Node Partitions

In this section we discuss the effect of changing the terminal node partitions. In Subsection

F.1, we briefly discuss how the RPCE strategy profiles depend on the terminal node

partitions. In Subsection F.2 we identify four ways that the set of an individual player’s

RPCE strategies is affected by terminal node partitions.7

7One motivation is that the analyst may only know the terminal node partitions of some of the players
and/or may only observe some players’ moves.
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F.1 The Effect of Terminal Node Partitions on RPCE Strategy

Profiles

Consider how the set of RPCE strategy profiles (not an individual player’s strategies)

changes with the terminal node partitions. If the terminal node partitions P are coarser

than P′ then any strategy profile that is a RPCE under P′ is also a RPCE under P: if a

belief model supports a strategy profile under P′ then it can also be used to support the

same strategy profile under P.8

On the other hand, versions in the belief model that support a strategy profile under

P may not support it under a finer partition P′. Perhaps the most obvious reason is that

a player may not want to play a particular action once she learns the unobserved play by

the opponents. For example, the strategy profile discussed in Example 7 ((Out, L2, L3))

would not be a RPCE if player 1’s terminal node partition were discrete: If she observes

that the equilibrium that the opponents are coordinating on is different from the one that

she was expecting, she wants to play In.

These examples show that not only the set of RPCE strategies but also the RPCE out-

comes of these games (the distributions over terminal nodes) can depend on the terminal

node partitions.

F.2 The Effect of Terminal Node Partitions on an Individual

Player’s RPCE Strategies

Now we ask how the set of an individual player’s RPCE strategies depends on the terminal

node partitions. As we explained above, coarsening the partitions cannot rule out a RPCE

strategy profile. Obviously, this also means that if a strategy of player i is used in a

RPCE under a particular partition P′ then it can also be used in a RPCE under a coarser

partition P.

Example 5 illustrates one way by which terminal node partitions affect player i’s RPCE

strategies. In that example, when i’s opponents’ terminal node partitions are different in

two games, she expects them to play differently and so change her own play.

Another effect of the changes of terminal node partitions is illustrated in Example 8:

Since i plays an action because of a correlated belief about the opponents’ unobserved

on-path play, she cannot play that action when her terminal node partition is discrete,

because the discrete partition reveals the actual on-path play, and actual play is not

correlated.

8This result is stated also in Battigalli et al. (2012)
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Next we present two more examples to show other ways in which the terminal node

partitions affect RPCE strategies. Specifically, terminal node partitions affect RPCE

strategies when player i’s belief is only coherent with a conjecture that assigns strictly

positive probabilities to multiple versions of the opponents (Example 14), and when some

player j believes player i has an incorrect belief (Example 15 and Example 6).

Example 14.

Figure 14

The game in Figure 14 has only two players so beliefs are trivially independent. The

terminal node partitions are that both players observe the exact terminal node reached ex-

cept that player 1’s partition does not reveal player 2’s action if she plays Out1, and player

2’s partition {(A1, In2), (Out1, In2)}, {(B1, In2)}, {(A1, Out2), (B1, Out2), (Out1, Out2)}.
We will show that player 1 can play Out1 under the original terminal node partition but

not under a discrete terminal node partition.

First we show that player 1 can play Out1. To see this, consider the following belief

model and actual versions:

V1 = {v′1, v′′1 , v′′′1 }, v′1 = (Out1, (
1

2
v′2,

1

2
v′′2)), v′′1 = (B1, v

′′
2); v′′′1 = (A1, v

′
2);

V2 = {v′2, v′′2}, v′2 = (In2, v
′′′
1 ), v′′2 = (Out2, v

′′
1);

The actual version profile is (v′1, v
′
2).
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Notice that although player 1’s action is rationalized by a belief that corresponds to

2’s mixed strategies, she is sure that 2 is playing a pure strategy: Both versions v′2 and

v′′2 play pure strategies. If 1’s conjecture assigns probability 1 to either of these versions,

1 cannot play Out1: If 1 expects In2 with probability 1 then she wants to play A1; if she

expects Out2 with probability 1 then she wants play B1. Thus, the action Out1 is possible

only when 1’s belief corresponds to 2’s mixed strategy.

