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Abstract

Rationalizable partition-confirmed equilibrium (RPCE) describes the steady state

outcomes of rational learning in extensive-form games, when rationality is common

knowledge and players observe a partition of the terminal nodes. RPCE allows

players to make inferences about unobserved play by others; We discuss the impli-

cations of this using numerous examples, and discuss the relationship of RPCE to

other solution concepts in the literature.
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1 Introduction

Most applications of game theory suppose that the observed outcomes will correspond to

equilibria, so it is important to consider which sorts of equilibrium concepts are applicable

to various situations. The most compelling general explanation for equilibrium is that it

arises as the long-run outcome of some sort of non-equilibrium process of learning and

adjustment. If the game in question is simply one round of simultaneous moves, and

participants observe the outcome each time the game is played, then if play converges we

expect the long-run outcomes to correspond to Nash equilibria.1 However, when the game

has a non-trivial extensive form, observed play need not reveal the actions that would be

taken at information sets that have never been reached, so even if play converges incorrect

beliefs may persist, and play may not converge to a Nash equilibrium.2

Self-confirming equilibrium (SCE) formalizes the idea that incorrect off-path beliefs

can persist for settings where players observe the terminal node of the game each time it

is played, and the only restrictions placed on the players’ beliefs is that they be consistent

with the equilibrium distribution on terminal nodes. However, because SCE places no a

priori restrictions on the players’ beliefs, it does not capture the idea that players use

prior information about opponents’ payoff functions to predict the opponents’ play. To

capture such predictions, Dekel, Fudenberg, and Levine (1999) (hereafter “DFL”) define

“rationalizable self-confirming equilibrium,”or “RSCE,” which requires that players make

certain inferences based on their knowledge of the other players’ payoff functions and

observation structure. For example, RSCE requires that player 1’s conjecture about how

player 2 thinks player 3 is playing be consistent with player 1’s information about what

player 2 observes.

Both SCE and RSCE apply to situations where all participants see the realized ter-

minal node at the end of each play of the game. In some cases, though, players do not

observe the exact terminal node that is reached. For example, in a sealed-bid uniform-

price k-unit auction for a good of known value, the terminal node is the entire vector of

submitted bids, but agents might only observe the winning price and the identity of the

1For example this is true for processes that are “asymptotically myopic” and “asymptotically empiri-
cal” in the sense of Fudenberg and Kreps (1993).

2We do not explicitly study dynamics here, but one motivation for the solution concepts we propose
here is the idea that a large population of agents play the game repeatedly, with anonymous random
matching, and no strategic links between repetitions. See Fudenberg and Levine (1993b) and Fudenberg
and Takahashi (2011) for examples of the sorts of learning models we have in mind, and Fudenberg and
Levine (2009) for a survey of related work. As this literature shows, incorrect beliefs are more of an issue
when players are relatively impatient and so have less incentive to “experiment” with off-path actions;
very patient players will experiment enough to rule out non-Nash outcomes (although not necessarily
enough to justify backwards induction, see Fudenberg and Levine (2006).)
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winning bidders. Alternatively, this information might only be made available to those

who submitted nonzero bids, with the others only told that their bid was not high enough.

Terminal node partitions are also natural when there are many agents in each player role:

If we model each agent as a distinct player then a given agent in the role of player i need

not observe the play of other agents in that role.

The rationalizable partition-confirmed equilibrium (RPCE) defined in this paper gen-

eralizes RSCE by supposing that each player has a partition over terminal nodes, and that

players’ beliefs are consistent with the observed distribution over the the partition but

not necessarily consistent with the true distribution on terminal nodes. We should stress

that both of these implicitly suppose that equilibrium play corresponds to an objective

distribution; the main difference is that in RSCE all players observe the distribution over

terminal nodes, while RPCE allows each player to have a different partition of the termi-

nal nodes and supposes that each player sees the objective distribution over the cells of

their own partition. In this case there is no longer a publicly observed outcome path, so

the implications of common knowledge of the observation structure are less immediate.

Roughly speaking, RPCE describes situations where players know that the outcome of

play has converged, even when they do not observe all aspects of this outcome themselves.

RPCE is of interest in its own right; it also serves to provide additional support for the

use of Nash and subgame perfect equilibrium in games where it coincides with one or the

other. In particular, we will see that players can do a fair bit of reasoning about play they

do not observe, even when we do not assume that players know one another’s strategies.

Before proceeding to the formal part of the paper, we provide an informal illustration

of RPCE in the two extensive-form games in Figure 1 (Example 1). In game A, player 1

moves first, choosing between In and Out. If he chooses In, players 2 and 3 play matching

pennies with player i choosing between Hi and Ti. Player 1’s payoffs are the amount that

player 2 gets plus an “extra” of 0.1, if player 1 plays In. When player 1 plays Out, all

players obtain the payoff of 0. At the end of each play of the game, players observe the

exact terminal node that is reached, as in self-confirming equilibrium.
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Figure 1: The dots connecting payoffs denote terminal node partitions.

In game B, player 1 moves first, again choosing between In and Out. Instead of 2

and 3 only acting when 1 plays In, now they play the matching pennies game regardless

of 1’s action. The map from action profiles to payoffs is exactly the same as in game

A. The important assumption is that if 1 plays Out she observes only her own action

and payoff but not the action of the other player: the corresponding cell of her terminal

node partition contains four elements corresponding to the four possible choices of players

2 and 3. Players 2 and 3 observe the exact terminal nodes. Note that the observation

structures for player 1 are the same in games A and B.

Note that even though player 1 receives the same information in these games, the

observation structures of players 2 and 3 differ. In game A, players 2 and 3 do not

observe each other’s play when 1 plays Out, so there is no reason for player 1 to expect

their play to resemble a Nash equilibrium. Consequently, an impatient player 1 might

choose to play Out, fearing that player 2 would lose to player 3. In game B, on the other

hand, players 2 and 3 observe each other’s play, whatever player 1’s action is. Thus they

should be playing as in the Nash equilibrium of the matching pennies game, and 1 knows

this, so she should play In.

In what follows we give a formal definition of RPCE, and provide results to show that

RPCE behaves as expected and to relate it to past work, but much of our contribution

comes from examples that illustrate various implications of RPCE. Many (but not all) of

these examples use what we call “participation games;” we explore the impact of different
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terminal node partitions in these games, and also compare them to closely related games

with sequential moves. The distinguishing feature of participation games is that some

players have the option of an action called “Out”: If a player plays Out, his payoff is

0 regardless of the play of the others, and he observes only his own action and payoff.

Roughly speaking, the idea of RPCE is that if player 1 (say) always plays Out, but knows

that players 2 and 3 play every period and observe the terminal node at the end of each

round, and player 1 believes that play has converged, then she can use her knowledge of

the payoff functions and observation structure to place restrictions on the (unobserved)

play of her opponents; in particular, 1’s belief about their play must be concentrated on

the set of Nash equilibria of the “subgame” between them. In contrast, if player 1’s choice

of “Out” ends the game and prevents players 2 and 3 from acting, then when player 1

always plays Out players 2 and 3 do not have the chance to learn; here the only restriction

on 1’s belief when she plays Out is that the play of 2 and 3 is rationalizable.

In addition to the partition over terminal nodes, this paper differs from DFL by

allowing players to have correlated beliefs about unobserved play of their opponents,

as advocated by Fudenberg and Kreps (1988). As we argue in Example 8, terminal

node partitions make the restriction to independent beliefs less compelling, even as a

simplifying assumption: When a player knows that her opponents have repeatedly played

a coordination game, but has not seen their actions, it seems odd to require that the

player’s beliefs about the opponents correspond to a product distribution. Put differently,

with partitions on terminal nodes, play of the game on its own may provide some of the

players access to a common signal that is not observed by others.

Hahn’s (1977) conjectural equilibrium is a forerunner of SCE in a specific setting,

as it allows firms to misperceive demand at out-of-equilibrium prices. Battigalli (1987)

defines what we call self-confirming equilibrium with independent, unitary beliefs, where

“unitary” means that every action in the support of a player’s mixed strategy is a best

response to the same belief about play of the opponents, and “independent” means that

each player’s subjective uncertainty about the play of the others corresponds to a product

distribution. Fudenberg and Kreps (1988) give the first example where this sort of SCE

has an outcome that cannot arise in Nash equilibrium. In the large-population learning

models used to provide foundations for SCE, it is natural (though not necessary) to allow

different agents to have different beliefs. The general definition of SCE, due to Fudenberg

and Levine (1993a), allows beliefs to be heterogeneous as well as correlated.3

3Kalai and Lehrer (1993) give a version that corresponds to independent, unitary beliefs. Lehrer’s
(2012) “partially-specified equilibrium” is similar as it also allows players to only partially know the
opponents’ strategies. Ryall (2003) and Dekel, Fudenberg, and Levine (2004) develop SCE variants that
in our terminology have specific sorts of partitions over terminal nodes.
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Allowing for heterogenous beliefs about play when players use payoff information to

make predictions is more complicated, so DFL restrict attention to unitary beliefs. This

paper too restricts attention to unitary beliefs, to cut down on the number of new issues

that need to be addressed at one time; note that unitary beliefs correspond to steady

states of large-population learning systems when all agents in a given player role pool their

information. Alternatively one can view our solution concept as providing predictions as

a result of repeated interactions among a fixed set of players when the discount factor is

small. In the companion paper (Fudenberg and Kamada, 2012) we allow for heterogeneous

beliefs.

