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I Violation of Inertia by Maximal Equilibrium

This section shows that the inertia condition excludes the optimal strategies. Below

is a formal definition of the concept of inertia as it relates to the strategies of agents

in our model. A strategy is said to satisfy inertia if there is an interval of time after

each transaction during which the agents cannot make further transfers.

Definition 1. For i ∈ {1, 2}, the strategy πi ∈ Πi is inertial if for every history ht =(
{c̃τ}τ∈[0,t], {(f̃ 1

τ , f̃
2
τ )}τ∈[0,t)

)
up to an arbitrary time t ∈ [0,∞) such that πi(ht) > 0,

there exists ε > 0 such that πi(ku) = 0 for any history ku =
(
{g̃τ}τ∈[0,u], {(b̃1τ , b̃2τ )}τ∈[0,u)

)
up to an arbitrary time u ∈ (t, t+ε) satisfying {g̃τ}τ∈[0,t] = {c̃τ}τ∈[0,t] and {(b̃1τ , b̃2τ )}τ∈[0,t)
= {(f̃ 1

τ , f̃
2
τ )}τ∈[0,t).

The following result shows that the optimal strategies violate the inertia condition.

If the cost decreases sufficiently after a transaction, then it is optimal for the agents

to make another transfer, but inertia may prevent such an exchange.

Proposition A. Assume that the cost process {ct}t∈[0,∞) follows a geometric Brow-

nian motion with arbitrary drift µ and positive volatility σ. Then any maximal sym-

metric SPE in grim-trigger strategies is not inertial.

Proof. Let π∗ = (π∗1, π
∗
2) be any maximal symmetric SPE in grim-trigger strategies.

From the main text, the strategy profile π∗ is characterized by a sequence {c∗k, f ∗k}∞k=1

such that, with probability one, the kth transaction is made when the cost reaches c∗k
for the first time, and the amount f ∗k is transferred by each agent at this transaction.

We prove by contradiction that π∗ is not inertial.

Suppose to the contrary that π∗ is inertial. Choose any positive integer n. Let

h = {gt, (b1t , b2t )}t∈[0,∞) be any history for which there exists a time u ∈ [0,∞) such

that gu = c∗n, gt > c∗n for all t ∈ [0, u), and π∗i (ht) = bit for all t ∈ [0, u) and each

i ∈ {1, 2}. It follows that π∗i (hu) > 0 for i ∈ {1, 2}. Hence, the inertia property implies

that there exists ε > 0 such that φit(hu, {g̃τ}τ∈(u,∞), π
∗) = 0 for each i ∈ {1, 2}, all

t ∈ (u, u+ε), and any {g̃τ}τ∈(u,∞). Given that the realization of the cost process up to

time u is such that {ct}t∈[0,u] = {gt}t∈[0,u], there is a positive conditional probability of

the cost process {ct}t∈(u,∞) after time u being such that there exists a time v ∈ (u, u+ε)

satisfying cv = c∗n+1, ct > c∗n+1 for all t ∈ [0, v), and φiv(h0, {ct}t∈(0,∞), π
∗) = 0 for

i ∈ {1, 2}.
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Note that there is positive probability of the realization of the cost process {ct}t∈[0,∞)

being such that there exists a time ũ ∈ [0,∞) satisfying cũ = c∗n, ct > c∗n for all

t ∈ [0, ũ), and φiũ(h0, {ct}t∈(0,∞), π
∗) > 0 for i ∈ {1, 2}. It follows from the argument

in the preceding paragraph that there is positive probability of the realization of the

cost process {ct}t∈[0,∞) being such that there exists ṽ satisfying cṽ = c∗n+1, ct > c∗n+1

for all t ∈ [0, ṽ), and φiṽ(h0, {ct}t∈(0,∞), π
∗) = 0 for i ∈ {1, 2}. Hence, the path of play

induced by π∗ cannot be such that, with probability one, the (n+ 1)th transaction is

made when the cost reaches c∗n+1 for the first time. This contradicts the definition of

π∗.

In addition, Bergin and MacLeod (1993) define a less restrictive condition based

on the completion of the set of inertial strategies. However, their methodology cannot

be easily adapted to our setting. Below we show that the maximal equilibrium of our

model cannot be expressed as the limit of a Cauchy sequence of inertial strategies.

In doing so, we employ a class of metrics on the strategy space that includes the

one used by Bergin and Macleod (1993). This class of metrics is reasonably large,

suggesting that a simple modification of their technique does not apply here, which

makes it necessary to introduce a new set of restrictions as we did in the main text.

Let Π̃ be the set consisting of any strategy profile π = (π1, π2) ∈ Π such that

the following holds. Choose any path of transfers b = {(b1t , b2t )}t∈[0,u) up to an

arbitrary time u. For any cost realization g = {gt}t∈[0,u] up to time u, there is

conditional probability one given {ct}t∈[0,u] = {gt}t∈[0,u] that there exists a unique

path of transfers {φit(ku, {cτ}τ∈(u,∞), π)}t∈[0,∞) for each agent i ∈ {1, 2} such that

φit(ku, {cτ}τ∈(u,∞), π) = gt for all t ∈ [0, u) and each i ∈ {1, 2} and such that

πi
({
cv
}
v∈[0,t],

{
[φ1
v(ku, {cτ}τ∈(u,∞), π), φ2

v(ku, {cτ}τ∈(u,∞), π)]
}
v∈[0,t)

)
= φit(ku, {cτ}τ∈(u,∞),

π) for all t ∈ [u,∞) and each i ∈ {1, 2}, where ku =
(
{gt}t∈[0,u], {(b1t , b2t )}t∈[0,u)

)
is

the history up to time u. Furthermore, for any g = {gt}t∈[0,u], the set {t ∈ [u, v] :

φit(ku, {cτ}τ∈(u,∞), π) > 0} is finite for all v ≥ u and each i ∈ {1, 2} with conditional

probability one given {ct}t∈[0,u] = {gt}t∈[0,u]. Finally, the stochastic process ξib(π1, π2)

defined as follows is progressively measurable for i ∈ {1, 2}.1 At any time t ∈ [0, u),

the value of ξib(π1, π2) is 0. Let g = {gt}t∈[0,u] represent the cost realization until time

u, and denote the resulting history up to time u by ku = (b, g). Given the realization

of the cost {cτ}τ∈(u,∞) after time u, the value of ξib(π1, π2) at each time t ∈ [u,∞) is

1Progressive measurability ensures that the conditional probability in Theorem A is well defined.
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φit(ku, {cτ}τ∈(u,∞), π).

