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This Online Appendix consists of four sections. Appendix B complements the

discussion in Section 5.2 by considering a version of an incentive to end the game

and showing that long voting occurs in the unique equilibrium. In Appendix C, we

consider the environment with asymmetry analyzed in Section 6.1 and solve for the

welfare bounds of the inconsistent strategy equilibria in the general asymmetric model.

Appendix D provides a complete proof of Proposition 3, which is an adaptation of

other proofs as discussed in Appendix A.7. In Appendix E, we discuss two examples

for the model with abstention in Section 6.3.

B Further Discussion for Section 5.2

In Section 5.2, we considered incentives not to end the game. Here, we provide a

model with incentives to end the game, and show a long voting result. We note that

the objective of this section is not to declare that long voting is a ubiquitous result.

Rather, we would like to point out that the long voting result is not an artifact that

only results from the incentive not to end.

We consider the following model. Suppose that, when voter k does not receive

a signal, independently with probability η > 0, she is a decisive type that receives

additional payoff D > 1 from voting for X when the history has n times of X.
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Suppose D does not depend on the action (thus, the last voter 2n + 1 would simply

ignore this additional D payoff). Call this game the decisive-type game.

Theorem 8. In any decisive-type game, there is no pure consistent strategy equi-

librium such that the game ends before reaching voter 2n when no voter receives a

signal.

Proof. The proof closely follows that of Theorem 5. Fix a pure consistent strategy

equilibrium. Suppose that if no voter gets a signal and no voter is a decisive type,

on the path of play, k is the voter who ends the game and k < 2n. Suppose without

loss of generality that k plays A on the default sequence.

Voter k has seen n times of action A and k − n − 1 times of action B. Let l be

the number of voters before k who has seen n times of action A. The posterior on α

is thus

P (α) =
(1− ε)k−n

(1− ε)k−n + (1− ε)n+1
=

1

1 + (1− ε)2n+1−k .

If voter k plays A, then the game ends and her expected payoff becomes P (α).

If voter k votes for B instead, then by Bayes rule each subsequent voter who

receives her turn to vote and receives no signal assigns probability 1 to state β. This

implies that she votes for B because voting for A results in the expected payoff of 0

while voting for B ensures a strictly positive payoff due to the event in which all the

subsequent voters receive signal b.

Let q be the probability that voter 2n + 1 assigns to A when he does not receive

a signal. Then, k’s payoff if she plays B is

P (α)
[
1− (1− η)2n−k(1− ε)2n+1−k(1− q)

]
+(1−P (α))

[
(1− (1− ε)η)2n−k(ε+ (1− ε)(1− q))

]
.

Let this be f(q). Note that

f(0) = P (α)
[
1− (1− η)2n−k(1− ε)2n+1−k]+ (1− P (α))(1− (1− ε)η)2n−k

> P (α)
[
1− (1− η)2n−k(1− ε)2n+1−k]+ (1− P (α))(1− η)2n−k

=
1− (1− η)2n−k(1− ε)2n+1−k + (1− ε)2n+1−k(1− η)2n−k

1 + (1− ε)2n+1−k

=
1

1 + (1− ε)2n+1−k = P (α).
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Also,

f(1) = P (α) + (1− P (α))(1− (1− ε)η)2n−kε > P (α).

So f(q) > P (α) for both q = 0, 1. This means that k would be better off playing B

than A, contradicting the assumption that k plays A in the fixed equilibrium. The

proof is complete.

C Inconsistent Strategies under General Asymmet-

ric Voting

Consider the general voting model with (p, εa, εb, K, L, γα, γβ). Let

R̄ := γαp+ γβ(1− p)−min{γαp(1− εa)N , γβ(1− p)(1− εb)N}.

Note that in the symmetric case (i.e., p = 1
2
, εa = εb = ε, K = L = n + 1, and

γα = γβ = 1), R̄ reduces to R̄n that we defined in Section 4.1.

Consider a social choice function f : {a, b, ∅}2n+1 → ∆({A,B}) that returns a

probability distribution over outcomes for each realization of signals of all the N

voters. Note that for any strategy profile σ in our original game, there is a social

choice function f that achieves the same distribution over outcomes conditional on

any realization of the state and the signals. Let F be the space of all social choice

functions. Notice that a social choice function f ∈ F determines the ex ante expected

payoff to each voter. Let this payoff be R(f).

Theorem 9. Consider the general voting model with (p, εa, εb, K, L, γα, γβ).

1. For any (p, εa, εb, K, L, γα, γβ), there is an equilibrium σ that achieves the payoff

R̄.