The paper is organized as follows. Section 2 defines a model of extensive-form games

with terminal node partitions. Section 3 revisits Example 1, and analyzes other examples

to show the implications of RPCE. Section 4 further motivates the RPCE definition by

exploring the consequences of alternative specifications. Section 5 explains the connec-

tion between RPCE and other concepts from the literature, notably the rationalizable

conjectural equilibrium (RCE) of Rubinstein and Wolinsky (1994).

2 The Model

2.1 Extensive-Form Games with Terminal Node Partitions

X is the finite set of nodes, with Z ⊆ X being the set of terminal nodes. The set of

players is I = {1, . . . , n}; Hi is the collection of player i’s information sets, H =
⋃
i∈I Hi

and H−i = H \Hi. Let A(h) be the set of available actions at h ∈ H, Ai = ×h∈Hi
A(h),

A = ×i∈IAi, and A−i = ×j 6=iAj. For each z ∈ Z, player i’s payoff is ui(z).

In the main text we restrict attention to “one-move games,” in which for any path of

play each player moves at most once, and there are no moves by Nature. In addition we

assume that, for every h, h′, if there is x ∈ h and x′ ∈ h′ such that x < x′ (where < is the

precedence order on nodes), then there is no x′′ ∈ h and x′′′ ∈ h′ such that x′′′ < x′′. We

then say that h′ is after h if some x′ ∈ h′ is after some x ∈ h, and we assume that this

partial order on information sets is transitive.

To model what players observe at the end of each round of play, let Pi = (P 1
i , . . . , P

Li
i )

be a partition over Z and P = (P1, . . . ,Pn). We assume that the extensive form has

perfect recall in the usual sense, and extend perfect recall to terminal node partitions by

requiring that two terminal nodes must be in different cells of Pi if they can be reached

by different sequence of pure actions by player i. If every terminal node is in a different

cell of Pi, the partition Pi is said to be discrete. If the cell i observes depends only on i’s
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actions, the partition is called trivial. Except where otherwise noted, we will require that

ui(z) = ui(z
′) if terminal nodes z and z′ are in the same partition cell, so that payoffs are

measurable with respect to terminal node partitions.

Because we want to model equilibrium as an objective, steady-state distribution, while

maintaining the simplicity of “unitary” beliefs (defined below) we need to allow for mixed

strategies as outcomes of play. Here we adopt the simplest method, namely to let the

players use mixed strategies, as in Rubinstein and Wolinsky (1993) and DFL.4 Player

i’s behavioral strategy πi is a map from Hi to probability distributions over actions,

satisfying πi(h) ∈ ∆(A(h)) for each h ∈ Hi, where and subsequently, for any set X we let

∆(X) denote the set of probability distributions on X with finite support. The set of all

behavioral strategies for i is Πi, and the set of behavioral strategy profiles is Π = ×i∈IΠi.

Let Π−i = ×j 6=iΠj and Π−i,k = ×j 6=i,kΠj, with typical elements π−i and π−i,j, respectively.

Say that an information set h ∈ Hi is reachable under π−i if there exists πi such that h

has a positive probability under (πi, π−i).

A strategy profile π completely determines a probability distribution over terminal

nodes; let d(π)(z) be the probability of reaching z ∈ Z given π, and let Di(π)(P l
i ) =∑

z∈P l
i
d(π)(z) for each cell P l

i of player i’s partition.

2.2 Beliefs, Consistency, and Best Responses

We will impose some restrictions on beliefs about off-path play, so we will need to specify

assessments at off-path information sets: Player i’s assessment at h ∈ Hi is a probability

distribution over nodes in h, so that the assessment at h is an element of ∆(h). For

any h ∈ Hi, i’s assessment at h and her opponents’ behavioral strategies π−i completely

determine i’s expected payoff for playing any strategy πi, conditional on h. Denote by

µi ∈ ∆(Π−i) × [×h∈Hi
∆(∆(h)× Π−i)] the belief held by player i. That is, player i’s

belief consists of two terms. The first is a finite-support probability distribution over the

opponents’ strategy profiles, and the second is a vector that specifies, at each information

set h of player i, a probability distribution over the product space of pairs of the form

(assessments at that information set, opponents’ strategy profiles). We denote by b(µi)

the marginal of the belief µi on the first coordinate, and by (µi)h the marginal of µi on

the coordinate for information set h. Note that the belief has sufficient information to

calculate conditional expected payoffs at each information set.

We allow b(µi) to be any distribution on Π−i (with finite support), as opposed to a

product of independent mixed strategies. Example 8 explains why this is desirable. We

4In Fudenberg and Kamada (2012) we show that we can replace mixed strategies with a distribution
of players each of whom uses a pure strategy.
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allow assessments to be correlated with the beliefs over opponents’ strategies; Example 9

explains why.

Definition 1. Belief µi is an independent belief if the following conditions hold:

1. For each π̂−i in the support of b(µi), we require

b(µi)(π̂−i) =
∏
j 6=i

 ∑
π−i,j s.t. ∃πj s.t. (πj ,π−i,j)∈supp(b(µi))

b(µi)(π̂j, π−i,j)

 .

2. For each h and each (âi, π̂−i) in the support of (µi)h, we require

(µi)h(âi, π̂−i) =

 ∑
π−i s.t. ∃ai s.t. (ai,π−i)∈supp((µi)h)

(µi)h(âi, π−i))



·
∏
j 6=i

 ∑
(ai,π−i,j) s.t. ∃πj s.t. (ai,(πj ,π−i,j))∈supp((µi)h)

(µi)h(ai, (π̂j, π−i,j))

 .

That is, µi is independent if b(µi) and the (µi)h are all product measures. We allow i’s

belief to vary with i’s information sets, because the posterior belief about which element

in the support of b(µi) has been used may be different from the prior belief. Example 10

explains why such variability is desirable.

Definition 2. A belief µi satisfies accordance if it satisfies the following.

1. (µi)h is derived by Bayes rule if there exists π−i in the support of b(µi) such that h

is reachable under π−i.
5

2. For all h ∈ Hi, if (µi)h assigns positive probability to π̂−i, then there exists π̃−i ∈
supp(b(µi)) such that π̂−i(h

′) = π̃−i(h
′) for each h′ after h.

5For each π−i in the support of b(µi) such that h is reachable under π−i, let a(x|h, π−i) be the
probability that node x ∈ h ∈ Hi is reached conditional on the event that π−i is used and h is reached.
Since h is reachable under π−i, this conditional probability is well-defined. If π−i is in the support of
b(µi), define

(µi)h(a, π−i) =
b(µi)(π−i) · Prob(h|π−i)∑

π′−i∈supp(b(µi))
b(µi)(π′−i) · Prob(h|π′−i)

where a = a(·|h, π−i). Otherwise we define (µi)h(a, π−i) = 0.
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The first part of the definition restricts the belief at on-path information sets, and

the second part does so for off-path information sets. Given our restriction to one-move

games, the information sets h′ referred to in part 2 belong to players who did not move

before h; part 2 imposes a form of consistency between player i’s “initial” beliefs b(µi)

about what these players will do and player i’s beliefs conditional on unexpectedly arriving

at h.

There are other reasonable alternatives for off-path restrictions on beliefs, both to

weaker conditions that allow for the sort of correlation we discuss in the next example,

and to conditions that impose additional restrictions in games where some players can

act multiple times on a path of play. We do not examine these alternatives here, because

refining off-path beliefs is not our focus. Instead, we assume accordance throughout the

paper. Accordance is an easy-to-check condition, and in particular implies that if b(µi)

has a singleton support then b(µi) and (µi)h coincide. For example, consider the extensive

form in Figure 2.

Figure 2

If b(µ2) assigns probability 1 to (u, U) then, under accordance, player 2’s belief (µ2)h2

at his information set h2 must assign probability 1 to player 3 playing U . On the other

hand, if we did not impose part 2 of Definition 2, then when player 2 unexpectedly sees

player 1 play r, she could change her belief about the future play of player 3 from U to D,
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which would make her want to play b. This sort of change in beliefs can arise if deviations

occur as the result of correlated trembles or payoff shocks. In particular, the outcome

(u, U) is a c-perfect equilibrium (Fudenberg, Kreps, and Levine (1988)), because b for

player 2 is a best response to the correlated distribution ((1− ε)(u, U), ε(r,D)). However,

this cannot occur when the trembles are required to be independent across players as

in trembling-hand perfection and sequential equilibrium, and (u, U) is not a sequential

equilibrium outcome. We implicitly impose “independent trembles” in the accordance

condition for simplicity but as noted above alternative conditions may be reasonable as

well.

The following result is immediate and is stated without a proof, and together with

Theorem 2 below will establish that a RPCE exists.

