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Abstract

Fudenberg and Levine (1993a) introduce the notion of self-confirming
equilibrium, which is generally less restrictive than Nash equilibrium. Fuden-
berg and Levine also define a concept of consistency and claim in their Theo-
rem 4 that with consistency and other conditions on beliefs, a self-confirming
equilibrium has a Nash equilibrium outcome. We provide a counterexample
that disproves Theorem 4 and prove an alternative by replacing consistency
with a more restrictive concept, which we call strong consistency. In games
with observed deviators, self-confirming equilibria are strongly consistent
self-confirming equilibria. Hence, our alternative theorem ensures that de-
spite the counterexample, the corollary of Theorem 4 is still valid.
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1. INTRODUCTION

Fudenberg and Levine (1993a; henceforth “FL”) introduce the notion of self-

confirming equilibrium.2 In general, it is less restrictive than the notion of Nash

equilibrium. This is mainly because beliefs can be incorrect at off-path informa-

tion sets in a self-confirming equilibrium, which results in the possibility that two

players have different beliefs about the strategy used by a third player. This is

illustrated in the “horse” example of Fudenberg and Kreps (1988). FL define a

concept of consistency in an attempt to preclude this possibility, and claim in their

Theorem 4 that with consistency and other conditions on beliefs, a self-confirming

equilibrium has a Nash equilibrium outcome. We provide a counterexample that

disproves Theorem 4 and prove an alternative by replacing consistency with a more

restrictive notion, which we call strong consistency.

Briefly, consistency requires that each player’s belief be correct at the infor-

mation sets that are reachable if he sticks to his equilibrium strategy and the

opponents deviate.3 Strong consistency further requires that each player’s belief

be correct at certain other information sets —those that are reachable if he sticks

to actions that he plays on the equilibrium path, the opponents deviate, and he

himself deviates at off-path information sets.

As a consequence of the alternative theorem proved here, we have that in games

with observed deviators, in particular in two-person games, strong consistency is

sufficient to ensure a Nash equilibrium outcome, so the corollary of FL’s Theorem

4 is valid.

2For related issues, see also Battigalli (1987), Fudenberg and Kreps (1995), Fudenberg and
Levine (1993b), and Kalai and Lehrer (1993).

3For a justification of consistent self-confirming equilibrium, see FL and Fudenberg, Kreps,
and Levine (1988).
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2. NOTATION, DEFINITIONS, AND THEOREM 4 OF FL

We follow the same notation as in pp. 525–527 of FL. Here we review and

expand it.

Fix an I-player game in extensive form with perfect recall. X is the set of nodes;

0 are the moves of Nature; Hi, H, H−i are the sets of information sets; A(hi) is

the set of actions at hi; Si, S, S−i are the sets of pure strategies and profiles;

Σi, Σ, Σ−i are the sets of mixed strategies and profiles; Πi, Π, Π−i are the sets of

behavior strategies and profiles; π̂i(·|σi) is the behavior strategy induced by (giving

the same outcome as) σi; H(·) is the set of the information sets reachable under

the argument (strategy or strategy profile)4; µi is i’s belief (a probability measure

over Π−i); ui(·) is i’s expected utility given the argument (a strategy profile or a

strategy-belief pair). We assume that each player knows (at least) his own payoff

function, the extensive form of the game, and the probability distribution over

Nature’s moves.

Some new notation follows: N is the set of players. We let Π−i,j = ×k 6=i,jΠk.

Let p(z|b) denote the probability of reaching the terminal node z given a strategy

profile or strategy-belief pair b.

FL define the following concepts: An information set hj, j 6= i, is relevant to

player i given a belief µi if there exists si ∈ Si such that p(hj|si, µi) > 0. The set

of information sets that are relevant to i given µi is denoted Ri(µi). A game has

observed deviators if for all players i, all strategy profiles s ∈ S and all deviations

s′i 6= si, h ∈ H(s′i, s−i)\H(s) implies that there is no s′−i with h ∈ H(si, s
′
−i). In FL,

it is proved that every two-player game of perfect recall has observed deviators.5

4Notice that, in contrast to FL, we do not distinguish between what they denote H(·) and
H̄(·).