2. For all f ∈ F,R(f) ≤ R̄.

3. (a) If K ≥ 3, then there is ε̄ > 0 such that for all εa ∈ (0, ε̄), there is an

equilibrium that achieves the payoff of pεa + 1− p.

(b) If L ≥ 3, then there is ε̄ > 0 such that for all εb ∈ (0, ε̄), there is an

equilibrium that achieves the payoff of p+ (1− p)εb.
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4. The expected payoff from any pure strategy equilibrium is at least min{p+ (1−
p)εb, pεa + 1− p}, that is, it isp+ (1− p)εb if p(1− εa) < (1− p)(1− εb)

pεa + 1− p if p(1− εa) > (1− p)(1− εb)
.

Recall that the welfare for the consistent strategy equilibria depend on K and L

(Corollary 2). Parts 2 and 4 of the above theorem show that the welfare bounds for

inconsistent strategy equilibria do not depend on K or L.

Proof. Part 1:

Fix (p, εa, εb, γα, γβ). Without loss of generality, assume γαp(1 − εa)N ≤ γβ(1 −
p)(1− εb)N . For any K and L, the following strategy profile σ̄ is an equilibrium and

achieves the ex ante payoff R̄.

• For any k = 1, . . . , K − 1, voter k chooses B if she receives a; otherwise she

plays A.

• For any k = K, . . . , N , voter k uses a consistent strategy. If he does not receive

a signal, then (i) k plays B if he observes that voters 1, . . . , K − 1 play A and

voters K, . . . , k − 1 play B, and (ii) k plays A otherwise.

Note that this is a pure strategy profile and is not consistent. Its default sequence is

(A, . . . , A,B, . . . , B), where A continues K − 1 times and then B continues L times.

To see that each voter chooses a best response, observe first that it is immediate that

any voter who receives a signal is taking a best response. Also, observe that once

there is a deviation from the default sequence, then voters take a best response given

a belief that the first deviator from the default sequence has received a signal and

followed the equilibrium strategy (such a belief can easily be shown to be consistent

in the sense of Kreps and Wilson (1982)). So suppose that the voters 1 through k− 1

have followed the default sequence, and suppose that voter k receives no signal. The

posterior on α is P (α) = p(1−εa)k
p(1−εa)k+(1−p)(1−εb)

. If k follows the specified strategy, then

her payoff is

γαP (α)(1− (1− εa)N−k) + γβ(1− P (α)) · 1. (9)

If k deviates, her payoff is γαP (α) if k ≥ K. In this case, k is taking a best response
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if and only if

γαP (α)(1− (1− εa)N−k) + γβ(1− P (α)) ≥ γαP (α)

⇐⇒ γβ(1− P (α)) ≥ γαP (α)(1− εa)N−k

⇐⇒ γβ(1− p)(1− εb) ≥ γαp(1− εa)k(1− εa)N−k

⇐⇒ γβ(1− p)(1− εb) ≥ γαp(1− εa)N . (10)

Since we assumed γαp(1− εa)N ≤ γβ(1− p)(1− εb)N , (10) holds if γβ(1− p)(1− εb) ≥
γβ(1−p)(1−εb)N . But this holds because N ≥ 1. Hence, k is taking a best response.

If k ≤ K − 1, then her payoff from the deviation is

γαP (α) + γβ(1− P (α))Ỹ ,

where Ỹ := Prob(L− 1 or more signals out of N − 1− k).

Thus, the payoff from playing A is no less than the payoff from playing B if and

only if

γαP (α)(1− (1− εa)N−k) + γβ(1− P (α)) ≥ γαP (α) + γβ(1− P (α))Ỹ ,

or

P (α) ≤ γβ(1− Ỹ )

γβ(1− Ỹ ) + γα(1− εa)N−k
.

Since P (α) = p(1−εa)k
p(1−εa)k+(1−p)(1−εb)

, this is equivalent to:1

p(1− εa)k

(1− p)(1− εb)
≤ γβ(1− Ỹ )

γα(1− εa)N−k
,

or
p

1− p
(1− εa)N−1

(1− εb)
γα
γβ
≤ 1− Ỹ . (11)

Now, note that Ỹ is equal to Y defined in the proof of Proposition 3 where we set

m = 1 and i = k + 1, and the roles of A and B (and thus the roles of K and L, and

of εa and εb) are reversed. Since that proof shows (1− εa)L+m−i ≤ 1− Y , we have

(1− εb)K+1−(k+1) ≤ 1− Ỹ ,
1See footnote 23 of the main text for this derivation.
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or

(1− εb)K−k ≤ 1− Ỹ .

