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Abstract

We consider a model of common-value sequential voting where voters are

differentiated in their information. The intuition from the simultaneous-voting

case—uninformed voters vote so as not to influence the outcome—suggests that

the pivotal voter, unless being informed, would not like to end the voting. This

would imply that voting takes a long time if voters are unlikely to be informed.

However, we find that any voting outcome, including short voting, can arise in

an equilibrium that uses consistent strategies, i.e., the informed voters follow

their information. Despite such variety of equilibria, all of them induce the same

expected payoff to the voters. There also exist inconsistent-strategy equilibria

that yield higher expected payoffs than under any consistent strategy profile.

One of such equilibria yields the highest feasible expected payoff.
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1 Introduction

In episode 2 of the blockbuster Netflix show Squid Game, voting was held to determine

if the 201 players in the game would continue or stop the game. The votes were cast

sequentially, in the order of the players’ jersey numbers. All players watched each

other’s vote, and the current vote counts were displayed on a screen in front of them.

The voting was close and took a long time, and the 201st voter, a fragile elderly man,

took his turn.1

Besides the Squid Game show, sequential voting is used on various real-life occa-

sions. Most importantly, it is a common method employed in political decision-making

worldwide. For example, in the Japanese Diet, the roll call vote is done by each Diet

member coming up to the front stage and giving to a staff called Sanji a wooden

plate that is either white (representing the “yes” vote) or blue (representing the “no”

vote). The Sanji would then put the plates on a meter according to their color, and

this meter is visible to everyone in the Diet. The votes can easily be counted at any

moment because there are lines on the meter per every five plates. A similar proce-

dure of roll call vote is used in the United Nations as well as in the US Senate, among

others. In those settings, voters would not be perfectly informed of the favorability

of options, where the degree of uncertainty may differ across voters. For example,

most Senate or Diet members would face uncertainty about the future evolution of

the economy, while there may sometimes exist those who possess inside information.

In Squid Game, it is still episode 2 of the show when the vote was held, so the players

were unsure about the environment as well as what other players would know. How

would voters vote if they are uncertain about the favorability of the options?

Voter behavior with uncertainty has been discussed in static frameworks, no-

tably by the seminal work by Feddersen and Pesendorfer (1996). They analyzed a

common-value framework with informed and uninformed voters and showed that, in

equilibrium, an uninformed voter (that is, she is uncertain which option is better)

would prefer to abstain, thereby essentially delegating the decision to other voters

who might be informed. If the same incentive as in Feddersen and Pesendorfer (1996)

was at work in the sequential setting with no abstention option (as in all the above

examples), then we would expect a long voting : the pivotal voter, if she was unin-

formed, would vote against the current majority, thereby having the voting continued

1Which option did he vote? Watch Squid Game.
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and delegating the decision to the subsequent (possibly informed) voters.

We show that this intuition is not entirely correct. To understand the incentives

in the sequential setting, we analyze a stylized model of sequential voting, abstracting

away from various aspects that may exist in different contexts of real-world voting.

In our model, there are two states of the world, α and β, which realize with equal

probability. Voters are either informed or uninformed: conditional on each state,

each voter can (independently) be perfectly informed about the state with a small

probability, or else they are completely uninformed.2 Each voter votes for either A

or B until a majority has cast votes for one of the options, which determines the

outcome. Voters receive payoff 1 if the outcome “matches” the state and 0 otherwise.

Our first main result says “anything goes”: For any sequence of votes that can feasibly

realize in the game, there is an equilibrium that achieves such a sequence if no one

is informed. That is, not only long voting but also any length of voting can be an

outcome of our voting game.

Why does anything go?3 In our voting model, Feddersen and Pesendorfer (1996)’s

intuition is indeed at work: If a pivotal voter is uninformed, she would like to delegate

the decision to the subsequent voters. We call this effect the delegation effect. This,

however, is only one side of the story. There is another side: A voter’s optimal vote

depends on what she has learned from the preceding voters’ choices and the effect

of her vote on the subsequent voters’ choices. This learning, which arises due to

the sequential nature of our model, makes it appealing for the pivotal voter to end

the game (because that means she votes for the current majority), and we call this

effect the posterior effect. If this pivotal voter is supposed to vote to end the voting

conditional on being uninformed, the posterior effect implies that it is costly for her

not to end the voting. This is because not doing so means that she essentially informs

the subsequent voters that she knows the state (even though she does not!), and it is

the state that she thinks is less likely. We obtain the “anything goes” result due to

the balance of these two effects.

To show the “anything goes” result, we construct equilibria that use “consistent

2This mapping from states to signals follows that of Feddersen and Pesendorfer (1996).
3One common reaction to this question is that uninformed voters would assign equal probability

to each state so are indifferent, and this must be why anything can happen. It will be clear in the
following discussion that this argument is invalid: In fact, these voters do not necessarily assign
equal probabilities to the states given their observation. In Section 3.1, we consider this issue in
detail.
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strategies”: the voter votes for A if she is informed of state α and votes for B if she

is informed of state β. We further show that any two consistent equilibria induce the

same (expected) payoff to voters.

Furthermore, we show the existence of inconsistent equilibria. The welfare in

inconsistent equilibria can take a wide range: we provide the tight upper and lower

bounds of the equilibrium payoffs achievable by inconsistent equilibria. In particular,

the upper bound is the maximum payoff achievable by any social choice function.

The welfare from consistent equilibria positions in between these bounds.

Given that the “anything goes” result does not give us any prediction about what

happens in our voting game, we seek a way to enrich the model to obtain some

prediction. Specifically, we find that the following two modifications to the model

would imply a “long voting” as a unique equilibrium outcome. First, we assume

the last voter trembles slightly (as in Squid Game). Second, we assume that each

voter experiences a small cost by ending the game. We show that each of these two

modifications tips over the balance of the posterior effect and delegation effect in

favor of the latter, and the voting goes to the last voter under any equilibria if every

voter is uninformed.

Our model is stylized to capture the essence of the implications of uncertainty in

sequential voting. As such, for each of the real-world voting applications, there are

ways in which the model may not perfectly fit. For example, in Squid Game, although

our model may perfectly capture the timing of moves and observation structure, it

could be questionable if our payoff function represents the episode’s situation well.4 In

the United Nations, some countries may be known to have different information and

preferences than others. In the US Senate and Japanese Diet, different politicians may

belong to different parties and hence may have different preferences. These voters,

however, may still have common uncertainty about the state of the world, and the

4One (admittedly farfetched) interpretation is the following: In the show, all players were in
serious financial debt. If the players had continued the game, they would have received a large
monetary prize if they had won (otherwise, they would have been killed). If they had stopped the
game, they would not have received money and gone back to a life of financial ruin. No one was
supposed to know what sort of games they would play to determine the winner upon continuation.
In a sense, every player’s situation was similar in terms of the expected payoff from each option.
Of course, players might have different beliefs from each other about the likelihood of their own
winning, which would have introduced some private-value component to the model. At the same
time, since the players did not know each other very well, they could be unsure about what others
knew, and this provides the possibility that the players believed that some other players could be
more informed.
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voting may have a common-value component. The fact that our model is stylized

enables us to capture the key incentives faced by the voters with uncertainty in a

common-value sequential environment by abstracting away from various details.

There are many ways to enrich the model. In Section 6, we provide various

discussions and generalizations of the model. For example, we discuss how robust our

“anything goes” result is to various types of asymmetries in the model and to the

case when voters can only observe vote counts, not the entire history of voting.

1.1 Literature Review

We ask how the differentiated precision of signals across voters affects the behavior in

a sequential voting setup. This question is asked in the simultaneous voting setting

by Feddersen and Pesendorfer (1996) that has an otherwise similar setup as ours. As

we discussed, the fact that the voting is sequential changes the picture quite a bit.

Dekel and Piccione (2000)’s seminal work on sequential voting considers an infor-

mation structure and payoffs that are more general than ours. Their focus, however, is

on whether history-independent strategies that are equilibria under simultaneous vot-

ing also constitute equilibria under a sequential setting. They also have an analysis of

a common-value case like ours, but they restrict attention to the case of two signals.5

We, in contrast, consider history-dependent strategies, and analyze the case with

three signals (two informative and one uninformative signals) to address the question

of how the differentiated precision of signals across voters affects the behavior.6

One can think of our model as that of herding. The main difference is that, in

the canonical model of herding (e.g., Welch (1992), Bikhchandani et al. (1992), and

Banerjee (1992)), each player’s payoff is independent of the actions by other players.

In our model, however, each voter’s payoff depends on other voters’ behavior because

it affects the voting outcome. Callander (2007) and Ali and Kartik (2012), however,

are exceptions because they study herding in the context of sequential voting.7 One

difference between their work and ours is the focus: they assume two signals where

each signal implies one of the two states is more likely. In contrast, since we are

5They also provide one example with three signals to argue that sequential voting can perform
better than simultaneous voting.

6See also their extension to the three-option case with a choice of the timing of moves (Dekel and
Piccione, 2014).

7Ali and Kartik (2012) consider a general setting that applies not only to voting but to other
contexts as well.
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interested in the implication of the differentiated precision of signals, we have three

signals to include the possibility of uninformed voters as in Feddersen and Pesendorfer

(1996).8

Let us proceed with more detailed comparisons. Callander (2007) postulates the

existence of “conformity” incentives (the desire to vote for the majority) and demon-

strates the potential emergence of herding, or bandwagon, in equilibrium. Conversely,

we do not assume conformity, and introducing such an incentive would change the

result.9 It is noteworthy that his model, too, captures the tradeoff between the pos-

terior effect and the delegation effect. Specifically, one of his analyses considers a

strategy profile that uses a “bandwagon threshold.” This threshold is defined by

the vote lead below which voters follow their own signal and above which they herd.

He shows that, absent the conformity incentive, a voter situated just preceding the

bandwagon threshold would have a strict incentive to vote against the majority due

to the incentive similar to the delegation effect, assuming all other voters follow the

threshold strategy. In contrast, the pivotal voter in our morel would be indifferent

between following the majority and delegating. This disparity arises because, in his

model, after a pivotal voter has voted against the majority, the next voter is not

pivotal as the bandwagon threshold only hinges on the vote lead. The dependence of

the bandwagon threshold on the vote lead is intrinsic to his infinite population model

and indeed arises in equilibrium when the voters have conformity incentives. Con-

versely, in our finite population model, the subsequent voter retains the pivotal role.

This difference implies that voters in Callander (2007)’s infinite population model

and those in our finite population model undertake markedly distinct calculations in

their voting decisions. We note that, due to the strict incentive to vote against the

majority in the case of zero conformity incentive, the only possible equilibrium in the

class Callander (2007) analyzes is the one where the bandwagon threshold is infinity,

that is, every voter follows their own signal (his Theorem 5). In contrast, we have a

wide range of equilibria while not requiring conformity incentives.

The study by Ali and Kartik (2012) centers around a particular strategy termed

8Although a two-signal setup is typical in the papers on sequential voting, some papers have con-
sidered the case in which different voters receive signals of different precision. For example, Ottaviani
and Sørensen (2001) and Alpern and Chen (2022) considered such a setting. Their main interest,
however, is in the optimal ordering of voters, and our model has different model specifications from
theirs (voters have reputation concerns, signal structures are different, etc.).