5See Lemma 2 of FL.
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We say that profile σ ∈ Σ is equivalent to another profile σ′ ∈ Σ if they lead to

the same distribution over terminal nodes, that is, p(z|σ) = p(z|σ′) for all z ∈ Z.

Definitions 1 and 2 of FL Profile σ ∈ Σ is a self-confirming equilibrium if

∀i ∈ N , ∀si ∈ support(σi), ∃µi s.t.

(i) si maximizes ui(·, µi), and

(ii) µi[{π−i|πj(hj) = π̂j(hj|σj)}] = 1 ∀j 6= i, ∀hj ∈ H(si, σ−i).

It is a consistent self-confirming equilibrium if “∀hj ∈ H(si, σ−i)” in (ii) above

is replaced by a stronger requirement, “∀hj ∈ H(si)”.

A self-confirming equilibrium σ is said to have unitary beliefs if for each player

i a single belief µi can be used to rationalize every si ∈ support(σi). That is, in

Definition 1 of FL, we would replace “∀si ∈ support(σi), ∃µi s.t.” with “∃µi s.t.

∀si ∈ support(σi),”. A self-confirming equilibrium σ is said to have independent

beliefs if for each player i and each si ∈ support(σi), the associated belief µi satisfies

µi(×j 6=iΠ̄j) = ×j 6=iµi(Π̄j × Π−i,j) for all (×j 6=iΠ̄j) ⊆ Π−i where Π̄j ⊆ Πj for all

j ∈ N .

The set of consistent self-confirming equilibria is strictly smaller than that of

self-confirming equilibria, while it is strictly larger than that of Nash equilibrium.6

It is defined in FL in an attempt to rule out the possibility of a non-Nash outcome,

as is claimed in Theorem 4 of FL.

Theorem 4 of FL Every consistent self-confirming equilibrium with inde-

pendent, unitary beliefs is equivalent to a Nash equilibrium.

The next section provides a counterexample to this theorem. It also establishes

6The examples in which consistent self-confirming equilibrium distinguishes itself from self-
confirming equilibrium and Nash equilibrium are given in FL. See Example 1 of FL for self-
confirming equilibrium, and see Examples 2, 3, and 4 of FL (and the game in Figure 1 of the
present paper which we will explain in the next section) for Nash equilibrium.
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that Theorems 1 and 3 of FL are incorrect as well, and the proof of their Theorem

2 needs a correction.

3. A COUNTEREXAMPLE

Consider the game depicted in Figure 1. In this game, player 1 moves first at

his information set h1, choosing between L1 and R1. Knowing 1’s choice, player 2

moves next. After L1 (resp. R1), 2 chooses between L2 and R2 at his information

set h2 (resp. l2 and r2 at h′
2). If L1 and L2 are chosen, each player receives the

payoff 2, and if R1 and r2 are chosen, each player receives the payoff 1. Otherwise, 3

gets the move at his information set h3, not knowing 1 and 2’s choices. Regardless

of 1 and 2’s choices, payoffs are (3, 0, 0) if 3 plays L3 and (0, 3, 0) if 3 plays R3.

We will show that (R1, r2) is played in a consistent self-confirming equilibrium

with independent, unitary beliefs while it is not a Nash equilibrium outcome.

To see that (R1, r2) is played in a consistent self-confirming equilibrium with

independent, unitary beliefs, consider the strategy profile s∗ = (R1, (L2, r2), R3).

We first verify that this is a consistent self-confirming equilibrium by considering

the beliefs of players 1, 2, and 3 to be ((R2, r2), R3), (R1, L3), and (R1, (L2, r2)),

respectively. Table 1 presents these strategies and beliefs. It is easy to see that

no player has an incentive to deviate from s∗ under these beliefs: By playing L1

player 1 expects the payoff 0; by playing l2 player 2 expects the payoff 0; and

h2 and h3 lie off the equilibrium path so that there is no incentive to deviate at

these information sets. Thus, it suffices to show that each player has the correct

belief at the information sets reachable under his equilibrium strategy.7 The beliefs

7Player i’s belief is defined as a measure on the space Π−i, so the term “correct belief at
information set hj” is not appropriate; throughout this paper, we use it to mean “belief that is
correct at hj” in order to simplify exposition.
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specified above (or in Table 1) are incorrect only in that player 1 believes 2 will play

R2 at h2 and player 2 believes 3 will play L3 at h3. These incorrect beliefs hold in a

consistent self-confirming equilibrium because h2 is not included in H(R1), and h3

is not included in H((L2, r2)). Thus s∗ is a consistent self-confirming equilibrium.