Theorem 1. Suppose that an assessment-strategy pair (ã, π̃) satisfies Kreps and Wilson’s

(1982) consistency, b(µi)(π̃−i) = 1 for all i, and (µi)h(ã, π̃) = 1 for each h. Then µi

satisfies accordance.

We say that πi ∈ Πi is a best response to a belief µi at h ∈ Hi if the restriction of

πi to the subtree starting at h maximizes player i’s expected payoff against (µi)h in that

subtree.6

2.3 Versions, Conjectures, and Belief Models

To facilitate comparison with DFL, we model the beliefs of the players about the beliefs

and play of others- their “interactive beliefs”- in the same way as DFL, using the idea

of “versions” vi of each player i. Only one of these versions represents the way player

i actually behaves; the other versions vi of player i are descriptions of player i that

some player j thinks is possible.7 In DFL vi specifies player i’s strategy, her assessment,

and her belief about the opponents’ play. The definition of a version in our context

6Note that for the purpose of computing this best response, the relevant part of (µi)h is the distribution
of play at successors of h. Formally, suppose that there are K points in the support of (µi)h, and index
them by superscript k to write (aki , π

k
−i). An assessment ai at h and a strategy profile π together induce

a unique probability distribution over terminal nodes, denoted f(ai(h), π)). The restriction of a strategy
π∗i to the subtree starting at h maximizes player i’s expected payoff against (µi)h if

π∗i ∈ arg max
πi∈Πi

K∑
k=1

(
(µi)h(aki , π

k
−i) ·

∑
z∈Z

[
f(aki , (πi, π

k
−i))(z) · ui(z)

])
.

7An alternative approach would be to use the notion of an “epistemic structure,” as in Ben-Porath
(1997), Battigali and Siniscalchi (2002), and Battigali and Friedenberg (2011). That approach would
facilitate comparison with some of the literature on rationalizability, but complicate the comparison with
DFL.
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will be slightly different, as instead of specifying beliefs we associate with each version

a probability distribution over opponents’ versions that we call a “conjecture.” We use

these conjectures below to formalize an analog of the usual belief-closed condition—the

idea that the play that player i expects to see is generated by the versions he expects are

present. To introduce the notion of conjectures formally, we first need to specify a profile

of sets of versions.

A belief model is a collection V = (V1, . . . , Vn) where each Vi is a finite set of player i’s

versions. In our setting, version vi of player i is denoted by vi = (πi, pi), where the first

element is version vi’s strategy πi ∈ Πi, and the second is her conjecture pi ∈ ∆(×j 6=iVj).
Notice that the specification of conjectures allows correlated beliefs, as otherwise, pi

must lie in the space ×j 6=i∆(Vj). We do not require that pi assigns probability 1 to a

single version profile of the opponents: Even if player i is sure that there is only a single

agent in player j’s player role, she may not be sure whether this single agent is of version

v′j or v′′j .

Finally, we will associate with each Vi in a belief model an actual version v∗i ∈ Vi,
which is the version that is objectively present. Any other versions of player i are called

hypothetical versions, as they exist only in the minds of the other players.

2.4 Rationalizable Partition-Confirmed Equilibrium

For notational simplicity, let πj(vj), π(v) and π−i(v−i) denote the strategy (profile) gen-

erated by vj ∈ Vj, v ∈ ×j∈IVj and v−i ∈ ×j 6=iVj, respectively.

Definition 3. A belief µi is coherent with a conjecture pi if b(µi) assigns probability∑
π−i(v−i)=π̃−i

pi(v−i) to each π̃−i ∈ Π−i.

In the definition of RPCE, we require that all versions in a belief model have a coherent

belief; this is analogous to requiring the belief model be belief-closed, as defined in DFL.

Definition 4. Given a belief model V , version vi = (πi, pi) ∈ Vi is self-confirming with

respect to π∗ if for all v−i in the support of pi, Di(πi, π−i(v−i)) = Di(πi, π
∗
−i).

8

In the defining equality, the left hand side is the distribution over i’s terminal node

partition generated by version vi’s strategy and the belief about the opponents’ play that

is induced by vi’s conjecture. The right hand side is the distribution that version vi

observes if the actual distribution of the play is π∗. That is, this equality says that vi’s

observation (the left hand side) is equal to the actual play (the right hand side).

8Because each version vi = (πi, pi) views π−i(v−i) as possible for each v−i in the support of pi, every
such π−i(v−i) must be consistent with the version’s observations.
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Definition 5. Given a belief model V , π∗ ∈ Π is generated by a version profile v =

(vi)i∈I = (πi, pi)i∈I ∈ ×j∈IV if for each i, πi = π∗i .

Definition 6. Given a belief model V , vi = (πi, pi) is observationally consistent if

pi(ṽ−i) > 0 implies, for each j 6= i, ṽj is self-confirming with respect to π(vi, ṽ−i).

Remark 1.

(a) If ṽj is self-confirming with respect to π(vi, ṽ−i) then by Definition 4, for all v̂−j in the

support of p̃j, Dj(πj(ṽj), π−j(v̂−j)) = Dj(πj(ṽj), π−j(vi, ṽ−i,j)) = Dj(πi, π−i(ṽ−i)).

Hence Definition 6 is equivalent to the following: “Given a belief model V , “vi =

(πi, pi) is observationally consistent if pi(ṽ−i) > 0 implies, for each j 6= i, Dj(πj(ṽj), π−j(v̂−j)) =

Dj(πi, π−i(ṽ−i)) for all v̂−j in the support of p̃j.” The left hand side in this equality

is what ṽj expects to observe given his belief under the partition given by Dj. The

right hand side describes what vi thinks ṽj is observing under the partition given

by Dj. Thus the equality requires that vi believes that ṽj’s belief is consistent with

what ṽj observes. Thus this definition incorporates the idea that players know (i)

the terminal node partitions of other players and (ii) that the opponents satisfy the

self-confirming condition.

(b) To better understand observational consistency, consider the following example:

Suppose that v′1 believes that (v′2, v
′
3) and (v′′2 , v

′′
3) are possible and that no other

profiles are possible. Then we require that v′1 thinks what v′2 would be observing is

consistent with v′2’s play, v′1’s play, and also v′3’s play. It is important to note that

we do not require v′1 thinks v′2’s belief is consistent with v′′3 ’s play. This is because,

even though v′1 thinks each of v′2 and v′′3 is possible, she thinks (v′2, v
′′
3) is impossible.

(c) Note that the condition in Definition 6 only need hold when vi thinks the profile

ṽ−i has positive probability: Otherwise, vi need not believe that ṽj’s observation is

consistent with her belief. Relatedly, even if vi thinks ṽj has positive probability and

ṽj thinks version vk has positive probability, vi’s belief need not be consistent with

what vk observes. This is because vi might think that ṽj has positive probability,

and ṽj incorrectly conjectures that vk has positive probability. Finally, if ṽj is

self-confirming with respect to π∗, then in the left hand side of the equation of

the alternative definition in Remark 1(a), Dj(πj(ṽj), π(v̂−j)) can be replaced with

Dj(πj(ṽj), π
∗
−j).

(d) The rationale for requiring observational consistency is that player i knows j’s ter-

minal node partition and knows that j’s belief is consistent with what j observes. In
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the model developed so far this knowledge is informal. In the Online Supplementary

Appendix we make this interpretation precise by constructing an epistemic model.

Definition 7. π∗ is a rationalizable partition-confirmed equilibrium (RPCE) if

there exist a belief model V and an actual version profile v∗ such that the following

conditions hold:

1. π∗ is generated by v∗.

2. For each i and vi = (πi, pi), there exists µi such that (i) µi is coherent with pi and

(ii) πi is a best response to µi at all h ∈ Hi.

3. For all i, v∗i is self-confirming with respect to π∗.

4. For all i and vi, vi is observationally consistent.

One consequence of the definition of RPCE is that the set of RPCE shrinks if terminal

node partitions become coarser.9 Since the belief model that supports a strategy profile

as a RPCE under finer partitions can support the same strategy profile under coarser

partitions, the following comparative statics is immediate.

Theorem 2. If the terminal node partitions P are coarser than P′ then any strategy

profile that is RPCE under partition P′ is also a RPCE under P.

Theorem 1 implies that with discrete terminal node partitions for each player, ev-

ery sequential equilibrium is an RPCE with a single version for each player and correct

beliefs.10 Hence all sequential equilibria are RPCE under the discrete terminal node par-

titions. Combining this observation with Theorem 2 and the fact that every game has a

sequential equilibrium (Kreps and Wilson, 1982) yields the following result.

Corollary 1. In any extensive-form game, a RPCE exists.

9The Online Supplementary Appendix provides further examples to illustrate the effects of changes
of terminal node partitions.

