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1 Introduction

Strategic interactions often require the preparation of strategies in advance and even though

players interact once and for all, there can be a long period for the preparation of strategies

that in�uences the outcome. For example, consider two �rms which have an investment

opportunity. The date to make the actual investment is �xed and the same across the �rms.

However, before the actual investment, two �rms need to make preparations: negotiating

with banks to have enough liquidity, allocating agents working for the project, and so forth.

It is natural to think that the investment is pro�table for a �rm if the opponent invests, and

vice versa. Moreover, while the �rms make the preparation for the investments, it is often

the case that �rms cannot always change their past preparations. That is, they have several

constraints for changing past preparations, such as administrative procedures, obligations

to other projects, and so forth. Rather, opportunities to revise preparations may arrive

stochastically over time.

Having stochastic opportunities for revisions allows players to credibly commit to the

chosen actions. In the above example, a �rm�s decision to invest depends on the opponent�s

investment decision. If a �rm makes preparations for the investment, there is a positive

probability that it will not have any further opportunities to revise its decision leading the

�rm to invest, thus making investment more pro�table for the opponent.

The present paper models such situations as follows: A normal-form game is played once

and for all at a predetermined deadline, before which players have opportunities to revise

their actions. These opportunities arrive stochastically and independently across players.

To model the preparations of actions, we use the framework of a �nite horizon version of

�revision games,� proposed by Kamada and Kandori (2009). In revision games, players

prepare their actions at opportunities that arrive with a Poisson process in continuous time

until a predetermined deadline. The actions prepared most recently at the deadline are

played once and for all. They consider the limit as the length of the preparation stage goes

to in�nity, so that the probability of having many revision opportunities by the deadline is

su¢ ciently high. This is equivalent to considering the limit as the arrival rate becomes very
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high for a �xed length of preparation stage. That is, they consider the situation in which

players can revise their actions very frequently. We consider such a limit as well in this

paper.

We show that, even when revision opportunities arrive with a very high frequency, the

small possibility of not being able to further change the prepared action has surprisingly

strong e¤ects on the equilibrium selection: (i) if there exists a Nash equilibrium that strictly

Pareto-dominates all other action pro�les, then it is the only equilibrium of the corresponding

revision game if the normal form game is su¢ ciently close to a pure coordination game (games

in which all players�payo¤ functions are the same); and (ii) in 2� 2 games with two strict

pure Nash equilibria which are not Pareto-ranked, (ii-a) while with perfectly symmetric

structure, the equilibrium payo¤ set is a full-dimensional subset of the feasible payo¤ set,

(ii-b) a slight asymmetry is enough to select a unique equilibrium, which corresponds to the

Nash equilibrium in the static game that gives the highest payo¤ to the �strong�player.

Calcagno and Lovo (2010) independently investigate essentially the same set of questions

as ours with several key di¤erences. Section 2 details its explanation and also provides a

review of other related past works.

Let us brie�y explain the intuition behind our result.1 First, consider a game with a

strictly Pareto-dominant Nash equilibrium. We show that once all players prepare the strictly

Pareto-dominant Nash equilibrium action, they will not escape from that state. With this

expectation, if a unilateral change of the preparation by player i can induce the strictly

Pareto-dominant Nash equilibrium action pro�le, she will do so. In turn, player j whose

unilateral change in the preparation can induce the situation where player i�s unilateral

change can induce the strictly Pareto-dominant Nash equilibrium actions, she will also do

so if the deadline is far expecting that player i will go to the strictly Pareto dominant Nash

equilibrium action pro�le. A nontrivial extension of this argument shows that the result holds

for any number of players when the stage game is su¢ ciently close to a pure coordination

game.

1A detailed explanation can be found in Section 6.
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Let us move onto 2 � 2 games with two Pareto-unranked strict Nash equilibria. To

simplify the explanation, consider the �battle of the sexes�games with the following payo¤

matrices:
L R L R

U 2; 1 0; 0 U 2 + �; 1 0; 0

D 0; 0 1; 2 D 0; 0 1; 2

Symmetric �battle of the sexes�game Asymmetric �battle of the sexes�game (� > 0)

First, consider the left payo¤ matrix, the symmetric �battle of the sexes� game, and

assume that arrival rates are homogeneous across players. We prove that the equilibrium

payo¤ set is a full dimensional subset of the feasible payo¤ set, as depicted in Figure 2. To

establish this result, and to compare it with that for the asymmetric �battle of the sexes�

game, it is important to note that there exists what we call a chicken race equilibrium, in

which players prepare (U;R) until some cuto¤ time, and gives in to play the other action

after that cuto¤. Since at the cuto¤ time players are indi¤erent between giving in to obtain

the payo¤ of 1 and sticking to the original ine¢ cient pro�le, each player expects a payo¤ of

1 from this equilibrium.2 Notice that the payo¤ 1 corresponds to each player�s �worse�Nash

equilibrium payo¤.

Next consider either the right payo¤matrix, the asymmetric �battle of the sexes�game,

with homogeneous arrival rates, or the symmetric �battle of the sexes�game with asymmetric

arrival rates where player 1�s arrival rate is smaller than player 2�s. We prove that the only

equilibrium payo¤ is the one that corresponds to the Nash equilibrium that the �strong�

player (player 1) prefers (See Figure 3). Here, the meaning of �strong�is important. In the

asymmetric-payo¤case, the �strong�player is the one who expects more in his preferred Nash

equilibrium, (U;L), than the opponent (player 2) does in the other pure Nash equilibrium,

(D;R). In the asymmetric-arrival-rate case, the �strong�player is the one with the lower

arrival rate of revisions, that is, the one who can more credibly commit to the currently

2There are also equilibria in which players stick to either of two Nash equilibria, and we prove that almost
all points in the convex hull of these three payo¤ points are attainable in revision games.
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prepared action. To see the reason for equilibrium selection, consider the �chicken race

equilibrium�discussed in the previous paragraph. Because of the asymmetry, the two players

have di¤erent cuto¤ times at which they become indi¤erent between giving in and sticking to

(U;L). Speci�cally, the strong player 1 must have a cuto¤ closer to the deadline than that of

the weak player 2. This implies that, in the chicken race equilibrium, if it exists, the strong

player 1 expects strictly more than his �worse�Nash equilibrium payo¤, (D;R), while the

weak player 2 expects strictly less than her �worse�Nash equilibrium payo¤, (U;L). Hence,

the strong player 1 would not want to stick to the �worse�Nash equilibrium, (D;R), which

rules out the possibility of sticking to (D;R). Also, the weak player 2 would not want to stick

to the chicken race equilibrium, which rules out the existence of a chicken race equilibrium.

Therefore the only possibility is the (U;L) pro�le. Thus a unique pro�le is selected.

The above discussion implies that the selected equilibrium is determined by a joint condi-

tion on the payo¤structure and the arrival rate. In Section 5, we formally state the condition

for the existence of the �strong�player whose preferred equilibrium in the stage game is se-

lected. We will see that, for any 2� 2 games with two strict pure strategy Pareto-unranked

Nash equilibria, there is a nongeneric set of parameters where the equilibrium payo¤ set is

a full-dimensional subset of the feasible payo¤ set. On the other hand, for any parameter

in the complement of this nongeneric set, a unique equilibrium is selected. We provide a

detailed explanation of the intuition in Section 6 in a simpli�ed setting where the two Nash

equilibria are absorbing states. Note that, although the intuition looks simple, proving that

the equilibrium is unique is not an easy task. This is because no Nash action pro�le being a

priori absorbing, when the deadline is far away, players might have incentives to move away

from a Nash pro�le. The above explanation captures a part of this e¤ect because player 1

does not want to stick to his �worse�Nash equilibrium (D;R). We will show that given

player 1�s optimal strategy in the subgame, even player 2 does not want to stick to this

pro�le (which he likes the best) when the deadline is far away.

The rest of the paper is organized as follows. Section 2 reviews the literature. Section

3 introduces the model. Section 4 considers the game with a strictly Pareto-dominant Nash
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equilibrium and Section 5 considers 2 � 2 games with Pareto-unranked multiple equilibria.

The basic logic is explained in Section 6. Section 7 concludes.

2 Literature Review

In many works on equilibrium selection, risk-dominant equilibria of Harsanyi and Selten

(1988) are selected in 2 � 2 games. In our model, however, a di¤erent answer is obtained:

a strictly Pareto-dominant Nash equilibrium is played even when it is risk-dominated if the

normal form game is su¢ ciently close to a pure coordination game. Roughly speaking, since

we assume perfect and complete information with nonanonymous players, there is only a

very small �risk�of mis-coordination when the deadline is far. There are three lines of the

literature in which risk-dominant equilibria are selected: models of global games, stochastic

learning models with myopia, and models of perfect foresight dynamics.3 ;4 Since the model

of perfect foresight dynamics seem closely related to ours, let us discuss it here.

Perfect foresight dynamics, proposed by Matsui and Matsuyama (1994), are evolutionary

models in which players are assumed to be patient and �foresighted,� that is, they value

the future payo¤s and take best responses given (correct) beliefs about the future path of

the play.5 There is a continuum of agents who are randomly and anonymously matched

over in�nite horizon according to a Poisson process. Whenever they match, they play the

stage game and receive the stage game payo¤. They show that, when a Pareto-dominant

3The literature on global games was pioneered by Rubinstein (1981), and analyzed extensively in Carlsson
and van Damme (1993), Morris and Shin (1998), and Sugaya and Takahashi (2009). They show that the
lack of almost common knowledge due to incomplete information can select an equilibrium. The type of
incomplete information they assume is absent in our model. Stochastic learning models with myopia are
analyzed in Kandori, Mailath, and Rob (1993) and Young (1993). They consider a situation in which players
interact repeatedly, and each player�s action at each period is stochastically perturbed. The key di¤erence
between their assumptions and ours is that in their model players are myopic, while we assume that players
take actions expecting the opponents� future moves. In addition, the game is repeated in�nitely in their
models, while the game is played once and for all in our model.

4As an exception, Young (1998) shows that in the context of contracting, his evolutionary model does not
necessarily lead to risk-dominant equilibrium (p-dominant equilibrium in Morris, Rob and Shin (1995)). But
he considers a large anonymous population of players and repeated interaction, so the context he focuses on
is very di¤erent from the one we focus on.

5See also Oyama, Takahashi, and Hofbauer (2008).
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equilibrium is not risk-dominant, there always exists a path that starts at a Pareto-dominant

equilibrium and ends at a risk-dominant equilibrium, while the opposite path does not exist.

In this sense they say that the latter is �selected.�The assumptions of the continuum of

agents and the �ow payo¤s are key to their result, and indeed we show in our model that

if there exists only a �nite number of agents, the Pareto-dominant equilibrium is selected

when the game satis�es some regularity conditions.

As opposed to these results in the literature, some models select a strictly Pareto-

dominant Nash equilibrium. Farrell and Saloner (1985) and Dutta (2003) are early works on

this topic, and Takahashi (2005) proves such results in a very general context. Takahashi�s

(2005) condition for selecting a strictly Pareto-dominant Nash equilibrium is similar to ours:

the stage game is su¢ ciently close to a pure coordination game. The di¤erence of our model

is that we assume the actual game is played once at the end.

The intuition behind the chicken race equilibrium is similar to the one for the �war of

attrition.�The war of attrition is analyzed in, among others, Abreu and Gul (2000) and

Abreu and Pearce (2000). They consider the war of attrition problem in the context of

bargaining. They show that if there is an �irrational type�with a positive probability, then

agreement delays in equilibrium because rational players try to imitate the irrational types.