The result below provides a general condition under which the maximal equi-

librium cannot be approximated by a sequence of inertial strategies. The set Π̃ is

endowed with the metric d. Let Σi(ku; {gt}t∈[u,v];u, v; π) be the sum of the trans-

fers that agent i ∈ {1, 2} would make during the time interval [u, v] with u ≤ v if

ku =
(
{gt}t∈[0,u], {(b1t , b2t )}t∈[0,u)

)
is the history up to time u, the cost path {gt}t∈[u,v]

is realized between times u and v, and strategy profile π ∈ Π̃ is played by the agents.

Theorem A. If d has the following property, then there is no sequence {ψn}∞n=1

with limn→∞ d(ψn, π
∗) = 0 such that ψn ∈ Π̃ is a profile of inertial strategies for

all n, where π∗ is any maximal symmetric SPE in grim-trigger strategies. For any

s > 0, l > 0, and p ∈ (0, 1], there exists z > 0 satisfying d(πa, πb) > z for any

πa, πb ∈ Π̃ such that one can find ku =
(
{gt}t∈[0,u], {(b1t , b2t )}t∈[0,u)

)
and i ∈ {1, 2}

for which
∣∣Σi(ku; {ct}t∈[u,u+l];u, u+ l; πb)− Σi(ku; {ct}t∈[u,u+l];u, u+ l; πa)

∣∣ > s with

conditional probability no less than p given that {ct}t∈[0,u] = {gt}t∈[0,u].

Proof. Let d be a metric on Π̃ having the property in the statement of the theorem.

Let π∗ = (π∗1, π
∗
2) be any maximal symmetric SPE in grim-trigger strategies. Let

{ψn}∞n=1 be any sequence for which ψn = (ψn1, ψn2) ∈ Π̃ is a profile of inertial strate-

gies for all n. Choose any integer x > 1. For each index n ≥ 1, there exists a history

knu =
(
{gnt }t∈[0,u], {(bnt , bnt )}t∈[0,u)

)
up to some time u such that π∗i (k

n
u) = f ∗x > 0 and

ψni(k
n
u) = 0 for each i ∈ {1, 2}. Choose any integer j ∈ {1, 2}. There are two cases

to consider.

Suppose first that there exists s > 0, l > 0, and p ∈ (0, 1] such that for any

index m, one can find an index nm > m for which there exists a history k̃nmũm =(
{g̃nmt }t∈[0,ũm], {(b̃nmt , b̃nmt )}t∈[0,ũm)

)
up to some time ũm > u satisfying {g̃nmt }t∈[0,u] =

{gnmt }t∈[0,u], {b̃nmt }t∈[0,u) = {bnmt }t∈[0,u), b̃nmu = 0, and the following condition. Given

that {ct}t∈[0,ũm] = {g̃nmt }t∈[0,ũm], there is conditional probability no less than p that

Σj(k̃
nm
ũm

; {ct}t∈[ũm,ũm+l]; ũm, ũm + l;ψnm) > s. It follows from π∗j (k
nm
u ) 6= b̃nmu that

Σj(k̃
nm
ũm

; {ct}t∈[ũm,ũm+l]; ũm, ũm + l; π∗) = 0 with conditional probability one given

that {ct}t∈[0,ũm] = {g̃nmt }t∈[0,ũm]. Therefore,
∣∣Σj(k̃

nm
ũm

; {ct}t∈[ũm,ũm+l]; ũm, ũm+ l;ψnm)−
Σj(k̃

nm
ũm

; {ct}t∈[ũm,ũm+l]; ũm, ũm+ l; π∗)
∣∣ > s with conditional probability no less than p

given that {ct}t∈[0,ũm] = {g̃nmt }t∈[0,ũm]. This implies that there exists z > 0 such that

for any index m, one can find an index nm > m satisfying d(ψnm , π
∗) > z. Hence,

limn→∞ d(ψn, π
∗) = 0 cannot hold.
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Suppose next that no such s > 0, l > 0, and p ∈ (0, 1] exist. Then there

exists an index m such that for any index n > m along with any history k̃nũ =(
{g̃nt }t∈[0,ũ], {(b̃nt , b̃nt )}t∈[0,ũ)

)
up to any time ũ > u satisfying {g̃nt }t∈[0,u] = {gnt }t∈[0,u],

{b̃nt }t∈[0,u) = {bnt }t∈[0,u), and b̃nu = 0, the conditional probability that Σj(k̃
n
ũ ; {ct}t∈[ũ,ũ+1];

ũ, ũ+1;ψn) ≥ f ∗x/2 is less than 1/2 given that {ct}t∈[0,ũ] = {g̃nt }t∈[0,ũ]. Thus, if n > m,

then
∣∣Σj(k

n
u ; {ct}t∈[u,u+1];u, u+ 1;ψn)− Σj(k

n
u ; {ct}t∈[u,u+1];u, u+ 1; π∗)

∣∣ > f ∗x/2 with

conditional probability greater than 1/2 given that {ct}t∈[0,u] = {gnt }t∈[0,u]. It fol-

lows that there exists z > 0 such that d(ψn, π
∗) > z for any index n > m. Hence,

limn→∞ d(ψn, π
∗) = 0 cannot hold.

II Alternative Specification of Payoffs

The analysis in the main text was based on a payoff function in which each transaction

resulted in a discrete cost and benefit. As mentioned in the body of the paper, there

is an equivalent formulation in which each transfer induces a stream of flow benefits

while the transaction cost is discrete. This version of the model may better fit some

applications.

The proposition below formalizes this notion. Let ŝi,jt = limτ→t− s
i,j
τ represent the

amount of good j that agent i possesses immediately before time t.2 The transfer

made by agent i at time t satisfies f it = ŝi,it − s
i,i
t .

Proposition B. For h = {cτ , (f 1
τ , f

2
τ )}τ∈[0,∞), let

W i
t (h) =

∫ ∞
t

e−ρ·(τ−t)si,−iτ dτ −
∑

{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)Cτ ,

where Ct = ct/ρ. Then

V i
t (h) = ρW i

t (h)− ŝi,−it .

