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Abstract

We define a sophisticated choice rule given underlying preferences that involve

intransitive indifference, and compare it to its “naive” counterpart standard in the

literature. The sophisticated choice breaks a tie between two alternatives using

a third one to which the two are compared differently. We show that the defini-

tion of sophisticated choices captures the behavior of fully sophisticated decision

makers, and that naive and sophisticated decision makers behave differently when-

ever intransitivity matters. The result fails if the data available to the analyst are

incomplete.
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1 Introduction

The importance of intransitive indifference is recognized as early as Wiener (1914, 1915)

who modeled such preferences by using binary relations called “interval order” and “semiorder.”1

The idea is that the decision maker may not perceive a small difference in utility while

she may be able to distinguish between two elements that are far apart from each other.

For example, the decision maker may be indifferent between x and y and between y and

z, while she strictly prefers z to x. This may happen when x and y are close in utility

and y and z are close, while x and z are far enough apart from each other so the decision

maker can distinguish between these two.

This paper studies choice behaviors given such a general class of underlying prefer-

ences. We focus on two ways of postulating choice behaviors—that we call naive and

sophisticated choices—and characterize the difference between these two.

The naive choice rule refers to the standard choice correspondence: it returns, for each

choice set, its elements that are not strictly preferred by any other element in the set. In

the above example, this corresponds to the choice of {x, y} from the set {x, y}, and {y, z}

from the set {x, y, z}. Since x is chosen in the presence of y in the first problem while it is

not chosen in the second problem in which y is chosen, this choice rule does not satisfy the

weak axiom of revealed preferences (WARP). Jamison and Lau (1973), Fishburn (1975),

and Aleskerov, Bouyssou, and Monjardet (2007) axiomatized and discussed in a great

depth this choice correspondence under various restrictions on underlying preferences.2

The basic idea of sophisticated choice goes back to Luce’s (1956) definition, although

he did not use it to model a choice rule but to characterize semiorder preferences. Since

1Preferences are represented by an interval order if there exist a utility level and the length of an
interval for each alternative such that the decision maker strictly prefers y to x if and only if the utility
from y is strictly greater than the utility from x plus the length of the interval for x. Preferences are
represented by a semiorder if it is an interval order where the lengths of intervals are always a positive
constant, say 1.

2The definition of naive choice is equivalent to what Aleskerov, Bouyssou, and Monjardet (2007)
call choice. The sole reason that we added the quantifier “naive” is to make the comparison with the
“sophisticated” one transparent, and it has nothing to do with our normative stance, if any.
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then it does not seem to have attracted as much attention in the literature as the naive

one. The sophistication criterion breaks a tie between two alternatives using a third one

to which the two are compared differently. It is captured in the following inference that

the decision maker could draw:3

I am given a set {x, y, z}. I know that I’m indifferent between x and y, and

between y and z, and that I strictly prefer z to x. Since I strictly prefer z to

x, I have no reason to choose x. The remaining is y and z, and I’m indifferent

between these two. So I guess I choose y and z from this set... But wait,

I know y and z are different in the ways they are compared to x. I strictly

prefer z to x, while I’m indifferent between y and x. Although I do not see a

difference between y and z probably because they are too similar, this should

suggest that z gives me a better utility than y. Hence I choose only z from

{x, y, z}.

Note that this decision maker’s choice behavior fails WARP, as her choice would be

{y, z} if given {y, z}, as there is nothing in {y, z} that discriminates z from y. The

addition of x to the choice set gives the decision maker a way to discriminate z from y.

The main theorem of this paper gives an understanding of the difference between

the naive and sophisticated choice rules. It shows that if a choice correspondence is a

sophisticated choice as well as a naive choice, then it satisfies WARP. That is, the way

the sophisticated choice deviates from WARP is always different from the way that the

naive choice deviates from it.4 In other words, naive and sophisticated choices are different

whenever intransitivity matters. The result implies that one should observe at most one

kind of choice behavior, so this serves as a guide for identifying when each of these choice

rules is relevant.

3In Remark 1, we provide more discussion on why and when this type of inference may make sense.
4This is a necessary condition for a choice to be sophisticated. Complete characterization is highly

nontrivial and awaits a future research.
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2 Sophisticated Preferences

LetX be a (finite of infinite) set of elements, and� be a binary relation overX, interpreted

as strict preferences of the decision maker (i.e. y � x means the decision maker strictly

prefers y to x).5 We write x ∼ y if and only if x 6� y and y 6� x.

