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B Appendix for Section 4

B.1 Proofs and a Calculation for Section 4.1

B.1.1 The Proofs for the Reduction Argument

We begin with the formal definitions of trigger strategy equilibria for the supply

schedule game.

Formulation of the objective

As in Section 3, we define

X := {xi : [0, T ]→ S | πi(xi(·), xi(·)) is measurable}.

Given a pair (x1, x2) ∈ X2 and a Nash equilibrium (s1, s2), we define seller i’s trig-

ger strategy with plan (x1, x2) and a Nash equilibrium (s1, s2), denoted by

σi((x1, x2), si), to be a strategy in which the following hold for each time −t ∈ [−T, 0]

such that there is an opportunity:

1. If each seller submits an order xi(τ) for every −τ ∈ [−T,−t) at which there is

an opportunity, then seller i submits the order xi(t).

2. Otherwise, each seller i submits the order si.

Let Σ := {(σi((x1, x2), si)i=1,2|xi ∈ X, si ∈ S for each i = 1, 2}. We say that

(σi((x1, x2), si)i=1,2 ∈ Σ is symmetric if for every t, q1(x1(t), x2(t)) = q2(x1(t), x2(t)).

That is, the realized supplies from the two sellers (after rationing) are the same. Let
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Σ̄ ⊆ Σ be the set of symmetric (σi((x1, x2), si)i=1,2. As in Section 3, we can formulate

the incentive compatibility condition, which defines subgame-perfect equilibria in

trigger strategies. Let Σ∗ ⊆ Σ̄ be the set of subgame-perfect equilibria in Σ̄. Our

objective is to find a strategy profile in Σ∗ that generates the highest ex ante payoff

to each seller.1 As in Section 3, there may exist multiple maximizers of the ex ante

payoff to each seller. We will show that there is an essentially unique optimal plan

of quantities, qi(x1(t), x2(t)), t ∈ [0, T ] for each i = 1, 2, by which we mean that

if both (σi((x1, x2), si)i=1,2, (σi((x
′
1, x
′
2), s′i)i=1,2 ∈ Σ∗ maximize the expected payoff,

then qi(x1(t), x2(t)) = qi(x
′
1(t), x′2(t)) holds for each i = 1, 2 for almost all t ∈ [0, T )

and at t = T .2

Let (sN1 , s
N
2 ) be a Nash equilibrium of the supply-schedule game such that qi(s

N
1 , s

N
2 ) =

a−c
2b

for each i = 1, 2 and hence πi(s
N
1 , s

N
2 ) = 0 for each i = 1, 2. Such (sN1 , s

N
2 ) exists

by Lemma 1.

To prove that the reduction is possible, we present a series of lemmas. We first

prove the following three lemmas (Lemmas 3, 4, and 5).

Lemma 3 (Severest punishment). Fix (x1, x2) ∈ X2 and a Nash equilibrium (s1, s2) ∈
S2, and suppose that (σi((x1, x2), si))i=1,2 ∈ Σ∗. Then, (σi((x1, x2), sNi ))i=1,2 ∈ Σ∗.

Proof. Note that for any Nash equilibrium (s1, s2), πi(s1, s2) ≥ 0 = πi(s
N
1 , s

N
2 ). This

is because the order s′1 such that s′1(p) = 0 for all p guarantees a payoff of zero against

any supply scheme of the opponent, i.e., π1(s′1, s2) = 0 for every s2, so the payoff under

any Nash equilibrium must be no less than 0 (the same argument holds for seller 2).

Seller 1’s incentive compatibility condition at time −t under (σi((x1, x2), si))i=1,2 is:

e−λt sup
s̃1∈S

[π1(s̃1, x2(t))]+

∫ t

0

πi(s1, s2)λe−λτdτ ≤ e−λtπ1(x1(t), x2(t))+

∫ t

0

πi(x1(τ), x2(τ))λe−λτdτ.

This and πi(s1, s2) ≥ πi(s
N
1 , s

N
2 ) imply:

e−λt sup
s̃1∈S

[π1(s̃1, x2(t))]+

∫ t

0

πi(s
N
1 , s

N
2 )λe−λτdτ ≤ e−λtπ1(x1(t), x2(t))+

∫ t

0

πi(x1(τ), x2(τ))λe−λτdτ,

1Note that, at this point, the existence of such a strategy profile is not obvious. The existence
follows from the reduction argument that follows.

2Note that we do not require that the equality holds at t = 0 because there are multiple Nash
equilibria in the component game.
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which is the incentive compatibility condition at time −t under (σi((x1, x2), sNi ))i=1,2.

Hence, (σi((x1, x2), sNi ))i=1,2 is also a SPE.

In what follows, the vertical orders are going to be the key to the reduction. Let

ŝ[q] ∈ S for q ≥ 0 be the order such that ŝ[q](p) = q for every price p ≥ 0.

Lemma 4 (Less than the Nash quantity). Fix (x1, x2) ∈ X2 and a Nash equilibrium

(s1, s2) ∈ S2, and suppose that (σi((x1, x2), si))i=1,2 ∈ Σ∗. Let T̃ ⊆ [0, T ] be the set

of times t such that q1(x1(t), x2(t)) = q2(x1(t), x2(t)) > qN for each t ∈ T̃ . If T̃
has a positive measure or T ∈ T̃ , then there exists (σi((x

′
1, x
′
2), si))i=1,2 ∈ Σ∗ that

gives each seller a strictly greater ex ante payoff than (σi((x1, x2), si))i=1,2 such that

qi(x
′
1(t), x′2(t)) ≤ qN for each t ∈ [0, T ].

Proof. Take (σi((x1, x2), si))i=1,2 ∈ Σ∗. Consider a plan (x′1, x
′
2) ∈ X2 defined by:

x′i(t) =

xi(t) if t 6∈ T̃

ŝ[qN ] if t ∈ T̃
.

By definition, qi(x
′
1(t), x′2(t)) ≤ qN for each t ∈ [0, T ]. We first show that (σi((x

′
1, x
′
2), si))i=1,2 ∈

Σ∗, and then show that (σi((x
′
1, x
′
2), si))i=1,2 generates a strictly higher payoff to each

seller than (σi((x1, x2), si))i=1,2. We focus on seller 1 below. A symmetric argument

holds for seller 2.

To show that (σi((x
′
1, x
′
2), si))i=1,2 ∈ Σ∗, first note that the incentive compatibility

condition at time −t for the subgame-perfect equilibrium (σi((x1, x2), si))i=1,2 ∈ Σ∗

can be written as

e−λt sup
s̃1∈S

π1(s̃1, x2(t))+

∫ t

0

π1(sN1 , s
N
2 )λe−λτdτ ≤ e−λtπ1(x1(t), x2(t))+

∫ t

0

π1(x1(τ), x2(τ))λe−λτdτ.

