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Abstract

Kamada and Yasuda (2025) consider the standard housing exchange prob-

lem of Shapley and Scarf (1974) with a constraint on the cycle size. This paper

shows that their impossibility results—there is no mechanism with certain desir-

able properties—continue to hold under the restricted domain of single-peaked

preferences except for some special cases. One important case is where the

cycle size is restricted to be at most 2, where we construct a strategy-proof

mechanism that always induces a constrained efficient exchange that respects

the cycle size constraint.
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1 Introduction

Kamada and Yasuda (2025) consider the standard housing exchange problem of Shap-

ley and Scarf (1974) with a constraint on the cycle size. Impossibility results hold

in such an environment: No mechanism that respects the cycle size constraint and

implements all cycles (satisfying the cycle size constraint) assigning every involved

agent their first choice is strategy-proof. Also, no mechanism that respects the cycle

size constraint and Pareto-efficient (in the set of exchanges satisfying the cycle size

constraint) is strategy-proof. The proofs of these results hinge on a cyclic nature of

agents’ preferences.

In this paper, we consider a restricted domain of single-peaked preferences, which

limits the scope of constructing cyclic preferences. Despite the restriction, we prove

impossibility results except for some special cases. One important case is where the

cycle size is restricted to be at most 2, i.e., only bilateral trades are allowed. In such

a case, we construct a strategy-proof mechanism that always induces a constrained

efficient exchange that respects the cycle size constraint.

2 Model

Let I = {1, 2, . . . , N} be the set of agents. Each agent i possesses an indivisible object

i, and thus I also denotes the set of objects. Each agent i has a strict preference

relation ≻i over objects in I. We write j ⪰i j
′ if and only if j ≻i j

′ or j = j′. We say

that object j is acceptable to agent i if j ⪰i i. We say that agent i’s preferences are

single-peaked if there is j∗ ∈ I such that j ≻i j − 1 for every j ≤ j∗ and j ≻i j + 1

for every j ≥ j∗. We sometimes let ≻:= (≻j)j∈I to denote a preference profile.

An exchange is a mapping µ : I → I that assigns to each agent an object, with a

restriction that there is no pair of agents (i, j) such that µ(i) = µ(j). For notational

simplicity, we denote µ(i) by µi. If µi = i, we say that i is unassigned under µ. If

µi ̸= i, we say that i receives an object.

We say that an exchange µ is individually rational if µi ⪰i i for every i ∈ I.

An exchange µ is called efficient if there is no other µ′ such that µ′
i ⪰ µi for every

i ∈ I.

Given an exchange µ, cycle in µ is a sequence of agents, (i1, i2, . . . , ik) for some

positive integer k, such that (i) il ̸= il′ for any pair (l, l′) with l ̸= l′, and (ii) µil = il+1
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for each l where we set ik+1 := i1. We say that a cycle in µ is a k-cycle in µ if it

involves k agents.

Definition 1. An exchange µ is k-robust if there is no k′-cycle in µ such that k′ > k.

We impose constraints on the maximum cycle size: we introduce a threshold k

such that we only allow an exchange to be k-robust.

Note that our model coincides with the standard house allocation problem if

k = N , i.e., exchanges have no size restriction.

Definition 2. Given a preference profile (≻j)j∈I , a unanimous trading cycle is a

sequence (i1, . . . , ik) such that (i) il+1 ⪰il il′ for every l′ ∈ {1, . . . , N} where we set

ik+1 := i1, and (ii) il ̸= il′ for any pair (l, l′) with l ̸= l′.

An exchange µ is k-unanimous if, whenever (i1, . . . , ik′) is a unanimous trading

cycle with size k′ ≤ k, we have µil = il+1 for each l where we set ik′+1 := i1.

An exchange µ is called k-efficient if it is k-robust and there is no other k-robust

µ′ such that µ′
i ⪰ µi for every i ∈ I.