Since k ≥ 1 and K ≤ N , we have (1− εb)N−1 ≤ (1− εb)K−k ≤ 1− Ỹ , which implies
p

1−p
(1−εa)N
1−εb

γα
γβ
≤ 1− Ỹ because we assumed γαp(1− εa)N ≤ γβ(1− p)(1− εb)N . This

shows that k is taking a best response when k ≤ K − 1.

Finally, since the payoff is 0 under σ̄ if and only if the state is α and no one

receives a signal, the expected payoff is γαp+ γβ(1− p)− γαp(1− εa)N .

Part 2:

Fix any f ∈ F . Let f(∅, . . . , ∅)(A) = q. Then, conditional on the signal realization

(∅, . . . , ∅), the voters’ payoff is γαq under state α and γβ(1 − q) under state β. The

probability that the signal profile (∅, . . . , ∅) realizes is (1 − εa)N under state α and

(1− εb)N under state β. Hence, the ex ante expected payoff is at most

γαp(1− (1− εa)N) + γβ(1− p)(1− (1− εb)N) + max
q∈[0,1]

(
γαpq(1− εa)N + γβ(1− p)(1− q)(1− εb)N

)
= (γαp+ γβ(1− p)− γαp(1− εa)N − γβ(1− p)(1− εb)N) + max{γαp(1− εa)N , γβ(1− p)(1− εb)N}

= γαp+ γβ(1− p) + max{γαp(1− εa)N − γαp(1− εa)N − γβ(1− p)(1− εb)N ,

γβ(1− p)(1− εb)N − γαp(1− εa)N − γβ(1− p)(1− εb)N}

= γαp+ γβ(1− p) + max{−γβ(1− p)(1− εb)N),−γαp(1− εa)N}

= γαp+ γβ(1− p)−min{γαp(1− εa)N , γβ(1− p)(1− εb)N)}

= R̄.

Part 3:

We only provide the proof for part (3b). The proof for part (3a) is symmetric.

Consider the following strategy profile, which we denote by σ.

• Voter k = 1, . . . , K − 1: If all the actions observed so far are A, then play A

irrespective of the signal. Otherwise, play a consistent strategy in which A is

played if no signal is received.

• Voter k = K, . . . , N − 1: If all the actions observed so far are n times of A

followed by k−1−n times ofB, then playB irrespective of the signal. Otherwise,

play a consistent strategy in which A is played if no signal is received.
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• Voters k = N : Play a consistent strategy in which A is played if no signal is

received.

Note that this strategy profile has the ex ante payoff of p+(1−p)εb. We show that, if

n ≥ 2, σ constitutes an equilibrium with a belief that, after any deviation, any voter

who has not received a signal assigns probability 1 to α (such a belief can easily be

shown to be consistent in the sense of Kreps and Wilson (1982)).

Consider voter k. Fix any history of actions by the previous voters. First, suppose

that k receives signal a. Then, since the outcome will be A if k follows σk, playing

σk induces the expected payoff of 1, which is the highest possible payoff in this game.

Hence, σk is a best response.

Second, suppose that k receives signal b.

• Suppose that the voters so far have followed σ.

– If 1 ≤ k ≤ K−1, then if she follows σ̂k then her payoff is εb. If instead she

plays B then at least L− 1 voters from the set of subsequent voters have

to receive signal b in order for k to expect the payoff of 1, and otherwise

she receives the payoff of 0. Hence, her payoff is O(εL−1b ). Since L− 1 ≥ 2,

this implies that there exists ε̄ > 0 such that for all εb < ε̄, following σk is

a best response.

– If K ≤ k ≤ N − 1, then playing A ends the game with outcome A, so it

induces the expected payoff of 0. Hence, playing B is a best response.

– If k = N , then playing B induces the payoff of 1 with probability 1, so it

is a best response to play B.

• Suppose that there is a voter who has deviated from σ. Then, the play by the

subsequent voters will not be affected by the action taken by voter k. Hence,

it is a best response for voter k to provide additional vote for B. Therefore,

playing B is a best response.

Third, suppose that voter k did not receive a signal.

• Suppose that the voters so far have followed σ. Then, the posterior belief on α

is 1
2
.
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– Suppose k ≤ K − 1. If k follows σk, then her payoff is 1
2

+ 1
2
εb. If she does

not follow σk, then her payoff is 1
2

+ 1
2
O(εL−1b ). Since L− 1 ≥ 2, following

σk is a best response.