10Note that this applies even to sequential equilibria that are ruled out by strategic stability (Kohlberg
and Mertens (1986)). Thus RPCE corresponds to sequential equilibrium’s assumption that players view
deviations as trembles, as opposed to the “forward induction” view that whenever possible deviations
should be viewed as a deliberate choice.
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3 Implications of RPCE

In this section we consider several examples to illustrate the implications of RPCE. One

theme will be the difference between situations where player 1 (say) prevents other players

from acting (and thus from learning) and situations where the other players do act but

player 1 does not observe their play. First we revisit Example 1 to show how the RPCE

definition delivers the desired conclusion there. Example 2 adds a player to game B to

study the assumption of higher order knowledge of rationality. In Example 3, RPCE

implies that belief about unobservable play should assign probability one to actions that

are not only rationalizable but also Nash. The Appendix generalizes this result to a class

of “participation games.” Example 4 provides an example that shows that some RPCE

outcomes can only be sustained with belief models in which multiple versions of a given

player play the same strategy. In that example, players 1 and 2 each has a single version,

and their beliefs involve differing implicit models of the beliefs of player 4. However, there

is a strong restriction on the versions that actual versions can assign positive probability:

Lemma 1 in the Appendix shows that in a RPCE, any version profile to which an actual

version assigns positive probability is the actual version profile of some RPCE.

Terminal node partitions have various effects on the set of strategies that a player can

play in a RPCE. Example 5 demonstrates that a player need not expect unobservable play

by the opponents to resemble a Nash equilibrium if their terminal node partitions are not

discrete. Example 6 shows how giving a player a more refined terminal node partition

can change his RPCE play even though that player’s beliefs were correct in the RPCE for

the coarser partition: The effect comes from the fact that with the finer partition other

players know that the player’s beliefs are correct. The Online Supplementary Appendix

also provides examples to illustrate how the terminal node partitions change the set of

strategies in RPCE.

a

Example 1 Revisited.
Here we show that in game A it is possible for player 1 to play Out in RPCE, but this

is not possible in game B.

Consider game A, in which players 2 and 3 play matching pennies if and only if player

1 plays In. We argue that player 1 can play Out in a RPCE with the following belief

13



model and actual versions11:

V1 = {v′1} , v′1 = (Out, (v′2, v
′
3));

V2 = {v′2, v′′2} , v′2 = (H2, (v
′
1, v
′′
3)), v′′2 = (T2, (v

′
1, v
′
3));

V3 = {v′3, v′′3} , v′3 = (T3, (v
′
1, v
′
2)), v′′3 = (H3, (v

′
1, v
′′
2));

The actual version profile is (v′1, v
′
2, v
′
3).

Here, v′2 can believe that player 3 plays H3 because she never gets to observe 3’s play,

while v′′3 plays H3 because he believes that 2 plays T2, which again is justified by the fact

that he is not observing 2’s play. Since v′1 never observes 2 and 3’s play, and she knows

that they do not get to play on the path so do not observe each other’s play, she can

believe that they can have such mutually inconsistent beliefs, hence can entertain a belief

that the opponents play (H2, T3), which is consistent with the self-confirming condition.

Now we turn to game B, where players 2 and 3 play matching pennies regardless of

player 1’s action but 1 only observes their play when she chooses In. Fix a RPCE π∗,

with an associated belief model V . Suppose that some version of player 1’s conjecture

assigns positive probability to a version profile (ṽ2, ṽ3) such that π(ṽ2) and π(ṽ3) are

not best responses to each other. Suppose without loss of generality that π(ṽ2) is not a

best response to π(ṽ3). Notice that by the observational consistency condition, we have

D2(π̃2, π−2(v−2)) = D2(π̃2, ·, π(ṽ3)) for all v−2 in the support of p̃2. Since player 2 observes

the exact terminal node reached, this implies that p̃2 assigns probability 1 to v3 such that

π3(v3) = π3(ṽ3). But this means that any belief µ̃2 coherent with p̃2 has a property that

b(µ2) assigns probability one to π3(ṽ3), so the best response condition is violated for player

2.

Therefore, it must be the case that, for any v1 = (π1, p1), any belief µ1 coherent with

p1 assigns probability 1
2

to each of H2 and H3. The best-response condition then implies

that π1 assigns probability 1 to In, as playing In gives her the expected payoff of 0.1

while playing Out gives her 0. Because this is true for any version v1 of player 1 and π∗

is generated by the actual versions, we conclude that π∗1 assigns probability 1 to In, that

is, player 1 plays In with probability 1.

Example 2.
Consider a modification of game B, where we add “player 0” at the top of the extensive-

11The notation that we use when presenting belief models in examples involves a slight abuse of
notation. In particular, when a player’s conjecture is a point mass on a particular version profile v−i we
write that profile in place of the Dirac measure concentrated on v−i.
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form game. Specifically, player 0 moves first, choosing between In and Out. Whatever

action is played, the game goes on and game B is played, where only player 1 knows the

action taken by player 0. The map from the action profile for players 1, 2, and 3 to their

payoffs are exactly the same as in game B, while player 0 gets 0 if he plays Out, 1 if he

plays In and player 1 also plays In, and −1 if he plays In and player 1 plays Out. The

terminal node partitions are the same as in game B, where everyone knows the move by

player 0, and player 0 observes everything if he plays In and does not observe anything if

he plays Out.

In any RPCE of this game, player 0 must play In, because player 0 must infer that

player 1 plays In. Remember that in game B of Example 1 all versions of player 1 must

play In; the coherent belief condition ensures that player 0 believes that 1 plays In with

probability 1.

This example shows that RPCE assumes that a player not only believes that the play

by the opponents has converged, but she also believes that an opponent believes that the

play by these opponents has converged.

Example 3.

Figure 3

Consider the game in Figure 3. Everyone observes the exact terminal node reached,

except that player 1 cannot distinguish between the opponents’ action profiles if she plays

Out.
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Player 1’s action has no effect on the information or payoffs of players 2 and 3, so it

makes sense to talk of the subgame involving just those two players. Notice that H2 is a

best response to H3, which is a best response to T2, which is a best response to T3, which

in turn is a best response to H2 so all actions in the subgame are rationalizable, but it

has a unique Nash equilibrium, namely (N2, N3).

In this game, RPCE requires not only that 1 expects 2 and 3 to play rationalizable

actions, but also that she expects their play to be a Nash equilibrium of the subgame.

Hence 1 should expect the payoff of 1 from playing In, so 1 should play In. The proof

of this is exactly the same as in Example 1: if player 1’s conjecture assigns a positive

probability to a version profile such that player 2 is not best responding to player 3,

observational consistency condition for player 1 implies that the best response condition

for player 2 should be violated.

It is important here that 2 and 3 do not observe 1’s action before they move, as

otherwise 1 can play Out, believing that 2 and 3 play Hi or Ti after In. This example

shows that in RPCE, beliefs about unobserved actions on the path of play should assign

probability one to actions that are not only rationalizable but also Nash. We generalize

this in Theorem 5 in the Appendix.

Example 4 (Need for Duplicate Versions).
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Figure 4

The game depicted in Figure 4 is a modification of the “horse” example in Fudenberg

and Kreps (1988). Instead of having player 3 move only when 1 or 2 plays down, we now

suppose that 3 moves whenever 4 plays a dominant action at the root node, and 1 and 2

do not know 3’s play as long as both play “across.” The terminal node partitions are such

that everyone observes the terminal node reached, except that if (A1, A2) is taken then 1

and 2’s partitions do not reveal 3’s choice.

This game has a RPCE in which (A1, A2) is chosen. Specifically, consider the following

belief model:

V1 = {v′1} , v′1 = (A1, (v
′
2, v
′
3, v
′
4));

V2 = {v′2} , v′2 = (A2, (v
′
1, v
′′
3 , v
′′
4));

V3 = {v′3, v′′3} , v′3 = (R3, (v
′
1, v
′
2, v
′
4)), v′′3 = (L3, (v

′
1, v
′
2, v
′′
4));

V4 = {v′4, v′′4} , v′4 = (R4, (v
′
1, v
′
2, v
′
3)), v′′4 = (R4, (v

′
1, v
′
2, v
′′
3));

The actual version profile is (v′1, v
′
2, v
′
3, v
′
4).

Notice that V4 has two versions, both of which play the same strategy. This is a

necessary feature of any belief model that supports the outcome involving (A1, A2). This

is because this (A1, A2) can happen only when 1 and 2 disagree about 3’s play, and know

that 4 observes 3’s play. This means 1 and 2 must also disagree about what 4 believes,

which requires there be (at least) two versions of player 4, and both versions need to play

R4 as it is a dominant action.12

This need for two versions that play the same strategy is a new feature that arises

with nondiscrete terminal node partitions; such duplicate versions do not enlarge the set

of RSCE, because in RSCE players can only disagree about play off of the equilibrium

path.13

12A formal proof goes as follows: Suppose that there is only one version v̂4 in V4, and that v̂4 believes
that L3 is played with probability p ∈ [0, 1]. By coherency, all versions of players 1 and 2 must have a
conjecture that assigns probability 1 to v̂4. Then observational consistency implies that all versions of
players 1 and 2 must believe that L3 is played with probability p ∈ [0, 1]. But since p > 1

3 implies that
D1 is strictly better than A1 and p < 2

3 implies that D2 is strictly better than A2, (A1, A2) cannot be
played.