In general, ∼ may not be transitive. The next definition captures the idea of the

sophistication criterion discussed in the Introduction.6

Definition 1. For any A ⊆ X and x, y ∈ A, we write y �A x if at least one of the

following statements is true:

1. y � x;

2. there exists w ∈ A such that x 6� w and y � w;

3. there exists z ∈ A such that z � x and z 6� y.

Notice that in parts 2 and 3 of the above definition, w and z are taken from the given

set A. As we have discussed, this is why the sophisticated choice may fail WARP.7 We

write x ∼A y if and only if x 6�A y and y 6�A x.

Since all the alternatives that appear in Definition 1 are elements of A, we can define

the sophistication criterion in Definition 1 for a binary relationship defined over A ⊆ X in

the same way (instead of defining it for a relation defined over X). We denote by (�A)A

the binary relation that emerges as a result of the sophistication criterion for �A.

The following is the first result of this paper.

Theorem 1. For any A ⊆ X, (�A)A = �A.

5At this point, we only require � to be a binary relation, so for example it may not be acyclic or
asymmetric or even irreflexive. As will be clear, our results hold even when one restricts attention to
binary relations that satisfy these properties.

6In a different context from ours, an independent work by Frick (2015) also considers a rule that gen-
erates from a given preference relation a new preference relation, which generates more strict preferences
than our sophistication criterion.

7Luce (1956) defines a similar preference relation (replacing x 6� w and z 6� y in Definition 1 with
x ∼ w and z ∼ y, respectively), but does not study the context-dependence of the choice, i.e., he only
considers �X .
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Proof. Fix A ⊆ X with x, y, w ∈ A, and suppose that x 6�A w and y �A w. We show that

y �A x. The following are the possibilities. (i) x 6� w and y � w, (ii) there exists z ∈ A

such that x 6� w and w 6� z and y � z, and (iii) there exists z ∈ A such that x 6� w and

z � w and z 6� y.

In case (i), y �A x by the definition of �A. In case (ii), if x 6� z then y �A z. If

x � z then x �A w, contradicting to the starting assumption. In case (iii), if z 6� x then

x �A w, contradicting to the starting assumption. If z � x then y �A x.

Next, fix A ⊆ X with x, y, z ∈ A, and suppose that z �A x and z 6�A y. We show that

y �A x. The following are the possibilities. (i) z � x and z 6� y, (ii) there exists w ∈ A

such that x 6� w and z � w and z 6� y, and (iii) there exists w ∈ A such that w � x and

w 6� z and z 6� y.

In case (i), y �A x by the definition of �A. In case (ii), if y 6� w then z �A y,

contradicting to the starting assumption. If y � w then y �A x. In case (iii), if w 6� y

then y �A x. If w � y then z �A y, contradicting to the starting assumption. �

The theorem implies that one cannot “further infer” her preferences beyond �A. Thus,

to capture the idea of the sophistication criterion described in the Introduction, it is

enough to consider the relation �A. In other words, our definition of sophisticated choices

captures the behavior of fully sophisticated decision makers.

Remark 1. The degree to which sophisticated choices are reasonable may depend on

various issues, such as the decision maker’s intelligence, time to make a decision, and

perhaps importantly the regularity imposed on the underlying preferences (in an extreme

case, for example, if the preferences are cyclic then neither criterion might make so much

sense). Although it is not the purpose of this paper to identify when these choice rules are

relevant, we provide two arguments surrounding this theme. First, one interpretation of

intransitive indifference is the idea of “just noticeable difference” that goes back to Luce

(1956) in which he discusses an example of sugar being added to cups of coffee little by

little, and the decision maker is indifferent between “adjacent” treatments but demon-
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strate strict preferences when a sufficient amount of sugar is added. This example is based

purely on the decision maker’s physiological limitation, and the reason for intransitivity

would be best seen as orthogonal to the level of her intelligence. This suggests that it

can make sense to consider sophistication even when preferences demonstrate intransitive

indifference. Second, in the Appendix we provide a characterization of underlying prefer-

ences such that the induced sophisticated choice correspondence is nonempty. Assuming

that X is finite the underlying preferences that induce nonempty sophisticated choices

turn out to be what is called an interval order (Fishburn, 1970). �

3 Sophisticated Choice

Let a nonempty set D ⊆ 2X \ {∅} be the data available to the analyst. A choice corre-

spondence, or simply choice, is a map C : D → 2X that assigns to each element of D a

subset of that set. We say that the data are complete if D = 2X \ {∅}, and that they

are incomplete otherwise.