Moreover, s∗ has independent, unitary beliefs, because correlations are not allowed

in each player’s belief, and beliefs are concentrated on singletons.

Next, we show that (R1, r2) cannot be played in a Nash equilibrium. To see

this, suppose the contrary, i.e., that (R1, r2) is played in a Nash equilibrium. If

player 3 played R3 with a probability greater than 1/3, then player 2 would take

l2 with probability 1. So player 3 must be playing L3 with a probability at least

2/3. This means that if player 1 plays L1, he obtains at least 2 as his payoff. Thus

no matter how player 3 plays, at least one of players 1 and 2 has an incentive to

deviate. This means that (R1, r2) cannot be played in a Nash equilibium.8

In FL’s proof of their Theorem 4, they construct a strategy profile π′ that is

supposed to be a Nash equilibrium. In our example, π′ is (R1, (R2, r2), L3), but

this is not a Nash equilibrium since player 1 would have an incentive to deviate.9

The example also establishes that Theorems 1 and 3 of FL are incorrect as well,

and the proof of their Theorem 2 needs a correction. Theorem 1 claims that, even if

we relax condition (ii) for consistent self-confirming equilibrium by allowing beliefs

to also be incorrect at information sets that cannot be reached when opponents’

equilibrium strategies are fixed, the set of possible strategy profiles does not change.

In our example, strategy profile (R1, (L2, r2), L3) is not a consistent self-confirming

8It would be easy to see that this example holds for an open set of payoffs around the payoffs
we give. Thus the example is not a trivial one.

9There is an illogical jump when FL claim “ui(si, π
′
−i) = ui(si, π

i
−i)” holds for all si ∈ Si. In

fact, it is satisfied only for all si ∈ support(σi). Moreover, π′ is not well defined for information
sets which are reached only by deviations made by more than one player.
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equilibrium since player 1, being restricted to believe that player 3 will play L3,

has an incentive to deviate. On the other hand, this strategy profile is allowed in

the relaxed condition: Since player 2’s strategy makes h3 unreachable, 1’s belief

about 3’s strategy can be arbitrary.10

Theorem 3 claims that, for each consistent self-confirming equilibrium of a game

whose information sets are ordered by precedence, there is an equivalent extensive-

form correlated equilibrium of Forges (1986). It is straightforward to check that

s∗ is not an extensive-form correlated equilibrium.11

Finally, Theorem 2 claims that, in games with observed deviators, self-confirming

equilibria are consistent self-confirming. This claim itself is correct, but FL’s proof

is incorrect because it uses the result of Theorem 1. The claim is a consequence of

our Proposition 2.
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10Theorem 1 can be modified without loss of the intuition by slightly modifying one of its
conditions. Specifically, replace condition (iii) of the Definition in Section 4 with condition (iii’)
as follows:

Condition (iii’): µi[{π−i|πj(hj) = π̂j(hj |σj)}] = 1 ∀j 6= i, ∀hj ∈ Hi(si, σ−i) ∩ H(σj).
11Theorem 3 and its corollary can be shown to be true by replacing consistency with strong

consistency, which we will define in Section 4.
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player 1 player 2 player 3
equilibrium strategy profile s∗ R1 L2, r2 R3

player 1’s belief · R2, r2 R3

player 2’s belief R1 · L3

player 3’s belief R1 L2, r2 ·

Table 1

4. STRONGLY CONSISTENT SELF-CONFIRMING EQUILIBRIUM AND

NASH EQUILIBRIUM

To define the equilibrium concept that enables us to rule out non-Nash out-

comes, we need one more piece of notation. Let

Hi(s
∗
i , σ−i) =

{
h

∣∣ h ∈ H(si) for some si ∈ Si s.t. si(h
′) = s∗i (h

′) ∀h′ ∈ H(s∗i , σ−i)

}
be the set of action-possible information sets for player i under (s∗i , σ−i), that is, the

set of information sets that can be reached when player i conforms to s∗i at nodes

that are reached under (s∗i , σ−i). Note that the action-possible information sets for

a player are determined not only by his own strategy but also by his opponents’

strategies.