Players give in at the point where imitation is no longer pro�table. Although the structure

of this equilibrium in the war of attrition is similar to the chicken race equilibrium, the focus

of their work and ours is clearly di¤erent.

Our results crucially hinge on asynchronicity of the revision process. If the revision

process were synchronous, the very same indeterminacy among multiple strict Nash equilibria

would be present. There are a limited number of papers showing that asynchronous moves

select an equilibrium. Laguno¤ and Matsui (1997) show that in pure coordination games

the Pareto-e¢ cient outcome is chosen.6 We, although in a slightly di¤erent context in which

the game is played only once at a deadline, identify a more general su¢ cient condition to

6According to Dutta (1995), this result is due to the lack of full dimensionality of the feasible and
individually rational payo¤ set. See also Laguno¤ and Matsui (2001).
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obtain the best outcome as a unique equilibrium.7

Several papers obtain sharper results by assuming the presence of switching cost when

moves are asynchronous. Lipman and Wang (2000) consider a �nite horizon repeated games

with small switching costs, in which the per-period length (hence the per-period payo¤) is

very small relative to the costs. With the same stage game as we consider in this paper, they

select a unique equilibrium. However, there are three important di¤erences. First, as the

frequency of revision increases, it is potentially possible in our model that players change

their actions very often, while in Lipman and Wang (2000), the switching cost essentially

precludes this possibility. Second, the game is repeatedly played in their model, while it is

played only once at the deadline in our model. Hence, in particular, their model cannot

have �chicken race equilibrium�type of strategies in equilibrium. Third, in their model, the

prediction of the game is not robust to a¢ ne transformation of payo¤s.8 Hence, in some

payo¤ speci�cations, their selection matches ours, while in other cases it does not. The

reason for this scale-dependence is that the switching cost is directly payo¤-relevant. In our

case, detailed speci�cations of the preparation stage (such as the arrival rate) is not directly

payo¤-relevant, so our result is robust to the a¢ ne transformation of the payo¤s.

Caruana and Einav (2008) consider a similar setting as ours: players play the actual

game once and for all at the �xed date and before actually playing the game, they play an

asynchronous move dynamic game to commit to the actions. Although players can change

their previous commitment before the deadline, they have to pay a switching cost. They

show that in generic 2� 2 games there is a unique equilibrium, irrespective of the order and

timing of moves and the speci�cation of the protocol. Our paper is di¤erent from theirs in

two aspects. First, in their model, the switching cost plays an important role to select an

7For asynchronicity with respect to the timing of signals in imperfect monitoring setting, see Fudenberg
and Olszewski (2009).

8This nonrobustness is �ne for their purpose since they focus on pointing out that the set of outcomes
discontinuously changes by the introduction of a small switching cost. However, it would not be very ideal in
our context because we focus on identifying which outcome is selected by the introduction of the preparation
stage. For that purpose, we want to minimize the information necessary for the selection: each player�s
preference and arrival rate are su¢ cient information to identify the outcome. In particular, the information
to compare di¤erent players�payo¤s is not necessary.
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equilibrium. On the other hand, in our model, players can revise the preparation without cost

whenever they get the revision opportunity. Hence, with high Poisson arrival rate, players

can change their actions frequently without paying cost. Second, in Caruana and Einav, the

order of the movement at each date is predetermined. In our model, the opportunity of the

movement is stochastic. With the symmetric arrival rate, we can consider the situation that

at each date, each player can move equally likely.

Let us mention the emerging literature on �revision games.�Kamada and Kandori (2009)

introduce the model of revision games. They show that, among other things, non-Nash

�cooperative�action pro�les can be played at the deadline when a certain set of regulatory

conditions are met. Hence their focus is on expanding the set of equilibria when the static

Nash equilibrium is ine¢ cient relative to non-Nash pro�les.9 We ask a very di¤erent question

in this paper: we consider games with multiple e¢ cient static Nash equilibria, and ask which

of these equilibria is selected.10

In the context of revision games with a �nite action set, Kamada and Sugaya (2010)

consider a model of an election campaign with three possible actions (Left, Right, and

Ambiguous). The main di¤erence of this paper from their work is that they assume that

once a candidate decides which of Left and Right to take, she cannot move away from that

action. Thus the characterization of the equilibrium is substantially more di¢ cult in the

model of the present paper, because in our model an action a player has escaped from can

be taken again by that player in the future.

Independent of the present paper, Calcagno and Lovo (2010) consider the equilibrium

selection problem by considering a �preopening game.�In the preopening game, the actual

game is played once and for all at the predetermined opening time. Before the opening date,

players continuously submit their action. The preopening game is di¤erent from the revision

game in that players do not have to wait for a revision opportunity but can continuously

submit their action. A submitted action has some chance to be the action at the opening time

9The possibility of cooperation in �nite horizon in Kamada and Kandori (2009) is closely related to that
of �nitely repeated games with multiple Nash equilibria (Benoit and Krishna, 1985).
10See also Ambrus and Lu (2009) for a variant of revision games model of bargainig in which the game

ends when an o¤er is accepted.
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only if it is consistently submitted for some period with strictly positive length. While the two

models are di¤erent, our results are consistent with theirs with the following key di¤erences:

First, they only consider two-player games, while our result for a Pareto-dominant Nash

equilibrium covers n-player games. Second, we fully characterize the equilibrium payo¤ set

for all nongeneric cases such as symmetric �battle of the sexes� games (the set is a full

dimensional subset of the feasible payo¤ set), but they only prove that there is more than

one equilibrium. Third, they obtain results on a model where the probabilities that the

actions submitted at a given time will be the actions at the opening time are correlated

among players, while we only consider the case with independent revision opportunities.

This article is highly recommended for interested readers.

3 Model

We consider a normal-form game
�
I; (Xi)i2I ; (�i)i2I

�
where I is the set of players, Xi is the

�nite set of player i�s actions, and �i : �j2IXj ! R is player i�s utility function. Before

players actually take actions, they need to �prepare�their actions. We model this situation

as in Kamada and Kandori (2009): time is continuous, �t 2 [�T; 0] with T = 1, and the

normal form game (referred to as a �component game�) is played once and for all at time

0. The game proceeds as follows. First, at time �1, players simultaneously choose actions.

Between time �1 and 0, each player i independently obtains opportunities to revise their

prepared action according to a Poisson process with arrival rate �i with �i > 0. At t = 0,

the action pro�le that has been prepared most recently by each player is actually taken and

each player receives the payo¤ that corresponds to the payo¤ speci�cation of the component

game. Each player has perfect information about past events at any moment of time. No

discounting is assumed, although this assumption does not change any of our results.11

We consider the limit of the set of subgame-perfect equilibrium payo¤s of this game as

the arrival rate �i goes to in�nity. Let �
(�i)i2I (�) be the set of subgame-perfect equilibrium

11Discounting only scales down the payo¤ at time 0.
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payo¤s given arrival rates (�i)i2I .

De�nition 1 A payo¤ set S � R is a revision equilibrium payo¤ set of � if S =

�(ri)i2I (�) := lim �i!1 for all i
�i=�

n
j=1�j=ri for all i

�(�i)i2I (�). If �(ri)i2I (�) is a singleton, we say its element

is a revision equilibrium payo¤ . The set of distributions over the action pro�les that

correspond to the revision equilibrium payo¤ set is a revision equilibrium set. If the

revision equilibrium set is a singleton, we say its element is a revision equilibrium.

That is, a revision equilibrium payo¤ set is the set of payo¤s achievable by the revision

game de�ned in this section. Note that ri = �i=�nj=1�j represents the relative frequency of

the arrivals of the revision opportunities for player i. It will turn out in what follows that

this set is often a singleton. The term �revision equilibrium payo¤�is used for a convenient

abbreviation that represents the element of such a singleton set. �Revision equilibrium set�

and �revision equilibrium�are analogously de�ned.

Note well that whenever we refer to some action pro�le (resp. a payo¤ pro�le) as a

revision equilibrium (resp. a revision equilibrium payo¤), we implicitly mean that it is the

unique element of the revision equilibrium set (resp. revision equilibrium payo¤ set).

In what follows, to simplify the exposition, we consider the limit as T goes to in�nity,

holding �xed the arrival rate pro�le (�i)i2I . This is equivalent to considering the limit as

the arrival rates go to in�nity, holding �xed the length of preparation stage. All the notions

introduced in this section are invariant with respect to this modi�cation.

4 Strictly Pareto-Dominant Nash Equilibrium in a Com-

ponent Game

In this section we consider a component game with a Nash equilibrium that strictly Pareto-

dominates all other action pro�les.

De�nition 2 A strategy pro�le x� is said to be a strictly Pareto-dominant Nash equi-

librium if for all i and all x 2 X � �i2IXi with x 6= x�, �i(x�i ) > �i(x).
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Note that this condition is stronger than Pareto-ranked Nash equilibria since there may

exist a non-equilibrium payo¤ pro�le which one player prefers most.

It is straightforward to show that, if the currently prepared action pro�le is the strictly

Pareto-dominant equilibrium, then in any subgame perfect equilibrium, no one switches

actions from that state (Lemma 9 in the Appendix). Hence, in particular, each player

taking the action prescribed by x� at the initial date �T and continuing to take that action

for all time �t on the equilibrium path is always an equilibrium.

However, this does not immediately imply that x� is the unique outcome in the revision

game. Below we show that it is indeed the unique outcome in some cases but not in others.

To establish the result, let us introduce the following de�nition.

De�nition 3 Fix a component game g with a strictly Pareto-dominant Nash equilibrium,

x�. g is said to be a K-coordination game if for any i; j 2 I and x 2 X,

�i (x
�)� �i (x)

�i (x�)� �i
� K�j (x

�)� �j (x)
�j (x�)� �j

with �i = minx �i (x).

Note that K measures how close a component game g is to a pure coordination game.

The minimum of K is 1 when the game is a pure coordination game, where players have

exactly the same payo¤ functions.

Proposition 4 Suppose that x� is a strictly Pareto-dominant Nash equilibrium and there

exists K such that g is a K-coordination game and

min
i;j2I;i6=j

(rirj) +

�
1� min

i;j2I;i6=j
(ri + rj)

��
1�K

�
1�min

i2I
ri

��
> 0: (1)

Then, x� is the revision equilibrium and thus the unique equilibrium outcome.

Before discussing the intuition behind the proof, let us mention several remarks. First,

it is worthwhile to make comments on Condition (1). The smaller K is, the more likely
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Condition (1) to be satis�ed. Especially, if the game is pure-coordination, that is, if K = 1,

then (1) is always satis�ed. In addition, for �xed K and number of players, if the relative

frequency ri is more equally distributed, (1) is more likely to be satis�ed. Note also that if

we decrease the number of players, �xing K > 1, (1) will be satis�ed for su¢ ciently small

number of players. Especially, for two-player games, since (1�mini;j2I;i6=j (ri + rj)) = 0, (1)

is automatically satis�ed. Together with the fact that the existence of two strict Pareto-

ranked Nash equilibria in 2�2 games implies the existence of strictly Pareto-dominant Nash

equilibrium, this gives us the following corollary.12

Corollary 5 For 2 � 2 games with two strict Pareto-ranked Nash equilibria, the Pareto

e¢ cient Nash equilibrium is the unique revision equilibrium.