(25)

Note that, for any τ ∈ [0, T ],

π1(x′1(τ), x′2(τ)) = π̄i
(
qN , qN

)
> π̄i(q1(x1(τ), x2(τ)), q2(x1(τ), x2(τ))) = π1(x1(τ), x2(τ)).

(26)

(25) and (26) then imply that

e−λt sup
s̃1∈S

π1(s̃1, x2(t))+

∫ t

0

π1(sN1 , s
N
2 )λe−λτdτ ≤ e−λtπ1(x′1(t), x′2(t))+

∫ t

0

π1(x′1(τ), x′2(τ))λe−λτdτ.

(27)
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If t 6∈ T̃ , then x2(t) in the left-hand side of (27) can be replaced by x′2(t), which

yields the incentive compatibility condition at time −t for (σi((x
′
1, x
′
2), si))i=1,2 ∈ Σ∗.

To show that the incentive compatibility condition at time −t with t ∈ T̃ holds,

(27) implies that it suffices to show that
(
ŝ[qN ], ŝ[qN ]

)
is a Nash equilibrium of the

supply-schedule game. To show this, take any deviation by seller 1, s1 ∈ S, and let

p̂ = p(s1, ŝ[q
N ]).

1. Suppose first that p̂ < c. Then, the maximized payoff is zero, which is no more

than π1

(
ŝ[qN ], ŝ[qN ]

)
.

2. Suppose that p̂ > c. In this case, by the “price first” rule, q2(s1, ŝ[q
N ]) ≥ qN .

This implies that q1(s1, ŝ[q
N ]) ≤ D(p̂)− qN , so 1’s payoff is at most

max
{

0, (p̂− c)
(
D(p̂)− qN

)}
.

Then, since (qN , qN) is a Nash equilibrium of the Cournot competition and

(p̂ − c)
(
D(p̂)− qN

)
is a payoff from a deviation in the Cournot competition,

this upper bound is no more than π1

(
ŝ[qN ], ŝ[qN ]

)
.

To show that (σi((x
′
1, x
′
2), si))i=1,2 generates a strictly higher payoff to each seller

than (σi((x1, x2), si))i=1,2, recall (26). Thus, the difference of the ex ante payoffs can

be calculated as:[
e−λTπ1(x′1(T ), x′2(T )) +

∫ T

0

π1(x′1(t), x′2(t))λe−λtdt

]
−
[
e−λTπ1(x1(T ), x2(T )) +

∫ T

0

π1(x1(t), x2(t))λe−λtdt

]
≥ e−λT (π1(x′1(T ), x′2(T ))− π1(x1(T ), x2(T )))

+

(∫
t∈T̃

(π1(x′1(t), x′2(t))− π1(x1(t), x2(t)))λe−λtdt

)
> 0,

where the last inequality follows because T̃ has a positive measure or T ∈ T̃ , and

(26) holds. This completes the proof.

Lemma 5 (No demand rationing). Fix (x1, x2) ∈ X2 and a Nash equilibrium (s1, s2),

and suppose (σi((x1, x2), si))i=1,2 ∈ Σ∗. Let T̃ ⊆ [0, T ] be the set of times t such that
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q1(x1(t), x2(t)) + q2(x1(t), x2(t)) < D(p(x1(t), x2(t))) and p(x1(t), x2(t)) > c for each

t ∈ T̃ . If T̃ has a positive measure or T ∈ T̃ , then there exists (x′1, x
′
2) ∈ X such

that (σi((x
′
1, x
′
2), si))i=1,2 ∈ Σ∗ has a strictly greater ex ante payoff to each seller than

under (σi((x1, x2), si))i=1,2 and q1(x′1(t), x′2(t)) + q2(x′1(t), x′2(t)) = D(p(x′1(t), x′2(t)))

for each t ∈ [0, T ].

Proof. Consider a plan (x′1, x
′
2) ∈ X2 defined by

x′i(t) =

xi(t) if t 6∈ T̃

x̃i(t) if t ∈ T̃
,

where

x̃i(t)(p) =

xi(t)(p) if p < p(x1(t), x2(t))

D(p(x1(t),x2(t)))
2

if p ≥ p(x1(t), x2(t))
.

Then, by the definition of qi(·, ·), q1(x′1(t), x′2(t))+q2(x′1(t), x′2(t)) = D(p(x′1(t), x′2(t)))

holds for each t ∈ [0, T ].

To show that (σi((x
′
1, x
′
2), si))i=1,2 generates a strictly higher payoff to each seller

than (σi((x1, x2), si))i=1,2, first note that for every t ∈ T̃ ,

π1(x′1(t), x′2(t)) = (p(x1(t), x2(t))− c)D(p(x1(t), x2(t)))

2

> (p(x1(t), x2(t))− c)qi(x1(t), x2(t)) = π1(x1(t), x2(t)), (28)

where the inequality comes from the assumption that p(x1(t), x2(t)) > c and q1(x1(t), x2(t))+

q2(x1(t), x2(t)) < D(p(x1(t), x2(t))). Thus, the difference of the ex ante payoffs can

be calculated as:[
e−λTπ1(x′1(T ), x′2(T )) +

∫ T

0

π1(x′1(t), x′2(t))λe−λtdt

]
−
[
e−λTπ1(x1(T ), x2(T )) +

∫ T

0

π1(x1(t), x2(t))λe−λtdt

]
≥ e−λT (π1(x′1(T ), x′2(T ))− π1(x1(T ), x2(T )))

+

(∫
t∈T̃

(π1(x′1(t), x′2(t))− π1(x1(t), x2(t)))λe−λtdt

)
> 0,
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where the last inequality follows because T̃ has a positive measure or T ∈ T̃ , and

(28) holds.

An analogous proof to the one for Lemma 4 can show that (σi((x
′
1, x
′
2), si))i=1,2 is

a SPE. This completes the proof.

Let

Σ∗∗ =
{

(σi((x1, x2), sNi ))i=1,2 ∈ Σ∗ | qi(x1(t), x2(t)) ≤ qN and

qi(x1(t), x2(t)) =
D(p(x1(t), x2(t)))

2
, i = 1, 2

}
.

Note that q1(x1(t), x2(t)) = q2(x1(t), x2(t)) ≤ qN (cf. Lemma 4) implies that

p(x1(t), x2(t)) > c (cf. Lemma 5). Hence, if there is (σi((x1, x2), si)i=1,2 ∈ Σ∗∗

maximizing the ex ante payoff to each seller in Σ∗∗, then it maximizes the ex ante

payoff in Σ∗ as well. Moreover, for any maximizer of the ex ante payoff to each seller

(σi((x1, x2), si)i=1,2 in Σ∗, there exists a maximizer (σi((x
′
1, x
′
2), s′i)i=1,2 in Σ∗ such that

(σi((x
′
1, x
′
2), s′i)i=1,2 ∈ Σ∗∗ and qi(x1(t), x2(t)) = qi(x

′
1(t), x′2(t)) for each i for almost

all t ∈ [0, T ) and at t = T . The next lemma proves this point.