9Indeed, in the Online Appendix, we consider a version of an incentive to end the game and show
that long voting occurs in the unique equilibrium.
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“sincere behavior,” wherein voters base their choices only on the posterior belief about

the likelihood of each state, independently of the consideration of the event under

which they are pivotal, or the impact of their votes on subsequent participants. Their

main result establishes that sincere behavior constitutes an equilibrium despite the

potential tradeoff between the posterior and delegation effects. Although this result

is intriguing, the restriction to sincere behavior imposes a somewhat severe constraint

on the possible equilibrium outcome.10 In contrast, our “anything goes” result shows

that a wide range of behavior can be consistent with equilibrium behavior. This

discrepancy comes from both the focus on sincere behavior as well as the difference

in the signal structure: adapting sincere behavior to our model would only predict a

rather small set of equilibria, and an “anything goes” result is even difficult to define

in their two-signal model.11

Although the herding effect highlights the failure of sequential voting as an infor-

mation aggregation device, some articles have shown that sequential voting facilitates

learning from early votes, which cannot happen under simultaneous voting (e.g., Dekel

and Piccione (2000), Gershkov and Szentes (2009), Selman et al. (2010), Hummel and

Knight (2015) and Alpern and Chen (2022)). The theory of information aggregation

under sequential voting is supported by experimental work as well (e.g., Battaglini

et al. (2007)). Our results on welfare are similar to the ones in these papers because

we show that consistent equiliria in our sequential model outperform the symmetric

equilibrium of the corresponding simultaenous-voting game, and inconsistent equilib-

ria can yield the upper bound of the payoff that can be achieved by any mechanism.

However, we also show that inconsistent equilibria can yield a payoff lower than the

one in the simultaneous-voting case.

10For example, regardless of the signal structure in the class their model permits, if there are three
consecutive votes on an option after any history involving two consecutive votes on the other option,
their equilibrium predicts that the voters must herd on the former option with probability one. The
proof of this result is available upon request.

11In our model, sincere behavior would result in a consistent strategy equilibrium where the default
sequence is either “all voters vote for A” or “all voters vote for B.” Our “anything goes” result
pertains to a possible case in which no one receives an informative signal, but this situation never
happens in their two-signal model since every voter is assumed to receive some informative signal.
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2 Model

There are voters 1, 2, . . . , 2n + 1, where n is a non-negative integer.12 The voters

sequentially vote on either A or B. We assume the majority voting rule: A results

as soon as n+ 1 voters vote for A, and B results as soon as n+ 1 voters vote for B.

Formally, let the set of sequences be

S :=
2n+1⋃
k=n+1

{(X1, . . . , Xk) ∈ {A,B}k||{l ∈ {1, 2, . . . , k}|Xl = Xk}| = n+ 1}.

That is, a sequence is a path of actions that ends the game. For any S = (X1, . . . , Xk) ∈
S, call Xk the outcome of S.

The state of the world is either α or β. The prior probability for each state is

1/2. When the state is α, each voter, when she is called upon to vote, independently

receives signal a with probability ε > 0; otherwise (i.e., with probability 1 − ε), she

receives no signal, or formally we say she receives signal ∅. Similarly, when the state

is β, each voter, when voting, independently receives signal b with probability ε and

signal ∅ with probability 1−ε. Given this simple information structure, signals a and

b perfectly reveal the state of the world.

All voters receive the payoff of 1 if the outcome of the realized sequence coincides

with the state, i.e., the outcome is A when the state is α or it is B when the state is

β; otherwise, all voters receive the payoff of 0. Note that the model is characterized

by parameters (n, ε).

For voter k, a history is an enumeration of actions by k − 1 voters before k, and

her own signal. Thus, the set of voter k’s histories is

Hk = {A,B}k−1 × {a, b, ∅}.

Voter k’s mixed strategy is a mapping σk : Hk → ∆({A,B}). Let Σk be the set of all

strategies of voter k and let Σ = ×2n+1
k=1 Σk.

In this paper, we consider the concept of sequential equilibrium. We sometimes

refer to it as “equilibrium” for short.

12We use 2n+ 1 as the number of voters instead of, say, N , which we indeed use later in a more
general setting when the number of voters need not be odd, not just to emphasize that there are
odd number of voters but because the number n itself will be a key variable. For example, we will
pay special attention to the case where there have been exactly n votes for one of the two options.
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We say that a strategy σk is consistent if σk(·, a)(A) = 1 and σk(·, b)(B) = 1.

Although consistency may be a natural property, it will turn out that there are

equilibria that are not consistent and, in fact, they may have a greater expected

payoff than any equilibria that are consistent.

Given any pure strategy profile σ ∈ Σ, there is a unique sequence S that realizes

if no voter receives a signal. We call such S the default sequence of σ.

3 Consistent Strategies

Our first set of results pertains to equilibria that use consistent strategies. Section 3.1

shows that any sequence can be a default sequence of a consistent equilibrium, and

Section 3.2 shows that any such equilibria have the same welfare.

3.1 Anything Goes

Our first result is rather striking. It says: anything goes!

Theorem 1. For any n ≥ 0, ε ∈ (0, 1] and any sequence S ∈ S, there is a pure

consistent strategy equilibrium σ in the model with (n, ε) such that S is the default

sequence of σ.

That is, any path of actions can be a default sequence of an equilibrium. This

in particular implies that paths in which the voting ends early (e.g., n + 1 straight

As) can also realize in equilibrium. This conclusion contrasts with the intuition of

Feddersen and Pesendorfer (1996) that a voter who does not have information would

like to leave the decision to other voters.

The proof constructs an equilibrium for each S. A rough intuition for the con-

struction and why it works is as follows. If voter k without information is supposed

to play A in the default sequence S but plays B, since such a deviation can only be

caused when k has signal b, the subsequent voters with no information will rationally

update their belief to assign probability 1 to state β. Moreover, even in the case when

some of the subsequent voters receive signal a and play A, we let the voters without

information have a belief that assigns probability 1 to β and play B.13 This will make

it hard for the subsequent voters to use the information they receive. Hence, voter

13Such a belief can be shown to satisfy consistency of Kreps and Wilson (1982).
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k has an incentive to follow the default sequence when she does not receive a signal.

We denote the strategy profile constructed in this way by σS.

When we presented this result in seminars, one common reaction was that the

result would be trivial because the voter with no information assigns equal probability

to each state so must be indifferent, and this should be why “anything can happen.”

This argument misses the point that, in consistent equilibria, each voter’s action

changes the belief of the subsequent voters. Thus, each voter’s best response depends

on the action sequence by the preceding voters (which affects her posterior belief) as

well as on the effect of her action on the subsequent voters’ beliefs. Indeed, the voters

do not necessarily have posterior beliefs that assign equal probability to each state,

and thus they are not necessarily indifferent. More precisely, on the path of play of

any pure consistent equilibrium, a voter is indifferent if and only if she is deciding :

Under σS, say that voter k is deciding if when the history up to k has been consistent

with S, if no voter in {1, . . . , 2n + 1} receives a signal, the outcome varies by k’s

vote, and one of k’s vote immediately ends the game. For example, when n = 2, if

S = (A,B,A,B,A), then only k = 5 is deciding. Note that k = 4 is not deciding

because the outcome is A irrespective of his action (given that no one receives a signal

and everyone else follows σS). If S = (A,A,B,B,B), then k = 3, 4, 5 are all deciding.

Now, consider voter k < 2n + 1 who is deciding received no signal, and suppose,

without loss of generality, that the game ends if she plays A.14 Since k is deciding, if

she plays B and no subsequent voter receives a signal, then all the subsequent voters

will play B and thus the last voter 2n+1 gets to play. The proof of Theorem 1 shows

that voter k is indifferent between playing A and B under this situation. In what

follows, we provide three explanations for why this is true.

The first explanation is due to the comparison of the benefit of deciding on the

currently superior outcome and postponing the decision to benefit from the subse-

quent voters’ information: Voter k assigns a high posterior on the state being α

because A has been played n times while B has been played less than n times. This

makes playing A attractive for voter k. We call this effect the posterior effect. On

the other hand, passing the decision to the subsequent voters makes it possible to

use the information obtained by those voters. This makes playing B attractive. This

intuition is analogous to the one in Feddersen and Pesendorfer (1996), and we call

14If k = 2n+ 1, then k is indifferent because the posterior assigns equal probability to each state
and k’s vote determines the outcome.
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this effect the delegation effect.

Why do these two effects cancel each other? If k plays A, then she receives the

payoff of 1 with the probability that is the posterior belief on α, which we denote by

P (α). If k were to be able to end the game with outcome B, then her payoff would

be 1− P (α). Noting that P (α) > 1/2 > 1− P (α) as we discussed, the benefit from

playing A due to the higher posterior on α can be expressed as P (α) − (1 − P (α)).

If instead she plays B, then voter k gets payoff 1 if and only if the game ends with

outcome A when the state is α and at least one of the subsequent voters receives a

signal, or when the state is β. Thus, the benefit from playing B due to the information

that a subsequent voter may receive can be expressed as P (α) · (1 − (1 − ε)2n+1−k),

which is equal to P (α)−P (α)(1− ε)2n+1−k. Now, since P (α) = (1−ε)k−n
(1−ε)k−n+(1−ε)n+1 and

1− P (α) = (1−ε)n+1

(1−ε)k−n+(1−ε)n+1 , we have:15

1− P (α) = P (α)(1− ε)2n+1−k.

This is why the two effects cancel each other.

The second explanation is based on a state-by-state comparison: If the state is α,

with probability (1−ε)2n+1−k, playing B decreases the payoff by 1 (relative to playing

A). If the state is β, with probability 1, playing B increases the payoff by 1 (again,

relative to playing A). The ratio of the posteriors on the two states is (1 − ε)k−n to

(1− ε)n+1, that is, 1 to (1− ε)2n+1−k.

The third explanation is due to the consideration of the event in which voter k

becomes pivotal: If k chooses A, then that ends the game. If she chooses B, then

if at least one of the subsequent voters plays A then the outcome is A. If all the

subsequent voters play B, then that means that (i) n other voters played A when

they were supposed to play A given no signal, and (ii) n other voters played B when

they were supposed to play B given no signal. Hence, conditional on this event, voter

k is indifferent between A and B. Hence, her expected payoff from playing B would

not change even if we modified the game and hypothetically assigned outcome A to

this event. With this modification, the outcome from k’s playing B is always A.

15The posterior P (α) can be computed as follows. When the state is α, The history so far follows
the default sequence when no voter who was supposed to vote for B on the default sequence received
a signal. Hence, the probability that the state is α, the history so far follows the default sequence,
and k does not receive a signal is πA := 1

2 (1 − ε)k−1−n(1 − ε). Similarly, the probability that the
state is β, the history so far follows the default sequence, and k does not receive a signal is computed
to be πB := 1

2 (1− ε)n(1− ε). We use these values to compute the posterior P (α) = πA

πA+πB
.
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Thus, voter k must be indifferent between playing A and playing B.

Let us formally state the result about when a voter is indifferent.

Remark 1. Fix (n, ε). For any S ∈ S, consider σS and voter k who observed a

history that does not contradict S. When voter k does not receive a signal, she is

indifferent between voting for A and B if and only if k is deciding.

One may wonder our equilibrium construction may hinge “too much” on the

observation of the particular default sequence. However, the “anything goes” result

continues to hold even if we allow voters to observe only the vote counts, where we

modify our equilibrium construction. We present this result in Section 6.4.

Finally, we note that the result depends on the symmetry of the model. However,

we still believe the “anything goes” result is useful for two reasons. First, in Sec-

tion 6.1, we examine the case with asymmetry in the prior, the signal probabilities,

the voting rule, and the payoffs. We show that if the asymmetry is introduced in a

way that “favors” a particular outcome (A or B), then any sequence that induces

the favored outcome is a default sequence of some pure consistent equilibrium. Thus,

“anything goes” is still partially true with a restriction on the outcome. In particu-

lar, even with asymmetry, both long voting and short voting can arise in equilibrium.