Second, notice that the revision game selects the strictly Pareto-dominant Nash equi-

librium even if it is risk-dominated by another Nash equilibrium if the component game is

su¢ ciently close to a pure coordination game (this condition is satis�ed for all the two-player

games). The key is that, if the remaining time is su¢ ciently long, since it is almost common

knowledge that the opponent will move to the Pareto-dominant Nash equilibrium afterwards

if (1) is satis�ed, the risk of mis-coordination can be arbitrarily small.

Finally, notice also that we allow for g to be di¤erent from the pure-coordination game as

long as (1) is satis�ed. This result is in a stark di¤erence from Laguno¤ and Matsui (1997),

in which they need to require that the game is of pure coordination, as otherwise their result

would not hold (Yoon, 2001).

An intuitive explanation goes as follows. Firstly, we show that once all players prepare

the strictly Pareto-dominant Nash equilibrium actions, they will not escape from that state.

With this expectation, if a unilateral change of the preparation by player i can induce the

strictly Pareto-dominant Nash equilibrium, she will do so. In turn, player j whose unilateral

change in the preparation can induce the situation where player i�s unilateral change can

induce the strictly Pareto-dominant Nash equilibrium, will also do so if the deadline is

12Note that Kamada and Kandori (2009) proves that if each player has a dominant action when the action
space is �nite, it is played in asynchronous revision games.
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far expecting that player i will go to the strictly Pareto-dominant Nash equilibrium. By

induction, we can show that the strictly Pareto-dominant Nash equilibrium will be selected.

The formal proof requires more arguments since player j takes into account the possibility

that player k currently taking x�k will have an opportunity to revise her action before player

i and will switch to some other action.13 If the game is close to a pure coordination game,

then player k does not have an incentive to take an action di¤erent from x�k since it hurts

player k herself. Otherwise, this might induce the outcome di¤erent from x�. This is exactly

why we need Condition (1).

Consider the following game: g =
�
f1; 2; 3g ; (fai; big)i2f1;2;3g ; (�i)i2f1;2;3g

�
with

x1; x2; x3 �1; �2; �3

a1; a2; a3 (1; 1; 1)

b1; a2; a3 (�1;�1;�1)

a1; b2; a3 (�1;�1;�1)

a1; a2; b3 (�1;�1;�1)

a1; b2; b3 (�1; 0; 0)

b1; a2; b3 (�1; 0; 0)

b1; b2; a3 (�1; 0; 0)

b1; b2; b3 (�1;�1;�1)

and �1 = �2 = �3 = �. Consider the following Markov perfect strategy:

� at �T , player 1 takes a1 and players 2 and 3 take b2 and b3, respectively,

� if (a1; a2; a3) is prepared, no player changes the preparation,

� if (ai; aj; bk) is prepared, player i prepares bi, player j prepares bj, and player k prepares

ak if they can move,

� if (ai; bj; bk) is prepared, no player changes the preparation, and
13Such a player k does not exist for the two-player games. This is why (1) is automatically satis�ed.
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� if (b1; b2; b3) is prepared, no player changes the preparation.

It is straightforward to verify this is an equilibrium and induces (a1; b2; b3). It is, however,

worth explaining why player i wants to prepare bi instead of ai in (ai; aj; bk) at �t. Given

that players follow the above strategy after �t, if player i prepares ai, her expected payo¤ is

(1� exp (�3�t)) 1 + 0 + (�1)
3

+ exp (�3�t) (�1) < 0:

Let us explain the formula. With probability (1� exp (�3�t)), some player can move. Con-

ditional on this event, with probability 1
3
, the �rst mover will be player k, (a1; a2; a3) will

be induced, and player i will yield 1. With probability 1
3
, the �rst mover will be player i,

(bi; aj; bk) will be induced, and player i will yield 0. With probability 1
3
, the �rst mover will

be player j, (ai; bj; bk) will be induced, and player i will yield �1. Note that (a1; a2; a3),

(bi; aj; bk), and (ai; bj; bk) are absorbing states. With probability exp (�3�t), no player can

move and player i yields �1. On the other hand, taking bi gives her 0. Therefore, it is

optimal for player i to take bi.

In the above example, even though it is common knowledge that player k will take ak

and induce the Pareto-dominant outcome (a1; a2; a3) if she can move, if player j is the �rst

mover, she will take bj, which will hurt player i. Hence, it is optimal for player i to take bi,

which guarantees that she will get 0. By the same token, player j also fears that if player i

is the �rst mover, it will hurt player j, which incentivizes her to take bj.

An important assumption that is used to sustain this equilibrium is that, taking bi (bj,

resp.) in (ai; aj; bk) rescues player i (j, resp.) by giving 0 while it does not rescue player j

(player i, resp.) at all. Consider player i�s incentive to take bi in (ai; aj; bk). If player i takes

ai instead, then player j will take bj and it will hurt player i. At the same time, player j wants

to take bj since player j expects that if player i moves afterwards, then player i will take bi,

which does not rescue player j. Condition (1) implies that when bi (bj, resp.) rescues player

i (player j, resp.), it will also rescue player j (player i, resp.) at least slightly. If so, player i

is willing to stay at (ai; aj; bk) and wait for player k to induce the Pareto-dominant outcome
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(a1; a2; a3) regardless of player j�s strategy. Hence, we can show that the Pareto-dominant

outcome (a1; a2; a3) is selected.

Finally, notice that the above example implies that Condition (1) is tight. In this game,

we have

K = 2

ri =
1

3
for all i:

Hence,

min
i;j2I;i6=j

(rirj) +

�
1� min

i;j2I;i6=j
(ri + rj)

��
1�K

�
1�min

i2I
ri

��
= 0:

Notice that we can replace �1�s in the above example by -1 � l for any l > 0. This would

make the left hand side of the above inequality strictly negative (�2
9
l).

5 Pareto-Unranked Nash Equilibria in a Component

Game

The result in the previous section suggests that the strictly Pareto-dominant Nash equilib-

rium is selected if it exists. But what happens if there are multiple Pareto-optimal Nash

equilibria? In this section, we answer this question for two-player games with two strict pure

Pareto-unranked Nash equilibria. We show that in this class of games, there is a nongeneric

set of parameters where the equilibrium payo¤ set is a full-dimensional subset of the feasible

payo¤ set. On the other hand, for any parameter in the complement of the nongeneric set

of parameters inducing multiple equilibria, there is a unique revision equilibrium.

Speci�cally, in this section, we consider a 2� 2 game g with

L R

U �1(U;L); �2(U;L) �1(U;R); �2(U;R)

D �1(U;D); �2(U;D) �1(D;R); �2(D;R)
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with two strict pure strategy equilibrium (U;L) and (D;R) and

�1(U;L) > �1(D;R); (2)

�2(U;L) < �2(D;R): (3)

(2) implies that player 1 prefers (U;L) to (D;R) among pure Nash equilibria while (3) implies

that player 2�s preference is opposite.

As we mentioned in the Introduction, the equilibrium selection depends on a joint con-

dition of the payo¤ structure and the arrival rates. The key condition is whether

f �
�
�;
�1
�2

�
� �2

�1

�2 (U;L)� �2 (U;R)
�2 (D;R)� �2 (U;L)

+
�2 (D;R)� �2 (U;R)
�2 (D;R)� �2 (U;L)

�
�
�1
�2

�1 (D;R)� �1 (U;R)
�1 (U;L)� �1 (D;R)

+
�1 (U;L)� �1 (U;R)
�1 (U;L)� �1 (D;R)

�

is zero, positive, or negative. If f �
�
�; �1

�2

�
= 0, then the equilibrium payo¤ set is full

dimensional. If f �
�
�; �1

�2

�
> 0, then (U;L), the equilibrium preferable to player 1, is selected.

If f �
�
�; �1

�2

�
< 0, then (D;R), the equilibrium preferable to player 2, is selected.14

We postpone the intuitive explanation of the formula to Section 6.2. Let us formally

state our result:

Proposition 6 1. If f �
�
�; �1

�2

�
= 0, then, the revision equilibrium payo¤ set �r(g) sat-

is�es

�r(g) =

8<: a1 (�1 (U;L) ; �2 (U;L)) + a2 (�1 (D;R) ; �2 (D;R)) + a3 (�1 (D;R) ; �2 (U;L))

j
P3

k=1 ak = 1; a1; a2; a3 � 0 with a3 = 0) (a1; a2) 2 f(1; 0) ; (0; 1)g

9=; :

2. If f �
�
�; �1

�2

�
> 0, then (U;L) is a unique revision equilibrium.

3. If f �
�
�; �1

�2

�
< 0, then (D;R) is a unique revision equilibrium.

14This condition coincides with the one already found by Calcagno and Lovo (2010), and did not appear
in the earlier version of our paper because of an algebra error.

17



6 Intuitive Explanation

In this section, we explain the logic behind Proposition 6. Without loss of generality, we

can concentrate on the case with f �
�
�; �1

�2

�
� 0 since the other case is symmetric.

6.1 Three State Example

6.1.1 Setting

To gain some intuition for Proposition 6, this subsection considers a simpli�ed setting of

a revision game-like model. Suppose that there exist two players, 1 and 2, and three states,

s0, s1 and s2, in which payo¤s are, (0; 0), (2 + �; 1) and (1; 2), respectively. Assume � � 0

without loss of generality. Time is �t 2 [�T; 0] as before. Each player i = 1; 2 has two

actions, Ii (Insist) and Yi (Yield). The initial state (the state at �t = �T ) is determined as

follows. Players simultaneously take an action from fIi; Yig. If player i takes Ii and player

j 6= i takes Yj, si is realized at �T . If two players take (Y1; Y2) or (I1; I2), s0 is realized

at �T . When the current state is s0 at �t > �T , each player i has a chance to take an

action according to a Poisson process with arrival rate �i > 0, where the arrival rates satisfy
�1
�2
= 1 + �. If a Poisson process arrives when the state is s0, players can choose an action

from fIi; Yig. Action Ii does not change the state, while action Yi changes the state from

s0 to s�i. Thus, i�s action Yi induces the state that the opponent �i favors the most. We

suppose (only in this subsection) that states s1 and s2 are �absorbing states.�That is, when

the current state is s1 or s2, no player can change the state (See Figure 1). The payo¤ is
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determined by the state where players are in at �t = 0.

Figure 1: The transition of 3-state

example

As in the analysis of the general model, we consider the limit case of T ! 1, which

is equivalent to the case when the frequency of revisions (�i) goes to in�nity with T and �

�xed.

There are two distinct cases, � = � and � 6= �, which correspond to the cases with

f �
�
�; �1

�2

�
= 0 and f �

�
�; �1

�2

�
6= 0, respectively. We consider the former case in 6.1.2 and

the latter case in 6.1.3.

6.1.2 The Symmetric Case: � = �

When � = �, we have f �
�
�; �1

�2

�
= 0. Proposition 6 states that, in this case, the equilibrium

payo¤s in revision games is a full dimensional subset of the feasible payo¤ set. We illuminate

the intuition behind this result by utilizing the three state model.

Claim 7 If � = �, the limit of the subgame perfect equilibrium payo¤ set is15

S =

8<: a1(2 + �; 1) + a2(1; 2) + a3(1; 1)

j
P3

k=1 ak = 1; a1; a2; a3 � 0 with a3 = 0) (a1; a2) = (1; 0) or (0; 1)

9=; :
15The asymmetry of a1, a2 and a3 comes from the fact that for any �nite horizon length T , with a strictly

positive probability no one gets a move, so obtaining payo¤s at, for example, exactly (2+ �; 1) is impossible.
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We omit the formal proof of this result (because it is straightforward from the proof of

Proposition 6), but o¤er the intuitive explanation of the logic behind this result.