Lemma 6 (Restricting attention to Σ∗∗). For any maximizer of the ex ante payoff to

each seller (σi((x1, x2), si)i=1,2 in Σ∗, there exists a maximizer (σi((x
′
1, x
′
2), s′i)i=1,2 in

Σ∗ such that (σi((x
′
1, x
′
2), s′i)i=1,2 ∈ Σ∗∗ and qi(x1(t), x2(t)) = qi(x

′
1(t), x′2(t)) for each

i for almost all t ∈ [0, T ) and at t = T .

Proof. Fix (σi((x1, x2), si)i=1,2 ∈ Σ∗ maximizing the ex ante payoff to each seller in

Σ∗∗. Let T̃ be the set of times t such that qi(x1(t), x2(t)) > qN for each i = 1, 2 or

q1(x1(t), x2(t)) + q2(x1(t), x2(t)) < D(p(x1(t), x2(t))). Lemmas 4 and 5 imply that T̃
has measure zero and T 6∈ T̃ . Consider a profile of plans (x′1, x

′
2) such that

x′i(t) =

xi(t) if t 6∈ T̃

ŝi[q
N ] if t ∈ T̃

.

By definition, (σi((x1, x2), si)i=1,2 ∈ Σ∗∗ holds. Moreover, qi(x1(t), x2(t)) = qi(x
′
1(t), x′2(t))

for each i for almost all t ∈ [0, T ) and at t = T , and hence the ex ante payoffs under

(σi((x1, x2), si)i=1,2 and under (σi((x
′
1, x
′
2), si)i=1,2 are the same, which implies that

(σi((x
′
1, x
′
2), si)i=1,2 maximizes the ex ante payoff in Σ∗.

An analogous proof to the one for Lemma 4 can show that (σi((x
′
1, x
′
2), si))i=1,2 is

a SPE. This completes the proof.
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Overall, if there is an essentially unique plan of quantities among those induced

by the maximizers in Σ∗∗, then there is an essentially unique plan of quantities among

those induced by the maximizers in Σ∗.

Lemma 7 (Restricting attention to Ŝ). Fix (x1, x2) ∈ X2 and suppose that (σi((x1, x2), sNi ))i=1,2 ∈
Σ∗∗. Then, there exist (x̄1, x̄2) ∈ X2 such that the following hold:

1. x̄i(t) ∈ Ŝ for each t and i.

2. For each t, qi(x̄1(t), x̄2(t)) = qi(x1(t), x2(t)) for each i and p(x̄1(t), x̄2(t)) =

p(x1(t), x2(t)).

3. (σi((x̄1, x̄2), sNi ))i=1,2 ∈ Σ∗∗.

Proof. To show the lemma, we first prove the following claim:

Claim 1. Fix an arbitrary q̄ ∈ [0, qN ] and (s1, s2) ∈ S2 such that q1(s1, s2) =

q2(s1, s2) = q̄ and 2q̄ = D(p(s1, s2)). The following are true:

1. The price, quantities and profits under (ŝ1[q̄], ŝ2[q̄]) are the same as those under

(s1, s2). Formally, for each i = 1, 2, the following three equalities hold:

p (ŝ1[q̄], ŝ2[q̄]) = p(s1, s2);

qi(ŝ1[q̄], ŝ2[q̄]) = qi(s1, s2);

πi (ŝ1[q̄], ŝ2[q̄]) = πi(s1, s2).

2. The payoff after any deviation under (ŝ1[q̄], ŝ2[q̄]) is no more than the one under

(s1, s2). Formally, for each s′1 ∈ S such that π1(s′1, ŝ2[q̄]) ≥ π1(ŝ1[q̄], ŝ2[q̄]), the

following inequality holds for seller 1:

π1(s′1, ŝ2[q̄]) ≤ sup
s′′1∈S

π1(s′′1, s2).

The symmetric inequality holds for seller 2, too.

Proof of Claim 1.

Part 1: The equalities on quantities directly follow from the definition of ŝi[q̄].
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Given the equalities on quantities and the definition of the p(·, ·) function, if

q̄ > 0, the equality on prices holds because ŝ1[q̄](p) + ŝ2[q̄](p) = 2q̄ ≤ D(p) for all

p ≤ p(s1, s2) and ŝ1[q̄](p) + ŝ2[q̄](p) = 2q̄ > D(p) for all p > p(s1, s2) by the definition

of ŝi[q̄] for each i and the assumption that D is strictly decreasing for p’s such that

0 < D(p) < 2qN . If q̄ = 0, the equality on prices holds by the definition of the p(·, ·)
function.

Finally, the equalities on profits follow because we have shown the equalities on

quantities and prices.

Part 2: We prove the inequality for seller 1. A symmetric argument shows that the

inequality for seller 2 holds, too.

Given (s1, s2) ∈ S2, let

S− = {s′1 ∈ S|p(s′1, ŝ2[q̄]) < p(s1, s2)},

S0 = {s′1 ∈ S|p(s′1, ŝ2[q̄]) = p(s1, s2)},

S+ = {s′1 ∈ S|p(s′1, ŝ2[q̄]) > p(s1, s2)}.

We will show that, for each element s′1 in each of S− and S0, there exists s′′1 ∈ S such

that π1(s′1, ŝ2[q̄]) ≤ π1(s′′1, s2). Also, we show that π1(s′1, ŝ2[q̄]) < π1(ŝ1[q̄], ŝ2[q̄]) for

each s′1 ∈ S+. Showing these claims suffice because S− ∪ S0 ∪ S+ = S.

Case 1: Consider s′1 ∈ S− and let p̂ = p(s′1, ŝ2[q̄]) ∈ [0, p(s1, s2)).

Suppose first that p̂ > c. Take s′′1 ∈ S such that s′′1(p) = D(p̂) − s2(p̂) for

all p ∈ [0,∞). Note that p(s′′1, s2) = p̂. This is because the definition of s′′1, the

assumptions that s2 is non-decreasing and D is strictly decreasing for prices below

p(s1, s2) imply that s′′1(p) + s2(p) ≤ D(p) for all p ≤ p̂ and s′′1(p) + s2(p) > D(p) for

all p > p̂.

Then, we have:

π1(s′′1, s2) = (p̂− c) (D (p̂)− s2(p̂)) (by the definition of s′′1)

≥ (p̂− c) (D (p̂)− q2(s1, s2)) (by “price first” and p̂ < p(s1, s2))

= (p̂− c) (D (p̂)− q̄) (by the definition of q̄)

= π1(s′1, ŝ2[q̄]) (by “price first” and p̂ > c > 0).
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If p̂ ≤ c, then π1(s′1, ŝ2[q̄]) ≤ 0. Consider s′′1 ∈ S such that s′′1(p) = 0 for all

p ∈ [0,∞). Then, π1(s′′1, s2) = 0.