We note that k-unanimity does not imply or is implied by k-efficiency. k-unanimity

is not weaker because it only considers the first choices, while k-efficiency also pertains

to worse choices. k-efficiency is not weaker because it can give priority to agents who

are not anyone’s first choice at the expense of others in a unanimous trading cycle

with size k. The following example illustrates.

Example 1 (k-unanimity and k-efficiency). Suppose that I = {1, 2, 3} and k = 2.

Consider the following preferences.1

≻1 : 2, 1;

≻2 : 3, 2;

≻3 : 1, 2, 3.

Panel (a) of Figure 1 provides a graphical representation of these preferences. Since

there is no unanimous trading cycle with size 2 or fewer, the exchange where everyone

is unassigned is 2-unanimous. However, such an exchange is not 2-efficient because

an alternative exchange where agents 2 and 3 receive each other’s object while agent

1 is unassigned is weakly better for everyone.

1This is the same example as in Kamada and Yasuda (2025).
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Figure 1: k-unanimity and k-efficiency. In panel (a), the exchange where everyone
is unassigned is 2-unanimous but not 2-efficient. In panel (b), the exchange where
agents 1 and 3 receive each other’s object is not 2-unanimous but 2-efficient.

Now, consider the following preferences.

≻′
1 : 2, 3, 1;

≻′
2 : 3, 2;

≻′
3 : 2, 1, 3.

Panel (b) of Figure 1 provides a graphical representation of these preferences. The

exchange where agents 1 and 3 receive each other’s object while agent 2 is unas-

signed is 2-efficient because any other exchange would make either of agents 1 and

2 unassigned, which would make them worse off. However, such an exchange is not

2-unanimous because agents 2 and 3 constitute a unanimous trading cycle with size

2.

A mechanism is a function that assigns to each preference profile an exchange.

We denote the object that agent i receives by ψi((≻j)j∈I). A mechanism is called

individually rational and efficient, respectively, if it always returns an individ-

ually rational exchange and an efficient exchange. We say that a mechanism ψ is

strategy-proof under single-peaked preferences if, for every single-peaked pref-

erence profile (≻j)j∈I and every agent i ∈ I,

ψi((≻j)j∈I) ⪰i ψi(≻′
i, (≻j)j ̸=i)

holds for every ≻′
i. Note that this definition requires that the mechanism is immune

to misreporting of any preferences, including those that are not single-peaked. This
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means that the conclusions of the negative results we will state (Theorems 1 and 2)

are weaker under this definition than under an alternative definition that would only

require immunity against misreported preferences that are single-peaked.2 On the

other hand, that of the positive result (Theorem 3) is stronger under our definition.

Definition 3. A mechanism is

1. k-robust if it returns a k-robust exchange given any input;

2. k-unanimous if it returns a k-unanimous exchange given any input;

3. k-efficient if it returns a k-efficient exchange given any input.

4. k-efficient under single-peaked preferences if it returns a k-efficient ex-

change given any single-peaked preferences.

3 Results

Theorem 1. Fix any N and k such that 1 < k < N . Then, no k-robust mechanism is

k-unanimous and strategy-proof under single-peaked preferences if and only if N > 3.

To show the “if” direction, we construct examples. We leave the details on this

in the Appendix. To show the “only if” direction, we consider the case of k = 2 and

N = 3. In this case, the following is a 2-robust mechanism that is 2-unanimous and

strategy-proof under single-peaked preferences:

Count the number of pairs such that in each pair, the involved agents regard each

other’s object as acceptable. There are the following four cases.

1. 0 pairs: Every agent is unassigned.

2. 1 pair: The agents in the pair receive the object of the other agent in the pair,

while the remaining one agent is unassigned.

3. 2 pairs: Then there must be a unique agent i who is involved in those two pairs,

and we have such an agent receive her first choice object j and j receives object

i, while the remaining agent is unassigned.