Second, as in our explanation after its statement, the “anything goes” theorem gives

us a way to understand the incentives faced by the voters in the most simplified set-

ting. The posterior effect and the delegation effect will help us understand why a

particular asymmetry would imply the partial “anything goes” result that we present

in Section 6.1.

3.2 Welfare Invariance

Take an arbitrary pure consistent equilibrium σ. Suppose without loss of generality

that σ induces the outcome of A with probability 1 if no voter receives a signal. If

the state is α, then no one receives signal b and thus those who are supposed to play

A on the default sequence of σ would never switch their actions to B. Consequently,

the outcome becomes A with probability 1. On the other hand, if the state is β, there

are n+1 chances to overturn the outcome. This occurs if some voter who is supposed

to play A on the default sequence of σ receives signal b and thus plays B. Note that

if such an event occurs, then by the Bayes rule, all the subsequent voters must have

a belief that assigns probability 1 to β, and thus the outcome will be B. Therefore,
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the outcome becomes B with probability 1− (1− ε)n+1 for any such σ. Overall, the

ex ante payoff under σ is

1

2
· 1 +

1

2
(1− (1− ε)n+1) = 1− (1− ε)n+1

2
.

Thus, we have shown the following.

Theorem 2. For any (n, ε), pure consistent strategy equilibrium in the model with

(n, ε) has the ex ante payoff of 1− (1−ε)n+1

2
.

This welfare invariance can be suitably extended to the settings with asymmetry

(Corollary 2 in Section 6.1): all the pure consistent equilibria have the same payoff.

4 Inconsistent Strategies

So far, we have restricted our analysis to equilibria that use consistent strategies. Per-

haps surprisingly, there exist equilibria that use inconsistent strategies. This section

is devoted to an analysis of those equilibria.

Before proceeding, let us provide one example to illustrate why the existence

of such equilibria is not trivial. Suppose there are at least three voters (n ≥ 1)

and consider the strategy profile in which all voters vote for A irrespective of their

information. This strategy profile is an equilibrium in the simultaneous voting model

because each voter is indifferent as their vote would not affect the outcome. This

strategy profile, however, does not constitute an equilibrium in our sequential voting

model. The reason is that, for example, the last voter (voter 2n+1) would vote for B

if she obtained a chance to vote and received signal b. Furthermore, expecting this,

preceding voters who faced the history of n times of A and received signal b would

vote for B as well.

Theorem 2 shows that all consistent equilibria have the same expected payoff. We

show that inconsistent equilibria have a wide range of expected payoffs. Section 4.1

provides a payoff upper bound under inconsistent equilibria. Such a bound can be

obtained by using strategies that let the voters vote against their signals. Section 4.2,

in contrast, provides a payoff lower bound. This bound is obtained by using strategies

that let the voters vote independently of their signals.
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4.1 Payoff Upper Bound: Voting against a Signal Improves

Welfare

This section is devoted to the analysis of the payoff upper bound. The bound can

be obtained by using strategies that let the voters vote for B given signal a and for

A given signal b. The following example shows that there exists an equilibrium that

uses such inconsistent strategies and achieves a strictly larger expected payoff than

the one under any consistent equilibrium.

Example 1. Assume there are 3 voters. The following strategy profile constitutes

an equilibrium, which we denote by σ̄.

• Voter 1 chooses B if she receives a; otherwise, she plays A.

• Voter 2 uses a consistent strategy that plays the opposite action to voter 1’s if

he receives no signal.

• Voter 3 uses a consistent strategy that plays the same action as voter 2’s if she

receives no signal.

Note that the default sequence of this strategy profile σ̄ is (A,B,B). Here we ex-

plain that voter 1 has a strict incentive to vote against her signal under σ̄.16 Consider

voter 1. Suppose she receives signal a. This happens only if the state is α, and hence,

the subsequent voters receive either a or φ. Therefore, if voter 1 follows the above

strategy by choosing B, her expected payoff becomes 1 since voters 2 and 3 play A

with probability 1. If she instead plays A, then her payoff is 1− (1− ε)2. Hence, she

strictly prefers to play B. Suppose voter 1 receives signal b. If she plays A, her payoff

is 1. If she plays B, her payoff is 1− (1− ε)2. Hence, she strictly prefers to play A.

We compute the ex ante expected payoff from σ̄. First, if the state is β, then the

outcome is B with probability 1. Second, if the state is α, then outcome A realizes if

at least one voter out of the three voters receives signal a. Thus, the payoff is

1

2
· 1 +

1

2
[1− (1− ε)3].

16The proof of Theorem 3 fully checks the voters’ incentives to show that this strategy profile is
indeed an equilibrium.
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Note that the payoff from any pure consistent equilibrium is

1

2
· 1 +

1

2
[1− (1− ε)2].

Hence, the payoff is strictly greater under σ̄ than in any pure consistent equilibrium.

The intuition is as follows. Under σ̄, the default sequence leads to outcome B,

so voters receiving signal b would not be incentivized to vote against the default

sequence. In contrast, we would like to maximize the chances for voters receiving

signal a to overturn the outcome to A. In the current example, there are at most

three such chances (since there are three voters) and σ̄ uses all these three chances.

This is made possible because, when a voter is supposed to vote for A in the default

sequence and receives signal b, we have her vote for A (as for voter 1 in the current

example). This is incentive compatible because, as we mentioned, the voter expects

that the outcome will be B when she follows the default sequence (i.e., she votes for

A). Therefore, her voting for B can be used as a message to the subsequent voters

that she has received signal a (not signal b!). This construction is different from the

one for consistent equilibria where any voter receiving signal b votes for B.

The equilibrium construction in the above example can be generalized. The next

theorem formalizes this point. Let R̄n := 1− (1−ε)2n+1

2
. Note that when n = 1, R̄n is

the equilibrium payoff we derived in the above example.

Theorem 3. For any n, there is an equilibrium σ that achieves the payoff R̄n.

The proof in the Appendix shows that a strategy profile generalizing σ̄ in Exam-

ple 1 is an equilibrium.

We now show that R̄n is the highest feasible payoff that can be achieved. To

formalize this statement, given n, consider a social choice function f : {a, b, ∅}2n+1 →
∆({A,B}) that returns a probability distribution over outcomes for each realization

of signals of all the 2n+ 1 voters. Note that for any strategy profile σ in our original

game, there is a social choice function f that achieves the same distribution over

outcomes conditional on any realization of the state and the signals. Let Fn be the

space of all social choice functions. Notice that a social choice function f ∈ Fn

determines the ex ante expected payoff to each voter. Let this payoff be Rn(f).

Proposition 1. For all f ∈ Fn, Rn(f) ≤ R̄n.
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Proof. Fix any f ∈ Fn. Let f(∅, . . . , ∅)(A) = q. Then, conditional on the signal

realization (∅, . . . , ∅), the voters’ expected payoff is 1
2
q+ 1

2
(1−q) = 1

2
. The probability

that the signal profile (∅, . . . , ∅) realizes is (1 − ε)2n+1. Hence, the ex ante expected

payoff is at most (1− (1− ε)2n+1) · 1 + (1− ε)2n+1 · 1
2

= 1− (1− ε)2n+1 · 1
2

= R̄n.

We note that the payoff R̄n can be realized by a social choice function that,

whenever there is at least one signal, the outcome accords with that signal (and

returns an arbitrary outcome when there is no signal). The intuition is that the

social choice function asks every voter if they have received a signal and returns the

outcome according to the voter’s response. What Theorem 3 shows is that we can

construct an equilibrium corresponding to such a social choice function. In contrast,

Theorem 2 shows that the consistent strategy equilibria correspond to asking only

n+ 1 voters about their signals.

4.2 Payoff Lower Bound: Ignoring a Signal Leads to Ineffi-

ciency

Now we turn to the analysis of the payoff lower bound. The bound can be obtained

by using a strategy that lets the voter vote for a particular action regardless of the

signal. The following example shows that there exists an equilibrium that uses such

inconsistent strategies and achieves a strictly lower expected payoff than that of pure

consistent equilibria.

Example 2. Consider the case with 5 voters and the following strategy profile, which

we denote by σ.

• Voters k = 1, 2: Voter 1 plays A irrespective of the signal. Voter 2 plays

A irrespective of the signal if voter 1 has played A. Otherwise, he plays a

consistent strategy in which he plays A if no signal is received.

• Voters k = 3, 4: If all the actions observed so far are 2 times of A followed

by k − 3 times of B, then play B irrespective of the signal. Otherwise, play a

consistent strategy in which she plays A if no signal is received.

• Voter k = 5: Play a consistent strategy in which she plays A if no signal is

received.
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The default sequence of this strategy profile σ is (A,A,B,B,A). Note that σ has

the ex ante payoff of 1
2

+ 1
2
ε = 1+ε

2
. We can show that when ε > 0 is sufficiently small,

σ constitutes an equilibrium with the belief that, after any deviation, any voter who

has not received a signal assigns probability 1 to α. Here, let us explain why voters

have incentives to ignore the signals on the path of play.17

First, voters 1 and 2 play A even if they receive signal b. The reason is that if

they play B, then the subsequent voters believe that the state is α. For the outcome

to be B under such a situation, there need to be at least two subsequent voters who

receive signal b, which happens with probability O(ε2).18 In contrast, if they follow σ

and play A, then the outcome will be B if and only if voter 5 receives signal b, which

happens with probability ε. Thus, it is indeed optimal to ignore the signal and play

A when ε > 0 is sufficiently small.

Second, voters 3 and 4 play B even if they receive signal a. The reason is that

even if they do so, the outcome will be A with probability 1 according to σ given

that the state is α, which means that playing B ensures that the payoff is 1. Thus,

ignoring the signal and playing B is indeed optimal.

The equilibrium construction in the above example can be generalized. The next

theorem formalizes this point. Recall that the equilibrium constructed in the above

example achieves the payoff of 1+ε
2

.

Theorem 4. For any n ≥ 2, there is ε̄ > 0 such that for all ε ∈ (0, ε̄), there is an

equilibrium that achieves the payoff of 1+ε
2

.

The proof in the Appendix shows that a strategy profile generalizing σ in Exam-

ple 2 is an equilibrium.

We now show that the payoff identified in Theorem 4 is the worst possible payoff.

The meaning of “worst” needs an explanation because we do not consider all social

choice functions. For example, imagine social choice functions that always return the

17The proof of Theorem 4 fully checks the voters’ incentives to show that this strategy profile is
indeed an equilibrium.

18We note that the argument depends on ε > 0 being small. To see this, consider voter 2 who
observes voter 1’s A and receives signal b. If he plays A, then the outcome will be B if and only if
voter 5 receives signal b, which happens with probability ε. Hence, his payoff in this case is ε. If
he plays B instead, then the outcome will be B if and only if two or three out of three subsequent
voters receive signal b. The probability of this event is 3ε2(1− ε) + ε3, and hence his payoff in this
case is 3ε2(1− ε) + ε3. The latter payoff is greater than the former if and only if ε < 3ε2(1− ε) + ε3,
or (2ε− 1)(ε− 1) < 0, which holds if and only if ε > 1

2 .
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outcome that is against the signals obtained by the voters. Such social choice functions

induce a payoff that is obviously strictly below the payoff that any equilibrium of our

sequential voting game can achieve. For this reason, we seek to obtain the lowest

possible pure strategy equilibrium payoff that can be achieved in our sequential voting

game.

Proposition 2. Given any (n, ε), the expected payoff from any pure strategy equilib-

rium is at least 1+ε
2

.