13Fix a belief model used to justify a RSCE π∗ in the DFL model, and suppose that it has m versions

(v
(1)
i , . . . , v

(m)
i ) that use the same strategy in a single player role i. Now consider a new belief model

formed by eliminating (v
(2)
i , . . . , v

(m)
i ). If a version of some opponent player role j has a mixture over

(v
(2)
i , . . . , v

(m)
i ) in DFL’s belief-closed condition, then the belief-closed condition will be satisfied in the

new belief model by assigning the sum of probabilities on (v
(1)
i , . . . , v

(m)
i ) in the original mixture to v

(1)
i

in the new mixture. Thus the new belief model supports the RPCE π∗.
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Example 5 (Participation Game with Unobservable Actions).

Figure 5

Consider the game in Figure 5. Player 1 does not observe the exact terminal node if

she plays Out1, and she observes the exact terminal node reached if she plays In1. The

other players’ terminal node partitions always reveal 1’s move but only reveal the exact

terminal node if they play In i.

Notice that for any Nash equilibrium of 2 and 3’s simultaneous move game, player 1

expects a payoff of at least 1
2

from playing In1. Thus if 1 believes that 2 and 3 play a

Nash equilibrium of the subgame, she must play In1. We argue, however, that in RPCE

it is possible for player 1 to play Out1. Specifically, consider the following belief model

and actual versions:

V1 = {v′1} , v′1 = (Out1, (v
′
2, v
′
3));

V2 = {v′2, v′′2} , v′2 = (Out2, (v
′
1, v
′′
3)), v′′2 = (In2, (v

′
1, v
′
3));

V3 = {v′3, v′′3} , v′3 = (Out3, (v
′
1, v
′′
2)), v′′3 = (In3, (v

′
1, v
′
2));

The actual version profile is (v′1, v
′
2, v
′
3).

In this belief model, player 1 believes that both players 2 and 3 play Outi. Although Out2

is not a best response against Out3, player 2 does not observe 3’s play when he is playing

Out2, and so he can believe that 3 plays In3. Likewise, player 3 can play Out3, believing
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that 2 plays In2. Player 1 plays Out1 because she believes that (Out2, Out3) is played as

a result of such mutually inconsistent beliefs.

We note that Out1 could not be played in any RPCE if the terminal node partitions

for players 2 and 3 were discrete. This is because player 1’s payoff is 1
2

in every Nash

equilibrium of the game between players 2 and 3, so by Theorem 5 in the Appendix she

should play In. Hence, nondiscrete terminal node partitions allow an action to be played

even if the action is outside the support of equilibria under finer partitions. In other

words, the conclusion of Theorem 5 may fail if the hypothesis that player 1’s opponents

have discrete partitions is weakened.

To sum up, this example shows that a player need not expect unobserved play to be

a Nash equilibrium if these opponents do not observe the exact terminal nodes, and as a

consequence she may play an action that she would not play otherwise.

Example 6 (Terminal Node Partitions and Learning One Player’s
Actions from those of Another).

Figure 6

Here we provide an example in which the difference in terminal node partitions affects

learning. If one player’s terminal node partition is finer than another player’s then the

latter can learn by observing the play of the former and can respond accordingly, while if

the partitions are the same then there is nothing to learn.

In the game in Figure 6, all players observe the exact terminal node reached, except

that player 1’s and 2’s partitions do not reveal 3’s action if 1 plays R1.
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First, we show that player 1 can play R1 in a RPCE. To see this, consider the following

belief model and actual versions:

V1 = {v′1}, v′1 = (R1, (v
′
2, v
′
3));

V2 = {v′2}, v′2 = (L2, (v
′
1, v
′′
3));

V3 = {v′3, v′′3}, v′3 = (R3, (v
′
1, v
′
2)), v′′3 = (L3, (v

′
1, v
′
2));

The actual version profile is (v′1, v
′
2, v
′
3).

Notice that players 1 and 2 disagree about player 3’s action, which neither of them observe

when 1 plays R1, which is why 2 can play L2 even though 1 is playing R1.

Now we show that if player 1’s partition is discrete, she can no longer play R1 in a

RPCE. In such a situation, because player 1 has a discrete terminal node partition and

player 2 does not, player 2 can learn 3’s play by observing 1’s play. For this reason,

player 1 cannot play R1 in a RPCE, while 1 could play R1 if players are not required to

believe that other players act rationally.14 To see that R1 cannot be played, suppose the

contrary. The best response condition for player 1 and observational consistency applied

to player 2 imply that b(µ2) assigns probability at least 1
2

to R3. By accordance, player

2’s belief (µ2)h2 at his information set h2 assigns... probability at least 1
2

to R3. Then the

best response for player 2 is to play R2 with probability 1. However, this implies that 1’s

payoff from playing L1 is 0.1 > 0, so she cannot play R1. On the other hand, if player 1

does not know 2’s payoff function, the fact that 2’s behavior reflects her belief about 3’s

play doesn’t convey any information to player 1. So 1 can believe (L2, R3) is played with

probability 1, making R1 possible. The key is the observational consistency condition:

player 2 knows player 1 observes 3’s play, so 2’s belief about 3’s play must match with

what 2 thinks 1 is best-responding against.

Notice that player 1’s belief in the RPCE we constructed for the original terminal

node partitions is in fact correct. However, when 1’s terminal node partition is discrete,

1 can no longer play R1: With a discrete terminal node partition for player 1, player 1

knows player 2 can and should learn 3’s play by observing 1’s play. But this is impossible

when 1 and 2’s terminal node partitions coincide.

14The Online Supplementary Appendix develops the concept of “partition-confirmed equilibrium” or
PCE, which extends SCE to games with non-discrete terminal node partitions. Roughly speaking PCE
weakens condition (2) of RPCE and also drops the coherency condition in condition (2).
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4 Justification of the RPCE Definition

In this section we discuss several examples of a game and a RPCE outcome that we think

is a plausible consequence of rational learning, and study whether the outcome would still

be a RPCE under alternative definitions that might seem natural to some readers.

Specifically, Example 7 explains why the self-confirming condition should not be im-

posed on hypothetical versions, Example 8 argues that we should allow for correlated

beliefs in our model, Example 9 justifies our specification of the space of beliefs, and

Example 10 discusses the role of accordance.

Example 7 (Self-Confirming Condition for Hypothetical Versions).

Figure 7

Consider the game in Figure 7. The terminal node partitions are such that everyone

observes the exact terminal node reached, except that 1 does not observe 2 and 3’s play

if she plays Out.

Intuitively, if 1 thinks that 2 and 3 coordinate on the (R2, R3) equilibrium, she has

an incentive to play Out, which makes her unable to observe how 2 and 3 play. Indeed,

the outcome (Out, L2, L3) is possible in RPCE. To see this, consider the belief model and

actual versions:

V1 = {v′1}, v′1 = (Out, (v′′2 , v
′′
3));

V2 = {v′2, v′′2}, v′2 = (L2, (v
′
1, v
′
3)), v′′2 = (R2, (v

′
1, v
′′
3));

V3 = {v′3, v′′3}, v′3 = (L3, (v
′
1, v
′
2)), v′′3 = (R3, (v

′
1, v
′′
2));
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The actual version profile is (v′1, v
′
2, v
′
3).

Notice v′′2 and v′′3 are hypothetical versions, and they do not satisfy the self-confirming

condition. Version v′1 plays Out because she conjectures that these hypothetical versions

exist, and her conjecture is never falsified because she plays Out.

Now we show that the outcome (Out, L2, L3) is impossible if we require the self-

confirming condition with respect to the equilibrium strategy profile for hypothetical

versions. To see this, suppose that we strengthen Definition 7 by replacing condition

(3) with the condition that for all i and vi, vi is self-confirming with respect to π∗. If

(Out, L2, L3) is a RPCE under this stronger condition, the best response condition implies

that all versions of player 2 should play L2 and that all versions of player 3 should play

L3, so player 1 must believe that players 2 and 3 play (L2, L3). But then by the best

response condition player 1 must play In.15

Example 8 (Correlated Beliefs).

Figure 8

Our formulation of beliefs is more complicated than DFL, because we allow for corre-

lated beliefs, while DFL restricted attention to independent beliefs. In this example player

15Without knowledge of opponents’ payoff functions (as in the partition-confirmed equilibrium concept
in the Online Supplementary Appendix), 1 may still play Out, believing that 2 and 3 play R2 and R3,
respectively.
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1 can play an action only when she has correlated beliefs about the play at information

sets that she does not observe.

Consider the game depicted in Figure 8. This game is similar to Example 7, but player

1 has two actions that make the terminal nodes observable for her; her decision amounts

to either betting on the action that players 2 and 3 will coordinate on, or declining to

bet. The terminal node partitions are such that everyone observes the exact terminal

node reached except that player 1 cannot distinguish among four terminal nodes that are

caused by the action Out.