2Although we view this definition is a plausible one, we also note that the conclusion of Theorem 1
holds even under the alternative definition.
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4. 3 pairs (i.e., each agent regards the other two objects as acceptable): There are

either zero or one 2-unanimous cycle.

(a) If there exist zero 2-unanimous cycles, then agent 3 receives her first choice

j, and agent j receives objet 3.3 The remaining one agent is unassigned.

(b) If there exists one 2-unanimous cycle, then implement that cycle, and the

remaining one agent is unassigned.

It is straightforward to see, by inspection, that this mechanism is 2-robust and

2-unanimous. The proof in the Appendix shows that the mechanism is also strategy-

proof under single-peaked preferences.

Theorem 2. No k-robust mechanism is individually rational, k-efficient, and strategy-

proof under single-peaked preferences if k > 2.

To show the “if” direction, we construct examples. We leave the details on this

in the Appendix.

We do not know if the converse holds, but we show that a weakening of the con-

verse holds where we replace 2-efficiency with 2-efficiency under single-peaked prefer-

ences. To see this, we construct a 2-robust mechanism that is individually rational,

2-efficient, and strategy-proof under single-peaked preferences. The mechanism is

based on the following Up-Down algorithm:

Up-Down Algorithm:

Step 0: Given the preference profile ≻, partition I into three sets:

U := {j ∈ I| ≻j is single-peaked and ∃j′ > j s.t. j′ ≻j j};

D := {j ∈ I| ≻j is single-peaked and ∃j′ < j s.t. j′ ≻j j};

M := I \ (U ∪D).

Note that, if ≻j is single-peaked, then j cannot simultaneously belong to U and D.

Step 1: Consider the highest agent in U , and denote her by i1, i.e., we have i1 ≥ j

for every j ∈ U . Consider the set S1 := {j ∈ D|i1 ≻j j}. Define T 1 := {j ∈ D|i1 <
j} \ S1. Let µj = j for all j ∈ T 1.

3It can be agent 1 who gets priority here, but it cannot be agent 2. This point will become clear
in the proof in the Appendix (see footnote 5).
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• If S1 is empty, let µi1 = i1. Let V 1 = {i1} ∪ T 1. Go to Step 2.

• If S1 is nonempty, find the best object for i1 in S1, and denote it by c(i1).

– If i1 ≻i1 c(i
1), then let µi1 = i1. Let V 1 = {i1} ∪ T 1. Go to Step 2.

– If c(i1) ≻i1 i
1, then let µi1 = c(i1) and µc(i1) = i1. Let V 1 = {i1, c(i1)}∪T 1.

Go to Step 2.

Step l: If l = |U | + 1, let µj = j for any agent j for whom the algorithm has not

specified the object to be assigned, and terminate the algorithm and output µ.

Otherwise, consider the l-th highest agent in U , and denote her by il. Consider

the set Sl := {j ∈ D|il ≻j j} \ V l−1. Define T l := {j ∈ D|il < j and j ≻j i
l}.

• If Sl is empty, let µil = il. Let V l = V l−1 ∪ {il} ∪ T l. Go to Step l + 1.

• If Sl is nonempty, find the best agent for il in Sl, and denote him by c(il).

– If il ≻il c(i
l), then let µil = il. Let V l = V l−1 ∪{il}∪T l. Go to Step l+1.

– If c(il) ≻il i
l, then let µil = c(il) and µc(il) = il. Let V l = V l−1∪{il, c(il)}∪

T l. Go to Step l + 1.

The following theorem is used to show the “only if” direction of Theorem 2.

Theorem 3. The up-down algorithm is 2-robust, individually rational, 2-efficient

under single-peaked preferences, and strategy-proof under single-peaked preferences.