Proof. For any h = {cτ , (f 1
τ , f

2
τ )}τ∈[0,∞), the following holds:

W i
t (h) =

∫ ∞
t

e−ρ·(τ−t)si,−iτ dτ −
∑

{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)Cτ

=

∫ ∞
t

e−ρ·(τ−t)ŝi,−iτ dτ +
∑

{τ∈[t,∞):f−iτ >0}

∫ ∞
τ

e−ρ·(υ−t)(si,−iυ − ŝi,−iυ )dυ

2We define ŝi,j0 = si,j0 = q if i = j and ŝi,j0 = si,j0 = 0 if i 6= j. Note that limτ→t− s
i,j
τ is well

defined because si,jτ is monotonic over time.
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−
∑

{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)Cτ

= ŝi,−it · −1

ρ
e−ρ·(τ−t)

∣∣∣∣∞
t

+
∑

{τ∈[t,∞):f−iτ >0}

(si,−iτ − ŝi,−iτ ) · −1

ρ
e−ρ·(υ−t)

∣∣∣∣∞
τ

−
∑

{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)Cτ

=
1

ρ
ŝi,−it +

1

ρ

∑
{τ∈[t,∞):f−iτ >0}

(si,−iτ − ŝi,−iτ )e−ρ·(τ−t)

− 1

ρ

∑
{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)ρCτ

=
1

ρ

(
ŝi,−it +

∑
{τ∈[t,∞):f−iτ >0}

e−ρ·(τ−t)f−iτ −
∑

{τ∈[t,∞):f iτ>0}

e−ρ·(τ−t)cτ

)

=
1

ρ

(
ŝi,−it + V i

t (h)

)
.

Rearranging, we obtain the desired result.

The preceding result suggests the following alternative formulation of the game.

Agent i pays the fixed cost Ct if she makes a transfer at time t, where we define

Ct = ct/ρ. Moreover, if agent i transfers the amount f it of her good to agent −i
at time t, then the transfer gives agent −i a flow benefit of f it at each instant from

time t onwards. Note that the present discounted value of this flow benefit is f it/ρ

at the time of the transaction. In the modified model with flow benefits and discrete

costs, the realized payoff to agent i at time t is W i
t (h) when the history is h =

{cτ , (f 1
τ , f

2
τ )}τ∈[0,∞). The proposition above implies that any SPE π of the original

model is an SPE of the modified model, and vice versa.

III Intuitive Examples for Optimal Solution

This section contains examples demonstrating the basic properties of the maximal

symmetric equilibrium of the model. Assume that {ct}t∈[0,∞) is a continuous Markov

cost process and that each random variable ct for t ≥ 0 takes values in the state space

S ⊆ R++. The following example illustrates why a non-stationary symmetric SPE is

weakly Pareto dominated by a stationary symmetric SPE.

Example A. Let {c̃k}∞k=1 be a positive decreasing sequence with c̃1 < c0. For j ∈
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{a, b}, let {f̃ jk}∞k=1 be a positive sequence with
∑∞

k=1 f̃
j
k ≤ q. Assume that f̃ak 6= f̃ bk

for some index k. Choose any t̃ > 0. Let π be a symmetric SPE in grim-trigger

strategies. Suppose that the path of play induced by π is as follows. If the first time

that the cost reaches c̃1 is greater than t̃, then the kth transaction is made when the

cost reaches c̃k for the first time, and the amount f̃ak is transferred by each agent at

this transaction. Otherwise, the kth transaction is made when the cost reaches c̃k for

the first time, and the amount f̃ bk is transferred by each agent at this transaction.

If an agent deviates from the specified path of play, then neither agent makes any

transactions following the deviation.

Note that π is a non-stationary strategy profile. For j ∈ {a, b}, define the sta-

tionary symmetric SPE πj in grim-trigger strategies as follows. The kth transaction

is made when the cost reaches c̃k for the first time, and the amount f̃ jk is transferred

by each agent at this transaction. If an agent deviates from the specified path of

play, then neither agent makes any transactions following the deviation. Since the

cost follows a Markov process, the conditional distribution of future values of the cost

given that the current value of the cost is c̃1 does not vary based on whether the

current time is greater than t̃. Given that π is played, let Ṽ a and Ṽ b respectively

denote the expected payoffs to each agent upon reaching the cost c̃1 for the first time

when this time is strictly greater than and weakly less than t̃.3 If Ṽ a is no less than

Ṽ b, then the expected payoff to each agent is at least as high under πa as under π.

If Ṽ b is no less than Ṽ a, then the expected payoff to each agent is at least as high

under πb as under π. Thus, there exists at least one stationary symmetric SPE that

weakly Pareto dominates the non-stationary symmetric SPE π.

Next is an example that helps to explain why a stationary symmetric SPE with

some incentive constraint slack is not Pareto optimal.

Example B. The agents are playing a symmetric SPE π in grim-trigger strategies.

Letting 0 < c̃2 < c̃1 < c0, assume that the path of play induced by π is such that the

agents transfer the positive amount f̃1 at the first time that the cost reaches c̃1 and

transfer the positive amount f̃2 at the first time that the cost reaches c̃2. Suppose

that the incentive constraint at the first transaction is slack, meaning that the cost

3These values are calculated before any transaction that happens at the aforementioned time.
For j ∈ {a, b}, the expected payoff Ṽ j is equal to the sum of the difference between the amount
transferred f̃ j1 and the cost incurred c̃1 on the first transaction and the continuation value after
reaching the cost c̃1 for the first time.
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incurred at the first transaction is less than the continuation value.

Then there exists a symmetric SPE π′ in grim-trigger strategies such that each

agent receives a higher expected payoff when playing π′ than when playing π and such

that the following property holds. For some ε > 0, the strategy profile π′ induces a

path of play in which the agents transfer the positive amount f̃1 + ε at the first time

that the cost reaches c̃1 and transfer the amount f̃2 − ε at the first time that the

cost reaches c̃2. This perturbation of the original strategy profile enables some of

each good to be transferred sooner rather than later. The expected payoff can be

increased without violating the incentive constraints. It follows that π cannot be a

maximal symmetric SPE.

The example below provides intuition for why a stationary symmetric SPE with

a nondecreasing sequence of costs incurred is strongly Pareto dominated.

Example C. Suppose that the agents are playing a symmetric SPE π in grim-trigger

strategies. Let 0 < c̃1 < c̃2 < c0. The path of play induced by π is such that the first

transaction occurs at the first time that the cost reaches c̃1, and the agents transfer

the positive amount f̃1 on this transaction. The second transaction occurs at the first

time after the first transaction that the cost reaches c̃2, and the agents transfer the

positive amount f̃2 on the second transaction. Assume that the incentive constraints

at the first two transactions are binding, meaning that the costs incurred at these

transaction are equal to the respective continuation values after these transactions.