To ease the notation, let us further assume � = � = 0, that is, �1 = �2 � � > 0.

Analogous arguments would establish results for cases of � = � 6= 0.

First, it is intuitive that players should use the cuto¤ strategies: there exists t�i for each

i such that if the state is still in s0 at time �t, player i takes Ii for �t < �t�i while she takes

Yi for �t � �ti.16

An important observation here is that, since two players are perfectly symmetric by

assumption (� = � = 0), two players�cuto¤s are the same, that is, t�1 = t
�
2 � t�, and at this

cuto¤�t�, players�incentives are such that:

� given that both players take Yi afterwards, each player i strictly prefers Yi to Ii after

the cuto¤;

� given that the opponent j will take Ij until the cuto¤, player i is indi¤erent between

Yi and Ii from �T until the cuto¤; and

� given that the opponent j will take Yj as soon as possible, player i strictly prefers Ii
to Yi before �t�.

This cuto¤ t� is characterized by

1 = (1� exp (�2�t�)) 2 + 1
2
: (4)

Intuitively, the left hand side of (4) is the payo¤ of taking Yi right now. The right hand side

is the payo¤ of taking Ii. At �t�, the probability that some player can move afterwards is

given by (1� exp (�2�t�)). Conditional on some player being able to move, with probability
1
2
, it will be the opponent who will take Yj, and player i will get 2 in this case. Otherwise,

player i will take Yi to get 1.

16The player is indi¤erent when �t = �t�i but the probability that she obtains a revision opportunity at
�t�i is zero, so it does not a¤ect the calculation of ex ante expected payo¤s.
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Now, given the above observation, we can construct equilibria that each yields an ex-

tremum point of cof(2; 1) ; (1; 1) ; (1; 2)g. Point (2; 1) can be obtained in an equilibrium

where (I1; Y2) is played at �T and for �t > �T , if the current state is s0, then player 2

takes Y2 as soon as she can move while player 1 takes I1 before �t� and then takes Y1 if she

can move at or after �t�. The above observation veri�es that this is an equilibrium. Then,

this equilibrium yields s1. Point (1; 2) can be obtained by a symmetric manner. To obtain

payo¤ pro�le (1; 1), we construct an equilibrium as follows: Players take (I1; I2) at �T and

when �t < �t�, each player i sticks to Ii and when �t � �t�, each player i takes Yi. We

refer to this equilibrium as a �chicken race equilibrium,�as the equilibrium has a �avor of

the �chicken race game,�in which two drivers drive their cars towards each other until one

of them gives in, while if both do not give in then the cars crash and the drivers die.

Given above, we can construct an equilibrium strategy which induces the payo¤ pro�le

p (2; 1) + (1� p) (1; 1) with p 2 [0; 1]: Player 1 takes I1 at �T . Player 2 takes Y2 with

probability p and I2 with probability 1� p at �T . If s0 is realized, players play the �chicken

race equilibrium.�By de�nition of t�, this is an equilibrium and induces (2; 1) if s1 is realized

at �T and (1; 1) if s0 is realized. Symmetrically, we can construct an equilibrium to attain

p (1; 2) + (1� p) (1; 1). with p 2 [0; 1]

Finally, we explain how to attain the payo¤s other than the extreme points. Because we

are not assuming any public randomization device, it is not obvious that these payo¤s can be

achieved. However, we can use the Poisson arrivals before some ��t with �t being su¢ ciently

large as a public randomization device: at �T , players take Ii. After that, if s0 is realized,

then each player i takes Ii until ��t and �count� the numbers of Poisson arrivals to each

player until ��t and then decide which of three equilibria to play after ��t:

� At �T , (I1; I2) is taken.

� For �t < ��t, each player i takes Ii until ��t.

� Depending on the realization of the Poisson process until ��t, players coordinate on

either one of the following three equilibria:
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�For �t 2 [��t;�t�), player 1 takes I1 while player 2 takes Y2. For �t 2 [�t�; 0],

each player takes Yi.

�For �t 2 [��t;�t�), player 2 takes I2 while player 1 takes Y1. For �t 2 [�t�; 0],

each player takes Yi.

�For �t < ��t, each player i takes Ii until ��t. For �t 2 [��t;�t�), each player i

takes Ii. For �t 2 [�t�; 0], each player takes Yi.

If the length [�T;��t] is su¢ ciently large and �t is su¢ ciently large, we can achieve any

convex combination of f(2 + �; 1) ; (1; 1) ; (1; 2)g, by appropriately specifying the length of

time intervals on which players �count�the number of Poisson arrivals.

Hence, we have shown that Claim 7 holds. As a summary, Figure 2 depicts the revision

equilibrium payo¤ set with � = � = 0.

Figure 2: Symmetric case
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6.1.3 The Asymmetric Case: � 6= �

The key property behind the existence of multiple equilibria (especially behind the �chicken

race equilibrium�) in the previous part is that �t�i , the time after which player i strictly

prefers Yi conditional on each player choosing Yj afterwards, is the same across players. If

� 6= �, however, this timing di¤ers across players. Moreover, we can show that this asymmetry

breaks down the �chicken race equilibrium,�which gives us the uniqueness of equilibria.

Notice that � 6= � corresponds to the case of f �
�
�; �1

�2

�
6= 0 in Proposition 6. We have

an analogous result to Proposition 6 as follows:

Claim 8 If � 6= �, there is a unique subgame perfect equilibrium: If � > �, player 2 yields

whenever she can move, and if � < �, player 1 yields whenever she can move.

Again, we omit the proof of this claim, but will illuminate the intuition behind this result.

Without loss of generality, we assume � > � since the other case is perfectly symmetric.

To simplify the notation, let us further specialize to the case of � = 0, that is, �1 = �2 � �.

Analogous arguments would establish results for cases of � 6= � 6= 0.

Consider player i�s �critical point��t��i such that conditional on both players choosing

Yi afterwards,

� given that both players take Yi afterwards, each player i strictly prefers Yi to Ii after

the critical point,

� given that the opponent j will take Ij until the critical point, player i is indi¤erent

between Yi and Ii from �T to the critical point, and

� given that the opponent j will take Yj as soon as possible, player i strictly prefers Ii
to Yi before �t��.

The critical point for player 1, �t��1 , is characterized by

1 = (1� exp (�2�t��1 ))
(2 + �) + 1

2
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as before. On the other hand, the critical point for player 2 is characterized by

1 = (1� exp (�2�t��2 ))
2 + 1

2
:

Notice that �t��2 < �t��1 holds. Actually this inequality holds more generally whenever � > �.

This is intuitive: � represents how strongly player 1 prefers s2 to s1. Thus it measures the

willingness of player to stick with s0. On the other hand, � represents how strong player 2�s

commitment power is compared to player 1�s commitment power and so it represents how

strongly player 1 is forced to yield. � > � implies that the former e¤ect is stronger than the

latter e¤ect.

This implies that the possible cuto¤ strategy pro�le is �t�1 = �t��1 and �t�2 = �T , that

is, player 1 takes I1 until �t��1 while player 2 takes Y2 as soon as possible. Let us explain

why this is a unique equilibrium, in the following two steps.

First, we show that �t�2 < �t�1. Suppose, to the contrary, that �t�1 � �t�2. At �t�2, we

can suppose that each player i will take Yi afterwards. At �t��2 , player 2 should be indi¤erent

between Y2 and I2, that is, �t�2 = �t��2 . The fact that �t��2 < �t��1 implies that player 1

strictly prefers I1 to Y1 at �t�2, which contradicts our starting assumption that �t�1 � �t�2.

Hence, we have �t�2 < �t�1.

Second, given �t�2 < �t�1, we can show �t�1 = �t��1 . At �t�1, we can condition that each

player i will take Yi afterwards. In addition, at �t�1, player 1 should be indi¤erent between

Y1 and I1. By de�nition, therefore, �t�1 = �t��1 .

Third, we show�t�2 = �T . Notice that �t�1 = �t��1 . Player 1 keeps taking I1 at least until

�t��1 . �t��2 < �t��1 implies that if they are in s0 at �t��1 , player 2�s expected payo¤ is strictly

less than 1. Suppose that player 2 obtains a revision opportunity at �t < �t�1 = �t��1 .

Taking Y2 gives her the payo¤ of 1, while taking I2 gives her a payo¤ strictly less than 1.

This is because all what can happen before �t�1 = �t��1 is to stay at s0 or to go to s1, so

player 2�s expected payo¤ of taking I2 is a convex combination of the payo¤ from staying s0

at �t�1 = t��1 (strictly less than 1) and that from being s1 at �t�1 = t��1 (equal to 1). Since

the former happens with a strictly positive probability (it is possible that no player gets a
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revision opportunity until �t�1), player 2�s expected payo¤ of taking I2 is strictly less than

1. This means that player 2 should take Y2 whenever possible.

Hence, we have shown that Claim 8 holds. As a summary, Figure 3 depicts the revision

equilibrium payo¤ set with � > �.

Figure 3: Unique equilibrium
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6.2 Equilibrium Dynamics

Given the example above, let us interpret f �
�
�; �1

�2

�
intuitively. If �1 = �2, f �

�
�; �1

�2

�
is

simpli�ed as

f � (�; 1) = 2

�
�2 (D;R)� �2 (U;R)
�2 (D;R)� �2 (U;L)

� �1 (U;L)� �1 (U;R)
�1 (U;L)� �1 (D;R)

�
:

This formula compares how strongly each player likes the Nash equilibrium preferable to her-

self relative to the starting point of the �chicken race,�where players insist a non-equilibrium

action pro�le (U;R), rather than giving into the Nash equilibrium preferable to the oppo-

nent. In particular, if �1 (U;L) increases, then f �
�
�; �1

�2

�
increases. That is, if player 1

prefers (U;L), her preferable Nash equilibrium, more, then player 1 becomes �stronger�

and (U;L) is more likely to be selected. In addition, since f �
�
�; �1

�2

�
is decreasing in �1

�2
,

if player 2�s relative frequency compared to player 1�s frequency decreases, then player 2�s

commitment power becomes stronger and it hurts player 1, that is, (U;L) is less likely to be

selected.17

The above example and intuitive explanation capture an essential argument for the case

with f �
�
�; �1

�2

�
6= 0: a slight payo¤ asymmetry leads to a slight di¤erence of the incentives,

which causes a huge di¤erence in the equilibrium behavior in the dynamic setting. We note,

however, that the analysis of the general setting is substantially more di¢ cult than the

example we discussed here especially in the case with a unique equilibrium. The reason is

that neither s1 nor s2 is a priori absorbing states since players can revise their actions in s1

and s2. Indeed, it will turn out that the action pro�le that corresponds to state s2 is not

absorbing in the general model.

Actual equilibrium dynamics in a general 2� 2 games with f �
�
�; �1

�2

�
> 0 are illustrated

17Note that our equilibrium selection can select the risk dominated equilibrium. Consider a payo¤ matrix

L R
U 2 + �; 1 0; 0
D 2�; 0 1; 2

:

Even though (U;L) is risk dominated by (D;R), (U;L) is selected by the revision game.
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by the following �gures. If �t is su¢ ciently close to 0, every player prepares the static best

response to the other as illustrated in Figure 4.