Overall, we have shown that for each s′1 ∈ S−, there exists s′′1 ∈ S such that

π1(s′1, ŝ2[q̄]) ≤ π1(s′′1, s2). Hence, we have that for each s′1 ∈ S−, π1(s′1, ŝ2[q̄]) ≤
sups′′1∈S π1(s′′1, s2).

Case 2: Consider s′1 ∈ S0, that is, p(s′1, ŝ2[q̄]) = p(s1, s2). First, note that

π1(s′1, ŝ2[q̄]) ≤ (p(s1, s2)− c)(D(p(s1, s2))− q̄) (by “price first” and the definition of q̄)

= (p(s1, s2)− c)q̄.

Second, note that

sup
s′′1∈S0

π1(s′′1, s2) ≥ π1(s1, s2) = (p(s1, s2)− c)q1(s1, s2) = (p(s1, s2)− c)q̄.

Combining, we have that for each s′1 ∈ S0, π1(s′1, ŝ2[q]) ≤ sups′′1∈S0 π1(s′′1, s2).

Case 3: Consider s′1 ∈ S+ and let p̂ > p(s′1, ŝ2[q̄]). Then, we have the following:

π1(s′1, ŝ2[q̄]) ≤ (p̂− c) (D(p̂)− q̄) (by “price first”)

= π̄1(D(p̂)− q̄, q̄)

≤ π̄1(q̄, q̄) (by q̄ <
a− c

3b
)

= π1(ŝ1[q̄], ŝ2[q̄]).

Overall, we have shown the desired claim.

Having proved the claim, we now prove the lemma.

Fix (x1, x2) ∈ X2 and suppose (σi((x1, x2), (sNi )))i=1,2 ∈ Σ∗∗. Seller 1’s incentive

compatibility constraint at time −t implies the following:

e−λtπi(x1(t), x2(t))+

∫ t

0

πi(x1(τ), x2(τ))λe−λτdτ ≥ e−λtπi(s
′
1, x2(t))+(1−e−λt)πi(sN1 , sN2 )

for all s′1 ∈ S1. By part 1 of Claim 1, we have

e−λtπi(ŝ1[q1(x1(t), x2(t))], ŝ2[q2(x1(t), x2(t))])+

∫ t

0

πi(ŝ1[q1(x1(τ), x2(τ))], ŝ2[q2(x1(τ), x2(τ))])λe−λτdτ
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≥ e−λtπi(s
′
1, x2(t)) + (1− e−λt)πi(sN1 , sN2 )

for all s′1 ∈ S.

Then, part 2 of Claim 1 implies that

e−λtπi(ŝ1[q1(x1(t), x2(t))], ŝ2[q2(x1(t), x2(t))])+

∫ t

0

πi(ŝ1[q1(x1(τ), x2(τ))], ŝ2[q2(x1(τ), x2(τ))])λe−λτdτ

≥ e−λtπi(s
′
1, ŝ2[q2(x1(t), x2(t))]) + (1− e−λt)πi(sN1 , sN2 )

for all s′1 ∈ S.

The last inequality is the incentive comparability constraint for seller 1 under

(σi((x̄1, x̄2), sNi ))i=1,2. A symmetric argument shows that the incentive comparability

constraint holds for seller 2 as well.

Lemma 7 implies that, as far as the plan of quantities is concerned, restricting

attention to the following set of strategy profiles is without loss of generality:

¯̄Σ :=
{

(σi
(
(x1, x2), sN1

)
)i=1,2 ∈ Σ̄ | ∃q : [0, T ]→ R+ s.t. xi(t) = ŝi[q(t)]

}
.

Furthermore, note that a payoff of 0 can be attained in the semi-Cournot game in

a Nash equilibrium in which each seller chooses ∅.
Hence, in order to prove that the reduction works, the only thing left is to show

that the gain from an instantaneous deviation given any scheme ŝi[q] of the opponent

in the supply-schedule game is the same as the instantaneous gain from a deviation

given any quantity q of the opponent in the semi-Cournot game when q is no more

than the Nash quantity. The next lemma proves this.

Lemma 8. For any q ≤ a−c
3b

, supsi∈S πi(si, ŝi[q]) = supq′∈R+
π̄i(q

′, q).

Proof of Lemma 8. Fix q ≤ qN .

First, consider a deviation inducing a price strictly less than c. In the semi-

Cournot competition, given seller 2’s quantity q, any deviation that induces a price

strictly less than c cannot be the optimal one for seller 1 since such deviations are

strictly dominated by a deviation to set the zero quantity. In the supply-schedule

game, given seller 2’s supply schedule ŝ2[q], any deviation that induces a price strictly

less than c cannot be the optimal one for seller 1 since q < D(p) if p < c.

10



Second, consider a deviation to induce a price strictly above p(ŝ1[q], ŝ2[q]). In

the semi-Cournot competition, arg maxq′ π̄i(q
′, q) ≥ qN if q ≤ qN , which implies that

the induced price under the optimal deviation is no greater than p(ŝ1[q], ŝ2[q]). In

the supply-schedule game, the “price first” rule implies that a deviation to any s1

inducing a price p̃ ≥ c > 0 results in seller 1’s realized supply that is no greater than

D(p̃)− q. The same argument as in the semi-Cournot competition then implies that

the induced price under the optimal deviation is no greater than p(ŝ1[q], ŝ2[q]) in the

supply-schedule game as well.

Take p̂ ∈ (c, p(ŝ1[q], ŝ2[q])]. In the supply-schedule game, consider s′1 such that

p(s′1, ŝ2[q]) = p̂. Then,

sup
s′1∈S s.t. p(s′1,ŝ2[q])=p̂

πi(s
′
1, ŝ2[q]) = πi(s̃1, ŝ2[q])

= (p̂− c) · (D(p̂)− q)

= sup
q′∈R+ s.t. D(p̂)=q′+q

π̄i(q
′, q),

where we define s̃1 so that s̃1(p) = D(p̂)− q for all p.

Thus,

sup
si∈S

πi(si, ŝi[q]) = sup
p̂∈(c,p(ŝ1[q],ŝ2[q])]

(
sup

s′1∈S s.t. p(s′1,ŝ2[q])=p̂

πi(s
′
1, ŝ2[q])

)

= sup
p̂∈(c,p(ŝ1[q],ŝ2[q])]

(
sup

q′∈R+ s.t. D(p̂)=q′+q

π̄i(q
′, q)

)
= sup

q′∈R+

π̄i(q
′, q).

A symmetric argument holds for seller 2.