– Suppose K ≤ k ≤ N − 1. If k follows σk, then her payoff is 1
2

+ 1
2
εb. If

she does not follow σk, then her payoff is 1
2
. Hence, following σk is a best

response.

– Suppose k = N . Then, k is indifferent between the two actions. So

following σk is a best response.

• Suppose that there is a voter who has deviated from σ before k’s move. Then,

the play by the subsequent voters will not be affected by the action taken by

voter k. Hence it is a best response for k to provide additional vote for A

because k’s belie assigns probability 1 to α.

This completes the proof of part 3.

Part 4:

The proof we present below is analogous to the one in the symmetric case (the

proof of Proposition 2).

Fix a pure strategy equilibrium σ. Take the default sequence of σ. Suppose first

that the last voter on this default sequence, whom we denote voter k∗, plays A.

First, we show the following lemma.

Lemma 4. Suppose that the votes by voters 1, . . . , k∗ − 1 have followed the default

sequence of σ. Then, voter k∗ votes for B if and only if she receives signal b.

Proof of Lemma 4. Consider the history in which voters 1, . . . , k∗ − 1 have followed

the default sequence of σ. Given the assumption that k∗ plays A given no signal, it

suffices to check the cases when she receives a signal.

1. First, we show that k∗ plays B if she receives signal b. We show this using

induction on k. To do this, fix k′ ∈ {k∗, . . . , N}. Suppose, as an induction hy-

pothesis, that for every k > k′, voter k plays B if he receives signal b.2 Suppose

that voter k′ receives signal b. Given this signal, her posterior probability on β

is 1. If k′ votes for A, then her expected payoff is 0. If k′ votes for B, then there

2Note that this hypothesis is vacuously true when k′ = N .
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is a strictly positive probability that all the subsequent voters receive signal b

and, in that case, the game ends with outcome B by the induction hypothesis.

Hence, her expected payoff is strictly positive. Thus, playing B is a unique best

response for k′, and hence, voter k′ plays B if she receives signal b. This shows

that voter k∗ plays B if she receives signal b.

2. Next, we show that k∗ plays A if she receives signal a. To see this, suppose to

the contrary that k∗ plays B if she receives signal a. In this case, the outcome

must be A with probability 1 after k∗ plays B because otherwise, playing B

would give k∗ a payoff strictly less than 1, while she would get the payoff of 1 if

she played A, making her choice B suboptimal. This implies that the outcome

will be A if k∗ chooses B when the state is α, no matter what her signal is.

Now, suppose that k∗ did not receive a signal. Let P (α) be the posterior of k∗

at such an information set. Then, the expected payoff of voter k∗ is P (α) if she

plays A. If she instead plays B, then the outcome will be A with probability 1 if

the state is α as we have concluded. The argument in item 1 above implies that

if the state is β and all the subsequent voters receive signal b, which happens

with probability ε2n+1−k∗ > 0, then the outcome is B. Hence, the expected

payoff of voter k∗ is at least P (α) + (1− P (α))ε2n+1−k′ if she plays B, and this

is strictly greater than P (α) because 1 − P (α) > 0 and ε > 0. Hence, playing

A is suboptimal for k∗ when she does not receive a signal, which contradicts

the assumption that she votes for A given no signal. Thus, k∗ plays A if she

receives signal a.

Given Lemma 4, once k∗ plays B, the subsequent voters assign posterior proba-

bility 1 to state β, so the outcome will be B with probability 1.

Lemma 5. Under σ, if voter 1 receives signal a, then she expects that the outcome

will be A with probability 1.

Proof of Lemma 5. We use induction. Fix k ≤ k∗. Suppose as an induction hypoth-

esis that for every k′ ∈ {k + 1, . . . , k∗}, if the actions by voters 1, . . . , k′ − 1 have

followed the default sequence and k′ receives signal a, then the outcome will be A

with probability 1. Then, suppose that the actions by voters 1, . . . , k−1 have followed

the default sequence and k receives signal a. If k plays the action specified in the
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default sequence, then either (i) no subsequent voters receive a signal, or (ii) there is

at least one subsequent voter who receives signal a. In case (i), by the definition of

the default sequence, the outcome will be A with probability 1. In case (ii), the first

voter who receives signal a expects that the outcome will be A, which follows from

the induction hypothesis. Hence, the outcome will be A in either case. Therefore,

k’s expected payoff is 1 if k plays the action specified in the default sequence. Since

k under σ must be doing at least as good as playing any action, this implies that,

under σ, k expects the payoff of 1, and hence she expects that the outcome will be

A with probability 1. This completes the induction argument. Therefore, we have

shown that, if voter 1 receives signal a, then she expects that the outcome will be A

with probability 1.