Definition Profile σ ∈ Σ is a strongly consistent self-confirming equilibrium

if ∀i ∈ N , ∀si ∈ support(σi), ∃µi s.t.

(i) si maximizes ui(·, µi), and

(iii) µi[{π−i|πj(hj) = π̂j(hj|σj)}] = 1 ∀j 6= i, ∀hj ∈ Hi(si, σ−i).

Proposition 1 Every strongly consistent self-confirming equilibrium with

independent, unitary beliefs is equivalent to a Nash equilibrium.

The difference between consistency and strong consistency can be best seen in

the example in the previous section: (R1, r2) is not played in any strongly consistent
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self-confirming equilibrium: If it were, then player 2 must have the correct belief

at h3. This is because h3 can be reached by the action combination (L1, R2), which

does not contradict 2’s on-path play, namely r2. Because player 1 must also have

the correct belief at h3, players 1 and 2’s beliefs about the strategy of player 3

must coincide. This implies (R1, r2) cannot satisfy the best-response condition

(condition (i) of the Definition), as we have seen already.

A strongly consistent self-confirming equilibrium can have a non-Nash out-

come.12 This is immediate because Proposition 2 below ensures that strongly con-

sistent self-confirming equilibrium reduces to self-confirming equilibrium in games

with observed deviators.

Proposition 2 In games with observed deviators, hence a fortiori in two-

player games, self-confirming equilibria are strongly consistent self-confirming.

We omit the proof for this proposition. It is just a matter of showing that in

games with observed deviators, action-possible information sets for player i that

lie off the equilibrium path are not relevant to him.13

This establishes that the following result from FL holds without any modifica-

tion as a corollary of Proposition 1.

Corollary In games with observed deviators, and hence a fortiori in two-

player games, every self-confirming equilibrium with independent, unitary beliefs is

equivalent to a Nash equilibrium.

12Examples where outcomes (and hence strategy profiles) arise which are not Nash but strongly
consistent self-confirming are given in FL. (See Examples 2, 3, and 4 of FL.)

13Notice that the game in Figure 1 does not have observed deviators. This is because player
3 cannot tell which of players 1 and 2 has deviated from (R1, (R2, r2)) when he gets his turn to
move at h3. Thus the assumption of the proposition fails, allowing for the difference between
self-confirming equilibrium and strong consistent self-confirming equilibrium, which we have seen
already.
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Now, we are going to prove Proposition 1. Intuitively, the proof of the main

theorem is as follows: Fix a strongly consistent self-confirming equilibrium, σ, and

construct a new strategy profile, σ′, as follows: π̂k(σ
′
k)(hk) is how player i believes

k will play at the information set hk if hk is relevant to player i. For an information

set which is irrelevant to all the players, the strategy is specified arbitrarily by how

player j actually plans to play. This construction is well defined because strong

consistency ensures, as we will see, that if an information set hk is relevant to both

players i and j, they have the correct beliefs at hk so that they have the same

beliefs at hk. Thus σ′ is a Nash equilibrium because σ′
−i is constructed according

to player i’s belief µi whenever an information set in question is relevant to i, and

i takes a best response against µi by the condition (i) of the Definition. A formal

proof is given below.

Proof of Proposition 1

Let σ be a strongly consistent self-confirming equilibrium with independent,

unitary beliefs. The condition of unitary beliefs ensures that a single belief ra-

tionalizes all si ∈ support(σi). For each player i, take one such belief, denoted

µi.

Before proceeding, we need one more piece of notation: πµi

−i ∈ Π−i is defined

by πµi

−i = ×j 6=iπ
µi

j where for each hj ∈ Hj and each aj ∈ A(hj):

πµi

j (hj)(aj) =

∫
Πj

πj(hj)(aj)µi(dπj × Π−i,j).

We now construct each player k’s behavior strategy π′
k by the rule14:{

π′
k(hk) = πµi

k (hk) if ∃i ∈ N, i 6= k s.t. hk ∈ Ri(µi)

π′
k(hk) = π̂k(σk)(hk) if hk ∈ H \

∪
i∈N\{k} Ri(µi).