To capture the long-run consequences of rational learning, RPCE should allow for the

possibility that 1 plays Out. Intuitively, since players 2 and 3 get to play on the path,

they should play as in a Nash equilibrium of their coordination game. Hence it makes

sense for player 1 to believe that players 2 and 3 coordinate on either (L2, L3) or (R2, R3),

and each is equally likely.16 Given this belief, the expected payoff from playing action A

is the average of 1 and −2, which is −1
2
, and the payoff for action B is also −1

2
in the

same way. Hence, with this belief, playing Out is optimal, as it leads to the payoff of 0.

Player 1 can play Out in RPCE as shown by the system17:

V1 = {v′1}, v′1 = (Out, (
1

2
(v′2, v

′
3),

1

2
(v′′2 , v

′′
3)));

V2 = {v′2, v′′2}, v′2 = (L2, (v
′
1, v
′
3)), v′′2 = (R2, (v

′
1, v
′′
3));

V3 = {v′3, v′′3}, v′3 = (L3, (v
′
1, v
′
2)), v′′3 = (R3, (v

′
1, v
′′
2));

The actual version profile is (v′1, v
′
2, v
′
3).

Just as with SCE, one can refine the set of RPCE by requiring independent beliefs.

In some cases this might be viewed as an innocuous simplifying assumption, but we think

the restriction would be problematic here, because the fact that players 2 and 3 observe

each other’s play means that the extensive form and terminal node partitions provide

them with a particular sort of correlating device.18

16Note that with this belief, player 1 is certain that the actual play of 2 and 3 is deterministic and
hence independent; the correlation here is in player 1’s subjective uncertainty about which pure strategies
players 2 and 3 are using. This is the same sort of subjective correlation that SCE allows for in beliefs
about off-path play.

17Version vi’s conjecture (pv′−i, (1 − p)v′′−i) denotes the probability distribution with probability p on
v′−i and 1− p on v′′−i.

18If players 2 and 3 have trivial terminal node partitions (and so do not observe their own ex-post
payoffs) then there is no reason for player 1 to think their play has converged. In this case too RPCE
would allow player 1 to have correlated beliefs about the actions of 2 and 3, but absent the explicit
correlating device of own past moves the restriction to independent beliefs strikes us as less problematic.
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Moreover, if player 1 is restricted to hold an independent belief, the action Out cannot

be played in a RPCE. To see this, notice that for Out to be at least as good as playing A

for a version of player 1, her belief has to assign probability at least 1
3

to (R2, R3). In the

same way, for Out to be at least as good as playing B for a version of player 1, her belief

has to assign probability at least 1
3

to (L2, L3). However, any independent randomization

by players 2 and 3 leads to the situation where the minimum of the probabilities assigned

to (L2, L3) and (R2, R3) is no more than 1
4
. Hence for any independent beliefs, Out cannot

be a best response.

We note that, as in Example 5, if the terminal node partitions were discrete, player

1 could not play Out. However, the reason behind this effect of terminal node partitions

is different: Here it is that player 1 can entertain a correlated belief, which she would be

unable to have if she actually observes 2 and 3’s play.19

Example 9 (Assessment-Strategies Correlation).

Figure 9

We have allowed vi’s belief at h, (µi)h, to lie in the space ∆(∆(h) × Π−i) and not

necessarily in ∆(h)×∆(Π−i). Here we provide an example that justifies this specification.

19A similar argument can be made in Example 9 below to show that, with the discrete terminal node
partition player 1 cannot play Out and so player 4 cannot play R4.
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Consider the extensive-form game depicted in Figure 9. All players observe the ex-

act terminal node reached, except that players 1 and 4 do not distinguish among those

terminal nodes that are caused by R4.

We first show that R4 is compatible with RPCE. For example, consider the following

belief model and actual versions.

V1 = {v′1}, v′1 = (Out, (
1

2
(v′2, v

′
3, v
′
4),

1

2
(v′′2 , v

′′
3 , v
′
4)));

V2 = {v′2, v′′2}, v′2 = (L2, (v
′
1, v
′
3, v
′
4)), v′′2 = (R2, (v

′
1, v
′′
3 , v
′
4));

V3 = {v′3, v′′3}, v′3 = (L3, (v
′
1, v
′
2, v
′
4)), v′′3 = (R3, (v

′
1, v
′′
2 , v
′
4));

V4 = {v′4}, v′4 = (R4, (v
′
1, v
′
2, v
′
3));

The actual version profile is (v′1, v
′
2, v
′
3, v
′
4).

To support R4, it must be possible that 4 believes 1 plays Out once her information

set is reached. For this play to satisfy the best response condition at this information

set, we should allow for player 1 to believe that players 2 and 3’s play is correlated,

just as in Example 8. Specifically, suppose a belief µ′1 of v′1 is such that b(µ′1) assigns

equal probabilities to (L2, L3, R4) and (R2, R3, R4), and (µ′1)h assigns equal probabilities

to (xL, (L2, L3, R4)) and (xR, (R2, R3, R4)), where h is 1’s information set. This belief

satisfies coherency and accordance, and it makes 1 playing Out a best response. Notice

that player 1 knows that 2 and 3 are actually playing the coordination game on the

path of play because 4 plays R4, thus this correlated belief seems plausible, and it is

possible in RPCE when each profile of opponents’ strategies is associated with a different

assessment. However, it is impossible if only a single assessment is used for a distribution

of the opponents’ strategies. Indeed, for any single assessment at 1’s information set, 1’s

expected payoff from playing either A or B is at least 1
4
, so playing Out can never be a

best response. Hence player 4 should expect the payoff of 1 by playing L4, which means

that 4 cannot play R4.

Because the belief model underlying the play of R4 seems sensible, we would not

want to refine the set of RPCE by insisting that each version has a point distribution on

assessments. The definition of RPCE allows each version to have a non-point distribution

on assessments, and in particular it enables player 4 to play R4 in this example.

Example 10 (Accordance).
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Figure 10

We use Figure 10 to explain why the accordance condition allows for a belief (µi)h

to have different marginals over continuation strategies across different h’s. All players

observe the exact terminal node reached, except that player 3 does not observe 4’s choice

when 3 plays Out. Intuitively, if 1 plays Out1 and 3 thinks that 2 and 4 play either the

(A2, A4) or (B2, B4) equilibria regardless of 1’s play, then 1’s deviation to In1 would inform

player 3 of which equilibrium 2 and 4 are coordinating on. To model this inference, 3’s

belief about the continuation play has to vary across information sets, which the definition

of accordance allows.

We show here that (Out1, A2, Out
′′
3, A4) is a RPCE outcome while it would not be if

we strengthened the definition by replacing part 2 to the following: For all h ∈ Hi,

(µi)h(π̂−i) =
∑

π̃−i(h′)=π̂−i(h′) for all h′ after h

b(µi)(π̃−i). (1)

This stronger condition requires that the continuation play has to agree with b(µ) as

opposed to merely having a weakly smaller support.

First we show that (Out1, A2, Out
′′
3, A4) is a RPCE. In particular, it satisfies accor-

dance. To see this, consider the following belief model:

V1 = {v′1, v′′1}, v′1 = (Out1, ((v
′
2, v
′
3, v
′
4))), v′′1 = (Out1, (v

′′
2 , v
′
3, v
′′
4)));
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V2 = {v′2, v′′2}, v′2 = (A2, (v
′
1, v
′
3, v
′
4)), v′′2 = (B2, (v

′′
1 , v
′
3, v
′′
4));

V3 = {v′3}, v′3 = ((In3, In
′
3, Out

′′
3), (

1

2
(v′1, v

′
2, v
′
4),

1

2
(v′′1 , v

′′
2 , v
′′
4));

V4 = {v′4, v′′4}, v′4 = (A4, (v
′
1, v
′
2, v
′
3)), v′′2 = (B4, (v

′′
1 , v
′′
2 , v
′
3));

The actual version profile is (v′1, v
′
2, v
′
3, v
′
4).

In this belief model, player 3 assigns probability 1/2 to each of (A2, A4) and (B2, B4).

Then, when 1 plays Out1, RPCE allows for a belief in which (i) player 3 at h3 thinks that

4 will play A4; (ii) player 3 at h′3 thinks that 4 will play B4; (iii) player 3 at h′′3 thinks

that 4 will play A4 after A2, and B4 after B2. Given this belief, (In3, In
′
3, Out

′′
3) is a best

response for player 3.

If 1 thinks that 3’s version is as above, then 1 would expect payoff −2 from playing

In1, and 0 from playing Out1. So Out1 is a best response.

Now we show that (Out1, A2, Out
′′
3, A4) is not a RPCE outcome with the stronger

version of accordance that imposes (1).

To see this, note that player 3’s belief about 2 and 4’s play can only assign positive

probability to the strategy profiles (A2, A4), (B2, B4), or ((1/2A2, 1/2A4), (1/2B2, 1/2B4)).

