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S1 Additional Discussion for Example 2 (Cournot

Duopoly)

First, we offer a story to motivate this example. Two fishing boats depart from a

harbor, and they must return when the fish market, located at the harbor, opens at

6:00am. They catch fish at a fishing ground that is far from the fish market. They

have to depart the fishing ground at 5:00am to reach the market at 6:00am. Hence,

5:00am is the end of the revision game, and assume that the cost for the fishermen is

associated with the transportation cost of the final catch (the fish at hand at 5:00am)

to the market (consider the case where catching fish itself is easy and the cost of

catching fish is negligible).

The fishermen wish to collude (i.e., to restrict their catch) so as to increase the

price at the fish market. They start with a small amount of catch (the collusive

quantity). They operate side by side, closely monitoring each other’s behavior. A

revision opportunity of their quantities corresponds to the arrival of a fish school,

which follows a Poisson process.1 When the Poisson arrival rate is λ = 0.1 and the

time unit is a minute, a fish school comes every ten minutes on average. According

to the optimal trigger strategy equilibrium, the fishermen do not touch fish schools

until 4:49am. In the last eleven minutes, however, whenever a fish school visits them,

they catch additional fish. If anyone deviates from this equilibrium plan, they catch

a large amount (so that each fisherman’s total amount becomes the Nash quantity)

when the next fish school arrives. In this way, the fishermen can attain an expected

payoff that is 97% of fully collusive profit in expectation as we will show below.
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This story does not exactly match the revision-game model in that (i) the fisher-

men may be able to discard fish at any time in reality and (ii) catching additional

fish may be infeasible in reality if the deadline is too close. We can formally show

that introducing the possibility of discarding fish does not alter our equilibrium. The

main reason is that the fishermen would like to catch more, if possible, under any

equilibrium action profile of the optimal trigger strategy before time 0. The formal

proof is given at the end of this section. For the latter point (ii), the issue can be

addressed by the argument we present in Section 7.1.

Next, we calculate the expected payoff from the optimal trigger strategy equilib-

rium. It is computed as:∫ t(x∗)
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Model that allows discarding fish:

Assume that players can discard fish at any moment of time in {−t| − t =

0,−∆,−2∆, ... and t < T} for small ∆ > 0.2 Consider the strategy profile of this

game where (1) actions at the revision opportunities are the same as under the op-

timal trigger strategy of our original model, (2) players do not discard fish after any

history before time 0, and (3) they take mutual best replies when they may discard

fish at time 0.3

Let us elaborate on (3). When the profile of fish at hand is (q1, q2) at time 0 (and

a revision opportunity does not arise at time 0), players effectively play the Cournot

game where their quantities are restricted to satisfy qi ≤ qi, i = 1, 2. Examination

of the reaction curves in the restricted strategy spaces reveals that the unique Nash

equilibrium of this fish discarding game at time 0 is (i) the Cournot Nash profile (qN1 ,

qN2 ) if qNi ≤ qi, i = 1, 2, (ii) (q1, q2) if Ri(q−i) ≥ qi, i = 1, 2, where Ri is the reaction

function of player i (they do not discard fish because they would like to catch more,

if possible), and (iii) (qi, R−i(qi)) if qNi ≥ qi and R−i(qi) ≤ q−i, i = 1, 2.

Given the above observation, one can check that if a player unilaterally discards

fish at any moment before time 0 (after any history), her payoff at the fish discard-

ing game at time 0 never increases. Hence, players have an incentive to follow the

fish discarding rule specified by our strategies. Lastly, we show that players have

an incentive to follow the revision rule specified by our strategies. When a revision

opportunity arrives at −t, the equilibrium action q(t) is no greater than the Cournot

Nash quantity. Consider any unilateral deviation of player i at time t. If the devia-

tion action is less than myopic best reply Ri(q(t)), it remains unchanged at the fish

discarding game at time 0 (see case (ii) specified above). Alternatively, when player i

deviates to a larger amount than the myopic best reply, the deviating action is later

corrected towards the myopic best reply (case (iii) specified above). In either case,

the player has no incentive to deviate because the trigger strategy profile constitutes

an equilibrium in our original model (because the deviation to the myopic best reply

is unprofitable under the optimal trigger strategy equilibrium profile in our model).

If a revision opportunity arrives (before time 0) when players are supposed to play

the Cournot Nash equilibrium quantity, any unilateral deviation also remains to be

2This is to avoid technical issues associated with defining strategies in continuous time.
3In particular, actions in the revision opportunities depend only on what has happened on the

previous revision opportunities (and the initial actions), as under the optimal trigger strategy.