Then there exists a symmetric SPE π′ in grim-trigger strategies such that each

agent receives a higher expected payoff when playing π′ than when playing π and

such that the following property holds. The strategy profile π′ induces a path of

play in which the first transaction occurs at the first time that the cost reaches c̃2,

and the agents transfer the amount f̃1 + f̃2 on this transaction. In other words, the

first and second transactions in the original strategy profile are combined into a sin-

gle transaction in the revised strategy profile. Moreover, this combined transaction

occurs sooner than the first two transactions originally occur. Noting that the incen-

tive constraints at these two transactions are binding in the original strategy profile,

the revised strategy profile can increase the expected payoff without violating the

incentive constraints. It follows that π cannot be a maximal symmetric SPE.

Assume further that the cost process {ct}t∈[0,∞) follows a geometric Brownian

motion with arbitrary drift µ and positive volatility σ. The following is an example
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of a maximal symmetric SPE not in grim-trigger strategies.

Example D. Let π∗ denote the maximal symmetric SPE in grim-trigger strategies as

specified in the main text. Suppose that π∗ is played with the following exception. If

agent 1 transfers 0 but agent 2 transfers f ∗1 at the first time the cost reaches c∗1, then

the agents do not make any transfers until the next time the cost reaches q − f ∗1 .4

The strategy profile specifies that neither agent makes a transfer at the next time

the cost reaches q − f ∗1 . However, if agent 1 happens to transfer the amount f ∗1 at

the next time the cost reaches q− f ∗1 , then the agents play π∗ starting from the next

time that the cost reaches c∗2, behaving as if no agent previously deviated from the

specified path of play. Otherwise, no further transactions occur.

The example below helps to demonstrate why the model does not have a non-

stationary maximal symmetric SPE.

Example E. Suppose that π is a non-stationary maximal symmetric SPE in grim-

trigger strategies. Recall the definitions of c∗k and f ∗k in the main text. Let c∗2 < c̃1 <

c∗1. Choose any t̃ > 0. The path of play induced by π is as follows. If the first time

that the cost reaches c∗1 is greater than t̃, then the first transaction is made when the

cost reaches c̃1, and the amount f ∗k is transferred by each agent at this transaction.

Otherwise, the first transaction is made when the cost reaches c∗1 for the first time,

and the amount f ∗k is transferred by each agent at this transaction. For any positive

integer k > 1, the kth transaction is made when the cost reaches c∗k for the first

time, and the amount f ∗k is transferred by each agent at this transaction. If an agent

deviates from the specified path of play, then neither agent makes any transactions

following the deviation.

Noting that the cost follows a Markov process, the conditional distribution of fu-

ture values of the cost given that the current value of the cost is c∗1 does not vary based

on whether the current time is greater than t̃. Because π is a maximal symmetric

SPE, the expected payoff to each agent upon reaching the cost c∗1 for the first time is

the same regardless of whether this time is greater than t̃. Hence, the following is a

stationary maximal symmetric SPE in grim-trigger strategies. The first transaction

is made when the cost reaches c̃1 for the first time, and the amount f ∗k is transferred

by each agent at this transaction. For any positive integer k > 1, the kth transaction

4Note that c∗1 < q − f∗1 , where c∗1 and f∗1 are defined in the main text, which characterizes the
maximal symmetric SPE.
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is made when the cost reaches c∗k for the first time, and the amount f ∗k is transferred

by each agent at this transaction. If an agent deviates from the specified path of play,

then neither agent makes any transactions following the deviation. However, this

contradicts the result that any stationary maximal symmetric SPE must induce the

uniquely optimal path of play described in the main text. Thus, the non-stationary

strategy profile π cannot be a maximal symmetric SPE.

IV Efficiency Results

This section extends the welfare analysis. Appendix IV.1 derives some properties of

efficient strategy profiles. Appendix IV.2 identifies a general condition on the cost

process under which the efficient outcome can be approximated as the discount rate

approaches zero.

IV.1 Properties of Efficient Strategies

We begin with some comparative statics for the efficient path of play. The following

results are immediate given the expression for the cost cutoff c̄ in the main text.

Therefore, their proofs are omitted. We start by describing how the parameters of

the model affect the efficient cost incurred.

Corollary A. Assume that the cost process {ct}t∈[0,∞) follows a geometric Brownian

motion with arbitrary drift µ and positive volatility σ. The efficient cost cutoff c̄ is

increasing in µ and ρ but decreasing in σ.

If µ decreases or σ increases, then a low realization of cost process becomes more

likely. Hence, it is profitable for the agents to wait for the cost to become low before

making a transaction. As ρ decreases, agents become more patient and so prefer

waiting for a low cost before transacting. Accordingly, the cost cutoff c̄ is small. These

comparative statics differ from those for a maximal symmetric equilibrium. In the

presence of incentive constraints, the costs paid on later transactions are increasing in

µ and ρ as well as decreasing in σ, but the opposite may hold for earlier transactions

depending on the parameter values.

We next examine the efficient behavior as the discount rate respectively ap-

proaches zero and infinity.
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Corollary B. Assume that the cost process {ct}t∈[0,∞) follows a geometric Brownian

motion with arbitrary drift µ and positive volatility σ. If µ ≤ σ2/2, then limρ→0 c̄ = 0.

If µ > σ2/2, then limρ→0 c̄ > 0. In addition, limρ→∞ c̄ = q

If µ ≤ σ2/2, then a decrease in the transaction cost is likely, and so infinitely pa-

tient agents wait for the cost to become extremely low before transacting. If µ > σ2/2,

then the transaction cost becomes prohibitively high if the agents wait indefinitely,

and so it is not efficient for even infinitely patient agents to wait for the cost to become

negligible. As agents become infinitely impatient, they transfer the good as soon as

it is possible to obtain a positive payoff, thereby minimizing the effect of discounting.

In the limit, the transaction cost incurred approaches the total stock of each good,

causing the expected payoff of each agent to converge to zero.

We now study the relationship between the efficient solution and the maximal

equilibrium in the case of a continuous Markov cost process. It is further assumed

that the conditional distribution of future values of the cost divided by the current

value does not depend on the cost realization up to the current time. That is, the

transaction cost obeys the scaling rule below, whereby the incremental change in the

cost is proportional to the current value of the cost.5

Definition 2. The positive cost process {ct}t∈[0,∞) is said to be proportional if

the conditional distribution of {cτ/cκ}τ∈(κ,∞) given {cυ}υ∈[0,κ] does not vary with

{cυ}υ∈[0,κ].