B.1.2 Proofs

Proof of Lemma 1. The “if” direction: Take any (q1, q2) ∈ QN . We prove that there

exists a Nash equilibrium (s1, s2) with (q1(s1, s2), q2(s1, s2)) = (q1, q2). To show this,

fix an arbitrary Q̄ ≥ a
b

and consider si for each i = 1, 2 such that

si(p) =

qi if p < a− b(q1 + q2)

Q̄ if a− b(q1 + q2) ≤ p
.

11



Note that p(s1, s2) = a − b(q1 + q2) ≥ c. Also, the “price first” rule implies that

q1(s1, s2) = q1.

Consider s′1 such that p(s′1, s2) ≤ p(s1, s2). Then, either (i) p(s′1, s2) = p(s1, s2)

and q1(s′1, s2) ≤ q1, or (ii) q1(s′1, s2) ≥ q1. In case (i),

π1(s′1, s2) = (p(s′1, s2)− c)q1(s′1, s2) ≤ (p(s1, s2)− c)q1(s1, s2) = π1(s1, s2).

In case (ii),

π1(s′1, s2) ≤ ((a− b(q1(s′1, s2) + q2))− c) q1(s′1, s2). (29)

Since ((a− b(x+ q2))− c)x is decreasing in x when x ≥ a−c−bq2
2b

and we have a−c−bq2
2b

≤
q1 ≤ q1(s′1, s2) by assumption, the right hand side of (29) is no greater than

(p(s1, s2)− c) q1,

which is equal to π1(s1, s2).

Finally, there is no s′1 such that p(s′1, s2) > p(s1, s2). Otherwise, there exists

p ∈ (p(s1, s2), p(s′1, s2)) such that s′1(p) + s2(p) ≤ D(p) by the definition of the p(·, ·)
function, but this would imply s′1(p) + Q̄ ≤ D(p), which violates the assumption on

Q̄ that Q̄ ≥ a
b
.

A symmetric argument holds for s2, and this completes the proof for the “if”

direction.

The “only if” direction:

First, take (q1, q2) ∈ R2
+ such that q1 <

a−c−bq2
2b

and (s1, s2) such that qi(s1, s2) = qi

for each i = 1, 2. We prove that (s1, s2) is not a Nash equilibrium. Let

s′i(p) =


a−c−bq2

2b
if p < a− b(q1 + q2)

Q̄ if a− b(q1 + q2) ≤ p
.

First, note that p(s′1, s2) > 0. This is because, otherwise, s′1(ε) + s2(ε) > D(ε)

must hold for any ε > 0. However, since q1 <
a−c−bq2

2b
implies a − b(q1 + q2) > 0,

there exists ε̄ > 0 such that for all ε ∈ (0, ε̄), s′1(ε) + s2(ε) ≤ a−c−bq2
2b

+ q2 = a−c+bq2
2b

=
a−c
2b

+ q2
2
< a−c

2b
+

a−c
b

2
= a−c

b
< D(0). Since D(·) is continuous, it is true that there

exists ε > 0 such that s′1(ε) + s2(ε) < D(ε), a contradiction.

If p(s′1, s2) ∈ (0, p(s1, s2)), then q2(s′1, s2) ≤ s2(p(s′1, s2)) ≤ q2 holds, where the

12



first inequality follows because the realized quantity must be no more than what s2

specifies, and the second inequality follows because of the “price first” rule. Also,

q1(s′1, s2) = a−c−bq2
2b

because of the definition of s′1 and the “price first” rule. Hence,

we have:

π1(s′1, s2) = (p(s′1, s2)− c)q1(s′1, s2)

=

(
a− b

(
a− c− bq2

2b
+ q2(s′1, s2)

)
− c
)
a− c− bq2

2b

≥
(
a− b

(
a− c− bq2

2b
+ q2

)
− c
)
a− c− bq2

2b

> (a− b (q1 + q2)− c) q1 (because q1 6=
a− c− bq2

2b
)

= π1(s1, s2).

If p(s′1, s2) = p(s1, s2), then

π1(s′1, s2) = (p(s′1, s2)− c)q1(s′1, s2)

= (p(s1, s2)− c)q1(s′1, s2)

> (p(s1, s2)− c)q1(s1, s2)

= π1(s1, s2),

where the inequality follows from the definitions of (q1, q2) and s′1, and the “price

first” rule.

Finally, by the definition of s′1, p(s′1, s2) ≤ p(s1, s2). Overall, (s1, s2) is not a Nash

equilibrium.

The case with q2 <
a−c−bq2

2b
is perfectly symmetric.

Second, take (q1, q2) ∈ R2
+ such that q1+q2 >

a−c
b

and (s1, s2) such that qi(s1, s2) =

qi for each i = 1, 2. We prove that (s1, s2) is not a Nash equilibrium. To see this,

without loss of generality let q1 > 0, and observe

π1(s1, s2) = (a− b(q1 + q2)− c)q1 < (a− ba− c
b
− c)q1 = 0.

However, for s′1 such that s′1(p) = 0 for all p ∈ R+, we have π1(s′1, s2) = 0. Hence,

(s1, s2) is not a Nash equilibrium.
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Proof of Proposition 2. Solving the differential equation given in the text, we obtain:

6b(3bq − (a− c))
(a− c− bq)2

dq = λdt

⇐⇒ 6

(
3 ln(a− c− bq) +

2(a− c)
a− c− bq

)
= λt+ C,

where C is a constant. Given the initial condition limt↓0 q(t) = a−c
3b

, we have

C = 18

(
ln(a− c) + ln

(
2

3

)
+ 1

)
.

The time at which the quantity reaches the collusive quantity q∗ = a−c
4b

is t∗ =
1
λ

(36 ln(3)− 52 ln(2)− 2). Manipulating, we obtain the solution presented in the

statement of the proposition.

Since this plan of quantities is essentially unique (in the sense defined in Section

4.1) in the revision game of the semi-Cournot competition, it follows that the plan of

quantities induced by the strategy profile in Σ∗∗ (and thus in Σ∗) is essentially unique

in the revision game of the supply-schedule game.

B.1.3 Calculating the Expected Payoff Bound

Let π∗ = (a−c)2
8b

be the payoff at q∗. The payoff at q(0) is denoted πN = (a−c)2
9b

.

The expected payoff can be bounded as follows:

e−λt
∗
(a− c− 2bx∗)x∗ +

∫ t∗

0

(a− c− 2bx(τ))x(τ)λe−λτdτ

≥ e−λt
∗
(a− c− 2bx∗)x∗ + (1− e−λt∗)(a− c)2

9b

≥ e−(36 ln(3)−52 ln(2)−2) (a− c)2

8b
+ (1− e−(36 ln(3)−52 ln(2)−2))

(a− c)2

9b

= e−(36 ln(3)−52 ln(2)−2)π∗ + (1− e−(36 ln(3)−52 ln(2)−2))
8

9
π∗

=

(
e−(36 ln(3)−52 ln(2)−2) +

8

9
(1− e−(36 ln(3)−52 ln(2)−2))

)
π∗

=

(
0.88683650092 +

8

9
(1− 0.88683650092)

)
π∗

= 0.98742627788π∗.
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B.2 A Proof and the Detail for Remark 4 for Section 4.2

B.2.1 Proof of Proposition 3

Proof. The first-order condition is

0 =
∂πA
∂xA

=
δ

2
((1− xA) + w)− 1 + δ(xA − xB)

2
− δ

2
γ(1− xB).