Player 1 can be unsure which of v′2 and v′′2 is present, because she plays Out1 and does

not observe the exact terminal node reached.

Now we argue that if 1’s terminal node partition is discrete, she can never play a

strategy that assigns probability 1 to Out1. To see this, we first note that no version

of player 2 can play a mixed strategy if 1 plays Out1. This is because if player 1 plays

Out1 with probability 1 and player 2 assigns a positive probability to In2, then 2 expects

payoff 1 from playing In2 and 0 from playing Out2. This means he is not indifferent, so

he cannot mix.

Thus, whenever player 1 plays Out1 with probability 1, player 2 should not play a

mixed strategy. But this implies that 1 is observing either (a) 2 is playing In2 with

probability 1 or (b) 2 is playing Out2 with probability 1. However, as we have explained

above, player 1 would be strictly better off by playing A1 than Out1 in case (a), and B1

than Out1 in case (b). Hence, she cannot play a strategy that assigns probability 1 to

Out1 if her terminal node partition is discrete, although this action could be played if the

partition were not discrete.

The key here is that player 1’s belief is coherent with the conjecture that assigns strictly

positive probabilities to multiple versions of player 2, but the corresponding “mixed strat-

egy” by player 2 cannot be played in RPCE.

A Remark on Example 14.
Fudenberg and Levine (1993a) and Kamada (2010) identify the conditions that guar-

antee that the outcome of a SCE is identical to a Nash outcome. To prove this theorem,

they explicitly construct a Nash equilibrium from a SCE that satisfies these conditions:

For an off-path information set hj that player i can deviate to reach, they set player j to

play as in i’s belief, while strategies at other information sets are unchanged. Their condi-

tions ensure that this modification is well-defined. In particular, the independent beliefs

condition guarantees that the modification can be done information set by information

set.

Given this, it might seem natural to conjecture that if π∗ is a RPCE with independent

beliefs under partitions (Pi,P−i) then under (P̄i,P−i) with P̄i being the discrete partition,

we can let i’s opponents play “as in i’s belief” (while we do not change i’s strategy) and

12



the modified strategy profile constitutes a RPCE under (P̄i,P−i), because of common

knowledge of rationality. Example 14 above shows why this argument fails: The problem

is that we cannot replace i’s opponents’ strategies “as in i’s belief” even if we impose

independent beliefs. This is what happens in Example 14. In Example 14, two versions

of player 2 that player 1 assigns positive probabilities play different strategies which are

rationalized by different beliefs, and it is not necessarily the case that we can rationalize

a convex combination of these pure strategies by some single belief. The intuition is

similar to the idea behind the need for unitary beliefs to establish the outcome equivalence

between SCE and Nash: If heterogeneous beliefs are allowed, a single belief may not

rationalize all of the pure strategies in the support of a player’s mixed strategy, so the

mixed action may not be played in a Nash equilibrium.

The next example illustrates the following situation: if i’s terminal node partition is

coarse, some player j may believe that i has an incorrect belief, while if i’s terminal node

partition is discrete, j knows that i sees the true distribution on terminal nodes.

Example 15.

Figure 15

In the game in Figure 15, player 2 is indifferent between In2 and Out2 when 1 plays

Out1. As usual, the terminal node partition is such that player i’s partition reveals the

opponent’s action when she plays In i, while it does not when she plays Outi.

We first show that player 1 can play In1 given these terminal node partitions. To see

13



this, consider the following belief model and actual versions:

V1 = {v′1, v′′1}, v′1 = (In1, v
′
2), v′′1 = (Out1, v

′′
2);

V2 = {v′2, v′′2}, v′2 = (Out2, v
′′
1), v′′2 = (In2, v

′′
1);

The actual version profile is (v′1, v
′
2).