Observe that any proportional cost process has the Markov property. Now con-

sider a stationary efficient symmetric strategy profile and a stationary maximal sym-

metric SPE each of which induces a transaction with positive probability. The result

below implies that the sole transaction when playing an efficient strategy profile hap-

pens sooner than all the transactions when playing maximal equilibrium strategies.

Theorem B. Let {ct}t∈[0,∞) be a continuous and proportional cost process. Let π
′

be

any efficient symmetric strategy profile for which there exists c
′
> 0 such that, with

positive probability, the realization of the cost process {cτ}τ∈[0,∞) satisfies ct = c
′

and

φit(h0, {cτ}τ∈(0,∞), π
′
) > 0 for i ∈ {1, 2} and some t ∈ [0,∞). Let π

′′
be any maximal

symmetric SPE for which there exists c
′′
> 0 such that, with positive probability, the

realization of the cost process {cτ}τ∈[0,∞) satisfies ct = c
′′

and φit(h0, {cτ}τ∈(0,∞), π
′′
) >

0 for i ∈ {1, 2} and some t ∈ [0,∞). Then c
′
> c

′′
.

5Note that a geometric Brownian motion has this property.
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Proof. Suppose first that c
′
< c

′′
. We show that this assumption leads to a contra-

diction. Let δ < 1 denote the expected discounted value of an asset that pays 1 at

the first time the cost process reaches c
′

given that the current value of the cost is c
′′
.

Because π
′′

is a maximal symmetric SPE such that a transaction occurs at the cost

c
′′

with positive probability, there exists a cost realization {c∗τ}τ∈[0,∞) as well as a time

t∗ such that c∗t∗ = c
′′
, φit∗(h0, {c∗τ}τ∈(0,∞), π

′′
) > 0, and V [ht∗({c∗τ}τ∈[0,∞), π

′′
), π

′′
] ≥

V [ht∗({c∗τ}τ∈[0,∞), π
′′
), π̃] for every symmetric SPE π̃. Denote u = V [ht∗({c∗τ}τ∈[0,∞),

π
′′
), π

′′
].

It must be that u − c′′ ≥ δ(u − c′). Otherwise, the proportionality condition on

the transaction cost would imply that the following symmetric SPE yields a higher

expected payoff to each agent than π
′′
. The agents play π

′′
until the first time t1∗

that the current value of the cost process is c
′′

and π
′′

requires each agent to make a

transaction at this time. Thereafter, the agents do not make any transactions until

the first time t2∗ greater than t1∗ that the current value of the cost process is c
′
. At

time t2∗, each agent transfers the amount φit∗(h0, {c∗τ}τ∈(0,∞), π
′′
) > 0. Thereafter, the

agents play according to strategy profile π
′′
, behaving as if the history at the time

of this transaction were ht∗({c∗τ}τ∈[0,∞), π
′′
) and the value of the cost process at any

successive time were c
′′
/c
′
multiplied by its actual value. That is, if the cost realization

during the time interval of length l following this transaction is {g∗τ}τ∈(0,l], then the

players act as if the cost realization during this time interval were {(c′′/c′) · g∗τ}τ∈(0,l].
Because π

′
is an efficient symmetric strategy profile such that a transaction occurs

at the cost c
′

with positive probability, it must be that q− c′′ ≤ δ(q− c′). Otherwise,

the strategy profile π
′

would yield a lower expected payoff to each agent than the

symmetric strategy profile that requires each agent to transfer the amount q at the

first time the cost reaches c
′′
.

The conditions u−c′′ ≥ δ(u−c′) and q−c′′ ≤ δ(q−c′) imply that (q−c′′)/(q−c′) ≤
δ ≤ (u−c′′)/(u−c′). However, u < q because the incentive compatibility of π

′′
requires

that φit∗(h0, {c∗τ}τ∈(0,∞), π
′′
) < q. It follows that (q − c′′)/(q − c′) > (u− c′′)/(u− c′).

Thus, no value of δ satisfies the inequalities (q− c′′)/(q− c′) ≤ δ ≤ (u− c′′)/(u− c′),
resulting in a contradiction.

Suppose next that c
′

= c
′′
. We show that this assumption leads to a contra-

diction. Denote c̃ = c
′

= c
′′
. Since π

′′
is a maximal symmetric SPE such that a

transaction occurs at the cost c̃ with positive probability, there exists a cost realiza-

tion {c†τ}τ∈[0,∞) as well as a time t† such that c†
t†

= c̃, φi
t†(h0, {c

†
τ}τ∈(0,∞), π

′′
) > 0,
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and V [ht†({c†τ}τ∈[0,∞), π
′′
), π

′′
] ≥ V [ht†({c†τ}τ∈[0,∞), π

′′
), π̃] for every symmetric SPE

π̃. Denote v = V [ht†({c†τ}τ∈[0,∞), π
′′
), π

′′
]. Because the incentive compatibility of π

′′

requires that φi
t†(h0, {c

†
τ}τ∈(0,∞), π

′′
) < q, it must be that v < q.

Choose any κ > 1 such that κv < q. Let λ1 < 1 denote the expected discounted

value of an asset that pays 1 at the first time the cost reaches c̃ given that the current

value of the cost is κc̃. Let λ2 < 1 denote the expected discounted value of an asset

that pays 1 at the first time the cost reaches c̃/κ given that the current value of the

cost is c̃. Note that λ1 = λ2 because of the proportionality condition on the cost

process. Let λ = λ1 = λ2.

Because π
′
is an efficient symmetric strategy profile such that a transaction occurs

at the cost c̃ with positive probability, it must be that q − κc̃ ≤ λ(q − c̃). Otherwise,

the strategy profile π
′

would yield a lower expected payoff to each agent than the

symmetric strategy profile that requires each agent to transfer the amount q at the

first time the cost reaches κc̃.