The proof is involved. We show that the last voter on the default sequence uses a

consistent strategy19, and use this property to bound the payoffs of the previous voters

inductively. We note that the payoff 1+ε
2

corresponds to the payoff from the social

choice function that asks only one voter about her signal and returns the outcome

that accords with her signal if she receives one. This payoff may appear quite low,

but it is strictly greater than an equilibrium payoff in the simultaneous-move version

of the game: If n > 1 (i.e., there are 3 or more voters), the simultaneous-move voting

has an equilibrium in which every voter votes for A regardless of the signal, and this

equilibrium has the payoff of 1
2
.

Let us summarize this section. There are various kinds of inconsistent strategy

equilibria, and their welfare ranges from the best payoff achievable under any social

choice function, which corresponds to asking all the 2n+ 1 voters about their signals,

to the one that corresponds to asking just a single voter about her signal. The payoff

under the consistent equilibria corresponds to asking n+ 1 voters about their signals

and thus positions between those two bounds.

5 Long Voting

A simple application of the Feddersen and Pesendorfer (1996)’s intuition might lead

one to conjecture long voting, but the “anything goes” result shows that long voting

is only one of many possible predictions. In this section, we consider two modification

of our model that leads to the unique prediction of long voting.

19This means that we need to rule out the strategy of, for example, playing A to end the game
given no signal and playing B to continue the game given signal a or b.
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5.1 When the Last Voter “Trembles”

Consider a modified game in which voter 2n + 1 is constrained to choose a mixed

action (he trembles, as in the last voter in Squid Game). Formally, for any ξ ∈ (0, 1
2
],

a ξ-tremble game is a game that is the same as the one in the main section, except

that voter 2n+ 1, upon moving, chooses a probability distribution over {A,B} such

that each action receives probability at least ξ if he does not receive a signal. We say

that a strategy profile in a ξ-tremble game is pseudo-pure if every voter from 1 to 2n

uses a pure strategy.

Theorem 5. In any ξ-tremble game, there is no consistent pseudo-pure strategy equi-

librium such that the game ends before reaching voter 2n + 1 when no voter receives

a signal.

The intuition for the proof is as follows. Consider voter k who is deciding (see

the discussion after Theorem 1 for the definition of “deciding”), and suppose that

this voter is not the last voter in the game (i.e., k < 2n + 1). Suppose without

loss of generality that the game ends if she plays A. We know that the posterior

effect and the delegation effect make actions A and B attractive, respectively, and

consequently, k is indifferent between playing A and B. This is based on the fact that

all the subsequent voters receiving no signal will play B after k plays B. However, if

there is a chance that, after k’s playing B, a subsequent voter receiving no signal plays

A, then voter k is no longer indifferent between the two actions. This is because, since

state α is more likely than β, the posterior effect makes playing B more attractive as

well. This is why it is impossible to sustain k’s playing A as an equilibrium action.

In Appendix A.5, we prove this theorem as a corollary of a more general result:

we suppose that one voter k∗ (not necessarily the last voter) trembles and show that,

in equilibrium, the game does not end before k∗ if no voter receives a signal.

We note that “long voting” means that the voting takes a long time if no voter

receives a signal. If some voter receives a signal and votes against the default sequence,

the voting can end early. This means that, in the environment where the last voter

trembles, shorter voting is associated with a higher expected payoff.20

20An analogous comment applies to the modification of the model in the next subsection.
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5.2 Small Incentive Not to End

Consider a model in which we change the payoff function of each voter so that if voter

k votes for X when the history has n times of X, then k incurs a positive cost c > 0.

Call this game the pivot-aversion game. Pivot aversion seems natural in situations

where voters dislike being considered at their fault about the realized outcome.

Theorem 6. In any pivot-aversion game, there is no pure consistent strategy equi-

librium such that the game ends before reaching voter 2n + 1 when no voter receives

a signal.

The intuition is simple. In the original voting game, as long as voters play a pure

consistent equilibrium, any voter who is deciding is indifferent due to the posterior

effect and the delegation effect (see Remark 1). In the pivot-aversion game, such

a voter incurs an additional cost from ending the game. Hence, the indifference is

broken in favor of the delegation effect, and thus she votes for an option that makes

the voting continue. This is why the game lasts until it reaches the last voter.

Although pivot aversion seems natural, one may argue that it is an ad hoc as-

sumption to obtain the long voting result. In the Online Appendix, we consider a

version of incentives in which voters want to end the game and show a long voting

result.

6 Discussions

This section provides several discussions. Section 6.1 introduces asymmetries to our

base model and examines how our “anything goes” result and the welfare invariance

are affected. In Section 6.2, we compare our consistent equilibria with an equilibrium

in the static version of the voting game. Section 6.3 discusses a model with abstention,

and Section 6.4 considers a restriction to strategies that depend only on the vote count

to date.

6.1 General Asymmetric Voting

In this section, we explore how the result in Theorem 1 is affected by an introduction

of asymmetry in the environment. For this purpose, we modify the model as follows:

1. The prior probability on α is p ∈ (0, 1).
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2. The probability of receiving signal a at state α is εa ∈ (0, 1) and that of receiving

signal b at state β is εb ∈ (0, 1).

3. There are N voters. K votes are necessary to achieve outcome A and L votes

are necessary to achieve outcome B, where K + L− 1 = N .

4. All voters receive the payoff of γα > 0 if the outcome is A when the state is α

and γβ > 0 if the outcome is B when the state is β; otherwise, all voters receive

the payoff of 0.

We call this model a general voting model with (p, εa, εb, K, L, γα, γβ). Our model in

Section 2 is a general voting model with (1
2
, ε, ε, n+ 1, n+ 1, 1, 1).

We extend the definition of sequences to this general environment by letting the

set of sequences be

S :=

(
N⋃

k=K

{(X1, . . . , Xk) ∈ {A,B}k||{l ∈ {1, 2, . . . , k}|Xl = A}| = K,Xk = A}

)
∪

(
N⋃
k=L

{(X1, . . . , Xk) ∈ {A,B}k||{l ∈ {1, 2, . . . , k}|Xl = B}| = L,Xk = B}

)
.

As before, for any S = (X1, . . . , Xk) ∈ S, call Xk the outcome of S.

Proposition 3. Consider the general voting model with (p, εa, εb, K, L, γα, γβ) and fix

a sequence S ∈ S. Then, the following holds.

1. If 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
< 1, then there is a pure consistent strategy equilibrium σ such

that S is the default sequence of σ if and only if the outcome of S is A.

2. If 1−p
p

(1−εb)K
(1−εa)L

γβ
γα

= 1, then there is a pure consistent strategy equilibrium σ such

that S is the default sequence of σ.

3. If If 1−p
p

(1−εb)K
(1−εa)L

γβ
γα

> 1, then there is a pure consistent strategy equilibrium σ

such that S is the default sequence of σ if and only if the outcome of S is B.

That is, although the theorem shows that introducing asymmetry breaks the “any-

thing goes” result, it identifies the direction in which it is broken. Moreover, it shows

that any sequence, whether long or short, that leads to a particular outcome can be

a default sequence of a pure consistent strategy equilibrium.
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The following corollary provides some special cases that are helpful in understand-

ing this general result.

Corollary 1. Consider the general voting model with (p, εa, εb, K, L, γα, γβ) and sup-

pose that one of the following holds:

1. p < 1
2
, εa = εb, K = L, and γα = γβ.

2. p = 1
2
, εa > εb, K = L, and γα = γβ.

3. p = 1
2
, εa = εb, K < L, and γα = γβ.

4. p = 1
2
, εa = εb, K = L, and γα < γβ.

Then, there is a pure consistent strategy equilibrium σ such that S is the default

sequence of σ if and only if the outcome of S is B.

On the one hand, the “if” direction of the proof of the proposition (that is, to

show that any sequence with outcome B can be a default sequence) closely follows

that of Theorem 1.

On the other hand, the “only if” direction of the proof of the proposition (that is,

to show that no sequence with outcome A can be a default sequence) closely follows

that of Theorem 5 because the proof is about breaking the indifference due to the

balance between the posterior effect and the delegation effect. To understand this

point, consider a pure consistent strategy profile in which the default sequence is the

K times of A. When p = 1
2
, K = L(= n+ 1) and εa = εb, voter n+ 1 was indifferent

between playing A and B due to the balance of the two effects.

Now, consider the three settings in Corollary 1 and suppose for simplicity that

the first K − 1 voters have voted for A and it is voter K’s turn. This voter would

be indifferent between voting for A and B in the perfectly symmetric model. In part

1 (p < 1
2
), the posterior effect is undermined, and hence there is a strict incentive

to vote for B. In part 2 (εa > εb), since signal a is more likely than signal b, after

K − 1(= L− 1) times of straight As, the posterior effect is not large (as B has been

relatively unlikely to be chosen under state β), and the delegation effect is strong (as

A will relatively likely be chosen under state α). In part 3 (K < L), the posterior

effect is given by the K − 1 times of A, while the delegation effect comes from L− 1

times of B. Hence, the delegation effect is stronger, and voter K has a strict incentive

to vote for B. In part 4 (γα < γβ), since the posterior effect and the delegation effect
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are the same as in the symmetric model, the payoff from ending the vote with each

outcome determines the incentive. Since γα < γβ, voter K has a strict incentive to

vote for B.

To summarize, if the asymmetry is introduced in a way that “favors” a particular

outcome in light of the balance between the posterior effect and the delegation effect or

the payoff from each outcome, then no sequence that induces the non-favored outcome

can be a default sequence of any pure consistent equilibrium, while any sequence that

induces the favored outcome is a default sequence of some pure consistent equilibrium.

In this sense, the result shows a limitation as well as the robustness of the “anything

goes” result. In particular, it shows that both long voting and short voting can be

an equilibrium default sequence, even under asymmetry.

Given Proposition 3, the welfare equivalence result (Theorem 2) can be extended

as follows:

Corollary 2. Consider the general voting model with (p, εa, εb, K, L, γα, γβ). The

voters’ payoff from any pure consistent strategy equilibrium ispγα + (1− p)(1− (1− εb)K)γβ if 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
< 1

p(1− (1− εa)L)γα + (1− p)γβ if 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
≥ 1

.

To understand this corollary, consider the case of 1−p
p

(1−εb)K
(1−εa)L

γβ
γα
< 1. Then, Propo-

sition 3 implies that the outcome of the default sequence of any pure consistent

strategy equilibrium is A. Hence, whenever the state is α (which happens with prob-

ability p), the voters receive the payoff of α. If, on the other hand, the state is β

(which happens with probability 1−p), then the voters receive the payoff of γβ if and

only if at least one of the K voters who were supposed to vote for B in the default

sequence receives a signal, which occurs with probability 1 − (1 − ε)K . the case of
1−p
p

(1−εb)K
(1−εa)L

γβ
γα
≥ 1 is symmetric.

Paying special attention to the voting rule provides a further interesting insight.

Corollary 3. Consider the general voting model with N voters such that p = 1
2
,

εa = εb and γα = γβ. The voters’ payoff under pure consistent strategy equilibria is

strictly increasing in max{K,L}. Therefore, it is maximized when K = N or L = N ,

and minimized when |K − L| ≤ 1.

This corollary shows that, in terms of the equilibrium payoffs, the majority voting
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rule performs the worst while the unanimous rule is the best in an otherwise symmetric

setting.

In the Online Appendix, we further solve for the welfare bounds of the inconsistent

strategy equilibria in the general asymmetric model.