The idea of the algorithm is that the single-peakedness implies that each agent i’s

acceptable objects are such that either (i) all of them are no smaller than i or (ii) all

of them are no greater than i. Given this fact, we consider a type of serial dictatorship

where the highest agent among those whose acceptable objects are above themselves

becomes the first dictator. If, for example, j is this dictator’s first choice but she

does not deem the dictator acceptable, then j is determined to be unassigned, i.e.,

she receives object j. This construction works because the single-peakedness implies

that, if j deems the dictator unacceptable, then j, who we know is above the dictator

because the dictator is in U , will deem all the future dictators (who will be below the

first dictator) unacceptable.

It may be instructive to consider the relationship with a two-sided matching model.

(Ignoring the agents who regard only herself as acceptable) One can imagine that,
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according to the reported preferences, the agents in (i) are put on one side and the

agents in (ii) are put on the other side. An agent on one side can only be assigned an

object of the agent on the other side. Although which side an agent belongs to would

depend on her reported preferences, it is straightforward to see that no agent has an

incentive to be on the “wrong side.” The Up-Down mechanism corresponds to the

standard serial dictatorship mechanism where the dictators are always on the same

side. Such a mechanism is not strategy-proof in the standard two-sided matching

model because the agents on the other side may have an incentive to report that

an early dictator is unacceptable in order to be matched with a later dictator. In

our model, however, this type of misreporting will not be profitable due to the single-

peaked nature of preferences and the order of dictators: If an agent named by an early

dictator i (who must be above i because i ∈ U) reports that i would be unacceptable,

then the same agent will be treated as regarding all later dictators (who must be

below i) as unacceptable.4

A Proof of Theorem 1

The “only if” direction:

Consider the mechanism described after the statement of Theorem 1.

Consider agent i ∈ {1, 2, 3}. Suppose first that agent i regards no object but

object i as acceptable. Notice that, if she reports that object i is the uniquely accept-

able object, then she receives object i under the above mechanism. Hence, truthful

preference report is optimal for i in this case.

Second, suppose that agent i regards object j ̸= i as her first choice. Let k ∈
{1, 2, 3} \ {i, j}. Then, one of the following happens.

1. If object i is agent j’s first choice, then if agent i reports that object j is her

first choice, then agent i receives object j under the above mechanism. Hence,

truthful preference report is optimal for i in this case.

4A similar analogy could be drawn for the case of k = 2 in Theorem 1. In the context of two-
sided matching, Takagi and Serizawa (2010) show that no strategy-proof mechanism is individually
rational and matches all the mutual first choices (Takagi and Serizawa (2010) call this property “2-
unanimity”). This result is shown when there are at least two agents on each side, and accordingly,
we have the impossibility when N ≥ 4. In contrast to the case of Theorem 2, however, single-
peakedness of preferences does not help to eliminate the incentive of profitable deviation in this
case.

8



2. If object i is agent j’s second choice, then if agent i reports that object j is her

first choice, the only case in which agent i does not receive object j is when

agent k regards object j as acceptable. In such a case, either (i) all three agents

regard each other’s object as acceptable and such a preference report profile

(i.e., all agents regard each other’s object as acceptable) arises only when some

agent other than i reports a non-single-peaked preferences, or (ii) agents j and

k receive each other’s object and there is no preference report of agent i that

makes her receive object j.5 Hence, truthful preference report is optimal for i

in this case.

3. If j reports that object i is not acceptable, then i will not be assigned object

j irrespective of her preference report. Moreover, whether agent i is assigned

object k depends only on agents j and k’s preference report and whether agent

i reports that object k as acceptable or not. Hence, truthful preference report

is optimal for i in this case.

This completes the proof for the “only if” direction.

The “if” direction:

We first prove the “if” direction of Theorem 1 for the simplest cases of k = 2

and k = 3 (and N ≥ 4) to illustrate the intuition. Generalizing this proof, we then

provide the proof for the fully general case.

Proof of the “if” direction of Theorem 1 for k = 2 and k = 3 (and N ≥ 4). Suppose that

k = 2 or k = 3 (and N ≥ 4). The following proof works for either case. Consider a

subset of agents, denoted by S ⊆ I, which consists of 4 agents: S = {1, 2, 3, 4}. Such
a subset can be taken because 4 ≤ N .