Lemma 6. Under σ, if any voter receives signal b when the votes so far followed the

default sequence, then she expects that the outcome will be B with probability at least

εb.

Proof of Lemma 6. We use induction. Fix k ≤ k∗ − 1. Suppose as an induction

hypothesis that for every k′ ∈ {k+ 1, . . . , k∗−1}, if the actions by voters 1, . . . , k′−1

have followed the default sequence and k′ receives signal b, then the outcome will be B

with probability at least εb. Then, suppose that the actions by voters 1, . . . , k−1 have

followed the default sequence and k receives signal b. If k plays the action specified

in the default sequence, then either (i) no subsequent voters in {k + 1, . . . , k∗ − 1}
receive a signal, or (ii) there is at least one subsequent voter in {k+1, . . . , k∗−1} who

receives signal b. In case (i), by Lemma 4, voter k∗ will play B if she receives signal

b, and thus there is probability εb that the outcome will be B as we concluded after

Lemma 4. In case (ii), the first voter who receives signal b expects that the outcome

will be B with a probability of at least εb, which follows from the induction hypothesis.

Hence, the outcome will be B with at least εb probability in either case. Therefore,

k’s expected payoff under σ must be at least εb if she plays the action specified in

the default sequence. Since k under σ must be doing at least as good as playing any

action, this implies that, under σ, k expects a payoff of at least εb, and hence she

expects that the outcome will be B with probability at least εb. This completes the

induction argument. Therefore, we have shown that, if any voter receives signal b,

then she expects that the outcome will be B with probability at least εb.

Finally, consider voter 1. If the state is α, then either (i) no voters in {1, . . . , k∗}
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receive a signal, or (ii) there is at least one voter in {1, . . . , k∗} who receives signal

a. In case (i), the outcome will be A with probability 1 by the choice of the default

sequence. In case (ii), we have shown that the outcome will be A with probability 1.

Hence, voter 1’s expected payoff is 1 conditional on this event.

If the state is β, then either (i) no voters in {1, . . . , k∗− 1} receive a signal, or (ii)

there is at least one voter in {1, . . . , k∗−1} who receives signal b. In case (i), voter k∗

will have seen the history that has followed the default sequence. If she receives no

signal, which happens with probability 1− εb, then she plays A by assumption, and

thus the outcome will be A with probability 1. If she receives signal b, which happens

with probability εb, then the outcome will be B with probability 1 as we concluded

after Lemma 4. Overall, voter 1 expects the probability that the outcome will be B

to be εb conditional on (i). In case (ii), take the first voter who has received signal b.

We have shown that this voter assigns a probability of at least εb that the outcome

will be B. Thus, conditional on the event that (ii) realizes, voter 1 expects that the

probability that the outcome will be B is at least εb. Therefore, if the state is β, the

outcome will be B with at least εb probability.

Overall, since the prior on the states α and β are p and 1− p, respectively, voter

1’s expected payoff is at least

p · 1 + (1− p) · εb = p+ (1− p)εb.

Now, if the last voter on the default sequence plays B, a symmetric proof shows

that voter 1’s expected payoff is at least pεa+1−p. Overall, the minimum equilibrium

payoff is min{p+ (1− p)εb, pεa + 1− p}.
Since p + (1 − p)εb < pεa + 1 − p if and only if p(1 − εa) < (1 − p)(1 − εb), the

proof is complete.

D Proof of Proposition 3

Fix the general voting model with (p, εa, εb, K, L, γα, γβ) and a sequence S ∈ S that

ends with A. To prove the three parts of the proposition, we show the following two

claims:

(A) If 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
≤ 1, then there is a pure consistent strategy equilibrium σ such

that S is the default sequence of σ.
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(B) If 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
> 1, then there is no pure consistent strategy equilibrium σ such

that S is the default sequence of σ.

By symmetry, these are enough to show the three parts of the proposition.

Proof for claim (A). Fix k ∈ {min{K,L} + 1,min{K,L} + 2, . . . , N} and take a

sequence of actions S∗ = (X1, . . . , Xk) ∈ {A,B}k such that Xk appears exactly K

times if Xk = A and L times if Xk = B. We consider the case when Xk = A. The

case for Xk = B is symmetric.

Consider the consistent strategy profile σ satisfying the following conditions:

1. For any i = 1, . . . , k, take any sequence S = (X1, . . . , Xi−1) ∈ {A,B}i−1. That

is, S coincides with S∗ before voter i. Then, i chooses the action specified in

S∗ given no signal, i.e.,

σi(X1, . . . , Xi−1, ∅)(Xi) = 1.