6.2 Comparison with Static Voting

In this section, we compare our model of sequential voting with its simultaneous-move

version. We first consider the upper bound on the payoff in the simultaneous voting

game and discuss the strategy profile that achieves the bound. Then we consider a

prominent Bayesian Nash equilibrium, the “random voting strategy,” and discuss its

welfare property.

Formally, in the simultaneous voting game, everything is the same as in our main

model except that voters vote simultaneously. This model is characterized by param-

eters (n, ε). Voter i’s strategy is a mapping πi : {a, b, ∅} → ∆({A,B}). Let Πi be the

set of all strategies of player i, and Π = ×2n+1
i=1 Πi. Bayesian Nash equilibrium of this

game can be defined in a standard manner.

Let ΠC be the set of consistent strategy profiles, where consistency is defined

analogously to the one in the main model. Let ΠPC be the set of pure consistent

strategy profiles. Let Πn+1 be the set of pure consistent strategy profiles in which

there is an action X ∈ {A,B} and a subset of players N ′ with n + 1 voters such

that πi(∅)(X) = 1 for all i ∈ N ′ and πi(∅)(X) = 0 for all i 6∈ N ′. Note that

Πn+1 ⊂ ΠPC ⊂ ΠC ⊂ Π.

Notice that for any given strategy profile π ∈ Π, every voter’s ex ante expected

payoff is the same. We call this “the expected payoff from π.”

Proposition 4. Consider a simultaneous-move voting game with (n, ε). Then, the

following hold.

1. There exists ε̄ > 0 such that if ε ∈ (0, ε̄), then any strategy profile in Πn+1

maximizes the expected payoff among Π.

2. Consider π ∈ ΠPC. Then, π is a Bayesian Nash equilibrium if and only if

π ∈ Πn+1.

An implication of this result is that a pure consistent strategy profile in the si-

multaneous voting game constitutes an equilibrium of our sequential voting model.
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This result may superficially look similar to that of Dekel and Piccione (2000), but

their result does not imply ours. This is because Dekel and Piccione (2000) has the

“full support” assumption that eliminates the possibility of off-path information sets.

In our consistent equilibria, however, specifying off-path beliefs and strategies is a

crucial step in showing that voters are indeed taking a best response.

Now we turn our attention to one of the most prominent strategy profiles: Call the

consistent strategy in which the voter assigns probability 1
2

to each action regardless

of the history of actions the random voting strategy.

Proposition 5. For any simultaneous-move voting game with (n, ε), the strategy

profile in which every voter uses the random voting strategy is a Bayesian Nash equi-

librium.

The intuition is simple. Under the random voting strategy profile, a given voter

is pivotal only when n other voters vote for A and the remaining n voters vote for

B. Under such an event, the posterior of the voter, if she does not receive a signal,

assigns probability 1
2

to each state. Hence, the voter is indifferent between A and B,

and thus randomizing is indeed optimal. It is straightforward that the voter receiving

a signal finds it optimal to vote for the option that is consistent with her signal.

Now, we compare the welfare from pure consistent equilibria with that of the

random voting strategy. Given ε, let the payoff from a pure consistent strategy

profile be C(ε) and the payoff from the random voting strategy profile in the static

model be RV (ε).

Proposition 6. For any n ≥ 1, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄),

RV (ε) < C(ε).

That is, the expected payoff from a pure consistent equilibrium is greater than that

of the random strategy profile. Although the proof involves some tedious calculus, the

intuition is simple. For the sake of argument, imagine that n is large. When ε > 0 is

very small, one voter receiving a signal is much more likely than more voters receiving

a signal. Hence, consider the case in which exactly one voter receives a signal, say a.

In such a case, the event in which this voter would become pivotal under the random

voting strategy is small because n is large, and we would need exactly n voters voting

for A and exactly n voters voting for B. However, under a pure consistent strategy

profile, if this voter happens to be on the default sequence that specifies her to play
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B, then she can overturn the outcome because her action, voting for A, affects the

subsequent voters’ actions. This substantially improves efficiency. In summary, the

fact that the voting is sequential makes the probability of a voter becoming pivotal

high, and this is the reason why the expected payoff from a pure consistent equilibrium

is greater than that of random strategy profile.

6.3 Abstention Model

The main section considered a model without abstention. Such a model would ap-

proximate the situation as in Squid Game as well as roll call vote in United Nations,

US Senate and Japanese Diet where abstention is unavailable. In other applications,

however, abstention is allowed. This section discusses a model with abstention.

Formally, there are N voters. The action space is now {A,B,Φ}, where Φ stands

for abstention. The voting ends with outcome A at voter k if, after k’s vote, the

number of votes on A minus the number of votes on B is strictly greater than N − k.

Similarly, the voting ends with outcome B at voter k if, after her vote, the number

of votes on B minus the number of votes on A is strictly greater than N − k. If the

number of votes for A and that for B are equal after N voters vote, then outcomes

A and B realize with equal probability.

We say that voter k’s strategy is consistent in the abstention model if k chooses the

“consistent” action if she receives a signal, i.e., σk(·, a)(A) = 1 and σk(·, b)(B) = 1.

In the Online Appendix, we show that there is an equilibrium in which all voters

use a strategy that is consistent in the abstention model under any history, and abstain

on the path of play if no signal is received. The Online Appendix also provides an

example of an equilibrium in which there is a voter who does not use a strategy that

is consistent in the abstention model: in particular, she votes for Φ if her signal is a

and A if her signal is φ (and votes for B if the signal is b). In both examples, the ex

ante payoff turns out to be the highest payoff achievable by any social choice function.

Finally, we note that, in the standard voting models in the literature, introduc-

tion of abstention would strictly improve the welfare. In our model, however, the

highest payoff achievable by any social choice function can be obtained without the

introduction of abstention as we have seen in Section 4.
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6.4 Vote Count Model

One may wonder if our “anything goes” result hinges “too much” on the observation

of the particular default sequence. However, the same result can be proved even if

we allow voters to observe only the vote counts.

To state this formally, change the base model so that voter k’s strategy is a

mapping from the numbers of votes for A and k’s signals to distributions over her

actions: σk : {0, . . . , k−1}×{a, b, ∅} → ∆({A,B}). Given this definition of strategy,

we can define sequential equilibria. Call this model the vote count model.

Theorem 7. In the vote count model, for any n ≥ 0, ε ∈ (0, 1] and any sequence

S ∈ S, there is a pure consistent strategy equilibrium σ in the model with (n, ε) such

that S is the default sequence of σ.

As for Theorem 1, the proof is constructive. The equilibrium construction, how-

ever, is different because the voters cannot condition their votes on who deviated

first from the default sequence when the observed vote counts contradict the default

sequence. For this reason, we consider an alternative construction. There is still a

default sequence. If a voter with no signal sees the vote counts that are implied by

the default sequence, then she votes according to the default sequence. Otherwise,

the voter votes for the option that has received more votes than what the default

sequence implies.21

7 Conclusion

Sequential voting is used on various occasions, such as in the roll call vote in the

United Nations, the US Senate, and the Japanese Diet. In those settings, voters

would have information of different degrees of precision to each other. This paper

considered common-value sequential voting with informed and uninformed voters: In

particular, the uninformed voters learn from previous votes and make voting decisions

while considering the impact on subsequent votes. We identified two effects, the

posterior effect and the delegation effect, and the balance of these two effects resulted

in the “anything goes” result. The welfare is invariant as long as we consider the

class of pure consistent equilibria where consistency means that the voter follows her

21We note that this strategy profile is an equilibrium in the model in which the entire history of
past votes is observable as well.
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signal if she is informed. There are inconsistent equilibria as well, and the welfare

from the inconsistent equilibria varies quite a bit. Two modifications of the model

are discussed, where the modified models imply long voting because the delegation

effect is stronger than the posterior effect for the pivotal (deciding) voter due to the

modification.

We end the paper by re-stressing that our model is stylized. A stylized model

lets us capture a general insight that underlies various settings, and we discussed

some extensions (such as asymmetries, abstention or the vote count model). As we

discussed, however, there are still features of real sequential voting that we do not

capture in this paper. We view such discrepancies as a wonderful possibility for

future work. In such future work, the posterior effect and the delegation effect would

be essential building blocks in elucidating the incentives of the voters, as they were

in this paper.
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A APPENDIX

A.1 Proof of Theorem 1 and Remark 1

Proof. Fix k ∈ {n + 1, n + 2, . . . , 2n + 1} and take a sequence of actions S∗ =

(X1, . . . , Xk) ∈ {A,B}k such that Xk appears exactly n + 1 times. We consider

the case when Xk = A. The case for Xk = B is symmetric.

Consider the consistent strategy profile σ satisfying the following conditions:

1. For any i = 1, . . . , k, take any sequence S = (X1, . . . , Xi−1) ∈ {A,B}i−1. That

is, S coincides with S∗ before voter i. Then, i chooses the action specified in

S∗ given no signal, i.e.,

σi(X1, . . . , Xi−1, ∅)(Xi) = 1.

2. For any i = 1, . . . , 2n + 1 and i′ = 1, . . . ,min{k, i − 1}, take any sequence

S = (X1, . . . , Xi′−1, X
′
i′ , . . . , X

′
i−1) ∈ {A,B}i−1 such that X ′i′ 6= Xi′ . That is, i′

is the first voter who does not follow the sequence (X1, . . . , Xk). Then, i chooses

the same action as X ′i′ given no signal, i.e.,

σi(S, ∅)(X ′i′) = 1.

Now we check incentives. First, voters who have received a signal take a best response

given condition 2 above.

Second, under any histories described in condition 2, by letting i have a belief

that the state is α if X ′i′ = A and β if X ′i′ = B (such a belief can easily be shown to

be consistent in the sense of Kreps and Wilson (1982)), it is straightforward to see

that i is taking a best response.

Third, under any histories described in condition 1, suppose that there has been

m times of A’s before i. Voter i’s posterior on α is then

P (α) =
(1− ε)i−m

(1− ε)i−m + (1− ε)m+1
,
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and her posterior on β is

P (β) = 1− P (α) =
(1− ε)m+1

(1− ε)i−m + (1− ε)m+1
.

We consider the following two (exhaustive) cases.

1. Suppose that Xi = A.

If i plays A, her payoff is:

P (α) + (1− P (α))(1− (1− ε)n−m).

Suppose now that i plays B. If the state is β, then outcome B realizes with

probability 1 given that the voters follow σ. If the state is α, the outcome

becomes A if and only if at least n+ 1−m subsequent voters receive signal a.

Thus, her payoff is

1− P (α) + P (α) · Y,

where Y := Prob(n+ 1−m or more signals out of 2n+ 1− i).

Thus, the payoff from playing A is no less than the payoff from playing B if and

only if:

P (α) + (1− P (α))(1− (1− ε)n−m) ≥ 1− P (α) + P (α)Y ⇐⇒

P (α)[1 + (1− ε)n−m − Y ] ≥ (1− ε)n−m ⇐⇒ P (α) ≥ (1− ε)n−m

(1− ε)n−m + 1− Y
.

Now, notice that

P (α) =
(1− ε)i−m

(1− ε)i−m + (1− ε)m+1

=
(1− ε)n−m

(1− ε)n−m + (1− ε)n+1+m−i .

Hence, the payoff from playing A is no less than the payoff from playing B if

and only if:

(1− ε)n+1+m−i ≤ 1− Y,
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or

(1− ε)n+1+m−i ≤ Prob(n−m or less signals out of 2n+ 1− i).