Figure 4: Dynamics when �t is close to 0

Then, suppose (U;R) is prepared at time �t. As we brie�y mentioned in Section 6.1.3,

the �strong�player 1 sticks to (U;R) if �t is su¢ ciently far away from 0, knowing that the
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�weak�player 2 gives in and goes to (U;L) if she can move afterwards. See Figure 5.

Figure 5: Dynamics when �t is in a middle range

There is another complication that arises when �t is further away from the deadline,

0. Now, player 2 prepares L when player 1 prepares D. Thus, players prepare the revision

equilibrium action pro�le, (U;L), as soon as possible. By doing so, they maximize the

probability to obtain the payo¤s in (U;L).

It turns out that this transition rule remains the same for all larger t�s. This is why

(U;L) is the revision equilibrium, the unique element in the revision equilibrium set.

The transition rule is summarized in Figure 6.
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Figure 6: Dynamics when �t is far away from 0

7 Concluding Remarks

We analyzed the situation in which two players prepare their actions before they play a

normal-form coordination game at a predetermined date. In the preparation stage, each

player stochastically obtains opportunities to revise their actions, and the �nally-revised

action is played at the deadline. We show that, (i) if there exists a Nash equilibrium that

strictly Pareto-dominates all the other action pro�les, then it is the only equilibrium if the

component game is su¢ ciently close to a pure coordination game; and (ii) in 2 � 2 games

with two strict Pareto-unranked pure Nash equilibria, (ii-a) while with perfectly symmetric

structure, the equilibrium set is a full-dimensional subset of the feasible payo¤ set, (ii-b) a

slight asymmetry is enough to select a unique equilibrium, which corresponds to the Nash

equilibrium in the static game that gives the highest payo¤ to the �strong�player.

Let us mention possible directions of future research. First, our analysis has been re-

stricted to games with a strictly Pareto-dominant Nash equilibrium that are close to a pure

coordination games or 2 � 2 games with two strict pure Nash equilibrium, but the basic

intuition seems to extend to more general cases. Second, even in a 2� 2 game, we have not
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yet considered all possible cases. For example, in the following game, the outcome of the

revision game is not straightforward:

L R

U 10; 11 �1; 10

D 11;�1 0; 0

In this game, D is a dominant action for player 1, while player 2�s best response depends

on player 1�s action. Although (D;R) is the unique Nash equilibrium, its payo¤ is Pareto-

dominated by that of (U;L). Hence, it is not obvious whether players want to switch to the

Nash action as soon as possible.

Third, it would be interesting to consider the case in which there exists only one mixed

equilibrium. For example, in a symmetric �matching pennies�game, it is obvious that the

probability distribution over the outcome is the same as in the mixed strategy equilibrium

of the component game. A question is whether this holds true for the asymmetric case.

Fourth, it would be interesting to see the hybrid version of synchronized and asynchro-

nized revision games.18

These possibilities are beyond the scope of this paper, but we believe that the present

paper provides an important �rst step towards these generalizations.

8 Appendix: Proof of Propositions

Since �xing T and (r1; : : : ; rn) and letting (�1; : : : ; �n) converge to in�nity is equivalent to

�xing (�1; : : : ; �n) and letting T converge to in�nity, we consider the latter formulation for

the sake of �backward induction.�

The following notations are useful: let �i be a strategy in the revision game. Generally,

�i is a mapping from a history at �t, ht, to a distribution over preparation �Xi. As we will

see, in many cases, �i is pure and Markov perfect, that is, it only depends on the calendar

18Calcagno and Lovo (2010) investigates this possibility deeper than this paper.
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time t and the action pro�le most recently prepared by the players.19 Therefore, letting xi

be the action most recently prepared by player i at t, we can write �ti(x) 2 Xi. Finally, let

BRi(x�i) be a static best response to x�i by player i in the component game.

8.1 Proof of Proposition 4

Firstly, we prove the following two lemmas:

Lemma 9 Suppose that x� is strictly Pareto-dominant Nash equilibrium strategy pro�le.

Then if a subgame starts with a pro�le x�, there is a unique subgame perfect equilibrium in

that subgame and this equilibrium designates actions x�i for each i on the equilibrium path of

the play.

Proof. Since x� is strictly Pareto-dominant and X is �nite, there exists � > 0 such that for

all i and all x 2 X with x 6= x�, �i(x�i ) > �i(x) + �.

The lower bound of the payo¤ from taking action x�i at time �� given the opponent�s

current action x��i is

exp
�
��
�P

j2I �j

��
�i(x

�) +
�
1� exp

�
��
�P

j2I �j

���
�i

with

�i = min
x2X

�i (x) :

The upper bound of the payo¤ from taking action x̂i 6= x�i at time � > 0 given the opponent�s

current action x��i is

exp
�
��
�P

j2I �j

��
�i(x̂i; x

�
�i) +

�
1� exp

�
��
�P

j2I �j

���
�i(x

�):

19Since the probability that two players can move simultaneously is 0, we ignore this probability.
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Hence taking x�i is strictly better at time �� conditional on any history if

exp
�
��
�P

j2I �j

��
�i(x

�) +
�
1� exp

�
��
�P

j2I �j

���
�

> exp
�
��
�P

j2I �j

��
�i(x̂i; x

�
�i) +

�
1� exp

�
��
�P

j2I �j

���
�i(x

�)

,

0 � � < 1P
j2I �j

ln

�
�

�i(x�)� �i
+ 1

�
2 R++:

Let

�� = min
i2I

(
1P
j2I �j

ln

�
�

�(x�)� �i
+ 1

�)
> 0:

Then, at any �t 2 (�t�; 0], each player i chooses x�i at t conditional on the opponent�s

current action x��i.

Now we make a backward induction argument. Suppose that for all time �t 2 (�k��; 0],

each player i chooses x�i conditional on the opponent�s current action x
�
�i. We show that at

any �t0 2 (�(k+1)��);�k��], each player i chooses x�i conditional on the opponent�s current

action x��i.

The lower bound of the payo¤ from taking action x�i at time �t 2 (� (k�� + �0) ;�k��]

with �0 > 0 is

exp
�
��0

�P
j2I �j

��
�i(x

�) +
�
1� exp

�
��0

�P
j2I �j

���
�i:

The upper bound of the payo¤ from taking action x̂i 6= x�i is

exp
�
��0

�P
j2I �j

��
�i(x̂i; x

�
�i) +

�
1� exp

�
��0

�P
j2I �j

���
�i(x

�):
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Hence taking x�i is strictly better at time �
0 conditional on the opponent�s current action x��i

if

exp
�
��0

�P
j2I �j

��
�i(x

�) +
�
1� exp

�
��0

�P
j2I �j

���
�i

> exp
�
��0

�P
j2I �j

��
�i(x̂i; x

�
�i) +

�
1� exp

�
��0

�P
j2I �j

���
�i(x

�)

,

�0 <
1P
j2I �j

ln

�
�

�(x�)� �i
+ 1

�
:

Thus each player i strictly prefers playing x�i at all time�t0 > �k���mini2I
n

1P
j2I �j

ln
�

�
�(x�)��i

+ 1
�o

=

(k + 1)�� conditional on the opponent�s current action x��i. This completes the proof.

Now we prove the proposition by mathematical induction. Let V im (t) be the in�mum of

player i�s payo¤ at �t with respect to the subgame perfect strategies and histories such that

at least m players take x�j at �t. We will show, by mathematical induction with respect to

m, that V im (t) is su¢ ciently close to �i (x
�) when t is su¢ ciently large.

By Lemma 9, when m = n, V im (t) = �i (x
�) for all i;m.

Suppose limt!1 V
i
m+1 (t) = �i (x

�). We want to show limt!1 V
i
m (t) = �i (x

�). For

simple notation, let us denote

�1 = min
j
rj;

� = min
j2Infj�g

rj with j� 2 argmin
j
rj;

�K = max
i;j

�i (x
�)� �i

�j (x�)� �j
� K:

Take � > 0 arbitrarily. Since limt!1 V
i
m+1 (t) = �i (x

�), there exists T0 (�) such that

V im+1 (t) � �i (x�)� �

for all t � T0 (�). Consider the situation where m players take x�j at �t = � (T0 (�) + �).

Then, if player j that is not taking x�j at time �t will move next by �T0 (�), then player
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j will yield at least �j (x�) � � by taking x�j . This implies each player i will at least yield

�i (x
�)� �K� in this case. Therefore,

V im (t) � �1

�
1� exp

�
��
P

j2I �j

�� �
�i (x

�)� �K�
�

+
�
1� �1

�
1� exp

�
��
P

j2I �j

���
�i

for all i. Note that there exists T1 (�) such that for all � � T1 (�),

V im (t) � �1�i (x�) + (1� �1)�i � �K�

for all i.

Consider V im (t) with t = T0 (�) + T1 (�) + � . Then, player j�s payo¤ is at least

� �i (x�)� �K� if player j that is not taking x�j at time�t will move �rst by� (T0 (�) + T1 (�)),

� ��i (x�) + (1� �1)�i � �K� if player i herself will move �rst or no player can move by

� (T0 (�) + T1 (�)), and

� (1�K (1� �1))�i (x�) +K (1� �1)�i � �K2� if player j that is taking x�j at �t will

move �rst by � (T0 (�) + T1 (�)). Note that, in this case, player j�s value is bounded

from below by ��j (x�) + (1� �1)�j � �K�. By de�nition of K, this implies player i�s

value is bounded by (1�K (1� �1))�i (x�) +K (1� �1)�i � �K2�.

Therefore, player i�s value satis�es

V im (t) � �1

�
1� exp

�
��
P

j2I �j

�� �
�i (x

�)� �K�
�

+
�
�
�
1� exp

�
��
P

j2I �j

��
+ exp

�
��
P

j2I �j

�� �
�1�i (x

�) + (1� �1)�i � �K�
�

+(1� �1 � �)
�
1� exp

�
��
P

j2I �j

�� �
(1�K (1� �1))�i (x�) +K (1� �1)�i � �K2�

�
:
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Note that there exists T2 (�) such that for all � � T2 (�),

V im (t) � (�1 + �1� + (1� �1 � �) (1�K (1� �1)))�i (x�)

+ (1� (�1 + �1� + (1� �1 � �) (1�K (1� �1)))) �i

� �K2�

= �2�i (x
�) + (1� �2)�i � �K2�

with

�2 � (�1 + �1� + (1� �1 � �) (1�K (1� �1))) :

Recursively, if (1) is satis�ed, there existsM and fTm (�)gMm=1 withM being independent

of � such that for all t �
PM

m=0 Tm (�),

V im (t) � �M�i (x�) + (1� �M)�i � �KM�

with

�M � 1:

Taking � going to 0 yields the result.