Given preferences �, we postulate two choice rules. For all A ∈ D, let

CN(A,�) = {x ∈ A| 6 ∃y s.t. y � x}

and

CS(A,�) = {x ∈ A| 6 ∃y s.t. y �A x}.

Definition 2. A choice correspondence C is a naive choice if there exists � over X

such that C = CN(·,�).

Definition 3. A choice correspondence C is a sophisticated choice if there exists �

over X such that C = CS(·,�).

As the example in the Introduction makes clear, sophisticated choices are not special
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cases of naive choices.8 The reason that we use �A to define sophisticated choice is

precisely Theorem 1: Given the set A, there is nothing that the decision maker can infer

about her utility beyond �A.

Definition 4. A choice correspondence C satisfies the weak axiom of revealed pref-

erences, or WARP, if

∃A ∈ D such that x, y ∈ A and x ∈ C(A) =⇒

∀B ⊆ X such that x, y ∈ B, y ∈ C(B) implies x ∈ C(B).

Implicit in Jamison and Lau (1973) and Fishburn (1975) is that a naive choice does

not satisfy WARP. Since the binary relation �A depends on the given set A, sophisticated

choice may not satisfy WARP either, as suggested in the Introduction. This leads us to

the question of how this sophisticated choice deviates from WARP, compared to the way

the “naive” counterpart deviates from it.

Theorem 2. Suppose that the data are complete. Then, a nonempty choice correspon-

dence C is both naive and sophisticated choices if and only if it satisfies WARP.9 That is,

there exist � and �′ such that C = CN(·,�) = CS(·,�′) if and only if C satisfies WARP.

Remark 2. Given the non-emptiness of the choice correspondence C, � and �′ in the

statement of the theorem must be equal, as the data are complete so in particular they

include all the binary sets. Thus even if we replace �′ with � in the statement, there is

no loss of generality. In the statement of the theorem we postulated the two preferences

in order to make transparent the comparison with the case with incomplete data. For the

same reason, in the proof, we did not use the fact that the two preferences must coincide

8Since a sophisticated choice always returns a smaller set of alternatives than the naive counterpart
does under the same underlying preferences, the idea is similar to that of Subiza and Peris (2000) who
study selection of elements among the ones that the naive choices return. Lombardi (2008, 2009) also
proposes choice rules that are based on similar selection criteria.

9In the Appendix we provide a counterexample that shows that the conclusion of this theorem fails if
C can be empty.
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unless necessary. �

Proof.

“If” part:

This part is straightforward: Note that C(A) 6= ∅ for all nonempty A ⊆ X. With this

assumption, WARP implies that there exists an asymmetric and negatively transitive

binary relation �, hence in particular ∼ is transitive.10 This implies that �A for any

nonempty A ⊆ X coincides with �, hence we have the desired result.

“Only if” part:

Suppose the contrary, i.e. that C does not satisfy WARP but it is naive and sophisti-

cated choices. Let �N and �S be binary relations with which C is naive and sophisticated

choices, respectively.

Since C does not satisfy WARP, there exist A,B ∈ 2X and x, y ∈ A,B such that (i)

x ∈ C(A) and (ii) y ∈ C(B), but (iii) x 6∈ C(B). (i) implies y 6�S x, and (ii) implies

x 6�S y. Hence we have x ∼S y. (iii) implies there exists z such that z ∈ C(B) and

z �N x. Hence we must have C({x, z}) = {z}, as z ∈ C(B) implies z 6�N z. This implies

z �S x since (i) implies x 6�S x. Together we have x ∼S y and z �S x, which imply

z �S
B y. Hence y 6∈ C(B) holds, a contradiction. �

The theorem says that the way sophisticated choice deviates from the standard choice

behavior is always different from the way the “naive” counterpart deviates from it. Thus

the naive and sophisticated choices have distinguishable choice implications as long as

intransitivity matters- i.e. as long as WARP is violated.