Because π
′′

is a maximal symmetric SPE such that a transaction occurs at the

cost c̃ with positive probability, it must be that v − c̃ ≥ λ(v − c̃/κ). Otherwise,

the proportionality condition on the transaction cost would imply that the following

symmetric SPE yields a higher expected payoff to each agent than π
′′
. The agents play

π
′′

until the first time t1† that the current value of the cost process is c̃ and π
′′

requires

each agent to make a transaction at this time. Thereafter, the agents do not make any

transactions until the first time t2† greater than t1† that the current value of the cost

process is c̃/κ. At time t2†, each agent transfers the amount φi
t†(h0, {c

†
τ}τ∈(0,∞), π

′′
) >

0. Thereafter, the agents play according to strategy profile π
′′
, behaving as if the

history at the time of this transaction were ht†({c†τ}τ∈[0,∞), π
′′
) and the value of the

cost process at any successive time were κ multiplied by its actual value. That is, if

the cost realization during the time interval of length l following this transaction is

{g†τ}τ∈(0,l], then the players act as if the cost realization during this time interval were

{κ · g†τ}τ∈(0,l].
The conditions q−κc̃ ≤ λ(q−c̃) and v−c̃ ≥ λ(v−c̃/κ) imply that (v−c̃)/(v−c̃/κ) ≥

λ ≥ (q − κc̃)/(q − c̃). However, it follows from κv < q that (v − c̃)/(v − c̃/κ) <

(q−κc̃)/(q− c̃). Thus, no value of λ satisfies the inequalities (v− c̃)/(v− c̃/κ) ≥ λ ≥
(q − κc̃)/(q − c̃), resulting in a contradiction.

The proof is by contradiction. As in the statement of the theorem, let c
′
and c

′′
be

the respective cost thresholds at which a transaction occurs with positive probability
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in the efficient solution π
′

and maximal equilibrium π
′′
. First, consider the possibility

that c
′
< c

′′
. In this case, the strategy profile π

′
would be Pareto dominated by

a symmetric strategy profile in which the agents instead transact at the cost c
′′
.

Next, consider the possibility that c
′
= c

′′
. In this case, the SPE π

′′
would be Pareto

dominated by a symmetric SPE in which the agents instead transact at a cost slightly

lower than c
′
.

IV.2 General Condition for Asymptotic Efficiency

The result below establishes a general property of the cost process under which the

efficient outcome can be approximated in equilibrium as discounting frictions disap-

pear. In the limit as agents become infinitely patient, all the potential gains from

trade are realized.

Theorem C. Assume that {ct}t∈[0,∞) is an arbitrary right-continuous cost process

and that each random variable ct for t ≥ 0 takes values in the state space S ⊆ R++.

Suppose that there exists r < 1 such that for any ε > 0, one can find p > 1 − ε and

v > 0 for which given any realization of the cost process {ct}t∈[0,u] up to an arbitrary

time u, there is conditional probability no less than p that the cost process {ct}t∈(u,∞)

after time u satisfies cτ ≤ rcu for some τ ∈ (u, u+v). Then for any sequence {ρn}∞n=1

of discount rates with limn→∞ ρn = 0, there exists a sequence {ψn}∞n=1 such that ψn

is a symmetric SPE when the discount rate is ρn and such that the expected payoff to

each agent when ψn is played and the discount rate is ρn converges to q in the limit

as n goes to infinity.

Proof. We begin by constructing a sequence {ψ̃n}∞n=1 of symmetric strategy profiles

and a sequence {ρ̃n}∞n=1 of discount rates such that ψ̃n is an SPE when the discount

rate is no greater than ρ̃n and such that the expected payoff to each agent when ψ̃n

is played and the discount rate is ρ̃n converges to q in the limit as n goes to infinity.

Let r < 1 be as defined in the statement of the theorem. For each index n, one can

find pn > 1 − 1/n2 and vn > 0 such that given any realization of the cost process

{ct}t∈[0,u] up to an arbitrary time u, there is conditional probability no less than pn

that the realization of the cost process {ct}t∈(u,∞) after time u satisfies cτ ≤ rcu

for some τ ∈ (u, u + vn). Hence, given any realization of the cost process {ct}t∈[0,u]
up to an arbitrary time u, there is conditional probability no less than pnn that the
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realization of the cost process {ct}t∈(u,∞) after time u satisfies cτ ≤ rncu for some

τ ∈ (u, u+ n · vn).

For each index n, define the discount rate as ρ̃n = (n2vn)−1. For each index n,

construct the symmetric SPE ψ̃n as follows. Choose c∗n equal to the smaller of c0

and exp(−ρ̃n · n · vn) · pnn · q · rn · (1 − rn). The first transaction occurs at the first

time that the current value of the cost is less than or equal to c∗n. If the previous

transaction occurred at cost ĉ, then the next transaction occurs at the first time that

the cost is less than or equal to rnĉ. For every positive integer k, each agent transfers

the amount rn(k−1)q(1 − rn) on the kth transaction. If an agent deviates from the

path of play described above, then neither agent makes any transactions following

the deviation. It can be shown as in the proofs of the results in the main text that

the strategy profile ψ̃n is an SPE when the discount rate is no greater than ρ̃n.

Consider the sequence {ψ̃n}∞n=1 of symmetric SPE and the sequence {ρ̃n}∞n=1 of

discount rates. Note that the cost c∗n paid on the first transaction converges to zero in

the limit as n goes to infinity. Note that the amount q(1− rn) transferred on the first

transaction converges to q in the limit as n goes to infinity. Moreover, when playing

strategy profile ψ̃n, the continuation value after transaction n cannot be negative.

Let mn be the least integer greater than or equal to logr(c
∗
n/c0). In the limit as

n goes to infinity, the probability that the first transaction occurs by time mn · vn
converges to a number no less than:

lim
n→∞

pmnn ≥ lim
n→∞

(1− 1/n2)mn = lim
n→∞

(1− 1/n2)logr(c
∗
n/c0)+1 = lim

n→∞
(1− 1/n2)logr(c

∗
n)

= lim
n→∞

(1− 1/n2)logr[exp(−ρ̃n·n·vn)·p
n
n·q·rn·(1−rn)] = lim

n→∞
(1− 1/n2)logr(r

n)

= lim
n→∞

(1− 1/n2)n = 1.

In the limit as n goes to infinity, the discount factor at time mn · vn converges to:

lim
n→∞

exp(− ρ̃nmnvn) = lim
n→∞

exp{−(n2vn)−1[logr(c
∗
n/c0) + 1]vn}

= lim
n→∞

exp{−n−2[logr(c
∗
n)− logr(c0) + 1]}

= lim
n→∞

exp
(
−n−2{logr[exp(−ρ̃nnvn)pnnqr

n(1− rn)]− logr(c0) + 1}
)

= lim
n→∞

exp
(
−n−2{n+ logr[exp(−ρ̃nnvn)pnnq(1− rn)]− logr(c0) + 1}

)
= 1.