Now, let Z1 := (n + 1) + (m − i) and Z2 := (n + 1) + (n − i). Notice that

Z1 ≤ Z2 because m ≤ n. The payoff from playing A is no less than the payoff

from playing B if and only if:

(1− ε)Z1 ≤ Prob(Z2 − Z1 or less signals out of Z2). (1)

Note that

Prob(Z2 − Z1 or less signals out of Z2)

≥ Prob(The last Z1 voters do not receive a signal) (2)

= (1− ε)Z1 .

Thus, eq. (1) indeed holds, and therefore, the payoff from playing A is no less

than the payoff from playing B.

2. Suppose that Xi = B.

First, consider the case when i plays B.

Suppose the state is α, which happens with probability P (α). In this case,

i’s playing B ensures that there is probability 1 that A will be chosen as the

outcome.

Suppose the state is β, which happens with probability 1 − P (α). Since there

have been m times of A right after i plays B and there are n+ 1 times of A in

the given sequence, there will be n+ 1−m times of A at which the voter, upon

receiving signal b, can change the outcome to B. The probability that at least

one voter out of n+ 1−m voters receives signal b is 1− (1− ε)n+1−m.

Thus, overall, the payoff from i’s voting for B is

P (α) + (1− P (α))(1− (1− ε)n+1−m).

Second, consider the case when i plays A.

If the state is α, then outcome A realizes with probability 1 given that the

voters follow σ. If the state is β, the outcome becomes B if and only if at least
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(n+ 1)− (i− (m+ 1)) subsequent voters receive signal b. Thus, her payoff is

P (α) + (1− P (α))Ŷ ,

where Ŷ := Prob((n+ 1)− (i− (m+ 1)) or more “b” signals out of 2n+ 1− i).

Thus, the payoff from playing B is no less than the payoff from A if and only

if:

P (α) + (1− P (α))(1− (1− ε)n+1−m) ≥ P (α) + (1− P (α))Ŷ ⇐⇒

(1− ε)n+1−m ≤ 1− Ŷ ,

or

(1− ε)n+1−m ≤ Prob(n+ 1 +m− i or less “b” signals out of 2n+ 1− i).

Now, let Ẑ1 := n + 1 −m and Ẑ2 := 2n + 2 − i. Notice that Ẑ1 ≤ Ẑ2 because

Ẑ2 − Ẑ1 = 2n + 2 − i − (n + 1 −m) = n + 1 − (i −m) ≥ 0. The payoff from

playing B is no less than the payoff from A if and only if:

(1− ε)Ẑ1 ≤ Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2 − 1). (3)

Note that

Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2 − 1)

> Prob(Ẑ2 − Ẑ1 or less “b” signals out of Ẑ2) (4)

≥ Prob(The last Ẑ1 voters do not receive an “b” signal)

= (1− ε)Ẑ1 .

Thus, eq. (3) indeed holds, and therefore, the payoff from playing B is no less

than the payoff from A.

Overall, playing Xi is a best response for voter i.

Proof of Remark 1. The voters on the default sequence is indifferent if and only if
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eq. (2) holds with equality in Case 1 (i.e., Xk = A).22 This happens when either

Z1 = Z2 or Z1 = 0. Note that Z1 = Z2 is equivalent to m = n, and Z1 = 0 is

equivalent to i − 1 = n + m, so i has seen n times of B. Since eq. (2) is in the case

when Xi = Xk = A, these are exactly the cases when voter i is deciding.

A.2 Proof of Theorem 3

Proof. For any number of voters 2n + 1, the following strategy profile σ̄ is an equi-

librium and achieves the ex ante payoff R̄.

• For any k = 1, . . . , n, voter k chooses B if she receives a; otherwise she plays A.

• For any k = n+ 1, . . . , 2n+ 1, voter k uses a consistent strategy. If he does not

receive a signal, then (i) k plays B if he observes that voters 1, . . . , n play A

and voters n+ 1, . . . , k − 1 play B, and (ii) k plays A otherwise.

Note that this is a pure strategy profile and is not consistent. Its default sequence is

(A, . . . , A,B, . . . , B), where A continues n times and then B continues n + 1 times.

To see that each voter chooses a best response, observe first that it is immediate that

any voter who receives a signal is taking a best response. Also, observe that once

there is a deviation from the default sequence, then voters take a best response given

a belief that the first deviator from the default sequence has received a signal and

followed the equilibrium strategy (such a belief can easily be shown to be consistent

in the sense of Kreps and Wilson (1982)). So suppose that the voters 1 through k− 1

have followed the default sequence, and suppose that voter k receives no signal. The

posterior on α is P (α) = (1−ε)k
(1−ε)k+(1−ε) . If k follows the specified strategy, then her

payoff is

P (α)(1− (1− ε)2n+1−k) + (1− P (α)) · 1. (5)

If k deviates, her payoff is P (α) if k ≥ n + 1. In this case, k is taking a best

response because (5) is larger than P (α) due to P (α) < 1
2
< 1− P (α).

If k ≤ n, then her payoff from the deviation is

P (α) + (1− P (α))Ỹ ,

22Note that indifference does not occur in Case 2 because of the strict inequality in eq. (4) of the
proof above.
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where Ỹ := Prob(n or more signals out of 2n− k).

Thus, the payoff from playing A is no less than the payoff from playing B if and

only if

P (α)(1− (1− ε)2n+1−k) + (1− P (α)) · 1 ≥ P (α) + (1− P (α))Ỹ ,

or

P (α) ≤ 1− Ỹ
1− Ỹ + (1− ε)2n+1−k

.

Since P (α) = (1−ε)k
(1−ε)k+(1−ε) , this is equivalent to:23

(1− ε)k

1− ε
≤ 1− Ỹ

(1− ε)2n+1−k ,

or

(1− ε)2n ≤ 1− Ỹ . (6)

Now, note that Ỹ is equal to Y defined in the proof of Theorem 1 where we set

m = 1 and i = k + 1. Since that proof shows (1− ε)n+1+m−i ≤ 1− Y , we have

(1− ε)n+1+1−(k+1) ≤ 1− Ỹ ,

or

(1− ε)n+1−k ≤ 1− Ỹ .

Since k, n ≥ 1, we have (1− ε)2n ≤ (1− ε)n ≤ (1− ε)n+1−k, which implies (6). This

shows that k is taking a best response when k ≤ n.

Finally, since the payoff is 0 under σ̄ if and only if the state is α and no one

receives a signal, the expected payoff is 1− (1−ε)2n+1

2
.

A.3 Proof of Theorem 4

Proof. Consider the following strategy profile, which we denote by σ.

• Voter k = 1, . . . , n: If all the actions observed so far are A, then play A irrespec-

tive of the signal. Otherwise, play a consistent strategy in which A is played if

no signal is received.

23Here we use the fact that, for any a, b, c, d > 0, a
a+b ≤

c
c+d ⇐⇒

1
1+(b/a) ≤

1
1+(d/c) ⇐⇒

a
b ≤

c
d .
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• Voter k = n + 1, . . . , 2n: If all the actions observed so far are n times of A

followed by k−1−n times ofB, then playB irrespective of the signal. Otherwise,

play a consistent strategy in which A is played if no signal is received.

• Voters k = 2n+ 1: Play a consistent strategy in which A is played if no signal

is received.

Note that this strategy profile has the ex ante payoff of 1
2

+ 1
2
ε = 1+ε

2
. We show that,

if n ≥ 2, σ constitutes an equilibrium with a belief that, after any deviation, any

voter who has not received a signal assigns probability 1 to α (such a belief can easily

be shown to be consistent in the sense of Kreps and Wilson (1982)).

Consider voter k. Fix any history of actions by the previous voters. First, suppose

that k receives signal a. Then, since the outcome will be A if k follows σk, playing

σk induces the expected payoff of 1, which is the highest possible payoff in this game.

Hence, σk is a best response.

Second, suppose that k receives signal b.

• Suppose that the voters so far have followed σ.

– If 1 ≤ k ≤ n, then if she follows σk then her payoff is ε. If instead she plays

B then at least n voters from the set of subsequent voters have to receive

signal b in order for k to expect the payoff of 1, and otherwise she receives

the payoff of 0. Hence, her payoff is O(εn). Since n ≥ 2, this implies that

there exists ε̄ > 0 such that for all ε < ε̄, following σk is a best response.

– If n + 1 ≤ k ≤ 2n, then playing A ends the game with outcome A, so it

induces the expected payoff of 0. Hence, playing B is a best response.

– If k = 2n + 1, then playing B induces the payoff of 1 with probability 1,

so it is a best response to play B.

• Suppose that there is a voter who has deviated from σ. Then, the play by the

subsequent voters will not be affected by the action taken by voter k. Hence,

it is a best response for voter k to provide an additional vote for B. Therefore,

playing B is a best response.

Third, suppose that voter k did not receive a signal.

• Suppose that the voters so far have followed σ. Then, the posterior belief on α

is 1
2
.
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– Suppose k ≤ n. If k follows σk, then her payoff is 1
2

+ 1
2
ε. If she does not

follow σk, then her payoff is 1
2

+ 1
2
O(εn). Since n ≥ 2, following σk is a

best response.

– Suppose n + 1 ≤ k ≤ 2n. If k follows σk, then her payoff is 1
2

+ 1
2
ε. If

she does not follow σk, then her payoff is 1
2
. Hence, following σk is a best

response.

– Suppose k = 2n + 1. Then, k is indifferent between the two actions. So

following σk is a best response.

• Suppose that there is a voter who has deviated from σ before k’s move. Then,

the play by the subsequent voters will not be affected by the action taken by

voter k. Hence it is a best response for k to provide an additional vote for A

because k’s belief assigns probability 1 to α.

This completes the proof.

A.4 Proof of Proposition 2

Proof. Fix a pure strategy equilibrium σ. Take the default sequence of σ. Suppose

without loss of generality that the last voter on this default sequence, whom we denote

voter k∗, plays A.

First, we show the following lemma.

Lemma 1. Suppose that the votes by voters 1, . . . , k∗ − 1 have followed the default

sequence of σ. Then, voter k∗ votes for B if and only if she receives signal b.

Proof of Lemma 1. Consider the history in which voters 1, . . . , k∗ − 1 have followed

the default sequence of σ. Given the assumption that k∗ plays A given no signal, it

suffices to check the cases when she receives a signal.

1. First, we show that k∗ plays B if she receives signal b. We show this using

induction on k. To do this, fix k′ ∈ {k∗, . . . , 2n+ 1}. Suppose, as an induction

hypothesis, that for every k > k′, voter k plays B if he receives signal b.24 Sup-

pose that voter k′ receives signal b. Given this signal, her posterior probability

on β is 1. If k′ votes for A, then her expected payoff is 0. If k′ votes for B,

24Note that this hypothesis is vacuously true when k′ = 2n+ 1.
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then there is a strictly positive probability that all the subsequent voters re-

ceive signal b and, in that case, the game ends with outcome B by the induction

hypothesis. Hence, her expected payoff is strictly positive. Thus, playing B is

a unique best response for k′, and hence, voter k′ plays B if she receives signal

b. This shows that voter k∗ plays B if she receives signal b.

2. Next, we show that k∗ plays A if she receives signal a. To see this, suppose to

the contrary that k∗ plays B if she receives signal a. In this case, the outcome

must be A with probability 1 after k∗ plays B because otherwise, playing B

would give k∗ a payoff strictly less than 1, while she would get the payoff of 1 if

she played A, making her choice B suboptimal. This implies that the outcome

will be A if k∗ chooses B when the state is α, no matter what her signal is.