Some observations about player 3’s incentives are in order: First, for A′′3 not to be strictly

better than Out′′3 at h′′3, player 3 cannot assign probability more than 5/6 to (B2, B4)

while for B′′3 not to be strictly better than Out′′3 at h′′3, player 3 cannot assign probability

more than 5/6 to (A2, A4).20

Next, for Out1 to be a best response for player 1, 1 has to think that 3 plays In3

or In′3 with a positive probability. This means that player 1 thinks that either player

3 at h3 thinks that 4 would play A4 with probability at least 11/12,21 or player 3 at

h′3 thinks that 4 would play B4 with probability at least 11/12. But this is impossible

under the strengthened definition of accordance because, given the conclusion above,

player 3’s belief about player 4’s continuation strategy can assign probability at most

maxp [(5/6) · (1− p) + (1/2) · p] = 5/6 to each of A4 and B4, where p in the maximand

denotes the probability that player 3 attaches to the mixed equilibrium play by players 2

and 4.

20If (B2, B4) is assigned probability 5/6, then playingA′′3 ensures the payoff of 1×(5/6)+(−5)×(1/6) = 0
because −2 is the worst payoff that player 3 can get given Out1. A similar computation applies to the
play of B′′3 at h′′3 .

21If A4 is assigned probability 11/12, then playing In3 ensures the payoff of 1 × (11/12) + (−11) ×
(1/12) = 0. A similar computation applies to case (v) as well.
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5 RPCE, RSCE, and RCE

In this section we compare RPCE with other concepts from the literature. In Subsection

5.1 we compare RPCE with RSCE, and show that RPCE “reduces” to RSCE if the

terminal node partitions are discrete and beliefs are independent. In Subsection 5.2

we compare RPCE with RCE (Rubinstein and Wolinsky, 1994), and show that when

the signal function specified in the definition of RCE gives the same information as the

partitions of the terminal nodes, RPCE is equivalent to RCE if moves are simultaneous.

5.1 Rationalizable Self-Confirming Equilibrium

In this subsection we show that RPCE is implied by RSCE if we require independent

beliefs. One part of this argument is that any independent beliefs can be reduced to

a single behavior strategy profile for the opponents, as shown by Fudenberg and Kreps

(1995); the idea is that Kuhn’s theorem allows us to associate a behavior strategy to

any probability distribution on strategies, and that with independence the profile of these

associated behavior strategies is equivalent to the original belief.

To see this formally, let us first define RSCE (notations are adjusted to accord with

ours). This concept is defined for games with discrete terminal node partitions.

Definition 8. π∗ is a rationalizable self-confirming equilibrium if there exist a belief

model V and an actual version profile v∗ such that the following five conditions hold:22

1. π∗ is generated by v∗.

2’ For each i and vi = (πi, pi), there exists µi such that (i) µi is coherent with pi, (ii)

πi is a best response to µi at all h ∈ Hi, and (iii) µi is an independent belief.23

3’. For all i and vi = (πi, pi), d(πi, π−i(v−i)) = d(π∗) for all v−i in the support of pi.

There are two main differences between this definition and that of RPCE, namely

that condition (3’) (every version expects the same distribution over terminal nodes) is

stronger than condition (3), and that observational consistency (4) is not directly imposed

in RSCE. Even with a discrete terminal node partition the way condition (3) is stated is

somewhat different than condition (3’),24 but as the next result shows this difference is

irrelevant.
22DFL allows all π̂ that have the same distribution over terminal nodes as π∗ to be RSCE, but this

difference is not important for our purpose.
23DFL required optimality only at the information sets that have positive probability under πi, but

the difference is immaterial in one-move games.
24If vi is self-confirming then d(πi, π−i(v−i)) equals d(πi, π

∗
−i) for all v−i in the support of pi, but

condition (3’) states that it is equal to d(π∗i , π
∗
−i).
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Theorem 3. Fix a game with discrete terminal node partitions.

1. If an actual version profile v∗ and a belief model V satisfy conditions (3) and (4)

then there exists a belief model V̂ such that v∗ and V̂ satisfy conditions (3’) and (4).

2. Condition (3’) implies condition (4).

The proof of this result is in the Appendix. Part 2 is not surprising: Since the

terminal node partitions are discrete, condition (3’) essentially requires that the terminal

node reached is common knowledge, so observational consistency holds. Part 1 says that

in the presence of the observational consistency condition, requiring the self-confirming

condition for hypothetical versions does not further restrict the set of equilibria. Notice

that this conclusion was not true when we considered RPCE with nondiscrete terminal

node partitions (See Example 7).

Corollary 2. In games with discrete terminal node partitions, any outcome of a RSCE

is the outcome of a RPCE with independent beliefs.

In the next example, which is taken from DFL’s Example 3.2, we show that the set of

possible outcomes can expand if we relax the definition of RSCE equilibrium by replacing

condition (3’) with condition (3).

Example 11 (DFL).

Figure 11
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Consider the game depicted in Figure 11, where all players’ terminal node partitions

are discrete. DFL argue that the outcome (u, U) is impossible in RSCE, because if 3

chooses U then 2 should play a since he observes the terminal node, and then 1 should

take r. However, if we replace condition (3’) by condition (3) in Definition 8 where

observational consistency is not imposed, this outcome becomes possible. To see this,

consider the following belief model and actual versions:

V1 = {v′1, v′′1}, v′1 = (u, (v′′2 , v
′
3)), v′′1 = (r, (v′2, v

′′
3));

V2 = {v′2, v′′2}, v′2 = (a, (v′1, v
′
3)), v′′2 = (b, (v′1, v

′′
3));

V3 = {v′3, v′′3}, v′3 = (U, (v′1, v
′
2)), v′′3 = (D, (v′′1 , v

′′
2));

The actual version profile is (v′1, v
′
2, v
′
3).

Here all the conditions in the definition of RSCE other than condition (3’) hold, as does

condition (3). Notice that v′′1 , v′′2 , and v′′3 are not self-confirming with respect to the actual

distribution π(v′1, v
′
2, v
′
3), and they are hypothetical versions and not actual ones.

The key is that the actual version of player 1, v′1, conjectures that 2 believes that 3 plays

D, and this conjecture is ruled out by observational consistency: The equation in Remark

1(a) of observational consistency applied to v′1’s belief is d(b, (u,D)) = d(b, (u, U)). But

this equation is false.

Notice that the set of SCE is the same with (3) or (3’), thus requiring optimality at

off-path information sets is the key to this example.

Finally, we have shown in Section 2 that Kreps and Wilson’s (1982) consistency implies

our restriction on beliefs. Since our restrictions do not imply consistency, the converse of

Corollary 2 need not hold.

5.2 Rationalizable Conjectural Equilibrium

The main difference between RPCE and RCE is that RPCE, like RSCE, requires players

believe others will play rationally (maximize the presumed payoff functions) as long as

they have not behaved irrationally in the past, while RCE is designed to model normal

form games and places no restrictions on play at off-path information sets.25,26 Because

25See the example in Figure 2.1 of DFL.
26Gilli (1999) proposes a related solution concept; Battigalli (1999) shows it is equivalent to RCE.
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of this difference, RPCE makes stronger predictions than RCE in most extensive-form

games. If all information sets are on every path, this distinction becomes moot, and the

two concepts become equivalent. In particular, in one-shot simultaneous-move games, we

can state the precise connection between RCE and RPCE. To do so we first define RCE.

Consider a normal-form game with players I = {1, . . . , n}, the action set Ai, A =

×i∈IAi, and A−i = ×j 6=iAj, the payoff function ui : A → R. The set of mixed strategies

are Mi = ∆(Ai), M = ×i∈IMi, and M−i = ×j 6=iMj. There is a set of private signals

Si, and a signal function gi : A → Si. gi(a) is the signal that i privately observes when

the action profile is a ∈ A. With an abuse of notation we write gi(m) for a probability

distribution over Si given the mixed profile m ∈M , called a random signal. Let σi ∈ ∆(Si)

be the general element of the set of random signals.

The strategy-signal pair (mi, σi) is said to be g-rationalized by γ ∈ ∆(M−i) if (i)

gi(mi,m−i) = σi for all m−i ∈ supp(γ), and (ii) mi is a best response against γ.

The sets of strategy-signal pairs B1, . . . , Bn are g-rationalizable if for all i, every

(mi, σi) ∈ Bi is g-rationalized by some γ such that for all m−i ∈ supp(γ) and all j,

(mj, gj(mi,m−i)) ∈ Bj.

An RCE is m∗ ∈ M such that there exists g-rationalizable sets B1, . . . , Bn such that

(m∗i , gi(m
∗)) ∈ Bi for each i.

For an extensive-form game Γ with terminal node partitions P = (P1, . . . ,Pn), let

(AΓ, gP) be the pair of normal-form representation of Γ and the profile of signal functions

(denoted by gP := (gP1 , . . . , g
P
n )) such that gPi (a) = Pi(a) for each action profile a ∈ AΓ.

Conversely, given any (A, g) with g = (g1, . . . , gn) such that gi(m) = gi(m
′) implies

mi = m′i (so that the (extended notion of) perfect recall assumption is satisfied), we

define the related simultaneous-move extensive form game ΓA, and endow it with the

terminal node partition Pg such that Pg
i (a) = gi(a) for each action profile a ∈ AΓ.