It follows from the observations in the preceding two paragraphs that the expected
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payoff to each agent when strategy profile ψ̃n is played and the discount rate is no

greater than ρ̃n converges to q in the limit as n goes to infinity.

Let {ρn}∞n=1 be an arbitrary sequence of discount rates with limn→∞ ρn = 0. For

any index n, let mn denote the greatest positive integer k such that ρ̃k is no less than

ρn. If ρn is greater than ρ̃k for all k, then let ψn be the symmetric strategy profile

that requires each agent to never make a transfer at any history. Otherwise, let ψn

be the same as the symmetric strategy profile ψ̃mn . Note that ψn is an SPE when the

discount rate is ρn.

We now argue that the expected payoff to each agent when ψn is played and the

discount rate is ρn converges to q in the limit as n approaches infinity. Choose any

ε > 0. By construction, there exists an index k∗ such that the expected payoff to

each agent when ψ̃n is played and the discount rate is ρ̃n is greater than q − ε for all

n ≥ k∗. In addition, there exists an index l∗ such that ρn < ρ̃k∗ for all n ≥ l∗. Note

that the expected payoff to each agent when ψn is played and the discount rate is ρn

is greater than q − ε for all n ≥ l∗.

The following is a summary of the proof. First, a sequence of discount rates

converging to zero is specified. Next, a nondegenerate symmetric equilibrium is con-

structed for each discount rate in the sequence. The path of play involves a potentially

infinite sequence of transactions with decreasing amounts transferred and costs in-

curred. The resulting sequence of equilibria is such that the cost paid on the first

transaction converges to zero while the size of the initial transfer approaches the total

stock of each good. Moreover, the probability of a transaction happening converges

to one, and the first transaction occurs sufficiently rapidly that discounting becomes

negligible in the limit. Hence, the expected payoff to each player approximates the

total stock of each good.

V Variations of Basic Model

This section analyzes variations of the baseline framework. Appendix V.1 extends

the setup to allow the supply of each good to follow a stochastic process. Appendix

V.2 presents an extension in which the transfer size affects the transaction cost.
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V.1 Model with Stochastic Supplies of Goods

This appendix analyzes an environment in which the supplies of the goods vary ran-

domly over time. The framework here is the same as that presented in the main text,

except that the cost of making a transaction is fixed at some positive constant and the

stock of each good is assumed to follow a stochastic process between transactions.6

In particular, assume that the transaction cost is constant at χ > 0. For any positive

integer k, let tik denote the time of the kth transaction by agent i. In addition, let

xik be the amount of good i transferred by agent i on the kth transaction as a frac-

tion of the amount of good i remaining immediately before the kth transaction. Let

{gt}t∈[0,∞) be a strictly positive stochastic process. Assume that the amount of good

i remaining at the end of time t ≥ 0 is given by si,it = gt ·
∏
{k: 0≤tik≤t}

(1− xik).
The stochastic process {gt}t∈[0,∞) captures random growth or decay in the stock

of each good. The following theorem establishes a condition on this process under

which the model has a nondegenerate equilibrium. Assume that the process is right-

continuous. Suppose that there exist constants p > 0, r > 1, and v > 0 for which

there is conditional probability p of the process growing by a factor of r during a time

interval of length v.7 Then the result below shows that the extended model has an

equilibrium in which a transaction occurs with positive probability.

Theorem D. Assume that {gt}t∈[0,∞) is an arbitrary right-continuous stochastic pro-

cess and that each random variable gt for t ≥ 0 takes values in the state space

S ⊆ R++. Suppose that one can find p > 0, r > 1, and v > 0 for which given

any realization of the process {gt}t∈[0,u] up to an arbitrary time u, there is conditional

probability no less than p that the process {gt}t∈(u,∞) after time u is such that gτ ≥ rgu

for some τ ∈ (u, u + v). Then the model in this section has a symmetric SPE π in

which there is positive probability of each agent making a positive transfer at some

time.

Proof. Consider the symmetric grim-trigger strategy profile ψ defined as follows. Let-

ting δ = e−ρv, choose any κ no less than [r/(r−1)][1 + (1− δp)/(δp)]. The first trans-

action occurs at the first time that the amount of each good remaining is greater

6In addition, it is assumed as in the analysis of the model in the main text that each agent
consumes the good from the other agent as soon as it is received.

7This property is satisfied by a geometric Brownian motion with arbitrary drift and positive
volatility.
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than or equal to κχ. If the stock of each good was s̃ immediately before the pre-

vious transaction, then the next transaction occurs at the first time that the stock

of each good is greater than or equal to s̃. On each transaction, agent i transfers a

fraction (r − 1)/r of the amount of good i remaining before the transaction. If an

agent deviates from the path of play described above, then neither agent makes any

transactions following the deviation.

We argue that strategy profile ψ is an SPE. It suffices to show that the incentive

compatibility constraint is satisfied at each transaction when playing ψ. Suppose

that the agents have followed strategy profile ψ up to the current time and that the

next transaction will occur at the first time the stock of each good is at least s̃. If

the agents follow strategy profile ψ, then the cost incurred by each agent on the

next transaction is χ, and the expected payoff to each agent immediately after the

next transaction is no less than
∑∞

m=1 δ
mpm{[(r− 1)/r]κχ−χ}. Hence, the incentive

compatibility constraint is satisfied for the next transaction if the following holds:

χ ≤
∞∑
m=1

δmpm{[(r − 1)/r]κχ− χ},

which reduces to:

χ ≤ [δp/(1− δp)]{[(r − 1)/r]κ− 1}χ ⇔ κ ≥ [r/(r − 1)][1 + (1− δp)/(δp)].

The last inequality is true by assumption, confirming that the incentive compatibility

constraint is satisfied.

The proof is straightforward. A nondegenerate equilibrium can be constructed

using grim-trigger strategies. It has the following form. Each agent transfers a spec-

ified fraction of the good at every time that the remaining stock of each good meets

or exceeds a particular proportion of the transaction cost. If an agent deviates from

this path of play, then no further transfers are made. The critical value of the stock

and the size of each transfer can be chosen such that the continuation value from the

relationship is at least as large as the transaction cost. Consequently, neither agent

has an incentive to deviate.

The theorem is valid even if the stock of each good has a very high growth rate.