3



unprofitable. This is because after any unilateral deviation, the opponent does not

change his Nash action in the fish discarding game at time 0. Hence, the strategy

profile we constructed under the possibility of discarding fish is an equilibrium, and by

construction it achieves the same outcome as the optimal trigger strategy equilibrium

of our original model.

S2 Discussions for Section 4.2

S2.1 A Microfoundation of the Voter Behavior

The winning probability (9) is derived from the following behavior of voters. There

is a unit mass of voters i ∈ [0, 1], where fraction θ is pro-THAAD and the others are

anti-THAAD. We assume that the pro-THAAD voters constitute a majority, i.e.,

θ ∈ (1/2, 1]. (38)

Pro-THAAD voter i votes for A if

xA + η̃A + ε̃iA > xB + η̃B + ε̃iB,

where η̃A and η̃B are candidate-specific shocks that are common to all voters, and ε̃iA

and ε̃iB are voter-specific idiosyncratic shocks (there is no abstention). Pro-THAAD

voter i votes for B under the symmetric condition.4 Similarly, anti-THAAD voter i

votes for A if

1− xA + η̃A + ε̃iA > 1− xB + η̃B + ε̃iB,

and anti-THAAD voter i votes for B under the symmetric condition. We assume

uniform distributions: η̃B − η̃A ∼ U [−c, c] and ε̃iB − ε̃iB ∼ U [−h, h]. The latter is

interpreted as “i.i.d.” shocks across voters and we adopt the convention that the

law of large numbers holds in the continuum population. We also assume that the

voter-specific shocks are more important than the common shocks in the following

sense:

h ≥ 1 + c. (39)

4 The behavior of the voter i such that xA+ η̃A+ ε̃iA = xB + η̃B + ε̃iB does not affect the analysis
because the measure of such voters is zero.. The same remark applies to the anti-THAAD voter i
satisfying an analogous equality.
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In the population of pro-THAAD voters, the fraction of voters voting for A given ηA

and ηB is equal to

Pr(xA + ηA + ε̃iA > xB + ηB + ε̃iB) = Pr(xA − xB + ηA − ηB > ε̃iB − ε̃iA)

=
1

2
+
xA − xB + ηA − ηB

2h
.

Here we used our assumption that ε̃iB − ε̃iB ∼ U [−h, h] and (39), which ensures

−h ≤ xA−xB + ηA− ηB ≤ h. The symmetric expression applies to the anti-THAAD

voters, and therefore the total mass of A-voters given common shocks ηA and ηB is

θ

(
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+
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.

Candidate A’s winning probability, denoted PA(xA, xB), is the probability that the

above fraction is more than 1/2. This reduces to

PA(xA, xB) = Pr((2θ − 1)(xA − xB) > η̃B − η̃A). (40)

Recall that η̃B − η̃A ∼ U [−c, c] and assume that the support is large enough so that

2θ − 1 ≤ c. (41)

Then, (40) is equal to

PA(xA, xB) =
1

2
+

(2θ − 1)(xA − xB)

2c
.

By defining δ := (2θ − 1)/c, we have obtained the proposed winning probability (9).

Parameter restrictions (38) and (41) imply that δ ∈ (0, 1].

S2.2 Catering to the middle

If γ = 0 and δ = 1
2
, the model can also be interpreted in the following manner:

Suppose that the policy space is [−1, 1]. Candidate 1’s bliss point is −1 and candidate

2’s is 1. Candidate 1 is faithful to her party’s identity (“left wing”), so she chooses
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a policy from [−1, 0] while never wanting to choose a “right wing” policy in (0, 1]

possibly because of reputational concern. Symmetrically, candidate 2 chooses a policy

from [0, 1].5 Each candidate’s winning probability is determined by the standard

Hotelling rule where the median voter is uniformly distributed over [−1, 1], and a

candidate’s utility from the implemented policy is given by max{1−z, 0} where z is the

distance from the bliss point to the implemented policy. Then, each candidate’s payoff

from any given policy profile (yA, yB) ∈ [−1, 1]2 is given by (10) with substitutions

that xA = 1 + yA and xB = 1− yB. Hence, our model nests such a model as a special

case.