(1)

14This construction is different from the original in FL.
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The construction of π′
k in (1) is well defined. To see this, first observe that

Ri(µi) ⊆
∪

si∈support(σi)
Hj(sj, σ−j) holds. This is because player i’s belief about j’s

strategy is correct at on-path information sets, by condition (iii) of the Definition.

By the condition of unitary beliefs, this implies that player j has the correct belief

at all hk ∈ Ri(µi). Similarly, player i has the correct belief at all hk ∈ Rj(µj). Thus

if hk ∈ Ri(µi) and hk ∈ Rj(µj), i 6= k 6= j, the beliefs of players i and j about k’s

strategy at the information set hk are correct, so in particular πµi

k (hk) = π
µj

k (hk)

holds.

Now, construct each player i’s strategy σ′
i and belief µ′

i by

σ′
i = σ̂i(π

′
i), µ′

i[{π′
−i}] = 1, (2)

where σ̂i(πi) is a mixed strategy induced by (giving the same outcome as) πi.

We will show that this σ′ is a Nash equilibrium.

Because of the condition of independent beliefs, from the Lemma in the Ap-

pendix, for all s′i ∈ Si,

p(·|s′i, π
µi

−i) = p(·|s′i, µi), (3)

ui(s
′
i, π

µi

−i) = ui(s
′
i, µi), (4)

H(πµi

−i) \ Hi = Ri(µi). (5)

Now define µ′′
i such that

µ′′
i ({π

µi

−i}) = 1. (6)

Then from (5) and (6),

Ri(µi) = Ri(µ
′′
i ). (7)

For Q ⊆ H−i, define ΠQ
−i = ×h∈Q∆(A(h)) and Π∼Q

−i = ×h∈H−i\Q∆(A(h)), and

then define µQ
i to satisfy µQ

i (BQ
−i) = µi(B

Q
−i × Π∼Q

−i ) for every BQ
−i ⊆ ΠQ

−i.
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By (1), (2), and (6),

µ
′Ri(µi)
i = µ

′′Ri(µi)
i .

From this and (7), we can apply Lemma 1 of FL15 to have for all s′i ∈ Si,

p(·|s′i, µ′
i) = p(·|s′i, µ′′

i ) and ui(s
′
i, µ

′
i) = ui(s

′
i, µ

′′
i ),

which mean, according to (2) and (6), for all s′i ∈ Si,

p(·|s′i, π′
−i) = p(·|s′i, π

µi

−i) and ui(s
′
i, π

′
−i) = ui(s

′
i, π

µi

−i). (8)

From (4) and (8), we have for all s′i ∈ Si,

ui(s
′
i, π

′
−i) = ui(s

′
i, µi).

Because of condition (i) of the Definition, for all si ∈ support(σi), for all s′i ∈ Si,

ui(si, µi) ≥ ui(s
′
i, µi).

From the above two expressions and (2), we obtain: ∀i ∈ N , ∀si ∈ support(σi),

for all s′i ∈ Si,

ui(si, σ
′
−i) ≥ ui(s

′
i, σ

′
−i).

This inequality implies that σ′ is a Nash equilibrium if we establish that σ

and σ′ are equivalent, because then we can replace “support(σi)” in the above

inequality by “support(σ′
i)”.16 Thus to conclude the proof, it now suffices to show

15Lemma 1 of FL states that: “If µi and µ̂i are two distributions on Π−i such that µ
R(µi)
i =

µ̂
R(µi)
i , then (a) R(µi) = R(µ̂i), and (b) ui(si, µi) = ui(si, µ̂i) for all si.” Also p(·|si, µi) =

p(·|si, µ̂i) for all si ∈ Si is implicit in this result.
16To see this, first note that fixing σ′

−i, “∀si ∈ support(σi)” in the last inequality can be
replaced by “∀si s.t.

[
∃s∗i ∈ support(σi) s.t. [∀hi ∈ H(s∗i , σ

′
−i), si(hi) = s∗i (hi)]

]
”. Now, we have

that if a) ∃s∗i ∈ support(σ′
i) s.t. [∀hi ∈ H(s∗i , σ

′
−i), si(hi) = s∗i (hi)],” then b) ∃s∗i ∈ support(σi)

s.t. [∀hi ∈ H(s∗i , σ
′
−i), si(hi) = s∗i (hi)]” because if b) doesn’t hold, we have Z(si)\Z(σi, σ

′
−i) 6= ∅.