This implies that, if xA is a best response to xB, then

xA =


0 if xB ≤

1
δ

+γ−w−1

1+γ

(1+γ)xB−γ+w+ δ−1
δ

2
∈ (0, 1] if xB ∈

(
1
δ

+γ−w−1

1+γ
,

1
δ

+γ−w+1

1+γ

]
1 if xB >

1
δ

+γ−w+1

1+γ

. (30)

The symmetric expression holds for B’s best response to an arbitrary xA. This enables

us to compute the unique Nash equilibrium of the component game as in (11).

First, suppose that w ≤ (1−δ)+δγ
δ

. Then, the Nash equilibrium is the action pro-

file that maximizes each candidate’s payoff among symmetric action profiles. Thus,

there is a unique optimal trigger strategy plan, and it is the one in which the Nash

equilibrium action profile (0, 0) is played on (and off) the path.

Consequently, in what follows, we consider the case (1−δ)+δγ
δ

< w. Under this

assumption, we first solve for the optimal grim trigger strategy plan assuming that

δ = 1. Then, using the result for the case with δ = 1, we solve for the optimal grim

trigger strategy plan for the case with δ < 1. We denote the optimal plan under

parameter δ by xδ(·).

A. The case with δ = 1:

First, we assume δ = 1 and solve for x1. Let us compute d(x), π(x) and πN . By

substituting x into xA and xB in (10), we have

π(x) =
1

2
((1 + γ)(1− x) + w) .
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Thus, substituting (11) and δ = 1 into this,

πN =


1
2

(
(1 + γ)1−w

1−γ + w
)

if w ≤ 1
δ

w
2

if 1
δ
< w

.

A-1. The case with (1−δ)+δγ
δ

< w ≤ 1
δ
:

Note that, in this case, [0, 1] ⊆
(

1
δ

+γ−w−1

1+γ
,

1
δ

+γ−w+1

1+γ

]
, and thus a best response to

any xB ∈ [0, 1] is xA =
(1+γ)xB−γ+w+ δ−1

δ

2
. Substituting this into (10), setting x = xB

and δ = 1, and rearranging, for every x ∈ [0, 1],

d(x) + π(x) = γ(1− x) +
1

2

(
(1− γ)(1− x) + w + 1

2

)2

.

Now, recall that our optimal plan is given by

dx1

dt
= λ

d(x1) + π(x1)− πN

d′(x1)
.

Hence, by substituting, we obtain

dx1

dt
= −λ(1− γ)2(1− x1) + (1− γ)w + 3 + 5γ

2(1− γ)2
.

This implies ∫
λdt = −

∫
2(1− γ)2

(1− γ)2(1− x1) + (1− γ)w + 3 + 5γ
dx1,

which implies

λt+ C = 2 ln
(
(1− γ)2(1− x1) + (1− γ)w + 3 + 5γ

)
for some constant C. To solve for C, substitute (11) and t = 0 into this to get

C = 2 ln(4 + 4γ). Hence, we have

e
λ
2
t =

(1− γ)2(1− x1(t)) + (1− γ)w + 3 + 5γ

4 + 4γ
,
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or

x1(t) =
−eλ2 t(4 + 4γ) + ((1− γ)w + 4 + 3γ + γ2)

(1− γ)2
. (31)

A-2. The case with 1
δ
< w:

Second, suppose that 1
δ
< w. For each w > 1

δ
, we have

1
δ

+γ−w+1

1+γ
< 1. Hence, (30)

implies that there exists ε > 0 such that for all x ∈ (1 − ε, 1], action 1 is the unique

best response to x. Thus, by substituting xA = 1 into (10), setting xB = x and δ = 1,

we obtain

d(x) + π(x) =
2− x

2
w +

x

2
γ(1− x)

for x ∈ (1 − ε, 1]. This implies that d(x)
π(x)−πN = w−1+γ(x−1)

1+γ
for all x ∈ (1 − ε, 1]. This

converges to w−1
1+γ

as x→ 1, and it is strictly positive because 1
δ
< w. Theorem 4 then

implies that there is a unique trigger strategy equilibrium, and in that equilibrium,

candidates play the Nash action all the time.

B. The case with general δ:

Now, we consider the case with δ < 1 and solve for xδ. To deal with this case, it

is useful to introduce a change of a variable for each i = A,B as follows:

yi = 1− δ(1− xi).

Note that, since xi ∈ [0, 1], we have yi ∈ [1− δ, 1]. Moreover,

yi − yj = δ(xi − xj) and 1− xi =
1

δ
(1− yi)

hold. Hence, the payoff in (10) can be rewritten as:

πA(xA, xB) =
1 + (yA − yB)

2
(
1

δ
(1− yA) + w) +

1 + (yB − yA)

2
· γ · 1

δ
(1− yB)

=
1

δ

[
1 + (yA − yB)

2
((1− yA) + δw) +

1 + (yB − yA)

2
· γ(1− yB)

]
.

Note that this expression is proportional to (10) in which we substitute yi into xi

for each i = A,B and δw into w.3 Hence, by (31), the optimal trigger strategy plan

3This and dxi
dt δ = dyi

dt imply the differential equation for general δ presented in Section 4.2.
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under general δ satisfies

y(t) =


−e

λ
2 t(4+4γ)+((1−γ)δw+4+3γ+γ2)

(1−γ)2
if w ≤ 1

δ

1 if 1
δ
< w

.

Hence,

xδ(t) =
y(t)− (1− δ)

δ
=


−e

λ
2 t(4+4γ)+δ(1−γ)(w+1−γ)+3+5γ

δ(1−γ)2
= xN − (e

λ
2 t−1)(4+4γ)
δ(1−γ)2

if w ≤ 1
δ

1 if 1
δ
< w

.

Solving xδ(t∗) = 0, we obtain

t∗ =
2

λ
ln

(
δ(1− γ)(w + 1− γ) + 3 + 5γ

4 + 4γ

)
.

C Appendix for Section 5

C.1 Proofs for Section 5

C.1.1 Proof of Theorem 3

Proof. Take ε > 0 for Assumption (*) and k ∈ (0, 1) for condition (13) to hold.

Note first that, by condition (13) and Assumption (*)-3, we can find ā ∈ (aN , aN +

ε] such that for all a ∈ [aN , ā], (d(a))k ≤ π(a)− πN holds.