2. For any i = 1, . . . , N and i′ = 1, . . . ,min{k, i− 1}, take any sequence S = (X1,

. . . , Xi′−1, X
′
i′ , . . . , X

′
i−1) ∈ {A,B}i−1 such that X ′i′ 6= Xi′ . That is, i′ is the first

voter who does not follow the sequence (X1, . . . , Xk). Then, i chooses the same

action as X ′i′ given no signal, i.e.,

σi(S, ∅)(X ′i′) = 1.

Now we check incentives. First, voters who have received a signal take a best

response given condition 2 above.

Second, under any histories described in condition 2, by letting i have a belief

that the state is α if X ′i′ = A and β if X ′i′ = B, it is straightforward to see that i is

taking a best response.

Third, under any histories described in condition 1, suppose that there have been

m times of A’s before i. Voter i’s posterior on α is then

P (α) =
p(1− εa)i−m

p(1− εa)i−m + (1− p)(1− εb)m+1
,
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and her posterior on β is

P (β) = 1− P (α) =
(1− p)(1− εb)m+1

p(1− εa)i−m + (1− p)(1− εb)m+1
.

We consider the following two (exhaustive) cases.

1. Suppose that Xi = A.

If i plays A, her payoff is:

γαP (α) + γβ(1− P (α))(1− (1− εb)K−1−m).

Suppose now that i plays B. If the state is β, then outcome B realizes with

probability 1 given that the voters follow σ. If the state is α, the outcome

becomes A if and only if at least K − m subsequent voters receive signal a.

Thus, her payoff is

γβ(1− P (α)) + γαP (α) · Y,

where Y := Prob(K −m or more “a” signals out of N − i).

Thus, the payoff from playing A is no less than the payoff from B if and only

if:

γαP (α) + γβ(1− P (α))(1− (1− εb)K−1−m) ≥ γβ(1− P (α)) + γαP (α)Y ⇐⇒

P (α)[γα1+γβ(1−εb)K−1−m−γαY ] ≥ γβ(1−εb)K−1−m ⇐⇒ P (α) ≥ (1− εb)K−1−m

(1− εb)K−1−m + γα
γβ

(1− Y )
.

Now, notice that

P (α) =
p(1− εa)i−m

p(1− εa)i−m + (1− p)(1− εb)m+1

=
(1− εb)K−1−m

(1− εb)K−1−m + 1−p
p

(1−εb)K
(1−εa)i−m

.

Hence, the payoff from playing A is no less than the payoff from B if and only

if:
1− p
p

(1− εb)K

(1− εa)i−m
≤ γα
γβ

(1− Y ).
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Now, recall that we have 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
≤ 1 by assumption. Thus, it suffices to

show that
(1− εa)L

(1− εa)i−m
≤ 1− Y,

or

(1− εa)L+m−i ≤ Prob(K − 1−m or less “a” signals out of N − i).

Now, let Z1 := L + m − i and Z2 := N − i. Notice that Z1 ≤ Z2 because

Z2 − Z1 = N − L−m = K − 1−m ≥ 0. The payoff from playing A is no less

than the payoff from B if and only if:

(1− εa)Z1 ≤ Prob(Z2 − Z1 or less “a” signals out of Z2). (12)

Note that

Prob(Z2 − Z1 or less “a” signals out of Z2)

≥ Prob(The last Z1 voters do not receive an “a” signal) = (1− εa)Z1 .

Thus, eq. (12) indeed holds, and therefore, the payoff from playing A is no less

than the payoff from B.

2. Suppose that Xi = B.

First, consider the case when i plays B.

Suppose the state is α, which happens with probability P (α). In this case,

i’s playing B ensures that there is probability 1 that A will be chosen as the

outcome.

Suppose the state is β, which happens with probability 1 − P (α). Since there

have been m times of A right after i plays B and there are K times of A in

the given sequence, there will be K −m times of A at which the voter, upon

receiving signal b, can change the outcome to B. The probability that at least

one voter out of K −m voters receives signal b is 1− (1− εb)K−m.

Thus, overall, the payoff from i’s voting for B is

γαP (α) + γβ(1− P (α))(1− (1− εb)K−m).
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Second, consider the case when i plays A.

If the state is α, then outcome A realizes with probability 1 given that the

voters follow σ. If the state is β, the outcome becomes B if and only if at least

L− (i− (m+ 1)) subsequent voters receive signal b. Thus, her payoff is

γαP (α) + γβ(1− P (α))Ŷ ,

where Ŷ := Prob(L− (i− (m+ 1)) or more “b” signals out of N − i).