Consider the following three different preference profiles, ≻, ≻A, and ≻B. Figure 2

provides a graphical representation of these preferences. Note that everyone has

single-peaked preferences under any of these preference profiles.

5If i = 3 and i regards object k as unacceptable, one might think that by reporting that object k
is acceptable, i can create a preference profile with 3 pairs, thereby giving agent i the right to become
a dictator to receive object j. However, this implies that either j = 2 or k = 2, and their preference
reports of regarding three objects as acceptable violates single-peakedness. Since strategy-proofness
under single-peaked preferences does not require agent i to have an incentive for truthful reporting
when some other agents report non-single-peaked preferences, one can ignore this case.
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Figure 2: The counterexample for the case of k = 2 or k = 3 in the proof of Theorem 1.
.

Preference profile ≻= (≻1,≻2,≻3,≻4), where

≻1 : 3, 4, 2, 1

≻2 : 4, 3, 2

≻3 : 2, 1, 3

≻4 : 1, 2, 3, 4

Preference profile ≻A= (≻1,≻2,≻A
3 ,≻4), where

≻A
3 : 2, 3.

Preference profile ≻B= (≻B
1 ,≻2,≻3,≻4), where

≻B
1 : 3, 2, 1.

Let ψ be a 3-robust mechanism that is 3-unanimous and strategy-proof. First,

note that under any of ψ(≻), ψ(≻A), and ψ(≻B), if a given agent i has two acceptable

objects besides object i and the second-choice object j is such that agent j regards

object i as his first choice, then agent i must receive her first- or second-choice object.

This is because, if agent i does not receive such an object, she could misreport to

say that her second choice was her first choice, thereby creating a unanimous trading

cycle of size 2. This implies that all agents receive an object under ψ(≻), agents 1, 2,

and 4 receive an object under ψ(≻A), and agents 2, 3, and 4 receive an object under

ψ(≻B).

Step 1: Under ψ(≻A), it is not possible to have agents 1, 2, and 4 receive an object

10



while agent 3 is unassigned because that would mean that agent 1 receives object

2, which is her third choice. This implies that all agents receive an object. Since

object 2 is the only acceptable object for agent 3, ψ(≻A) =: µA must be such that

(µA
1 , µ

A
2 , µ

A
3 , µ

A
4 ) = (4, 3, 2, 1).

Step 2: Under ψ(≻B), it is not possible to have agents 2, 3, and 4 receive an ob-

ject while agent 1 is unassigned. This implies that all agents receive an object.

Since object 4 is not acceptable by agents 1 or 3, ψ(≻B) =: µB must be such that

(µB
1 , µ

B
2 , µ

B
3 , µ

B
4 ) = (3, 4, 1, 2).

Step 3: We show that an agent with an incentive to misreport her preference must

exist under ≻. Since agent 2 does not regard object 1 as acceptable and agent 3 does

not regard object 4 as acceptable, ψ(≻) must be equal to either µA or µB.

If ψ(≻) = µB, then agent 3 becomes better off by misreporting her preferences

to say ≻A
3 . If ψ(≻) = µA, then agent 1 becomes better off by misreporting her

preferences to say ≻B
1 .

This completes the proof for the “if” direction for the cases of k = 2 and k = 3

(and N ≥ 4).

Proof of the “if” direction of Theorem 1 for k ≥ 4. Suppose that k ≥ 4. Consider a

subset of agents, denoted by S ⊆ I, which consists of k+1 agents: S = {1, 2, 31, 32, . . . , 3m, 4},
where m = k − 2. Such a subset can be taken because k < N .

Consider the following three different preference profiles, ≻, ≻A, and ≻B. Figure 3

provides a graphical representation of these preferences. Note that everyone has

single-peaked preferences under any of these preference profiles.