Now, suppose that k∗ did not receive a signal. Let P (α) be the posterior of k∗

at such an information set. Then, the expected payoff of voter k∗ is P (α) if she

plays A. If she instead plays B, then the outcome will be A with probability 1 if

the state is α as we have concluded. The argument in item 1 above implies that

if the state is β and all the subsequent voters receive signal b, which happens

with probability ε2n+1−k∗ > 0, then the outcome is B. Hence, the expected

payoff of voter k∗ is at least P (α) + (1− P (α))ε2n+1−k′ if she plays B, and this

is strictly greater than P (α) because 1 − P (α) > 0 and ε > 0. Hence, playing

A is suboptimal for k∗ when she does not receive a signal, which contradicts

the assumption that she votes for A given no signal. Thus, k∗ plays A if she

receives signal a.

Given Lemma 1, once k∗ plays B, the subsequent voters assign posterior proba-

bility 1 to state β, so the outcome will be B with probability 1.

Lemma 2. Under σ, if any voter receives signal a when the votes so far followed the

default sequence, then she expects that the outcome will be A with probability 1.

Proof of Lemma 2. We use induction. Fix k ≤ k∗. Suppose as an induction hypoth-

esis that for every k′ ∈ {k + 1, . . . , k∗}, if the actions by voters 1, . . . , k′ − 1 have

followed the default sequence and k′ receives signal a, then the outcome will be A

with probability 1. Then, suppose that the actions by voters 1, . . . , k−1 have followed

the default sequence and k receives signal a. If k plays the action specified in the
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default sequence, then either (i) no subsequent voters receive a signal, or (ii) there is

at least one subsequent voter who receives signal a. In case (i), by the definition of

the default sequence, the outcome will be A with probability 1. In case (ii), the first

voter who receives signal a expects that the outcome will be A, which follows from

the induction hypothesis. Hence, the outcome will be A in either case. Therefore, k’s

expected payoff is 1 if k plays the action specified in the default sequence. Since k

under σ must be doing at least as good as playing any action, this implies that, under

σ, k expects the payoff of 1, and hence she expects that the outcome will be A with

probability 1. This completes the induction argument and completes the proof.

Lemma 3. Under σ, if any voter receives signal b when the votes so far followed the

default sequence, then she expects that the outcome will be B with probability at least

ε.

Proof of Lemma 3. We use induction. Fix k ≤ k∗ − 1. Suppose as an induction

hypothesis that for every k′ ∈ {k+ 1, . . . , k∗−1}, if the actions by voters 1, . . . , k′−1

have followed the default sequence and k′ receives signal b, then the outcome will be B

with probability at least ε. Then, suppose that the actions by voters 1, . . . , k−1 have

followed the default sequence and k receives signal b. If k plays the action specified

in the default sequence, then either (i) no subsequent voters in {k + 1, . . . , k∗ − 1}
receive a signal, or (ii) there is at least one subsequent voter in {k+1, . . . , k∗−1} who

receives signal b. In case (i), by Lemma 1, voter k∗ will play B if she receives signal

b, and thus there is probability ε that the outcome will be B as we concluded after

Lemma 1. In case (ii), the first voter who receives signal b expects that the outcome

will be B with a probability of at least ε, which follows from the induction hypothesis.

Hence, the outcome will be B with at least ε probability in either case. Therefore,

k’s expected payoff under σ must be at least ε if she plays the action specified in

the default sequence. Since k under σ must be doing at least as good as playing any

action, this implies that, under σ, k expects a payoff of at least ε, and hence she

expects that the outcome will be B with probability at least ε. This completes the

induction argument. Therefore, we have shown that, if any voter receives signal b,

then she expects that the outcome will be B with probability at least ε.

Finally, consider voter 1. If the state is α, then either (i) no voters in {1, . . . , k∗}
receive a signal, or (ii) there is at least one voter in {1, . . . , k∗} who receives signal

a. In case (i), the outcome will be A with probability 1 by the choice of the default

39



sequence. In case (ii), take the first voter who has received signal a. Lemma 2 shows

that this voter expects the outcome to be A with probability 1. Hence, if the state is

α, voter 1’s expected payoff is 1.

If the state is β, then either (i) no voters in {1, . . . , k∗− 1} receive a signal, or (ii)

there is at least one voter in {1, . . . , k∗−1} who receives signal b. In case (i), voter k∗

will have seen the history that has followed the default sequence. If she receives no

signal, which happens with probability 1 − ε, then she plays A by assumption, and

thus the outcome will be A with probability 1. If she receives signal b, which happens

with probability ε, then the outcome will be B with probability 1 as we concluded

after Lemma 1. Overall, voter 1 expects the probability that the outcome will be B

to be ε conditional on (i). In case (ii), take the first voter who has received signal b.

Lemma 3 shows that this voter assigns a probability of at least ε that the outcome

will be B. Thus, conditional on the event that (ii) realizes, voter 1 expects that the

probability that the outcome will be B is at least ε. Therefore, if the state is β, the

outcome will be B with at least ε probability.

Overall, since the prior on the states α and β are both 1
2
, voter 1’s expected payoff

is at least
1

2
· 1 +

1

2
· ε =

1 + ε

2
.

A.5 Proof of Theorem 5

We first introduce a model that generalizes the one in Section 5.1.

Consider a game in which a single voter k∗ is constrained to choose a mixed action.

Formally, for any ξ ∈ (0, 1
2
], a (k∗, ξ)-tremble game is a game that is the same as the

one in the main section, except that voter k∗, upon moving, chooses a probability

distribution over {A,B} such that each action receives probability at least ξ if he

does not receive a signal. We say that a strategy profile in a (k∗, ξ)-tremble game is

pseudo-pure if every voter except k∗ uses a pure strategy.

Theorem 5’. In any (k∗, ξ)-tremble game, there is no consistent pseudo-pure strategy

equilibrium such that the game ends before reaching voter k∗ when no voter receives

a signal.
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Note that Theorem 5’ implies Theorem 5 by setting k∗ = 2n+ 1.

Proof of Theorem 5’. Fix a pseudo-pure consistent strategy equilibrium. Suppose

that if no voter gets a signal, on the path of play, the game ends before reaching

voter k∗. Let k be the voter who ends the game in this case. Suppose without loss of

generality that k plays A on the default sequence.

Voter k has seen n times of action A and k−n−1 times of action B. The posterior

on α is thus

P (α) =
(1− ε)k−n

(1− ε)k−n + (1− ε)n+1
=

1

1 + (1− ε)2n+1−k . (7)

If voter k plays A, then the game ends and her expected payoff becomes P (α).

If voter k votes for B instead, then by Bayes rule each subsequent voter who

receives her turn to vote and receives no signal assigns probability 1 to state β. This

implies that she votes for B because voting for A results in the expected payoff of 0

while voting for B ensures a strictly positive payoff due to the event in which all the

subsequent voters receive signal b.

Let q be the probability that voter k∗’s strategy assigns to A when he does not

receive a signal. Then, k’s payoff if she plays B is

P (α)
[
1− (1− q)(1− ε)2n+1−k]+ (1− P (α)) [ε+ (1− ε)(1− q)] .

Let this be f(q). Note that

f(0) = P (α)[1− (1− ε)2n+1−k] + (1− P (α)) = 1− P (α)(1− ε)2n+1−k = P (α).

Then, for q > 0,

f(q)− P (α)

q
=
f(q)− f(0)

q

= P (α)(1− ε)2n+1−k − (1− P (α))(1− ε)

=
(1− ε)(2n+1−k)

1 + (1− ε)2n+1−k −
(1− ε)(2n+1−k)

1 + (1− ε)2n+1−k (1− ε)

=
ε(1− ε)(2n+1−k)

1 + (1− ε)2n+1−k > 0.
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So, f(q) > P (α) for any q > 0. Since our assumption implies that q ≥ ξ > 0, this

means that k would be better off playing B than A. This is a contradiction to the

assumption that k plays A in the fixed equilibrium, which completes the proof.

A.6 Proof of Theorem 6

Proof. Fix a pure consistent equilibrium in a pivot-aversion game and suppose, to-

wards contradiction, that its default sequence has length l ≤ 2n. Without loss of

generality, let A be the action that l takes when she has observed actions specified

in the default sequence and does not receive a signal. Her posterior belief about the

state α in this case is

P (α) =
(1− ε)l−n

(1− ε)l−n + (1− ε)n+1
.

By choosing A, her payoff is P (α) − c. If she chooses B, then all subsequent voters

have a belief that assigns probability 1 to state β unless they receive signal a. Since

voting for A ends the voting with outcome A, this implies that all subsequent voters

vote for A if and only if they receive signal a. This implies that l’s expected payoff

from choosing B is

P (α)(1− (1− ε)2n+1−l) + (1− P (α))

(note that we do not subtract c because there have been l − 1 − n times of B, and

l − 1− n ≤ 2n− 1− n < n), which is equal to

(1− ε)l−n(1− (1− ε)2n+1−l) + (1− ε)n+1

(1− ε)l−n + (1− ε)n+1
=

(1− ε)l−n

(1− ε)l−n + (1− ε)n+1
= P (α).

Since c > 0, choosing B is strictly better than choosing A, which implies that voter l

is not taking a best response. Contradiction.

A.7 Proof of Proposition 3

The proof is an adaptation of the proofs of other results that we have already pre-

sented. In particular, to show that any sequence that leads to a particular outcome

can be a default sequence of a pure consistent equilibrium, we directly generalize the

proof of Theorem 1. To show that no sequence that leads to a particular outcome

can be a default sequence of a pure consistent equilibrium, we closely follow the proof

of Theorem 5. For this reason, we omit the complete proof of Proposition 3 here but
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provide its details in the Online Appendix.

A.8 Proof of Proposition 4

Part 1:

The proof is conducted in three steps. In the first step, we show that for any

general strategy profile, one can find a consistent strategy profile that yields a weakly

greater expected payoff. The second step shows that for any consistent strategy

profile, there is a pure consistent strategy profile that yields a weakly greater expected

payoff. In the third step, we show that any strategy profile in Πn+1 maximizes the

expected payoff among the set of pure consistent strategy profiles when ε > 0 is small,

which proves the desired result.

Step 1: Take any strategy profile π ∈ Π and fix any voter i. Let π′ be a strategy

profile such that π′j(s) = πj(s) for every j ∈ I and s ∈ {a, b, ∅} except that π′i(a)(A) =

1.

We show that the expected payoff from π′ is weakly greater than the expected

payoff from π. To see this, notice that there are four possible realizations of the

pair of the state and i’s signal: (α, a), (α, ∅), (β, b), and (β, ∅). Of these four, the

distribution over the action profiles under π′ is identical to the one under π given the

last three pairs. When the pair is (α, a), the distribution over the number of votes on

A under π′ is identical to or first-order stochastically dominates that of the number

of votes on A under π. Hence, the expected payoff from π′ is weakly greater than the

expected payoff from π.

Iteratively using this argument for signals a and b for all voters shows that, for

any π ∈ Π, one can find π̂ ∈ ΠC such that the expected payoff from π̂ is weakly

greater than the expected payoff from π.

Step 2: Take any π ∈ ΠC and fix any voter i. Let π′ and π′′ be two strategy

profiles such that π′j(s) = π′′j (s) = πj(s) for every j ∈ I and s ∈ {a, b, ∅} except that

π′i(∅)(A) = 1 and π′′i (∅)(B) = 1. Since the expected payoff is linear in i’s mixing

probability when she does not receive a signal, the higher of the expected payoffs

from π′ and π′′ is no less than the expected payoff from π.