Thus, the payoff from playing B is no less than the payoff from A if and only

if:

γαP (α) + γβ(1− P (α))(1− (1− εb)K−m) ≥ γαP (α) + γβ(1− P (α))Ŷ ⇐⇒

(1− εb)K−m ≤ 1− Ŷ ,

or

(1− εb)K−m ≤ Prob(L− (i−m) or less “b” signals out of N − i).

Now, let Ẑ1 := K − m and Ẑ2 := N + 1 − i. Notice that Ẑ1 ≤ Ẑ2 because

Ẑ2 − Ẑ1 = N + 1 − i − (L − i + (m + 1)) = K − (m + 1) ≥ 0. Ẑ2 − Ẑ1 =

N + 1− i− (K −m) = L− (i−m) ≥ 0.3 The payoff from playing B is no less

than the payoff from A if and only if:

(1− εb)Ẑ1 ≤ Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2 − 1). (13)

Note that

Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2 − 1)

> Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2)

≥ Prob(The last Ẑ1 voters do not receive an “b” signal)

= (1− εb)Ẑ1 .

3There have been i−m− 1 times of B before i, and this number is no greater than L− 1, that
is, i−m− i ≤ L− 1. This leads to L− (i−m) ≥ 0.
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Thus, eq. (13) indeed holds, and therefore, the payoff from playing B is no less

than the payoff from A.

Overall, playing Xi is a best response for voter i.

Proof for claim (B). The proof closely follows that of Theorem 5. Fix a pure consis-

tent strategy equilibrium. Suppose that if no voter gets a signal, on the path of play,

k is the voter who ends the game. Suppose for contradiction that k plays A on the

default sequence.

Voter k has seen K − 1 times of action A and k − K times of action B. The

posterior on α is thus

P (α) =
p(1− εa)k−K+1

p(1− εa)k−K+1 + (1− p)(1− εb)K
=

1

1 + 1−p
p

(1−εb)K
(1−εa)k−K+1

=
1

1 + 1−p
p

(
1−εb
1−εa

)K
(1− εa)2K−1−k

.

If voter k plays A, then the game ends and her expected payoff becomes γαP (α).

If voter k votes for B instead, then by Bayes rule each subsequent voter who

receives her turn to vote and receives no signal assigns probability 1 to state β. This

implies that she votes for B because voting for A results in the expected payoff of 0

while voting for B ensures a strictly positive payoff due to the event in which all the

subsequent voters receive signal b.

Let q be the probability that voter K + L − 1 assigns to A when he does not

receive a signal. Then, k’s payoff if she plays B is

γαP (α)
[
1− (1− q)(1− εa)K+L−1−k]+ γβ(1− P (α)) [εb + (1− εb)(1− q)] .
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Let this be f(q). Note that

f(0) = γαP (α)[1− (1− εa)K+L−1−k] + γβ(1− P (α)) = 1 · γβ − P (α)((γβ − γα) + γα(1− εa)K+L−1−k)

= 1 · γβ −
(γβ − γα) + (1− εa)K+L−1−k

1 + 1−p
p

(
1−εb
1−εa

)K
(1− εa)2K−1−k

=

1 · γα + (1− εa)K−1−k
[
γβ

1−p
p

(
1−εb
1−εa

)K
(1− εa)K − γα(1− εa)L

]
1 + 1−p

p

(
1−εb
1−εa

)K
(1− εa)2K−1−k

>
1 · γα

1 + 1−p
p

(
1−εb
1−εa

)K
(1− εa)2K−1−k

= γαP (α),

where the last inequality is due to:

γβ
1− p
p

(
1− εb
1− εa

)K
(1− εa)K − γα(1− εa)L > 0 ⇐⇒ 1− p

p

(1− εb)K

(1− εa)L
γβ
γα

> 1.

Also,

f(1) = γαP (α) + γβ(1− P (α))εb > γαP (α).

So f(q) > γαP (α) for both q = 0, 1. This means that k would be better off playing

B than A, contradicting the assumption that k plays A in the fixed equilibrium. The

proof is complete.