We note that, in this alternative model, the utility function for the implemented

policy is convex. Such policy preferences are especially relevant for issues that provoke

strongly opinionated reactions (e.g. same-sex marriage, abortion, gun control, and

so forth). This is because, for these policy issues, it is natural to assume that one’s

utility arising from policy preferences sharply decreases as the implemented policy

moves away from her bliss point.6 The functional form max{1− z, 0} is the simplest

way to capture this possibility. This convexity allows for there to be a potential room

for cooperation in the revision game as long as the Nash profile is not (−1, 1).7

With this reformulation of the model, Proposition 3 shows that if the office moti-

vation is not too large or too small, each candidate starts from announcing their most

preferred policies (policy −1 for candidate 1 and policy 1 for candidate 2). They stick

to such announcements until a certain time before the election day, and then begin

catering to the middle towards the end of the campaign period.

5Technically, if each candidate can choose a policy from [−1, 1], then there does not exist a pure
Nash equilibrium in the component game because a best response does not necessarily exist. We
conjecture that, if we allowed for candidates to choose their policies from [−1, 1], there would exist a
nontrivial equilibrium in which at each opportunity candidates mix across multiple policies. Kamada
and Sugaya (2019) analyze a mixed strategy plan in the context of their model, and their simulation
result shows quite complicated dynamics of mixing probabilities. For this reason, here we do not
delve into such an analysis.

6See Osborne (1995) for a criticism on the use of concave utility functions for preferences over
electoral policies. Kamada and Kojima (2014) discuss implications of convex voter utility functions.

7Note that, on the other hand, there would be no room for cooperation if the utility is concave
as traditionally assumed in the political science literature.
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S3 Appendix for Section 7

S3.1 Details for Section 7.1

S3.1.1 Soft Deadline

The precise statements of the claims about introducing a soft deadline in Section 7.1

are as follows:

Proposition 8. The following hold for any T ≥ 0 and γ ∈ (0, 1] in the soft deadline

game.

1. Under (13), for any ε > 0, cooperation can be sustained by a trigger strategy

equilibrium.

2. Under (14), there exists ε < 1 such that for all ε < ε, there is a unique trigger

strategy equilibrium, and it has the plan x(t) = aN for each t.

Proof. For any trigger strategy equilibrium plan x(·), define action ax by an arbitrary

action in A that satisfies the following equation:

π(ax) = sup
t≥0

π(x(t)). (42)

This is well defined because the action space is compact and π is continuous. Plan

x(·) satisfies the following incentive constraint at any time t ≥ 0,

π(x(t))P +
∞∑
s=1

π(x(t+ s))Rs ≥ (π(x(t)) + d(x(t))P + πN(1− P ), (43)

where P is the probability of no revision in the future and Rs is the probability that

the last revision opportunity arrives s periods later. By definition,
∑∞

s=1 Rs = 1−P ,

and therefore (42) implies that the left-hand side of (43) is less than or equal to π(ax).

By considering the right-hand side of (43) for a convergent subsequence t = t1, t2, ...

where limn→∞ π(x(tn)) = π(ax) and limn→∞ d(x(tn)) = d(ax) (both convergence can

simultaneously hold because d is continuous as well), we obtain

π(ax) ≥ (π(ax) + d(ax))P + πN(1− P ), (44)
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which can be arranged as
d(ax)

π(ax)− πN
≤ 1

P
− 1 (45)

if π(ax) > πN . This is a necessary condition for any x(·) to be sustained by a trigger

strategy equilibrium. Conversely, if this condition is satisfied and x(·) is a constant

plan ∀t ≥ 0 x(t) = a, then x(·) constitutes an equilibrium in the subgame after period

0.8

Now consider condition (13). For any ε > 0, there is a positive probability of

a revision in the future, and therefore P , the probability of no revision in the fu-

ture, is strictly less than 1, so that 1
P
− 1 > 0. Note that condition (13) implies

lima→aN
d(a)

π(a)−πN = 0. Hence, under (13), there exists ε > 0 such that for any x(·)
such that ax 6= aN and ax is in the ε-neighborhood of aN , condition (45) holds. Note

that such x(·) exists because there is a ∈ A \ {aN} in the ε-neighborhood of aN

such that π(a) > πN by assumption. Hence, we conclude that cooperation can be

sustained from time 0 on (this also implies that (weakly more) cooperation can be

sustained in all periods before).

Next, consider condition (14). Note that P , the probability of no revision in the

future, is equal to 1 if ε = 0 (i.e., the game ends immediately), and P is continuous in

ε.9 Therefore, there exists ε > 0 such that for all ε < ε, the right-hand side of (45) is

strictly less than the infimum in condition (14), which means that (45) is violated for

any x(·) such that π(ax) > πN . Hence, in any trigger strategy equilibrium, players

play aN from period 0 on. By backward induction, aN is also played in any period.