Notice that player 2 plays Out2 because he believes player 1 is playing Out1. Such

a belief is justified because given Out1, 1 does not observe 2’s play, so 1 can incorrectly

believe that 2 is playing In2. However, such an “incorrect belief” is not possible if player

1’s terminal node partition is discrete, so player 2 cannot believe that 1 plays Out1 when

he plays Out2. This in turn rules out the possibility of the strategy that assigns probability

1 to In1.

To see this formally, suppose that player 1’s terminal node partition is discrete and

she plays In1 with probability 1. Then, for the best response condition for player 2 to

be satisfied, player 2 must be playing In2 with probability 1, or Out2 with probability

1. However for the best response condition for player 1 to hold, it must be the case that

Out2 is played with probability 1. For Out2 to be a best response for player 2, his belief

must assign probability 1 to Out1. But then the observational consistency condition and

the assumption that player 1’s terminal node partition is discrete imply that there exists

a version of player 1 who plays Out1 with a belief that assigns probability 1 to Out2.

However such a version violates the best response condition, as In1 gives a strictly higher

payoff than Out1 against Out2.9

We note that player 1 cannot play In1 if player 2’s terminal node partition becomes

discrete. This is easy to check: If it were discrete, player 2 must play In2 with probability

1 if player 1 plays In1. However, then, player 1 would be better off by playing Out1 than

In1.

Remark F.1. Example 15 also shows that RPCE can Pareto-dominate all Nash equilib-

ria, even in 2-player games. The RPCE discussed in the example has the payoff (1, 0),

while the unique Nash equilibrium, (Out1, In2) has the payoff (0, 0).

Note that, in Examples 14 and 15, it is important that an opponent’s observation

about other players’ strategies depends on that opponent’s action. In these examples, this

9Note that the example hinges on the assumption that player 2 is indifferent between In2 and Out2
when 1 plays Out1, as otherwise either (In2, Out1) or (Out2, Out1) will not satisfy the best response
condition. However the logic behind reason (iv) [incorrect beliefs] is independent of ties. An example
that shows this independence is available upon request.
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dependence is captured by the terminal node partitions. To formalize this dependence,

we introduce a notion of “non-manipulability”:

Let ζ : S → Z be the map that assigns to each pure strategy profile the terminal node

induced by that profile.

Definition F.1. A game with player i’s terminal node partition Pi is non-manipulable

for i if, ζ(si, s−i) and ζ(si, s
′
−i) are in the same cell of Pi if and only if ζ(s′i, s−i) and

ζ(s′i, s
′
−i) are in the same cell of Pi.

10

That is, the game is non-manipulable for i if i’s action does not affect what she ob-

serves. The condition is satisfied, for example, in simultaneous-move games with discrete

partitions, but it is more general. For example, game A is non-manipulable for players 2

and 3.

Imposing non-manipulability for players other than i rules out some but not all exam-

ples such as Example 15 in which j believes i has an incorrect belief, as shown in Example

6 of the main text. In that example, it is important that, with nondiscrete partitions,

some player believes another player has an incorrect belief. The difference from the logic

in Examples 14 and 15 is that in these examples with a nondiscrete partition i’s opponent

j believes that i is not best responding to j’s play, yet if j knows i’s partition reveals

j’s play then j should expect i is best responding to j, so j should play differently. In

Example 6, on the other hand, when the partition is discrete, j learns a third player k’s

strategy from the fact that i is observing k’s play and best responding to it, and this

information changes how j should act. This learning from player i’s play was not an issue

in Examples 14 and 15.

To sum up, the set of strategies a player can use in equilibrium is typically sensitive

to the details of her terminal node partition.

10Battigalli et al. (1992) defined this property to hold for all players. See footnote 15 for the difference
that this makes.
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