Preference profile ≻= (≻1,≻2,≻31 , . . . ,≻3m ,≻4), where

≻1 : 3m, 4, 3m−1, . . . , 31, 2, 1

≻2 : 4, 3m, . . . , 31, 2

≻31 : 2, 31

≻3l : 3l−1, 3l for all l ∈ {2, . . . ,m− 1}

≻3m : 3m−1, 3m−2, 3m

≻4 : 1, 2, 31, . . . , 3m, 4
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Figure 3: The counterexample for the case of k ≥ 4 in the proof of Theorem 1.

where 30 is defined to be 2.

Preference profile ≻A= (≻1,≻2,≻31 , . . . ,≻A
3m ,≻4), where

≻A
3m : 3m−1, 3m.

Preference profile ≻B= (≻B
1 ,≻2,≻31 , . . . ,≻3m ,≻4), where

≻B
1 : 3m, 3m−1, . . . , 31, 2, 1.

Let ψ be a k-robust mechanism that is k-unanimous and strategy-proof, where

k = m+ 2.

Consider any preference profile in {≻,≻A,≻B}.
We first make the following claim.

Claim 1. Under any preference profile in {≻,≻A,≻B}, if a given agent has multiple

acceptable objects besides object i, then she must receive an object that is her first or

second choice under ψ.

This holds because otherwise, they could claim their second choice to be the first

choice, by which a unanimous trading cycle of size no greater than m+ 2 exists.

Consider any preference profile in {≻,≻A}. l ∈ {l′ ∈ N|2 ≤ l′ ≤ m} \ {m − 1},
and suppose that agent 3l is unassigned. We show that 3l−1 is unassigned, too. To

see this, note that 3l−1 is acceptable only by agents 1, 2, 3l−1, 3l, and 4.
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For agents 1, 2, and 4, object 3l−1 is worse than their second choice. Hence, by

Claim 1 and the assumption that agent 3l is unassigned, object 3l−1 is not received

by anyone. Hence, 3l−1 is unassigned.

Now we show that agent 3m−2 is unassigned if both 3m and 3m−1 are unassigned.

1. Consider the preference profile ≻A. Suppose that 3m−1 is unassigned. We show

that 3m−2 is unassigned as well. To see this, note that object 3m−2 is acceptable

only by agents 1, 2, 3m−2, 3m−1, and 4. First, suppose that m > 2. Then, for

agents 1, 2, and 4, object 3m−2 is worse than their second choice. Hence, by

Claim 1 and the assumption that agent 3m−1 is unassigned, object 3m−2 is not

received by anyone. Hence, agent 3m−2 is unassigned.

If m = 2, for agent 1, object 3m−2 (= 2) is worse than her second choice. Hence,

the only possibility is for agent 4 to receive object 2. This implies that object

1 is not received by any agent. Hence, agent 1 is unassigned. This contradicts

Claim 1.

2. Consider the preference profile ≻. Suppose that both agents 3m and 3m−1 are

unassigned. We show that agent 3m−2 is unassigned as well. To see this, note

that object 3m−2 is acceptable only by agents 1, 2, 3m−2, 3m−1, 3m, and 4. First,

suppose that m > 2. Then, for agents 1, 2, and 4, object 3m−2 is worse than

their second choice. Hence, by Claim 1 and the assumption that both agents 3m

and 3m−1 are unassigned, object 3m−2 is not received by anyone. Hence, agent

3m−2 is unassigned.

If m = 2, for agent 1, object 3m−2 (= 2) is worse than her second choice. Hence,

the only possibility is for agent 4 to receive object 2. This implies that object

1 is not received by any agent. Hence, agent 1 is unassigned. This contradicts

Claim 1.

Overall, the above arguments and the fact that every agent i in {32, . . . , 3m−1}
has only a single acceptable object besides object i imply that, for any preferences in

{≻,≻A}, one of the following holds.

(i). All agents in {31, . . . , 3m} are unassigned.