As we noted, the two preference relations postulated in the theorem, � and �′, are

identical if CN = CS, as the data include all the binary choice problems. When the data

are not complete, however, CN = CS may not hold. It turns out that in such a case the

conclusion of the theorem is not true. We describe this in Example 1. Next we turn to a

10See Arrow (1959).
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positive result, stating that if we do restrict to the same preferences, then the conclusion

of the theorem still holds.

To see the exact step of the proof where we use the assumption that all the data

are available, notice that in the proof we concluded from z �N x that z �S x, via the

conclusion that C({x, z}) = {z}.11 For this we needed that {x, z} is in our data. Of

course we do not need to go via this conclusion about choice when we already assume

�N=�S. This is why our positive result follows, and Theorem 3 summarizes this result.

This also shows that if D includes all the binary choice problems then the conclusion of

the theorem still holds. If the binary problem is missing from the data and if we do not

assume �N matches with �S, we cannot conclude anything from that, and consequently

the logic fails. The counterexample exploits this point.

Example 1. Suppose X = {w, x, y, z}, D = {{x, y}, {w, x, y, z}}, C({x, y}) = {x, y},

and C({w, x, y, z}) = {y, z}. Notice that the data that the analyst has are strictly

smaller than 2X \ {∅}. Since x is chosen in the presence of y given {x, y} while it is

not chosen when y is chosen from {w, x, y, z}, WARP is violated. However we show that

this choice correspondence is a naive choice as well as a sophisticated choice. To see this,

we construct preferences with which C is naive and sophisticated choices. Consider the

semiorder preference relation represented by the following specification of utility function

u and the rule x � y if and only if u(x)− y(y) > 1, and the one represented by v and the

rule x � y if and only if v(x)− v(y) > 1:

u(w) = 0, u(x) = 1, u(y) = 2, u(z) = 3.

v(w) = 0, v(x) = 1, v(y) = 2, v(z) = 2.

It is straightforward to check that a naive choice with preferences represented by u and

a sophisticated choice with preferences represented by v both give the choice C. We

11This is the only step we used this assumption.
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note that, given Theorem 3 below, it is a necessary feature of this example that the two

utility functions, u and v, are different. The example is not incompatible with Theorem 2

because if the data were complete, then the choice from the set {x, z} would be different

given the preferences represented by u and v, so the premise of the theorem does not

hold. �

Theorem 3. Fix the data, complete or incomplete. Then, choice correspondence C is

both naive and sophisticated choices under the common preference relation if and only if

it satisfies WARP. That is, there exists � such that C = CN(·,�) = CS(·,�) if and only

if C satisfies WARP.

We omit the proof because it is immediate from that of Theorem 2.

A Appendix: Non-Emptiness of Sophisticated Choices

The following shows the claim made in Remark 1.

Recall from Fishburn (1970) that � is an interval order if it is irreflexive and z � y

and x � w imply z � x or x � y.

Theorem 4. Suppose X is finite. � is an interval order over X if and only if CS(A,�

) 6= ∅ for all A ⊆ X.

Proof.

“Only if” part:

Suppose that � is an interval order. Fishburn (1970) shows that there then must exist

two functions uH : X → R and uL : X → R such that uH(x) ≥ uL(x) for all x ∈ X and

for any x, y ∈ X, x � y if and only if uL(x) > uH(y). Fix uH and uL. For each A ⊆ X,

define xA to be an arbitrary element in arg maxx∈A uL(x). Such xA exists because A is

finite (recall that X is finite and A ⊆ X).
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First, we note that there does not exist a y ∈ A such that y � xA, because y � xA

would imply uL(y) > uH(xA). But since uH(xA) ≥ uL(xA), we then would obtain uL(y) >

uL(xA), which contradicts the definition of xA.

Second suppose that there exist y and w such that xA 6� w and y � w. The former

implies that uL(y) > uH(w), and the latter implies that uH(w) ≥ uL(xA). Combining, we

obtain uL(y) > uL(xA), contradicting the definition of xA.

Finally, suppose that there exist y and z such that z � xA and z 6� y. But this is

impossible because there cannot exist such z that satisfies z � xA as we have already

shown.