E Examples for the Abstention Model

Example 3. Consider the strategy profile in which each voter uses a strategy that

is consistent in the abstention model, votes for Φ if she receives signal φ and all past

actions have been Φ, votes for A if she receives signal φ and action A was taken in

the past when all previous voters have taken Φ, and vote for B if she receives signal

φ and action B was taken in the past when all previous voters have taken Φ. If voter

k receives signal φ and action A was taken in the past when all previous voters have

taken Φ, then k’s belief assigns probability 1 to state α. Symmetrically, if voter k

receives signal φ and action B was taken in the past when all previous voters have

taken Φ, then k’s belief assigns probability 1 to state β. We show that this is an

equilibrium.
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First, suppose that voter k receives signal a. Consider the case in which all past

actions have been Φ or action A was taken in the past when all previous voters have

taken Φ. In this case, if k chooses A, then her payoff is 1 with probability 1. Since

1 is the highest feasible payoff, choosing A is indeed a best response. Consider the

case in which action B was taken in the past when all previous voters have taken Φ.

In this case, there is a positive probability that k’s action affects the outcome of the

game, and this probability is independent of k’s action. Moreover, when k’s action

affects the outcome of the game, it is her best response to vote for A. Thus, it is a

best response for the voters receiving signal a to play A regardless of the history.

A symmetric argument shows that it is a best response for the voters receiving

signal b to play B regardless of the history.

Suppose that voter k receives signal φ. Consider the case in which all the past

actions are Φ. If k = N , then she is indifferent among all actions, so playing Φ is a

best response. So suppose k < N . If k plays Φ, then her payoff is

(1− ε)N−k 1

2
+ (1− (1− ε)N−k) · 1 = 1− 1

2
(1− ε)N−k

because if no one receives the signal then the payoff is 1
2
, while if there is at least one

voter receiving a signal then the payoff is 1. If she plays A, then her payoff is at most

1−
[
(1− ε)N−k +

1

2
(N − k)ε(1− ε)N−k−1

]
because the cases in which her payoff is not 1 include the situations in which the state

is β and there is only zero or one voter who receives a signal after k. It is easy to see

by inspection that the payoff from playing Φ is larger than the upper bound of the

payoff from playing A. In the same way, the payoff from playing Φ is larger than the

payoff from playing B. Hence, playing Φ is a best response.

Finally, suppose that voter k receives signal φ and consider the case in which there

is a past action that was not Φ. Suppose without loss that the first such action was

A. In this case, k assigns probability 1 to state α. By playing A, she can guarantee

the payoff of 1, which is the highest payoff, so this is a best response.

Example 4. Suppose N = 4. Consider the following strategy profile.

• Voter 1 votes for Φ if her signal is a, A if her signal is φ, and B if her signal is

b.
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• Voter 2 plays a strategy that is consistent in the abstention model. If he receives

signal φ, then he plays

– Φ if 1 played A;

– A if 1 played Φ;

– B if 1 played B.

• Voter 3 plays a strategy that is consistent in the abstention model. If she

receives signal φ, then she plays

– Φ if the action sequence was (A,Φ);

– A if the action sequence was (Φ, ·) or (A,A);

– B if the action sequence was (B, ·) or (A,B).

• Voter 4 plays a strategy that is consistent in the abstention model. If he receives

signal φ, then he plays

– Φ if the action sequence was (A,Φ,Φ);

– A if the action sequence was (Φ, ·, ·) or (A,A,B);

– B if the action sequence was (B, ·, ·) or (A,B, ·) or (A, ·, B).

Voters 3 and 4 have information sets that can be reached with probability zero when

they do not receive a signal. In such a case, they assign probability 1 to state α

under the history in which the above specification says they play A, and they assign

probability 1 to state β under the history in which the above specification says they

play B. We show that this is an equilibrium when ε > 0 is sufficiently small.

Let us check the incentives. The incentives of voters 2, 3, and 4 are straightfor-

ward so we check the incentive of voter 1. If she receives signal a or b, it is again

straightforward that following the given strategy is a best response. So consider the

case in which she receives signal φ.

In this case, if she plays A, then her payoff is 1 if the state is α while, if the state

is β, her payoff is at least 1
2
·3ε(1−ε)2 because if at least one of the subsequent voters

receives signal b then there is probability 1/2 that the payoff is 1.

If she plays Φ, then her payoff is 1 if the state is α. If the state is β, the payoff is

O(ε2) because the only cases in which the payoff is 1 is when at least two subsequent

voters receive signal b.
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If she plays B, then her payoff is 1 if the state is β. If the state is α, the payoff

is O(ε2) because the only cases in which the payoff is positive is when at least two

subsequent voters receive signal a.

Overall, when voter 1 receives signal φ, it is a best response to play A when ε > 0

is sufficiently small.

In both examples, the ex ante payoff is

(1− ε)N 1

2
+ (1− (1− ε)N) · 1.

Note that this is the highest payoff achievable by any social choice function.
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