(ii). All agents in {31, . . . , 3m} receive an object.
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(iii). Agent 3m−1 is unassigned, while all agents in {31, . . . , 3m−2, 3m} receive an ob-

ject.

Consider case (i). Consider any preference profile in {≻,≻A}. By Claim 1, both

agents 1 and 2 must receive object 4, but that is infeasible. Hence, case (i) cannot

happen under these preferences.

This implies that the only remaining cases are (ii) and (iii) for each of preference

profile in {≻,≻A}. For each preference profile in {≻,≻A}, agent 31 receives an object

in (ii) and (iii), and object 2 is the only acceptable choice for agent 31. These facts

imply that agent 31 receives 2.6

Now, consider the preference profile ≻. Note that Claim 1 implies that agent 1

receives either object 3m or 4 under ≻.

1. Suppose that agent 1 receives object 3m. Then, Claim 1 implies that agent 2

receives object 4. Thus, under case (ii), object 3m−1 must be received by 3m.

But this implies that ψ(≻) is not (m + 2)-robust. Hence, case (iii) happens.

This means that agent 3m receives object 3m−2. In this case, suppose that agent

3m misreports to say ≻A
3m . Then, since we are in case (ii) or case (iii) under ≻A,

3m receives object 3m−1, and hence such a misreporting strictly improves agent

3m’s assignment.7 This contradicts the assumption that ψ is strategy-proof.

2. Suppose that agent 1 receives object 4. Suppose that agent 1 misreports to say

≻B
1 . Then, if 1 receives object 3m−1, agent 3m−1 must receive some object. Since

object 3m−2 is the only acceptable object for agent 3m−1, agent 3m−1 receives

object 3m−2. But this implies that 3m is unassigned, which contradicts Claim

1. Again by Claim 1, agent 1 must receive either object 3m or 3m−1, so this

implies that agent 1 receives object 3m. Hence, agent 1’s misreporting of ≻B
1

strictly improves agent 1’s assignment. This contradicts the assumption that ψ

is strategy-proof. Contradiction.

Overall, neither cases (ii) nor (iii) can happen under ≻. Therefore, there is no ex-

change µ such that ψ(≻) = µ. Contradiction.

This completes the proof for the “if” direction for the cases of k ≥ 4.

6The argument needs a minor modification when m = 2, but the result goes through regardless.
7More specifically, case (iii) would not happen under ≻A because 3m receiving an object implies

that 3m receives object 3m−1, which contradicts agent 3m−1 being unassigned under case (iii).
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Figure 4: The counterexample for the case of k = 3 in the proof of Theorem 2.

A.1 Proof of Theorem 2

Note that the “only if” direction of Theorem 2 is an implication of Theorem 3.

For the “if” direction, we first prove it for the simplest cases of k = 3 to illustrate

the intuition. Generalizing this proof, we then provide the proof for the fully general

case.

Proof of the “if” direction of Theorem 2 for k = 3. Suppose that k = 3. Consider a

subset of agents, denoted by S ⊆ I, which consists of 4 agents: S = {1, 2, 3, 4}. Such
a subset can be taken because 3 = k < |I|.

Consider the following three different preference profiles, ≻, ≻A, and ≻B. Figure 4

provides a graphical representation of these preferences. Note that everyone has

single-peaked preferences under ≻.

Preference profile ≻= (≻1,≻2,≻3,≻4), where

≻1 : 2, 1

≻2 : 4, 3, 2

≻3 : 1, 2, 3

≻4 : 3, 4

Preference profile ≻A= (≻1,≻2,≻A
3 ,≻4), where

≻A
3 : 1, 3.
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Preference profile ≻B= (≻1,≻B
2 ,≻3,≻4), where

≻B
2 : 4, 2.

Suppose that ψ is a 3-robust mechanism that is individually rational, 3-efficient,

and strategy-proof under single-peaked preferences.