S3.1.2 ε-Willingness to Punish

Recall that we consider a model in which time is discrete −t = −T, ...,−1, 0, and a

revision opportunity arrives with probability γ = 0.1 in each period. In the contin-

uous time model with Poisson arrival rate λ, a revision opportunity arrives approxi-

mately with probability λ∆ in a small time interval ∆. To compare the discrete- and

continuous-time models, we assume λ = 1 and the length of one period in the discrete

time models is ∆ = 0.1 (so that γ = λ∆ = 0.1).

In the continuous time models with selfish players (ε = 0), the optimal plan in

8This is because (44) is the incentive constraint for the constant plan.
9This can be verified by P =

∑∞
t=0(1− ε)(1− γ)tεt.
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Figure 5: Finite Time Condition

Model 1 turns out to be x(t) = t until it hits the optimal action 1.10 In Model 2,

the optimal plan exhibits no cooperation: x(t) = 0 for all t. Those predictions of the

revision games are depicted by the thick curves in Figure 5.11

The discrete time models with ε-incentive to punish can be numerically solved

backwards, and the solutions are depicted by thin curves in the figure (the discrete

points are interpolated). As we can see, substantial cooperation is sustained even un-

der very small incentive to punish (ε) in Model 1. In contrast, in Model 2, cooperation

becomes very hard to sustain as the incentive to punish decreases.

Let us summarize the implications of our analysis above. In realistic situations,

the assumption of the revision game that there is always a positive probability that

another revision is possible may not be satisfied. In such a situation, however, if

players have small incentive to punish a deviator, the predictions of the revision game

survive: substantial cooperation is possible if and only if cooperation is sustained in

the revision game.

10This is the solution to the differential equation dx
dt = λd(x)+π(x)−π

N

d′(x) = x2+(2x−x2)
2x = 1.

11In the figure, t corresponds to the remaining time in the continuous-time models (revision
games).
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S3.2 Detailed Discussion for Section 7.2

Revision games have some similarities to stochastic games (e.g., Dutta (1995) and

Hörner, Sugaya, Takahashi and Vieille (2011)) and to repeated games with a decreas-

ing discount factor (Bernheim and Dasgupta, 1995). We compare those models in

the framework of a general stochastic-game model, where players obtain flow payoffs

in each period n = 0, 1, 2, .... Although a payoff accrues only once (at the deadline)

in the revision game, it can be interpreted as a special case of this general stochastic

game. This observation facilitates a clear-cut comparison.

In the general stochastic-game model, the flow playoff to player i in period n =

0, 1, ... is

ui(a(n), s(n))

where a(n) and s(n) ∈ S are the action profile and state in period n, respectively.

The probability distribution of s(n + 1) depends on s(n) and a(n). The game is

terminated at the end of period n with probability r(s(n), a(n)). The flow payoff in

period n is discounted by D(s(n), n). Therefore, if the game is terminated at the end

of period N , the realized payoff is

N∑
n=0

ui(a(n), s(n))D(s(n), n).

Dynamic games that have some similarities to revision games are special cases of

this general model.

• The first stochastic-game model proposed by Shapley (1953): D(s(n), n) ≡ 1

(discounting comes from random termination).

• Stochastic games where the folk theorems have been proved (Dutta (1995)

and Hörner, Sugaya, Takahashi and Vieille (2011)): D(s(n), n) = δn and

r(s(n), a(n)) ≡ 0 (no random termination).

• Repeated games with a decreasing discount factor (Bernheim and Dasgupta,

1995): S is a singleton (there is no state variable), D(n) = δ(0) × · · · × δ(n)

(limn→∞ δ(n) = 0) and r(a(n)) ≡ 0 (no random termination).

We will show that the revision game is also strategically equivalent to a special
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case of this model, which we call “Game F.”12 To transform the revision game into

Game F, first interpret the beginning of the revision game as period n = 0, and

interpret the nth arrival of a Poisson revision opportunity as period n > 0. Define

s(n), the state in period n, as the remaining time in the revision game (state space is

S = [0, T ]), and define the termination probability at a given remaining time (=state)

by the probability of no future revision opportunity at such a remaining time in the

revision game.13 Each player i obtains in each period n discounted flow payoff

πi(a(n))e−λs(n).

Let us now show that the revision game and Game F share the same expected

payoff. We present such an analysis for the case in which the current action depends

only on the current state (the remaining time).14 In general, if payoff f(t) accrues

each time a Poisson arrival happens, the expected sum of realized payoffs is∫ T

0

f(t)λdt.