Next we introduce a generalized inverse of function d that is measurable. We will

construct a non-trivial equilibrium plan from this function. Note that, by definition,

d(a) ≥ 0 for all a and d(a) = 0 means that a is a symmetric Nash equilibrium.

Since we are assuming that aN is the unique symmetric Nash equilibrium, d > 0 on

(aN , a]. Our goal here is to find a measurable function b : [0, d(a)] → [aN , ā] such

that d(b(δ)) = δ for each δ ∈ [0, d(a)]. If d−1 exists in the given domain (i.e., if d is

increasing on [aN , ā]) then we let b = d−1. More generally, we construct b as follows.

First, define a function on [aN , a] by

d(a) := max
a′∈[aN ,a]

d(a′).
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This is well-defined because the function d is continuous on a compact set [aN , a].

By construction, d is non-decreasing, and it is continuous by Berge’s theorem of

maximum.4 By construction, d (0) = 0 and d (a) ≥ d(a). Hence, the continuity

of d implies that, for any δ ∈ [0, d(a)], there is some aδ such that δ = d (aδ). By

the definition of d , there must be some a∗δ such that δ = d (aδ) = d(a∗δ) (i.e., a∗δ
maximizes d on [aN , aδ]). Define b(δ) to be a∗δ .

5 By construction, b is an increasing

function and therefore measurable.6

Now let ε̂ := min
{
d(ā)

1−s
2 , λ(1−s)

s+1

}
. We are going to show that a trigger strategy

plan

x(t) =


b
(
t

2
1−k

)
if t < ε̂

b
(
ε̂

2
1−k

)
if t ≥ ε̂

(32)

satisfies the incentive constraint∫ t

0

(
π(x(τ))− πN

)
λe−λτdτ ≥ d(x(t))e−λt (33)

for all t ∈ [0, T ]. First, we show that the plan x(t) is well-defined. Recall that ε̂ was

defined to be less than d(ā)
1−k
2 , and therefore, for all t ≤ ε̂, we have t

2
1−k ≤ ε̂

2
1−k ≤ d(ā).

Hence, t
2

1−k (for t ≤ ε̂) is in the domain of b (i.e., [0, d(a)]), and therefore x(t) given

by (32) is indeed well-defined. Second, since b is measurable, the integral in the

above incentive constraint is well-defined. Third, we show that the inequality in the

4The correspondence that maps a to [aN , a] is both upper and lower semicontinuous, and d is
continuous. Hence, the conditions for Berge’s theorem are satisfied.

5If a∗δ is not unique, choose any one.
6Suppose b is not increasing and there are δ < δ′ such that b(δ) ≥ b(δ′) (≥ aN ). By the

construction of b, there is some aδ such that b(δ) ∈ arg maxa′∈[aN ,aδ] d(a′). This implies that

d(b(δ)) ≥ d(a) for all a ∈ [aN , b(δ)], and in particular for a = b(δ′). Thus, we obtain δ = d(b(δ)) ≥
d(b(δ′)) = δ′, which contradicts our premise δ < δ′.
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incentive constraint (33) holds. To see this, first consider the case t ≤ ε̂. We have∫ t

0

(
π(x(τ))− πN

)
λe−λτdτ ≥

∫ t

0

(d(x(τ)))k λe−λτdτ =

∫ t

0

τ
2k
1−kλe−λτdτ

> λe−λt
∫ t

0

τ
2k
1−kdτ

= λe−λt
1

2k
1−k + 1

t
2k
1−k+1 =

(
λ(1− k)

k + 1
t−1

)
t

2
1−k e−λt

≥ t
2

1−k e−λt = d(x(t))e−λt.

The first inequality follows from (i) x(τ) = b
(
τ

2
1−k

)
∈ [aN , ā] (because the range of

function b is [aN , ā]) and (ii) π(a)−πN ≥ (d(a))k for all a ∈ [aN , ā] (as we have shown

at the beginning of the proof). The last inequality follows from t ≤ ε̂ ≤ λ(1−k)
k+1

(by

the definition of ε̂).

Next, consider the case t > ε̂. We have∫ t

0

(
π(x(τ))− πN

)
λe−λτdτ ≥

∫ ε̂

0

(
π(x(τ))− πN

)
λe−λτdτ

≥ ε̂
2

1−k e−λε̂ ≥ ε̂
2

1−k e−λt = d(x(t))e−λt.

The first inequality follows from π(x(τ)) − πN = π(b(ε̂
2

1−k )) − πN ≥ 0 for all τ > ε̂

because (i) the range of b is [aN , a] and (ii) π(a) − πN ≥ 0 for all a ∈ [aN , a] by

Assumption (*)-3. The second inequality follows from the third inequality for the

case of t ≤ ε̂.

Hence, the non-trivial plan (32) satisfies the incentive constraint (33) for all t ∈
[0, T ]. This completes the proof.

C.1.2 Proof of Theorem 4

First, we introduce notation to define general strategies in the revision game. Let a

history ht at time t ∈ [0, T ) be a description of the current remaining time, the action

profile at time −T , and a sequence of pairs of the remaining time and the action

profile chosen at the past opportunities, as follows:

ht = (t, aT , (tk, ak)nk=1)
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for some nonnegative integer n, where tk ∈ (t, T ) for any k, and tk−1 > tk for any

integer k no less than 2 and no more than n. Note that the description of ht does

not include the information about the action profile taken at time −t. Let Ht be

the set of all such histories. The set of histories at time −T , HT , is a singleton set

consisting of a null history. Let H =
⋃
t∈[0,T ] Ht. Player i’s (pure) strategy is defined

as a mapping σi : H → Ai. We define (pure-strategy) SPE in the standard manner.

Proof. First, let us introduce a few notations. Denote by “h̃t = ht” the event under

which the history at time −t is ht ∈ Ht. We also denote by h+
t = (ht, a) a pair of a

history at −t and an action profile taken at −t. Denote by “h̃+
t = (ht, a)” the event

under which the history at time −t is ht ∈ Ht and players take the action profile a.

Now, fix a SPE σ. Step 1 shows that, if players play an action profile a′ under

some history at some time −t under σ, then πi(a
′) = πi(a

N) holds for each player i.

Then we show in Step 2 that only aN can be played under any history under σ.

Step 1: Only the Nash payoff is possible under σ

Suppose that at time −t ∈ [−T, 0], it is the case that for every time −s > −t, if

an action profile a′ ∈ A is taken in some SPE then πi(a
′) = πi(a

N) holds. We will

show that for any i, πi(σ(ht+ε)) = πi(a
N) for any ht+ε ∈ Ht+ε if ε > 0 is sufficiently

small.