8.2 Proof of Proposition 6

8.2.1 Case I: f �
�
�; �1

�2

�
= 0

We show that if f �
�
�; �1

�2

�
= 0, then, the revision equilibrium payo¤ set �r(g) satis�es

�r(g) =

8<: a1 (�1 (U;L) ; �2 (U;L)) + a2 (�1 (D;R) ; �2 (D;R)) + a3 (�1 (D;R) ; �2 (U;L))

j
P3

k=1 ak = 1; a1; a2; a3 � 0 with a3 = 0) (a1; a2) 2 f(1; 0) ; (0; 1)g

9=; :
First, we prove the existence of an equilibrium with expected payo¤ (�1 (D;R) ; �1 (U;L))
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by construction: let t� be

t� =
1

�1 + �2
log

�
�1
�2

�1 (D;R)� �1 (U;R)
�1 (U;L)� �1 (D;R)

+
�1 (U;L)� �1 (U;R)
�1 (U;L)� �1 (D;R)

�
(5)

=
1

�1 + �2
log

�
�2
�1

�2 (U;L)� �2 (U;R)
�2 (D;R)� �2 (U;L)

+
�2 (D;R)� �2 (U;R)
�2 (D;R)� �2 (U;L)

�
:

Note that at t�, staying at (U;R) gives (�1 (D;R) ; �1 (U;L)) to both players, given that for

�t 2 (�t�; 0], �ti(x) = BRi(x).

Second, we prove the existence of an equilibrium with expected payo¤

p (�1 (U;L) ; �2 (U;L)) + (1� p) (�1 (D;R) ; �2 (U;L))

with p 2 [0; 1]:

� Player 1 takes U at �T .

� Player 2 takes L with probability p and R with probability 1� p at �T .

� Player 1 takes the following Markov strategy:

�For �t 2 [�T; t�), �t1(x) = U for all x.

�For �t 2 [�t�; 0], �t1(x) = BR1(x).

� Player 2 takes the following Markov strategy:

�For �t 2 [�T; t�), �t2(U;L) = L and �t2(U;R) = �t2(D;L) = �t2(D;R) = R.

�For �t 2 [�t�; 0], �t2(x) = BR2(x).

Then, (5) gives the condition that, given that players takes BRi (x) after �t�, player 1

is indi¤erent between U and D at x = (U;R) ; (D;R) and player 2 is indi¤erent between R

and L at x = (U;R) ; (U;L).

Given this, at (U;R) and (D;R) at �t�, the expected payo¤ for player 1 is �1 (D;R). If

(U;R) or (D;R) is the state at �t < �t�, then the above strategy pro�le implies that the
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state at �t� should be either (U;R) or (D;R). Therefore, at (U;R) and (D;R) at �t � �t�,

the expected payo¤ for player 1 is �1 (D;R) regardless of player 1�s strategy at �t. If (U;L)

or (D;L) is the state, U is strictly optimal. The symmetric argument veri�es the optimality

of player 2�s strategy.

Third, symmetrically, there exists an equilibrium with expected payo¤

p (�1 (D;R) ; �2 (D;R)) + (1� p) (�1 (D;R) ; �2 (U;L))

with p 2 [0; 1]:

� Player 1 takes D with probability p and U with probability 1� p at �T .

� Player 2 takes R at �T .

� Player 1 takes the following Markov strategy:

�For �t 2 [�T; ; t�), �t1(D;R) = D and �t1(U;R) = �
t
1(U;L) = �

t
1(D;L) = U .

�For �t 2 [�t�; 0], �t1(x) = BR1(x).

� Player 2 takes the following Markov strategy:

�For �t 2 [�T; t�), �t2(x) = R for all x.

�For �t 2 [�t�; 0], �t2(x) = BR2(x).

Fourth, we prove the existence of an equilibriumwith expected payo¤close to (�1 (U;L) ; �2 (U;L))

by construction. Let �T > 0 be a large number. We verify that the following strategy pro�le

constitutes an equilibrium:

� Player 1 takes U at �T .

� Player 2 takes R at �T .

� Player 1 takes the following Markov strategy:
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� for �t 2 [�T; t�), �t1(x) = U for all x.

� for �t 2 [�t�; 0], �t1(x) = BR1(x).

� Player 2 takes the following Markov strategy:

� for �t 2 [�T;� �T ), �t2(x) = L for all x.

� for �t 2 [� �T ; 0], �t2(x) = BR2(x).

Note that for su¢ ciently large �T , the expected payo¤is su¢ ciently close to (�1 (U;L) ; �2 (U;L)).

The same argument as before veri�es that the above strategy pro�le constitutes an equilib-

rium.

Symmetrically, the following equilibrium approximates (�1 (D;R) ; �2 (D;R)).

� Player 1 takes U at �T .

� Player 2 takes R at �T .

� Player 1 takes the following Markov strategy:

�For �t 2 [�T;� �T ), �t1(x) = U for all x.

�For �t 2 [� �T ; 0], �t1(x) = BR1(x).

� Player 2 takes the following Markov strategy:

�For �t 2 [�T;�t�), �t2(x) = R for all x.

�For �t 2 [�t�; 0], �t2(x) = BR2(x).

Therefore, we construct equilibria approximating (�1 (D;R) ; �2 (U;L)), (�1 (U;L) ; �2 (U;L)),

and (�1 (D;R) ; �2 (D;R)). Note that in these three equilibrium, nobody moves until � �T

and the following is also an equilibrium for any N;M : with T � > �T ,

� Player 1 takes U at �T .
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� Player 2 takes R at �T .

� Player 1 takes the following Markov strategy:

�For �t 2 [�T;�T �), �t1(x) = U for all x.

� If the number of chances where player 1 can move for [�T;�T �) is less than N ,

going to the �rst equilibrium, that is,

� For �t 2 [�T �;�t�), �t1(x) = U for all x.

� For �t 2 [�t�; 0], �t1(x) = BR1(x).

� If the number of chances where player 1 can move for [�T;�T �] is no less than

N and no more than M , going to the second equilibrium, that is,

� For �t 2 [�T �;�t�), �t1(x) = U for all x.

� For �t 2 [t�; 0], �t1(x) = BR1(x).

� If the number of chances where player 1 can move for [�T;�T �] is no more than

M , going to the third equilibrium, that is,

� For �t 2 [�T �;� �T ), �t1(U;R) = U for all x.

� For �t 2 [� �T ; 0], �t1(x) = BR1(x).

� Player 2 takes the following Markov strategy:

�For �t 2 [�T;�T �), �t2(U;L) = R for all x.

� If the number of chances where player 1 can move for [�T;�T �] is less than N ,

going to the �rst equilibrium, that is,

� For �t 2 [�T �;�t�), �t2(x) = R for all x.

� For �t 2 [�t�; 0], �t2(x) = BR2(x).

� If the number of chances where player 1 can move for [�T;�T �] is no less than

N and no more than M , going to the second equilibrium, that is,
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� For �t 2 [�T �; �T ), �t2(x) = R for all x.

� For �t 2 [� �T ; 0], �t2(x) = BR2(x)

� If the number of chances where player 1 can move for [�T;�T �] is no more than

M , going to the third equilibrium, that is,

� For �t 2 [�T �;�t�), �t2(x) = R for all x.

� for �t 2 [�t�; 0], �t2(x) = BR2(x).

It is straightforward to show that this is an equilibrium and with appropriate choices

of T �, N , M , and su¢ ciently large
��T � � �T

��, we can attain any payo¤ pro�le that can
be expressed by a convex combination of (�1 (D;R) ; �2 (U;L)), (�1 (U;L) ; �2 (U;L)), and

(�1 (U;L) ; �2 (U;L)).

Hence, we have shown that

�r(g) �

8<: a1 (�1 (U;L) ; �2 (U;L)) + a2 (�1 (D;R) ; �2 (D;R)) + a3 (�1 (D;R) ; �2 (U;L))

j
P3

k=1 ak = 1; a1; a2; a3 � 0 with a3 = 0) (a1; a2) 2 f(1; 0) ; (0; 1)g

9=; :
Now we will show that

�r(g) �

8<: a1 (�1 (U;L) ; �2 (U;L)) + a2 (�1 (D;R) ; �2 (D;R)) + a3 (�1 (D;R) ; �2 (U;L))

j
P3

k=1 ak = 1; a1; a2; a3 � 0 with a3 = 0) (a1; a2) 2 f(1; 0) ; (0; 1)g

9=; :
First, we show that any interior point x on cof(�1(U;L); �2(U;L)); (�1(D;R); �2(D;R))g

cannot be included in the revision equilibrium payo¤ set. Suppose the contrary, that is, that

x is an element of the revision equilibrium payo¤ set. Since x can only be represented as a

convex combination of (�1(U;L); �2(U;L)) and (�2(D;R); �2(D;R)), an action pro�le at �T

must put probability 1 on a pro�le (�1(U;L); �2(U;L)) or (�2(D;R); �2(D;R)). Since there

is no public randomization device, either one of the following holds: (i) with probability one,

pro�le (U;L) is played; (ii) with probability one, pro�le (D;R) is played. Without loss of

generality, consider case (i).

Since x represented as a convex combination of (�1(U;L); �2(U;L)) and (�2(D;R); �2(D;R))
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puts a strictly positive weight on (�2(D;R); �2(D;R)) by de�nition, with a positive proba-

bility there must exist a time at which pro�le (D;R) is played. However, this implies that,

since simultaneous revision can take place with probability zero, it must be the case that

there exists a time at which pro�le (U;R) or pro�le (D;L) is played. This implies that

(U;R) or (D;L) must be played with a strictly positive probability at the deadline. But this

contradicts our earlier conclusion that x is a convex combination only of (�1(U;L); �2(U;L))

and (�2(D;R); �2(D;R)). This completes the proof.

Finally, we show that player 1�s payo¤ is bounded by �1 (D;R). Suppose there exists

(�1; �2) included in the limit set such that �1 < �1 (D;R). Consider following player 1�s

strategy:

� For �t 2 (�T;�t�], player 1 takes U whenever she has a chance to move,

� For �t 2 (�t�; 0], player 1 takes BR1 (x) whenever she have a chance to move.

For su¢ ciently large T , player 1 can move by �t� with an arbitrarily high probability.

This implies, regardless of player 2�s strategy until �t�, either (U;L) or (U;R) are prepared

at �t� with an arbitrarily high probability. It is straightforward to show that after �t�, for

any subgame perfect strategy, each player takes BRi(x). This implies player 1�s payo¤ at

�t� is at least �1 (D;R) if the state at �t� is (U;L) or (U;R). Hence for su¢ ciently large T ,

this strategy yields a payo¤ strictly larger than �1. But this implies that any best response

should yield a payo¤ equal to or more than �1(D;R), which implies that in any subgame

perfect equilibrium player 1 obtains a payo¤ equal to or more than �1(D;R). The symmetric

argument establishes that player 2�s equilibrium payo¤ cannot be lower than �2 (U;L).