For example, suppose that the stochastic process {gt}t∈[0,∞) evolves according to a

geometric Brownian motion. If the drift parameter µ is greater than the discount rate
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ρ, then there is no upper bound on the expected payoff attainable in equilibrium. As

previously explained, an equilibrium can be supported using grim-trigger strategies.

Following a deviation from the path of play, the maximum payoff an agent can secure

is zero, given the strategy played by the other agent.

The theorem holds even when the discount rate of each agent is very high. An

equilibrium can be implemented as described above. In the case where the future is

heavily discounted, the agents are required to wait for the stock to become relatively

large before making a transaction. When there is a sizeable remaining stock, the

continuation value of the relationship is substantial. In particular, there is a positive

conditional probability of the stochastic process {gt}t∈[0,∞) growing by a factor of

r > 1 during a certain length of time. By allowing the stock to become sufficiently

high, the absolute increase in the stock due to a given proportional increase can be

made arbitrarily large. Thus, the continuation value can be made big enough to

prevent the agents from deviating.

Also observe that the theorem above offers a counterpoint to the impossibility

result in the main text. Suppose that the transaction cost is fixed at a positive

constant. If the total supply of each good remains constant over time, then no

transactions can occur in an equilibrium of the model. However, if the stock of each

good evolves randomly as in the preceding theorem, then a transaction can occur in

equilibrium with positive probability.

Finally, the model with uncertainty in the supply of each good can be applied to

some of the examples in the introduction, particularly negotiations between countries

over the release of prisoners. The stocks may vary over time because of the capture

of additional combatants during military operations, the death of prisoners while in

custody, or the escape of captives from detention facilities. An immediate payoff is

received when prisoners are repatriated. This payoff might represent a rise in public

support for elected officials or a psychic benefit from the homecoming of missing

family members. The cost of releasing detainees might include criticism from political

opponents or a worsening of national security. The next appendix studies the case

where this cost depends on the size of the transfer.

V.2 Model with Cost Proportional to Amount Transferred

This appendix examines the effect of letting the transaction cost paid depend on the

amount transferred. The setup here is the same as that described in the main text,
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except that the cost paid at each transaction includes a term that is proportional to

the amount transferred.8 Specifically, if agent i ∈ {1, 2} transfers the amount xit at

time t ∈ [0,∞) and the fixed cost of making a transfer is ct at time t, then agent i

incurs the transaction cost ct + φ · xit at time t, where φ ∈ (0, 1).9

The following result demonstrates that the game may have a nondegenerate equi-

librium. Consider a right-continuous cost process. Suppose that there exist constants

p > 0, r < 1, and v > 0 for which there is conditional probability p of the fixed

cost becoming a fraction r of its current value during a time interval of length v.10

According to the theorem below, there exists an equilibrium of the extended model

in which a transaction occurs with positive probability, provided that the component

of the cost proportional to the amount transferred is not excessively large.11

Theorem E. Assume that {ct}t∈[0,∞) is an arbitrary right-continuous cost process

and that each random variable ct for t ≥ 0 takes values in the state space S ⊆ R++.

Suppose that one can find p > 0, r < 1, and v > 0 for which given any realization of

the cost process {ct}t∈[0,u] up to an arbitrary time u, there is conditional probability

no less than p that the cost process {ct}t∈(u,∞) after time u is such that cτ ≤ rcu for

some τ ∈ (u, u+v). Then there exists φ̄ such that for φ < φ̄, the model in this section

has a symmetric SPE π in which there is positive probability of each agent making a

positive transfer at some time.

Proof. Letting δ = e−ρv, define φ̄ = δpr. Assume that φ < φ̄. Consider the symmetric

grim-trigger strategy profile ψ defined as follows. Recall that q denotes the initial

stock of each good. Choose any value of c∗ no greater than q(1 − r)(δpr − φ). The

first transaction occurs at the first time that the current value of the cost is less than

or equal to c∗. If the previous transaction occurred at cost ĉ, then the next transaction

occurs at the first time that the cost is less than or equal to rĉ. For every positive

integer k, each agent transfers the amount rk−1q(1− r) on the kth transaction. If an

8In addition, it is assumed as in the analysis of the model in the main text that each agent
consumes the good from the other agent as soon as it is received.

9Note that the current model would reduce to the basic model if φ = 0.
10This property is satisfied by a geometric Brownian motion with arbitrary drift and positive

volatility.
11If the fixed cost ct follows a geometric Brownian motion with any drift and positive volatility,

then Theorem E implies that the component of the cost proportional to the amount transferred can
be arbitrary close to the amount transferred. This holds because we can respectively choose p and
v to be sufficiently close to one and zero and then let r approach one.

20



agent deviates from the path of play described above, then neither agent makes any

transactions following the deviation.

We argue that strategy profile ψ is an SPE. Note that ψ is feasible because∑∞
k=1 r

k−1q(1 − r) = q. We next show that the incentive compatibility constraint

is satisfied at each transaction when playing ψ. Choose any positive integer l. Sup-

pose that the agents have followed strategy profile ψ up to the current time, l − 1

transactions have happened in the past, and ψ specifies transaction l will occur at

the first time the cost is at most ĉ. If the agents follow strategy profile ψ, then the

cost incurred by each agent on transaction l is no greater than rl−1c∗+ rl−1q(1− r)φ,

and the expected payoff to each agent immediately after transaction l is no less than∑∞
m=1 δ

mpm[rl+m−1q(1 − r)(1 − φ) − rl+m−1c∗]. Hence, the incentive compatibility

constraint is satisfied for transaction l if the following holds:

rl−1c∗ + rl−1q(1− r)φ ≤
∞∑
m=1

δmpm[rl+m−1q(1− r)(1− φ)− rl+m−1c∗],

which reduces to:

c∗ + q(1− r)φ ≤ δpr[q(1− r)(1− φ)− c∗]/(1− δpr) ⇔ c∗ ≤ q(1− r)(δpr − φ).

The last inequality is true by assumption, confirming that the incentive compatibility

constraint is satisfied.

The assumption regarding the fixed cost is the same as for the corresponding result

in the main text, which identifies a condition such that the model has a nondegenerate

equilibrium. The proof is also similar. If the part of the cost dependent on the amount

transferred is sufficiently small, then grim-trigger strategies can be used to support a

nondegenerate equilibrium. The sequence of transactions is potentially infinite, and

the amount transferred and the cost incurred are gradually decreasing. Hence, it is

not crucial to assume that the transaction cost is insensitive to the amount transferred

in order to support an equilibrium with positive gains from trade.
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