Step 1: Define µA by (µA
1 , µ

A
2 , µ

A
3 , µ

A
4 ) = (2, 3, 1, 4). Under ≻A, µA is the only 3-

robust exchange that satisfies individual rationality and 3-efficiency. Thus, we must

have ψ(≻A) = µA.

Step 2: Define µB by (µB
1 , µ

B
2 , µ

B
3 , µ

B
4 ) = (1, 4, 2, 3). Under ≻B, µB is the only 3-

robust exchange that satisfies individual rationality and 3-efficiency. Thus, we must

have ψ(≻B) = µB.

Step 3: We show that an agent with an incentive to misreport her preferences must

exist under ≻. Under ≻, µA and µB are the only 3-robust exchanges that satisfy

individual rationality and 3-efficiency, and thus we must have ψ(≻) = µA or ψ(≻) =

µB.

If ψ(≻) = µA, then agent 2 becomes better off by misreporting his preferences to

say ≻B
2 .

If ψ(≻) = µB, then agent 3 becomes better off by misreporting her preferences to

say ≻A
3 .

This completes the proof for the case of k = 3.

Proof of the “if” direction of Theorem 2 for k ≥ 4. Suppose that k ≥ 4. Consider a

subset of agents, denoted by S ⊆ I, which consists of k+1 agents: S = {1, 2, 3, 31, 32, . . . , 3m, 4},
where m = k − 3. Such a subset can be taken because k < N .

Consider the following three different preference profiles, ≻, ≻A, and ≻B. Figure 5

provides a graphical representation of these preferences. Note that everyone has

single-peaked preferences under ≻.

16



Figure 5: The counterexample for the case of k ≥ 4 in the proof of Theorem 2.

Preference profile ≻= (≻1,≻2,≻3,≻31 , . . . ,≻3m ,≻4), where

≻1 : 2, 1

≻2 : 4, 3m, . . . , 31, 3, 2

≻3 : 1, 2, 3

≻31 : 3, 31

≻3l : 3l−1, 3l for all l ∈ {2, . . . ,m}

≻4 : 3m, 4

Preference profile ≻A= (≻1,≻2,≻A
3 ,≻31 , . . . ,≻3m ,≻4), where

≻A
3 : 1, 3.

Preference profile ≻B= (≻1,≻B
2 ,≻3,≻31 , . . . ,≻3m ,≻4), where

≻B
2 : 4, 2.

Suppose that ψ is a k-robust mechanism that is individually rational, k-efficient,

and strategy-proof under single-peaked preferences, where k = m+ 3.
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Step 1: Define µA by(
µA
1 µA

2 µA
3 µA

31
µA
32

. . . µA
3m µA

4

2 3m 1 3 31 . . . 3m−1 4

)

by which we mean that for each l, the (1, l) entry is equal to the (2, l) entry. That is,

for example, agent 1 receives object 2 under exchange µA.

Under ≻A, µA is the only (m+ 3)-robust exchange that satisfies individual ratio-

nality and (m+ 3)-efficiency. Thus, we must have ψ(≻A) = µA.

Step 2: Define µB by(
µB
1 µB

2 µB
3 µB

31
µB
32

. . . µB
3m µB

4

1 4 2 3 31 . . . 3m−1 3m

)
,

where again, we mean that for each l, the (1, l) entry is equal to the (2, l) entry. Under

≻B, µB is the only (m + 3)-robust exchange that satisfies individual rationality and

(m+ 3)-efficiency. Thus, we must have ψ(≻B) = µB.

Step 3: We show that an agent with an incentive to misreport her preferences must

exist under ≻. Under ≻, µA and µB are the only (m+3)-robust exchanges that satisfy

individual rationality and (m + 3)-efficiency, and thus we must have ψ(≻) = µA or

ψ(≻) = µB.

If ψ(≻) = µA, then agent 2 becomes better off by misreporting his preferences to

say ≻B
2 .

If ψ(≻) = µB, then agent 3 becomes better off by misreporting her preferences to

say ≻A
3 .

This completes the proof for the case of k ≥ 4.
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