8.2.2 Case II: f �
�
�; �1

�2

�
> 0

The remaining case is f �
�
�; �1

�2

�
> 0. The other case is completely symmetric. Further,

we assume �1 6= �2. When �2 = �1, our model allows the continuity of the cases between

�2 = �1 and limit where �2 converges to �1 as long as f � (�; 1) 6= 0. Therefore, the same

result holds.
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We use backward induction to derive the (essentially) unique subgame perfect equilib-

rium.20 Let xti be the prepared action by player i at �t. In addition, let V ix (t) be player i�s

expected payo¤when players prepare an action pro�le x at �t and no player has a chance to

move at �t. As we will prove by backward induction, since players take the Markov perfect

equilibrium, V ix (t) is a valid expression.
21

Firstly, note that there exists � > 0 such that, for each �t 2 (��; 0], given player �i�s

prepared action xt�i, player i prepares the best response to x
t
�i, that is,

�t(x
t
�i) = BR(x

t
�i):

Suppose the players �know�the game proceeds as explained above after �t. Then, at

�t, at each prepared action pro�le, each player�s value is given as follows:

� At (U;L), for each i,

V iUL (t) = (�1 (U;L) ; �2 (U;L)) :

� At (U;R), if player 2 moves �rst, then the payo¤ is (�1 (U;L) ; �2 (U;L)), if player

1 moves �rst, then the payo¤ is (�1 (D;R) ; �2 (D;R)), and otherwise, the payo¤ is

(�1 (U;R) ; �2 (U;R)). Therefore,

V 1UR (t) =
�2

�1 + �2
(1� exp (� (�1 + �2) t))| {z }
player 2 moves �rst

�1 (U;L)

+
�1

�1 + �2
(1� exp (� (�1 + �2) t))| {z }
player 1 moves �rst

�1 (D;R)

+exp (� (�1 + �2) t)| {z }
nobody moves

�1 (U;R)

20All equilibria give rise to the same on-path play and even o¤ the equilibrium path, any equilibria agree
with repect to events of probability 1.
21Since there is only �nitely many time where players are indi¤erent for multiple actions, we can break

ties arbitrarily without loss of generality.
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and

V 2UR (t) = �2 (U;L)
�2

�1 + �2
(1� exp (� (�1 + �2) t))

+�2 (D;R)
�1

�1 + �2
(1� exp (� (�1 + �2) t))

+�2 (U;R) exp (� (�1 + �2) t) :

� At (D;L), if player 1 moves �rst, then the payo¤ is (�1 (U;L) ; �2 (U;L)), if player

2 moves �rst, then the payo¤ is (�1 (D;R) ; �2 (D;R)), and otherwise, the payo¤ is

(�1 (D;L) ; �2 (D;L)). Therefore,

V 1DL (t) =
�1

�1 + �2
(1� exp (� (�1 + �2) t))�1 (U;L)

+
�2

�1 + �2
(1� exp (� (�1 + �2) t))�1 (D;R)

+ exp (� (�1 + �2) t)�1 (D;L)

and

V 2DL (t) =
�1

�1 + �2
(1� exp (� (�1 + �2) t))�2 (U;L)

+
�2

�1 + �2
(1� exp (� (�1 + �2) t))�2 (D;R)

+ exp (� (�1 + �2) t�2 (D;L)) :

� At (D;R), for each i,

V iDR (t) = (�1 (D;R) ; �2 (D;R))

Let t�1 be the solution for

�1 (D;R) = V
1
UR (t)

and t�2 be that for

�2 (U;L) = V
2
UR (t) :
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That is,

t�1 =
1

�1 + �2
log

�
�1
�2

�1 (D;R)� �1 (U;R)
�1 (U;L)� �1 (D;R)

+
�1 (U;L)� �1 (U;R)
�1 (U;L)� �1 (D;R)

�

and

t�2 =
1

�1 + �2
log

�
�2
�1

�2 (U;L)� �2 (U;R)
�2 (D;R)� �2 (U;L)

+
�2 (D;R)� �1 (U;R)
�2 (D;R)� �2 (U;L)

�
:

By assumption, �t�2 < �t�1.

Then, for �t 2 (�t�1; 0], noting that �2 (U;L) > V 2UR (t
�
1) since t

�
2 > t�1, we have the

following:

� If xt2 = L, player 1 will take U since

�1 (U;L) > V
1
DL (t) :

� If xt2 = R, player 1 will take D since

�1 (D;R) > V
1
UR (t)

� If xt1 = U , player 2 will take L since

�2 (U;L) > V
2
UR (t)

� If xt1 = D, player 2 will take R since

�2 (D;R) > V
2
DL (t) :

At �t = �t�1, player 1 is indi¤erent between U and D when player 2 takes R.

For �t slightly before �t�1, since every inequality except for �1 (D;R) = V 1UR (t�1) is strict

at �t�1,
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� If xt2 = L, player 1 will take U .

� If xt2 = R, player 1 will take U .

� If xt1 = U , player 2 will take L.

� If xt1 = D, player 2 will take R.

While players follow the above strategy, for �t < �t�1,

� If xt2 = L, player 1 will take U .

� If xt2 = R, player 1 will take U .

� If xt1 = U , player 2 will take L. Suppose player 2 is indi¤erent between L and R at t.

If player 2 takes L, his expected payo¤ is de�nitely �2 (U;L). If player 2 takes R, it is

a convex combination of �2 (U;R) and �2 (U;L), with a strictly positive weight on the

former. Since �2 (U;R) < �2 (U;L) by assumption, there does not exist such t.

� If xt1 = D, there exists T � such that player 2 will become indi¤erent between L and R.

We need to verify the fourth argument. Assuming that player 2 will take R after t, the

value of taking R at �t is

V 2DR (t) =

Z t�t�1

0

�1 exp(��1s)| {z }
player 1 �rstly moves by t�1

8>>>><>>>>:
(1� exp (��2 (t� t�1 � s)))| {z } �2 (U;L)

player 2 secondly moves by t�1

+exp (��2 (t� t�1 � s))| {z }
player 2 does not move by t�1

V 2UR (t
�
1)

9>>>>=>>>>; ds
+ exp (��1 (t� t�1))| {z }
player 1 does not move by t�1

�2 (D;R)

45



and the payo¤ of taking to L at �t is

�1
�1 + �2

(1� exp (� (�1 + �2) (t� t�1)))| {z } �2 (U;L)
player 1 �rstly moves by t�1

+

Z t�t�1

0

exp(��1s)| {z }
player 1 does not move by s

�2 exp(��2s)| {z }
player 2 moves at s

V 2DR(t� s)ds| {z }
player 2 �rstly moves by t�1

+exp(� (�1 + �2) (t� t�1))| {z }
nobody moves by t�1

V 2DL (t
�
1) :

Note that

V 2DR (t) =

Z t�t�1

0

�1 exp(��1s)�2 (U;L) ds

�
Z t�t�1

0

�1 exp (��1s� �2 (t� t�1 � s))
�
�2 (U;L)� V 2UR (t�1)

�
ds

+exp (��1 (t� t�1))�2 (D;R)

= (1� exp(��1 (t� t�1)))�2 (U;L)

��1
exp (��1 (t� t�1))� exp (��2 (t� t�1))

�2 � �1
�
�2 (U;L)� V 2UR (t�1)

�
+exp (��1 (t� t�1))�2 (D;R) :
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and the payo¤ of taking L is

�1
�1 + �2

(1� exp (� (�1 + �2) (t� t�1)))�2 (U;L)

+

Z t�t�1

0

�2 exp (� (�1 + �2) s)

0BBB@
(1� exp(��1 (t� s� t�1)))�2 (U;L)

��1
exp(��1(t�s�t�1))�exp(��2(t�s�t�1))

�2��1 (�2 (U;L)� V 2UR (t�1))

+ exp (��1 (t� s� t�1))�2 (D;R)

1CCCA ds
+exp (� (�1 + �2) (t� t�1))V 2DL (t�1)

=
�1

�1 + �2
(1� exp (� (�1 + �2) (t� t�1)))�2 (U;L)

+

�
�2

�1 + �2
� exp (��1 (t� t�1))

�
�2 (U;L)

� exp(� (�1 + �2) (t� t�1))
�

�2
�1 + �2

� 1
�
�2 (U;L)

+
�1�2
�2 � �1

0@ exp(�(�1+�2)(t�t�1))�exp(��1(t�t�1))
�2

� exp(�(�1+�2)(t�t�1))�exp(��2(t�t�1))
�1

1A��2 (U;L)� V 2UR (t�1)�
� (exp (� (�1 + �2) (t� t�1))� exp (��1 (t� t�1)))�2 (D;R)

+ exp (� (�1 + �2) (t� t�1))V 2DL (t�1)

= (1� exp (��1 (t� t�1)))�2 (U;L)

�
�
exp (� (�1 + �2) (t� t�1)) +

�1 exp (��1 (t� t�1))� �2 exp (��2 (t� t�1))
�2 � �1

��
�2 (U;L)� V 2UR (t�1)

�
� (exp (� (�1 + �2) (t� t�1))� exp (��1 (t� t�1)))�2 (D;R)

+ exp (� (�1 + �2) (t� t�1))V 2DL (t�1)

� The di¤erence is given by8<: ((�2 (U;L)� V 2UR (t�1)) + (�2 (D;R)� V 2DL (t�1))) exp (��1 (t� t�1))

� (�2 (U;L)� V 2UR (t�1))

9=; exp (��2 (t� t�1))
Therefore, since �2 (D;R)�V 2DL (t�1) > 0, there exists unique T � such that the di¤erence

is positive for �t 2 (�T �; t�1], zero for �t = �T �, and negative for �t < �T �.

Therefore, for �t 2 (�T �;�t�1), we have
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� If xt2 = L, player 1 will take U .

� If xt2 = R, player 1 will take U .

� If xt1 = U , player 2 will take L.

� If xt1 = D, player 2 will take R.

Since every incentive except for player 2 with x1 = D is strict for �t slightly before �T �,

the equilibrium strategy at �t is

� If xt2 = L, player 1 will take U .

� If xt2 = R, player 1 will take U .

� If xt1 = U , player 2 will take L.

� If xt1 = D, player 2 will take L.

As long as players follow the above strategy,

� If xt2 = L, player 1 will take U .

� If xt2 = R, player 1 will take U

� If xt1 = U , player 2 will take L since, assuming player 2 will take L after that,

V 2UL (t)

= �2 (U;L)

> (1� exp (��2 (t� t�1)))| {z } �2 (U;L)
player 2 can move by t�1

+ exp (�� (t� t�1))V 2UR (t�1)

= V 2UR (t) :

since

�2 (U;L) > V
2
UR (t

�
1) :
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� If x1 = D, player 2 will take L from above.

We need to verify the second argument: at �t, if players follow the strategy above

afterwards, the payo¤ of taking U is given by

V 1UR (t) = (1� exp (��2 (t� t�1)))| {z } �1 (U;L)
player 2 can move by t�1

+ exp (��2 (t� t�1))V 1UR (t�1) :
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On the other hand, the payo¤ of taking D is given by

Z t�T �

0

exp (� (�1 + �2) s)�1| {z }
player 1 moves �rst by T �,

which induces (U;R)

V 1UR (t� s) ds

+

Z t�T �

0

exp (� (�1 + �2) s)�2| {z }
player 2 moves �rst by T �,
which induces (D;L)

�

26666666666666666666666666666666666666666664

(1� exp (��1 (t� T � � s)))| {z }
player 1 moves to by T �,
which induces (U;L)

�1 (U;L)

+exp (��1 (t� T � � s))| {z }
player 1 does not move by T �,

which induces (D;L)

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1
�1 + �2

(1� exp (� (�1 + �2) (T � � t�1)))| {z }
player 1 moves �rst by t�1,

which induces (U;L)

�1 (U;L)

+
R T ��t�1
0

0BBBBBBBBBBBBBB@

exp (� (�1 + �2) �)�2| {z }
player 2 moves �rst by t�1,

which induces (D;R)

�

0BBBBBBB@

exp (��1 (T � � t�1 � �))| {z }
player 1 does not move until t�1,

which induces (D;R)

�1 (D;R)

+
R T ��t�1��
0

exp (��1�)�1| {z }
player 1 moves by t�1 ,

which induces (D;R)

V 1UR (T
� � � � �) d�

1CCCCCCCA

1CCCCCCCCCCCCCCA
d�

+exp (� (�1 + �2) (T � � t�1))| {z }
nobody moves by t�1,

which induces (D;L)