Finally, we say that a behavioral strategy π is equivalent to a mixed strategy profile

m or a mixed strategy profile m is equivalent to a behavioral strategy π if π is generated

by m according to the Kuhn’s theorem.

Now we are ready to state the formal connection between the two concepts. We omit

the proof.

Theorem 4.

1. Any RPCE in (Γ,P) is equivalent to some RCE in (AΓ, gP).

2. Any RCE in (A, g) is equivalent to some RPCE in (ΓA,Pg).

One consequence of this equivalence is that RCE, like RPCE, requires that in games

like Example 3 when player 1 plays Out1 she believes the play of the others is a Nash
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equilibrium of the subgame.27 In particular this is true even in a three-player game

where players 2 and 3 play the game of Shapley (1964), where fictitious play and smooth

fictitious play do not converge.28 Because the long-run joint distribution over actions in

the Shapley cycle is a correlated equilibrium, this example may suggest an alternative

equilibrium concept in which players expect that the empirical distribution of unobserved

on-path play is a correlated equilibrium in the subgame. We do not define this alternative

here because it is typically too inclusive.

6 Conclusion

Like RCE and RSCE, RPCE combines the idea that players have partial but objective

information about equilibrium play with the idea that players reason about the observa-

tions and incentives of others. RSCE applies to extensive-form games where players see

the realized terminal node at the end of each play of the game; RPCE generalizes this to

situations where players see only a partition of the terminal nodes. In addition, RPCE

relaxes the independent-beliefs condition of RSCE to allow for correlation.

The examples show that (1) under RPCE a player’s belief about the actions of others

can depend on whether those others get to act along the equilibrium path, (2) unobserved

on-path play provides a natural form of correlating device, (3) a player can learn about

the unobserved actions of a second player from the actions of a third, and finally, (4)

the precise implications of all of the above depend on the nature of the terminal node

partitions. In general, coarsening a player’s terminal node partition cannot restrict the

set of that player’s RPCE strategies, but it can enlarge it. We identified four reasons that

this enlargement can occur, and provided a sufficient condition under which coarsening

a player’s terminal partition has no effect on his RPCE strategies. We also showed how

RPCE reduces to RCE and RSCE in the appropriate special cases.

The Online Supplementary Appendix discusses three additional topics: The definition

of partition-confirmed equilibrium or PCE, the epistemic interpretation of observational

consistency, and the effect of changes in terminal node partitions on the outcomes under

RPCE.

27The Appendix gives a formal definition of the class of “player-1 participation games” and proves this
claim.

28Brown (1951) introduced fictitious play as a way to compute Nash equilibria. Fudenberg and Kreps
(1993) give fictitious play a descriptive interpretation in strategic form games, and point out some prob-
lems with that interpretation when the process cycles as instead of converging to constant play of a fixed
pure action profile.
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A Lemma 1

The next lemma shows that in a RPCE, any version profile to which an actual version

assigns positive probability is the actual version profile of some RPCE.

Lemma 1. Fix a RPCE π∗, a belief model V , and actual versions v∗ that support it. For

every player i, if v∗i ’s conjecture assigns positive probability to ṽ−i, then π(v∗i , ṽ−i) is also

a RPCE.

Proof. Pick player i and ṽ−i to which v∗i assigns positive probability. We will use the belief

model V to support a π(v∗i , ṽ−i) as a RPCE. Conditions 2 and 4 of the definition of RPCE

hold for all versions in V , so they hold for strategy π(v∗i , ṽ−i) and the belief model V as

well. So it remains to show that, if (v∗i , ṽ−i) is the actual version profile, then v∗i satisfies
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the self-confirming condition with respect to π(v∗i , ṽ−i), and that ṽj for each player j 6= i

does as well. First, since v∗i satisfies the self-confirming condition in the original RPCE,

and ṽ−i is in the support of the conjecture of v∗i by assumption, v∗i is self-confirming with

respect to π(v∗i , ṽ−i). Second, since v∗i satisfies observational consistency in the original

RPCE, Dj(πj(ṽj), π−j(v̂−j)) = Dj(π(v∗i , ṽ−i)) for all v̂−j in the support of the conjecture

of ṽj. Thus ṽj satisfies the self-confirming condition with respect to π(v∗i , ṽ−i).

Remark 2. The proof of Lemma 1 shows that even the hypothetical version ṽj must

satisfy the self-confirming condition with respect to π(v∗i , ṽ−i) if v∗i assigns positive prob-

ability to ṽ−i. This does not imply that ṽj is self-confirming with respect to π∗. Indeed,

imposing that condition (i.e. imposing condition (3) for all versions and not just the

actual ones) would be unduly restrictive, as we show in Example 7.

B A Theorem for Participation Games

The class of participation games generalizes some of the examples from the text. In-

tuitively, this is a game in which player 1 has an option to play Out at the root node

that prevents her from observing the consequence of the opponents’ actions at the ter-

minal nodes, and other players play a game, not knowing player 1’s action. Formally, a

player-1 participation game Γ (with a payoff function u and the set of players I) is an

extensive-form game with the following properties: Fix player 1’s set of actions A1 such

that one of its element is Out, and another extensive-form game Γ′ with a payoff function

v and the set of players I \ {1}. Denote by n(x, a) the node in Γ that corresponds to x in

Γ′ after action a ∈ A1 is taken.

• At the root node player 1 moves, choosing between In and Out.

• Whichever action is taken, Γ′ is played after player 1’s decision.

• Nodes n(x, a) and n(x′, a′) for x, x′ ∈ X \ Z are in the same information set in Γ if

and only if x and x′ are in the same information set in Γ′.

• Terminal nodes n(z, a) and n(z′, a′) for z, z′ ∈ Z are in the same cell of the terminal

node partition of player i if and only if z and z′ are in the same cell for i and a = a′,

except for the following exception.

• Terminal nodes n(z,Out) and n(z′, Out) for z, z′ ∈ Z are in the same cell of the

terminal node partition of player 1.
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• ui(n(z, In)) = vi(z) for all i, ui(n(z,Out)) = vi(z) for all i 6= 1, and u1(n(z, Out)) =

0.

Theorem 5. Fix a player-1 participation game Γ. If player 1 plays Out with probability

1 in a RPCE, then there is a convex combination of RPCE of Γ′ such that no action of

player 1 has a strictly positive payoff.

Proof. Fix a RPCE in which player 1 plays Out with probability 1. Pick a version profile

for player 1’s opponents ṽ−1 to which the conjecture of v∗1 assigns positive probability. By

Lemma 1, π(v∗1, ṽ−1) is a RPCE of Γ, and it is clear from the proof of the lemma that the

same belief model V that supports the original RPCE can be used to support π(v∗1, ṽ−1)

as a RPCE, where the actual version profile is (v∗1, ṽ−1). By the definition of a player-1

participation game, player 1’s action does not affect any opponent’s payoff or observation.

Thus π−1(ṽ−1) is trivially a RPCE of Γ′, with the belief model simply deleting player 1.

Since this is true for any ṽ−1 in the support of the conjecture of v∗1, and the strategy of

the actual version of player 1 is a best response to her belief in the original RPCE, the

proof is complete.

Corollary 3. Fix a player-1 participation game Γ such that Γ′ is a simultaneous-move

game with discrete terminal node partitions and a unique Nash equilibrium. If player 1

plays Out with probability 1 in a RPCE of Γ, then no action of player 1 gives her a positive

payoff against this unique Nash equilibrium.

C Proof of Theorem 3

Proof.

Part 1: Fix an actual version v∗ and a belief model V that satisfies conditions (3)

and (4). Construct a new belief model V̂ that is identical to the original one, except that

all versions that do not satisfy the equality in (3’) in V are eliminated and each version’s

conjecture assigns the same weight to the versions that are still in V̂ . Specify the same

actual version profile as in V (such versions are not eliminated because of condition (3)).

By construction, condition (3’) holds. Hence by part 2 that we prove below, condition (4)

holds as well. Finally, we check that the sum of probabilities assigned by the conjecture

of any remaining version is unity. To see this, note first that condition (3) implies that

the actual version v∗i = (π∗i , p
∗
i ) must satisfy (π∗i , π−i(v−i)) = d(π(v∗)) for all v−i in the

support of p∗i . Also, for ṽj = (π̃j, p̃j), whenever d(π̃j, π−j(v−j)) = d(π(v∗)) for all v−j in

the support of p̃j, observational consistency implies that for any version of j’s opponent

v̂k = (π̂k, p̂k) in the support of p̃j, d(π̂k, π−k(v−k)) = d(π(v∗)) for all v−k in the support of
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v̂k. This means that no version who is assigned a positive probability by any remaining

version is eliminated, implying that the sum of probabilities is still unity.

Part 2: Since terminal node partitions are discrete, the observational consistency

condition for version vi = (πi, pi) reduces to the requirement that pi(v−i) > 0 implies,

for each j 6= i, d(πj(vj), π−j(v−j)) = d(πi, π−i(v−i)) for all v−j in the support of vj’s

conjecture. But the conclusion of this requirement is implied by condition (3’), as (3’)

implies that both sides of the equality are equal to d(π∗).
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