Step 1-1: Defining C, D̄, and D
Fix ε ≥ 0 and take an arbitrary history ht+ε ∈ Ht+ε. Let C be the continuation

payoff from following σi at history ht+ε, and D̄ be the supremum continuation payoff

from a deviation. Note that C can be written as follows:

C = (1− e−λt)︸ ︷︷ ︸
Prob of at least one arrival in (−t, 0]

×πNi + e−λt︸︷︷︸
Prob of no arrival in (−t, 0]

×

 e−λε︸︷︷︸
Prob of no arrival in (−t− ε, t]

πi(σ(ht+ε)) +

∫ ε

0

Eσ[πi(σ(ht+s))|h̃+
t+ε = (ht+ε, σ(ht+ε))]︸ ︷︷ ︸

Payoff when the final arrival is at −t− s

λe−λsds

 .
The incentive compatibility condition for player i at history ht+ε can be expressed

as

D̄ ≤ C.
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In Step 1-2, we show that this incentive compatibility condition implies

D ≤ C,

where

D := (1− e−λt)︸ ︷︷ ︸
Prob of at least one arrival in (−t, 0]

×πNi +

e−λt︸︷︷︸
Prob of no arrival in (−t, 0]

×

 e−λε︸︷︷︸
Prob of no arrival in (−t− ε,−t]

×(πi(σ(ht+ε)) + d(σ(ht+ε))

+

∫ ε

0

inf
a∈A

Eσ[πi(σ(ht+s))|h̃+
t+ε = (ht+ε, a)]︸ ︷︷ ︸

Infimum payoff when the final arrival is at −t− s

λe−λsds

 .
Step 1-2: Showing D̄ ≤ C =⇒ D ≤ C

To prove that D̄ ≤ C implies D ≤ C, it suffices to prove that D ≤ D̄. To see

why this inequality holds, define i’s expected continuation payoff from deviating to

ai ∈ Ai at history ht+ε and then following σi thereafter:

D(ai) := (1− e−λt)︸ ︷︷ ︸
Prob of at least one arrival in (−t, 0]

×πNi +

e−λt︸︷︷︸
Prob of no arrival in (−t, 0]

×

 e−λε︸︷︷︸
Prob of no arrival in (−t− ε,−t]

×(πi(ai, σ(ht+ε)))

+

∫ ε

0

Eσ[πi(σ(ht+s))|h̃+
t+ε = (ht+ε, (ai, σ−i(ht+ε)))]︸ ︷︷ ︸

Payoff when the final arrival is at −t− s

λe−λsds


By the definition of di(·), there must exist a sequence {aki }∞k=1 such that πi(a

k
i , σ−i(ht+ε))→

πi(σ(ht+ε)) + di(σ(ht+ε)) as k →∞. Hence, for any ξ > 0, there exists Kξ <∞ such

that for all k > Kξ, πi(a
k
i , σ−i(ht+ε)) ≥ πi(σ(ht+ε)) + di(σ(ht+ε))− ξ.

Therefore, for any ξ > 0, k > Kξ, we have

D(aki ) ≥ (1− e−λt)︸ ︷︷ ︸
Prob of at least one arrival in (−t, 0]

×πNi +
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e−λt︸︷︷︸
Prob of no arrival in (−t, 0]

×

 e−λε︸︷︷︸
Prob of no arrival in (−t− ε,−t]

×(πi(σ(ht+ε)) + di(σ(ht+ε))− ξ)

+

∫ ε

0

Eσ[πi(σ(ht+s))|h̃+
t+ε = (ht+ε, (a

k
i , σ−i(ht+ε)))]︸ ︷︷ ︸

Payoff when the final arrival is at −t− s

λe−λsds

 . (34)

By the definition of D, the right-hand side of (34) is no less than D−e−λ(t+ε)ξ. Hence,

we have

D − e−λ(t+ε)ξ ≤ D(aki ) (35)

for any ξ > 0 and k > Kξ.

Note also that, for any k, deviating to aki and following σi thereafter is a feasible

deviation. Thus, for any k, we have

D(aki ) ≤ D̄. (36)

Conditions (35) and (36) imply:

D − e−λ(t+ε)ξ ≤ D̄

for any ξ > 0. Thus, we obtain

D ≤ D̄.

Hence, the incentive compatibility condition (D̄ ≤ C) implies D ≤ C.

Step 1-3: Bounding |πi(σ(ht+ε))− πN |
Now, manipulating D ≤ C, we obtain:

di(a(ht+ε, σ)) ≤ eλε
∫ ε

0

(
Eσ[πi(σ(ht+s))|h̃t+ε = ht+ε]− inf

a∈A
Eσ[πi(σ(ht+s))|h̃+

t+ε = (ht+ε, a)]

)
λe−λsds.

(37)

If |πi(σ(ht+s))− πN | ≤M for all s ∈ [0, ε], (37) implies

di(σ(ht+ε)) ≤ eλε
∫ ε

0

2Mλe−λsds,
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where the right-hand side is no more than 2Mλεeλε. This and condition (14) imply:

|πi(σ(ht+ε))− πN | ≤
2λ

m
εeλεM,

where

m = inf
a∈A\{aN}

di(a)

|πi(a)− πNi |
> 0

is a positive number implied by condition (14). The same argument can be used to

show that for any s ∈ [0, ε], for any ht+s ∈ Ht+s,

|πi(σ(ht+s))− πN | ≤
2λ

m
seλsM,

where the right-hand side is no more than 2λ
m
εeλεM . Hence, we conclude that if

|πi(σ(ht+s)) − πN | ≤ M for all s ∈ [0, ε], then |πi(σ(ht+s)) − πN | ≤ 2λ
m
εeλεM for all

s ∈ [0, ε].

Since |πi(σ(ht+s))−πN | ≤ π̄i−πi for all s ∈ [0, ε], this implies that for any positive

integer n, we have

|πi(σ(ht+ε))− πN | ≤
(

2λ

m
εeλε

)n
(π̄i − πi).

Notice that there exists ε̄ > 0 such that for any ε ∈ (0, ε̄), 2λ
m
εeλ < 1 holds. Hence,

there exists ε̄ > 0 such that for any ε ∈ (0, ε̄), the only action profile σ(ht+ε) that

satisfies the above equality for all n is πi(σ(ht+ε)) = πi(a
N).

Hence, for every time −t ∈ [−T, 0], in any SPE, if an action profile a′ is taken

under some history at −t, then for each player i, we have πi(a
′) = πi(a

N).

Step 2: Only Nash action is possible under σ

Now, suppose that under σ, there exists some t and ht ∈ Ht such that σ(ht) 6= aN .

Then, player i’s incentive compatibility condition at ht can be written as follows:

e−λt (πi(σ(ht)) + di(σ(ht))) + (1− e−λt)πNi ≤ πN ,

which is equivalent to di(σ(ht)) ≤ 0. However, since aN is a unique Nash equilibrium

and σ(ht) 6= aN , there exists i such that di(σ(ht)) > 0. This is a contradiction. Hence,

we conclude that for any t ∈ [0, T ], for any ht ∈ Ht, we have σ(ht) = aN .
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