V 1DL (t
�
1)

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

37777777777777777777777777777777777777777775

ds

+exp (� (�1 + �2) (t� T �))| {z }
nobody moves by T �,
which induces (D;R)

8>>>>>>><>>>>>>>:

exp (��1 (T � � t�1))| {z }
player 1 does not move by t�1,

�1 (D;R)

which induces (D;R)

+
R T ��t�1
0

exp (��1�)�1| {z }V 1UR (T � � �) d�
player 1 moves by t�1,

which induces (U;R)

9>>>>>>>=>>>>>>>;
:
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The �rst term is

�1 (U;L)

Z t�T �

0

�1 exp (� (�1 + �2) s)

�
�
�1 (U;L)� V 1UR (t�1)

� Z t�T �

0

�1 exp (� (�1 + �2) s) exp (��2 (t� t�1 � s)) ds

=
�1

�2 + �1
(1� exp (� (�1 + �2) (t� T �)))�1 (U;L)

�
�
�1 (U;L)� V 1UR (t�1)

�
(exp (��2 (t� t�1))� exp (��2 (t� t�1)� �1 (t� T �)))

and the second term is

�1 (U;L)
�2

�1 + �2
(1� exp (� (�1 + �2) (t� T �)))

+ (exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �)))

�

8<: � exp (� (�1 + �2) (T � � t�1))�1 (U;L)

+ (�1 (U;L)� �1 (D;R))�2
� exp(��1(T ��t�1))+exp(��2(T ��t�1))

�2��1

9=; :
The calculation goes as follows: the integral with respect to � yields

Z T ��t�1��

0

exp (��1�)�1V 1UR (T � � � � �) d�

=

Z T ��t�1��

0

exp (��1�)�1�1 (U;L)

�
�
�1 (U;L)� V 1UR (t�1)

� Z T ��t�1��

0

�1 exp (��1�) exp (��2 (T � � � � � � t�1)) d�

= �1 (U;L) (1� exp (�1 (T � � t�1 � �)))

�
�
�1 (U;L)� V 1UR (t�1)

� �1
�2 � �1

(exp (��1 (T � � t�1 � �))� exp (��2 (T � � t�1 � �))) :
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Substituting this to the integral with respect to � yields

Z T ��t�1

0

exp (� (�1 + �2) �)�2

0BBBBBB@
�1 (U;L)

� (�1 (U;L)� �1 (D;R)) exp (��1 (T � � t�1 � �))

� (�1 (U;L)� V 1UR (t�1)) �1
�2��1

0@ exp (��1 (T � � t�1 � �))

� exp (��2 (T � � t�1 � �))

1A

1CCCCCCA d�

= �1 (U;L)
�2

�2 + �1
(1� exp (� (�1 + �2) (T � � t�1)))

+�1 (U;L)�2
� exp (��1 (T � � t�1)) + exp (��2 (T � � t�1))

�2 � �1
��1 (D;R) (exp (� (�1 + �2) (T � � t�1))� exp (��1 (T � � t�1)))

�V 1UR (t�1)

0@ ��1 exp(��1(T ��t�1))+�2 exp(��2(T ��t�1))
�2��1

� exp (� (�1 + �2) (T � � t�1))

1A
= �1 (U;L)

�2
�2 + �1

(1� exp (� (�1 + �2) (T � � t�1)))

+�1 (U;L)�2
� exp (��1 (T � � t�1)) + exp (��2 (T � � t�1))

�2 � �1

��1 (D;R)

0BBBBBB@
exp (� (�1 + �2) (T � � t�1))

� exp (��1 (T � � t�1))

+
��1 exp(��1(T ��t�1))+�2 exp(��2(T ��t�1))

�2��1

� exp (� (�1 + �2) (T � � t�1))

1CCCCCCA
�
since V 1UR (t

�
1) = �1 (D;R)

�
= �1 (U;L)

�2
�2 + �1

(1� exp (� (�1 + �2) (T � � t�1)))

+ (�1 (U;L)� �1 (D;R))�2
� exp (��1 (T � � t�1)) + exp (��2 (T � � t�1))

�2 � �1
:
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Substituting this into the integral with respect to s yields

Z t�T �

0

exp (� (�1 + �2) s)�2

�

26666666664

(1� exp (��1 (t� T � � s)))�1 (U;L)

+ exp (��1 (t� T � � s))

8>>>>>><>>>>>>:

�1
�1+�2

(1� exp (� (�1 + �2) (T � � t�1)))�1 (U;L)

+ �2
�2+�1

(1� exp (� (�1 + �2) (T � � t�1)))�1 (U;L)

+ (�1 (U;L)� �1 (D;R))�2
� exp(��1(T ��t�1))+exp(��2(T ��t�1))

�2��1

+exp (� (�1 + �2) (T � � t�1))V 1DL (t�1)

9>>>>>>=>>>>>>;

37777777775
ds

= �1 (U;L)

Z t�T �

0

exp (� (�1 + �2) s)�2ds

+

8<: � exp (� (�1 + �2) (T � � t�1)) (�1 (U;L)� �1 (D;R))

+ (�1 (U;L)� �1 (D;R))�2
� exp(��1(T ��t�1))+exp(��2(T ��t�1))

�2��1

9=;�Z t�T �

0

exp (� (�1 + �2) s)�2 exp (��1 (t� T � � s))

= �1 (U;L)
�2

�1 + �2
(1� exp (� (�1 + �2) (t� T �)))

+ (exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �)))

�

8<: � exp (� (�1 + �2) (T � � t�1)) (�1 (U;L)� V 1DL (t�1))

+ (�1 (U;L)� �1 (D;R))�2
� exp(��1(T ��t�1))+exp(��2(T ��t�1))

�2��1

9=;
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The third term is

exp (� (�1 + �2) (t� T �))

8<: exp (��1 (T � � t�1))�1 (D;R)

+
R T ��t�1
0

exp (��1�)�1V 1UR (T � � �) d�

9=;
= exp (� (�1 + �2) (t� T �)) exp (��1 (T � � t�1))�1 (D;R)

+ exp (� (�1 + �2) (t� T �))

0BBB@
�1 (U;L) (1� exp (��1 (T � � t�1)))

+ �1
�2��1 (exp (��1 (T

� � t�1))� exp (��2 (T � � t�1)))

� (V 1UR (t�1)� �1 (U;L))

1CCCA
= exp (� (�1 + �2) (t� T �))�1 (U;L)

+ exp (� (�1 + �2) (t� T �))
�
�2 exp (��1 (T � � t�1))� �1 exp (��2 (T � � t�1))

�2 � �1

�
� (�1 (D;R)� �1 (U;L))

since
�
V 1UR (t

�
1) = �1 (D;R)

�
since

Z T ��t�1

0

exp (��1�)�1V 1UR (T � � �) d�

= �1 (U;L)

Z T ��t�1

0

exp (��1�)�1d�

+
�
V 1UR (t

�
1)� �1 (U;L)

� Z T ��t�1

0

exp (��1�)�1 exp (��2 (T � � � � t�1)) d�

= �1 (U;L) (1� exp (��1 (T � � t�1)))

+
�
V 1UR (t

�
1)� �1 (U;L)

� �1
�2 � �1

(exp (��1 (T � � t�1))� exp (��2 (T � � t�1))) :
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Therefore, in total, the value of taking D is

�1
�2 + �1

(1� exp (� (�1 + �2) (t� T �)))�1 (U;L)

�
�
�1 (U;L)� V 1UR (t�1)

�
(exp (��2 (t� t�1))� exp (��2 (t� t�1)� �1 (t� T �)))

+�1 (U;L)
�2

�1 + �2
(1� exp (� (�1 + �2) (t� T �)))

+ (exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �)))

�

8<: � exp (� (�1 + �2) (T � � t�1)) (�1 (U;L)� V 1DL (t�1))

+ (�1 (U;L)� �1 (D;R))�2
exp(��2(T ��t�1))�exp(��1(T ��t�1))

�2��1

9=;
+exp (� (�1 + �2) (t� T �))�1 (U;L)

� exp (� (�1 + �2) (t� T �))
�
�2 exp (��1 (T � � t�1))� �1 exp (��2 (T � � t�1))

�2 � �1

�
� (�1 (U;L)� �1 (D;R))

= �1 (U;L)

�
�
�1 (U;L)� V 1UR (t�1)

�
(exp (��2 (t� t�1))� exp (��2 (t� t�1)� �1 (t� T �)))

+ (exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �)))

�

8<: � exp (� (�1 + �2) (T � � t�1)) (�1 (U;L)� V 1DL (t�1))

+ (�1 (U;L)� �1 (D;R))�2
exp(��2(T ��t�1))�exp(��1(T ��t�1))

�2��1

9=;
� exp (� (�1 + �2) (t� T �))

�
�2 exp (��1 (T � � t�1))� �1 exp (��2 (T � � t�1))

�2 � �1

�
� (�1 (U;L)� �1 (D;R))

Subtracting V 1UR (t) yields

(�1 (U;L)� �1 (D;R))

0B@ exp (��2 (t� t�1)� �1 (t� T �))

� exp (� (�1 + �2) (t� T �))
�
�2 exp(��1(T ��t�1))��1 exp(��2(T ��t�1))

�2��1

� 1CA
+(exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �)))

�

8<: � exp (� (�1 + �2) (T � � t�1)) (�1 (U;L)� V 1DL (t�1))

+�2
exp(��2(T ��t�1))�exp(��1(T ��t�1))

�2��1 (�1 (U;L)� �1 (D;R))

9=; :
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Since

(exp (��1 (t� T �))� exp (� (�1 + �2) (t� T �))) > 0

� exp (� (�1 + �2) (T � � t�1))
�
�1 (U;L)� V 1DL (t�1)

�
< 0

exp (��2 (T � � t�1))� exp (��1 (T � � t�1))
�2 � �1

< 0;

it su¢ ces to show that F (t) � 0 with

F (t) : = exp (��2 (t� t�1)� �1 (t� T �))

� exp (� (�1 + �2) (t� T �))
�
�2 exp (��1 (T � � t�1))� �1 exp (��2 (T � � t�1))

�2 � �1

�

At the limit where t goes to in�nity, we have

lim
t!1

F (t) = 0.

Hence, it su¢ ces to show that

F 0 (t) > 0.

Since

F 0 (t)

�1 + �2
= � exp (��2 (t� t�1)� �1 (t� T �))

+ exp (� (�1 + �2) (t� T �))
�
�2 exp (��1 (T � � t�1))� �1 exp (��2 (T � � t�1))

�2 � �1

�
= � exp (��2 (t� t�1)� �1 (t� T �))

+

�
�2 exp (��2 (t� T �)� �1 (t� t�1))� �1 exp (��1 (t� T �)� �2 (t� t�1))

�2 � �1

�
;
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if �2 > �1, we have

(�2 � �1)
�1 + �2

F 0 (t) = ��2 exp (��2 (t� t�1)� �1 (t� T �)) + �1 exp (��2 (t� t�1)� �1 (t� T �))

+�2 exp (��2 (t� T �)� �1 (t� t�1))� �1 exp (��1 (t� T �)� �2 (t� t�1))

= ��2 exp (��2 (t� t�1)� �1 (t� T �)) + �2 exp (��1 (t� t�1)� �2 (t� T �)) > 0

as desired. Symmetrically, if �2 < �1, we have

(�2 � �1)
�1 + �2

F 0 (t) < 0:
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