“If” part:

Suppose that � is not an interval order. Then, either (i) there exists x such that

x � x, or (ii) there exist w, x, y, and z such that z � y, x � w, z 6� w, and x 6� y.

In case (i), CS({x},�) = ∅ holds because x � x implies x �{x} x.

In case (ii), (ii)-(a) z � y and x 6� y imply y �{x,y,z,w} x, (ii)-(b) z � y implies

z �{x,y,z,w} y, (ii)-(c) x � w and z 6� w imply x �{x,y,z,w} z, and (ii)-(d) x � w implies

x �{x,y,z,w} w. Hence, CS({w, x, y, z},�) = ∅ holds because no element in {w, x, y, z} is

undominated under �{w,x,y,z}. �

Note that Luce (1956) proves equivalence between the underlying preferences being a

semiorder, and it being transitive as well as his induced preferences (defined in footnote

7) being a weak order. The induced preferences can imply a nonempty choice without

being a weak order, so our result is not implied by his result.12

The “if” part of Theorem 2 fails if we do not impose non-emptiness of the choice

correspondence C. Consider the following example:

Example 2. Suppose thatX = {x, y, z}, C({x, y, z}) = {y, z}, C({y, z}) = ∅, C({x, y}) =

{y}, C({x, z}) = {z}. This is a choice correspondence that chooses elements that are

12For example, consider X = {w, x, y, z} with the underlying preferences z � y, y � x, and z � x
(with other relations being indifference). �X is not a weak order because y � w and w � y, but
CS(X) = {z} 6= ∅.
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strictly preferred to some element in the given choice problem, with y � x and z � x.

WARP is satisfied, but this is neither a naive nor a sophisticated choice: C({y, z}) = ∅

implies the decision maker strictly prefers some element in {y, z} to each of y and z in

either choice rule, but these two imply that C({x, y, z}) cannot include either y or z.13 �

Remark 3. Let us be clear on the limitation of our approach in light of both necessity and

sufficiency shown in Theorem 4. First, a sophisticated choice may be empty if the given

preference relation is not an interval order. This implies that the sophistication criterion

fails to capture certain anomalies. For example, consider the attraction effect (Doyle et al.,

1999), where X = {x1, x2, y1, y2}, x1 dominates x2 with respect to all characteristics, y1

dominates y2 with respect to all characteristics, and there is no clear comparison between

xi and yj for each pair (i, j) ∈ {1, 2}2. Then, we would have x1 � x2, y1 � y2, and

xi ∼ yj for each pair (i, j) ∈ {1, 2}2. The typical story of the attraction effect would

suggest that A := {x1, y2} is chosen from A, {x1} is chosen from B := {x1, x2, y2} and

{x1, x2} is chosen from X. However, we would have CS(A,�) = A, CS(B,�) = {x1} and

CS(X,�) = ∅, only partially capturing the attraction effect. Second, the non-emptiness

of a choice function may not be enough to guarantee the reasonability of the resulting

choice. To see this in an example, recall from Fishburn (1970) that � is an interval order

if and only if there exists a pair of functions u : X → R and ρ : X → R+ such that

y � x is equivalent to u(y) > u(x) + ρ(x). Here, the interpretation is that each x ∈ X

is assigned an interval [u(x), u(x) + ρ(x)], and the decision maker strictly prefers y to

x if and only if the upper bound of the internal for x is strictly lower than the lower

bound of the internal for y. Now, consider x, y, and z with associated intervals [1, 2],

[0, 5], and [3, 4]. The resulting preference relation is x ∼ y, y ∼ z, and z � x, so we have

CS({x, y, z},�) = z. However, without further contextual information apart from that

of the intervals, it is not clear if we should conclude that z should be chosen. Such a

concern would be less of an issue if the lengths of the intervals are assumed to be common

13As is clear, this example works even if we assume � to be irreflexive. When � can be reflexive, a
simpler example can be obtained: X = {x, y}, C({x, y}) = {x, y}, C({x}) = ∅, and C({y}) = ∅.
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across all alternatives (which is equivalent to assuming that � is a semiorder) and the

interpretation of the intervals is the idea of “just noticeable difference” as motivated in the

Introduction.14 Again, it is not our purpose to identify when our sophistication criterion

is relevant. Also, we do not intend to capture all possible anomalies, and we hope the

above two points deepen the understating of our sophistication criterion.
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