Iteratively using this argument for all voters shows that, for any π ∈ ΠC , one

can find π̂ ∈ ΠPC such that the expected payoff from π̂ is weakly greater than the

expected payoff from π.
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Step 3: Take any π, π′ ∈ ΠPC . Let IA be the set of voters such that i ∈ IA if and

only if πi(∅)(A) = 1. Let IB be the set of voters not in IA. Similarly, let I ′A be the set

of voters such that i ∈ I ′A if and only if π′i(∅)(A) = 1. Let I ′B be the set of voters not

in I ′A. Suppose that |I ′A| > |IA| > |IB| > |I ′B|. Then, under both π and π′, if the state

is α, then the outcome will be A with probability 1, and hence the expected payoff

is 1 in this case. If the state is β, then the outcome is B if and only if |IA|−|IB |+1
2

or

more voters who are in IA receive a signal under π, and similarly, it is B if and only

if
|I′A|−|I

′
B |+1

2
or more voters who are in I ′A receive a signal under π′. We claim that,

conditional on state β, the outcome is more likely to be B under π than under π′.

To see this, first, for ease of notation, let |IA|−|IB |+1
2

= k and |I ′A| − |IA| = l. Note

that
|I′A|−|I

′
B |+1

2
= (|IA|+l)−(|IB |−l)+1

2
= |IA|−|IB |+1

2
+ l = k + l. Take an arbitrary set I ′′A

such that I ′′A ⊆ I ′A and |I ′′A| = |IA|. We have that

Prob(the outcome is B|β, π′)

= Prob(k + l or more “b” signals out of |IA|+ l)

< Prob(k or more but less than k + l “b” signals are received by voters in I ′′A)

+ Prob(k + l or more “b” signals are received by voters in I ′′A)

= Prob(k or more but less than k + l “b” signals out of |IA|)

+ Prob(k + l or more “b” signals out of |IA|)

= Prob(k or more “b” signals out of |IA|)

= Prob(the outcome is B|β, π).

This proves our claim and thus, the expected payoff under π is greater than under π′.

Hence, since the symmetric argument can be made when |I ′A| < |IA| < |IB| < |I ′B|,
if |IA| = n + 1 or |IB| = n + 1 holds for a given π, then π maximizes the expected

payoff in ΠPC . Therefore, by Steps 1 and 2, under the same condition, π maximizes

the expected payoff in Π as well.

Part 2:

The “if” direction: By the argument in Step 1 of the proof of Part 1, for any

player, playing a consistent strategy is a best response when receiving a signal.

Fix π ∈ Πn+1. Take the sets IA and IB as in Step 3 of the proof of Part 1. Suppose

without loss of generality that |IA| = n + 1 and |IB| = n. Consider i ∈ IA and
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suppose she does not receive a signal. Since |IA \ {i}| = |IB|, the action distribution

of the opponents is perfectly symmetric for i. Hence, since i’s vote does not affect

other voters’ signals or actions, she is indifferent between the two actions. Thus in

particular, voting for A is a best response.

Next, consider i ∈ IB and suppose she does not receive a signal. Since |IA| = n+1,

the only case in which i’s vote affects the outcome is when some voter in IA has

received signal b and votes for B. This happens only when the state is β. Thus, since

i’s vote does not affect other voters’ signals or actions, voting for B is a best response

for i.

The “only if” direction: Fix π ∈ ΠPC \Πn+1. Take the sets IA and IB as in Step

3 of the proof of Part 1. Suppose without loss of generality that |IA| > |IB|. Consider

i ∈ IA. Since |IA \ {i}| > |IB|, the only case in which i’s vote affects the outcome is

when some voter in IA has received signal b and votes for B. This happens only when

the state is β. Thus, since i’s vote does not affect other voters’ signals or actions

and i can be pivotal (there are exactly n other voters voting for each option) with a

strictly positive probability, voting for A is strictly suboptimal for i. Hence, π is not

a Bayesian Nash equilibrium.

A.9 Proof of Proposition 5

Proof. Fix the strategy profile in which every voter chooses the random voting strat-

egy, and consider voter k who has not received a signal and is about to choose between

A or B. The only case in which k’s vote affects k’s payoff is when exactly n other

voters choose A and n other voters choose B. When this happens, k’s posterior on

each state is

1
2
(ε+ 1

2
(1− ε))n(1

2
(1− ε))n

1
2
(ε+ 1

2
(1− ε))n(1

2
(1− ε))n + 1

2
(ε+ 1

2
(1− ε))n(1

2
(1− ε))n

=
1

2
.

Hence, k is indifferent between choosing A and choosing B.

If voter k receives a signal, then it is obviously a best response to assign probability

1 to the corresponding action given that her action does not affect the actions by the

subsequent voters.
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A.10 Proof of Proposition 6

Proof. First, we know that the conclusion of the statement is true for n = 1. Hence,

below we consider the case of n ≥ 2. We have

C(ε) =
1

2
· 1 +

1

2
(1− (1− ε)n+1).

On the other hand, we have

RV (ε)

= Prob(no voter receives a signal) · Prob(n+ 1 or more voters who receive no signal vote for X)

+ Prob(1 voter receives a signal) · Prob(n or more voters who receive no signal vote for X)

+ Prob(2 voters receive a signal) · Prob(n− 1 or more voters who receive no signal vote for X)

+ · · ·

+ Prob(n− 1 voters receive a signal) · Prob(2 or more voters who receive no signal vote for X)

+ Prob(n voters receive a signal) · Prob(1 or more voters who receive no signal vote for X)

+ Prob(n+ 1 or more voters receive a signal) · 1,

where X is the action corresponding to the realized state. We can show that RV (ε)

has the following upper bound RV (ε):

RV (ε) ≤ RV (ε) := Prob(no voters receive a signal) · 1

2

+ Prob(1 voter receives a signal) · 1 + g(n)

2

+ Prob(2 or more voters receive a signal) · 1,

where g(n) is the probability that exactly n voters out of 2n voters, conditional on

not receiving a signal, vote for A, and we have

g(n) =
(2n)!

n!n!

(
1

2

)n(
1

2

)n
=

(2n)!

n!n!

(
1

2

)2n

.
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Note also that

Prob(1 voter receives a signal) = (2n+ 1)ε(1− ε)2n.

Hence,

RV (ε) = (1− ε)2n+11

2
+ (2n+ 1)ε(1− ε)2n

1 +
[
(2n)!
n!n!

(
1
2

)2n]
2

+O(ε2).

Thus,

C(ε)−RV (ε)

=
1

2
(1−(1−ε)n+1)−

−(1− (1− ε)2n+1)
1

2
+ (2n+ 1)ε(1− ε)2n

1 +
[
(2n)!
n!n!

(
1
2

)2n]
2

+O(ε2)


= 1−1

2

[
(1− ε)n+1 + (1− ε)2n+1 + (2n+ 1)ε(1− ε)2n

(
1 +

[
(2n)!

n!n!

(
1

2

)2n
])]
−O(ε2)

Now, let

h(ε) := (1− ε)n+1 + (1− ε)2n+1 + (2n+ 1)ε(1− ε)2n
(

1 +

[
(2n)!

n!n!

(
1

2

)2n
])

.

We have

h′(ε) =− (n+ 1)(1− ε)n − (2n+ 1)(1− ε)2n

+ (2n+ 1)

(
1 +

[
(2n)!

n!n!

(
1

2

)2n
])(

(1− ε)2n − 2nε(1− ε)2n−1
)
.

Hence,

h′(0) = −(n+ 1)− (2n+ 1) + (2n+ 1)

(
1 +

[
(2n)!

n!n!

(
1

2

)2n
])

= −(n+ 1) + (2n+ 1)

(
(2n)!

n!n!

(
1

2

)2n
)
.
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Now, note that (2n)!
n!n!

(
1
2

)2n ≤ 1
2
. To see this, first note that when n = 1, this inequality

holds. Now, suppose this inequality holds when n = k. Then, we have

(2(k + 1))!

(k + 1)!(k + 1)!

(
1

2

)2(k+1)

=
(2k)!

k!k!

(
1

2

)2k

× (2k + 1)(2k + 2)

(k + 1)2
1

22

≤ 1

2
× 2k + 1

2k + 2

2k + 2

2k + 2
≤ 1

2
.

Hence, we have

h′(0) ≤ −(n+ 1) + (2n+ 1)
1

2
= −1

2
.

Note also that h(0) = 2. Thus, there is ε̄ > 0 such that for all ε < ε̄, h(ε) < 2 − ε
3
.

This implies that for all ε < ε̄,

C(ε)−RV (ε) ≥ C(ε)−RV (ε) > 1− 1

2
(2− ε

3
)−O(ε2) =

ε

6
−O(ε2).

Hence, there is ε̂ > 0 such that for all ε < ε̂, C(ε) − RV (ε) > 0, and thus C(ε) >

RV (ε). This completes the proof.

A.11 Proof of Theorem 7

Proof. Fix a sequence S = (X1, . . . , Xk) such that Xk appears exactly n + 1 times.

Consider the consistent strategy profile σ satisfying the following conditions:

1. σi(m, ∅)(Xi) = 1 if m = |{Xl = A|1 ≤ l ≤ i− 1}|.

2. σi(m, ∅)(A) = 1 if m > |{Xl = A|1 ≤ l ≤ i− 1}|.

3. σi(m, ∅)(B) = 1 if m < |{Xl = A|1 ≤ l ≤ i− 1}|.

Now we check incentives. First, voters who have received a signal take a best response

given Cases 2 and 3 above.

Second, under any histories described in Case 2 above, by Bayes rule, i has a belief

that the state is α. Hence, it is straightforward to see that i is taking a best response.

A symmetric argument holds for Case 3 as well.

Third, under any histories described in Case 1 above, without loss of generality,

let Xk = A. Suppose that, in the default sequence, there have been sA times of A and

sB times of B, and there will be sA times of A and sB times of B. Voter i’s posterior
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on state α is then

P (α) =
(1− ε)sB+1

(1− ε)sA+1 + (1− ε)sB+1
. (8)

Case 1: Suppose that Xi = A. Then, if i plays A, her payoff is

P (α) · 1 + (1− P (α))(1− (1− ε)sA) = 1− (1− P (α))(1− ε)sA .

If, instead, i plays B, then her payoff is at most:

P (α)(1− (1− ε)sB) + (1− P (α)) · 1 = 1− P (α)(1− ε)sB

because, for the outcome to be A, there must be at least one time in the future when

a voter who is supposed to play B in the default sequence receives signal a (and thus

votes for A).

The former payoff is no less than the latter upper bound if and only if

(1− P (α))(1− ε)sA ≤ P (α)(1− ε)sB

which, by (8), is equivalent to:

(1− ε)sA+1(1− ε)sA ≤ (1− ε)sB+1(1− ε)sB ,

or sA + sA ≥ sB + sB.

Now, notice that, since S is the default sequence that ends with A and i plays A

in S, we have that sA + 1 + sA = n + 1 and sB + sB ≤ n. Hence, we indeed have

sA + sA ≥ sB + sB, completing the proof for this case.

Case 2: Suppose that Xi = B. Then, if i plays B, her payoff is

P (α) · 1 + (1− P (α))(1− (1− ε)sA)

as in Case 1. If, instead, i plays A, then her payoff is at most:

P (α) · 1 + (1− P (α))(1− (1− ε)sA)

because, for the outcome to be B, there must be at least two times in the future when

a voter who is supposed to play A in the default sequence receives signal b (and thus
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votes for B). This event is less likely than the event in which there is at least one

time in the future when a voter who is supposed to play A in the default sequence

receives signal b (and thus votes for B). This latter event happens with probability at

most 1− (1− ε)sA . Now, since the former payoff is equal to the latter upper bound,

it is indeed voter i’s best response to play B.
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