But this implies Z(si) \ Z(σ′
i, σ

′
−i) 6= ∅ by the assumption that σ is equivalent to σ′. But this

contradicts a). So we can replace “∀si ∈ support(σi)” by “∀si s.t.
[
∃s∗i ∈ support(σ′

i) s.t.
[∀hi ∈ H(s∗i , σ

′
−i), si(hi) = s∗i (hi)]

]
”. A special case of this is “∀si ∈ support(σ′

i)”.
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that σ and σ′ are equivalent. To see this, first observe that, for each player i,

condition (iii) and H(si, σ−i) ⊆ Hi(si, σ−i) imply that, for all s′i ∈ support(σi),

p(·|s′i, σ−i) = p(·|s′i, µi).

From this and (2), (3) and (8), we obtain, for all s′i ∈ support(σi),

p(·|s′i, σ−i) = p(·|s′i, σ′
−i)

This equality means that σ and σ′ are equivalent. This concludes the proof.

(Q.E.D.)

Appendix

Lemma If profile σ ∈ Σ has independent beliefs, for all i ∈ N , si ∈

support(σi), and the associated belief µi, then p(·|s′i, π
µi

−i) = p(·|s′i, µi), ui(s
′
i, π

µi

−i) =

ui(s
′
i, µi), and H(πµi

−i) \ Hi = Ri(µi) hold for all s′i ∈ Si.

Proof of Lemma

Define h(aj) = A−1(aj) to be the information set where the action aj is possible.

The path of actions to z ∈ Z, ã(z), is the set of actions which are necessarily taken

to get to the terminal node z. Let Z(si) be the set of the terminal nodes reachable

under si; For all z ∈ Z,

p(z|s′i, π
µi

−i) =
∣∣{z} ∩ Z(s′i)

∣∣· ∏
aj∈ã(z),j 6=i

(∫
Πj

πj(h(aj))(aj)µi(dπj × Π−i,j)

)

=
∣∣{z} ∩ Z(s′i)

∣∣· ∫
ΠI

· · ·
∫

Πi+1

∫
Πi−1

· · ·
∫

Π1

( ∏
aj∈ã(z),j 6=i

πj(h(aj))(aj)

)
µi(×

j 6=i
dπj)

=
∣∣{z} ∩ Z(s′i)

∣∣· ∫
Π−i

( ∏
aj∈ã(z),j 6=i

πj(h(aj))(aj)

)
µi(dπ−i)

=

∫
Π−i

p(z|s′i, π−i)µi(dπ−i)

= p(z|s′i, µi)
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In particular, the second equality follows from the condition of independent

beliefs. Thus under this condition, given s′i and µi, the distribution over the

terminal nodes when players j 6= i follow πµi

−i is identical to what i believes in

his belief µi. The other two equations follow, that is, ui(s
′
i, π

µi

−i) = ui(s
′
i, µi) and

H(σ̂−i(π
µi

−i)) \ Hi = Ri(µi) hold. (Q.E.D.)
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coni”, Milano.

[2] Forges, F. (1986): “An Approach to Communication Equilibria,” Economet-
rica, 54, 1375-1386.

[3] Fudenberg, D., and D. M. Kreps (1988): “A Theory of Learning, Experimen-
tation and Equilibrium in Games,” mimeo, Stanford.

[4] —– (1995): “Learning in Extensive-Form Games I. Self-Confirming Equilibria,”
Games and Economic Behavior, 8, 20-55.

[5] Fudenberg D., D. M. Kreps, and D. K. Levine (1988): “On the Robustness of
Equilibrium Refinements,” Journal of Economic Theory, 44, 354-380.

[6] Fudenberg, D., and D. K. Levine (1993a): “Self-Confirming Equilibrium,”
Econometrica, 61, 523-545.

[7] —– (1993b): “Steady State Learning and Nash Equilibrium,” Econometrica,
61, 547-573.

[8] Kalai, E., and E. Lehrer (1993): “Rational Learning Leads to Nash Equilib-
rium,” Econometrica, 61, 1019-1045.

14