Heuristically, this is true because the probability of one Poisson arrival in a small

time interval ∆ is approximately equal to λ∆. If we apply this formula for f(t) =

πi(a(t))e−λt (Game F’s payoff) where a(t) denotes the action taken at state t, we can

see that the expected payoff in Game F is

πi(a(T ))e−λT +

∫ T

0

πi(a(t))e−λtλdt, (46)

which is exactly the same as that in the revision game.

The equivalence between the revision game and Game F enables us to directly

compare the revision game with related dynamic games. First, the mechanism to

sustain cooperation in all those models are the same: the deviation gain today is

wiped out by the reduction of the future payoff. Secondly, discounting of the future

payoff is obtained by random termination of the game. This is the sole mechanism

12The “F” stands for flow playoffs.
13This provides the following state transition and termination probability. The initial state is

s(0) = T . Given s(n), the probability of s(n+1) ∈ [s(n), T ] is zero, the density of s(n+1) ∈ [0, s(n))
is e−λ(s(n+1)−s(n))λ, and the probability of termination of the game is e−λs(n).

14A more general case is given in Appendix S3.2.1.
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of discounting in Shapley (1953), and it also partially accounts for the discounting in

Game F (' the revision game). Milnor and Shapley (1957) provided a stochastic game

model of gamblers’ ruin where a payoff accrues only when the game is terminated (i.e.,

one of the players is ruined). The timing of payoff realization of this game is similar

to that of the revision game in that a payoff accrues only once.15

Thirdly, the revision game (' Game F) is not a special case of the stochastic games

where the folk theorems have been proved, such as Dutta (1995) and Hörner, Sugaya,

Takahashi and Vieille (2011). In the latter, it is crucial that the state transition is

irreducible: any state s is reachable from any state s′ in a finite number of periods

with probability one. This is clearly not the case in Game F, where the state, which

corresponds to the remaining time in the revision game, never increases. Hence, the

revision game belongs to the class of stochastic games (non-irreducible ones) for which

the set of equilibria has not been fully characterized.

Fourthly, there is a similarity and difference between the revision game and the

repeated-game model with a decreasing discount factor (Bernheim and Dasgupta,

1995). When the current state is s ∈ [0, T ] in Game F, by the same argument to

derive formula (46), the continuation playoff is∫ s

0

πi(a(t))e−λtλdt. (47)

In contrast, the continuation payoff in the Bernheim-Dasgupta model in period m is

∞∑
n=m+1

πi(a(n))
n∏

k=m+1

δ(k). (48)

Those formulae clarify the similarity and difference between Game F (' the revision

game) and the Bernheim-Dasgupta model.

• In both models, the magnitude of continuation payoff decreases as time passes

by: both (47) and (48) tend to zero as s → 0 (s corresponds to the remaining

time in the revision game) and m → ∞ (because limk→∞ δ(k) = 0) if |π(a)| is

15The discussion paper version of this paper (Kamada and Kandori, 2017), Kamada and Kandori
(2019), and Sherstyuk, Tarui and Saijo (2013) observe that the discounted repeated game is strate-
gically equivalent to the game where (i) players prepare actions of the stage game in each period
t = 0, 1, .., (ii) the game is terminated at the end of each period with some probability r > 0, and
(iii) players obtain the stage game payoff in the last period only. Kamada and Kandori (2017) call
this game the stationary revision game.
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uniformly bounded.

• In the continuation payoffs, smaller weights are attached to the future flow

payoffs in the Bernheim-Dasgupta model, while the opposite is true in Game F

(' the revision game).

To see the latter point, note that, in Game F, the discounted flow payoff at state

s (= the remaining time in the revision game) is

πi(a(s))e−λs,

whose coefficient of discounting e−λs increases as time passes by (as s decreases). This

fact translates into different efficiency properties of those games: the optimal trigger

strategy equilibrium attains approximate efficiency in the Bernheim-Dasgupta model,

while this is not true in the revision game.16 In summary, the revision game has some

similarities to the Bernheim-Dasgupta model, but the former is not a reformulation

of the latter in a continuous time/state framework.

S3.2.1 The Non-Markov Case

We formally show that the revision game and Game F share the same strategy spaces

and payoffs. At remaining time/state s, players in those games observe a sequence of

past events and the current state

((T, a(T )), (s(1), a(1)), ..., (s(n), a(n)), s),

where T > s(1) > · · · > s(n) > s and n is an arbitrary positive integer. This

records that players were called upon to move when the remaining time/state was

T, s(1), . . . , s(n), and it also shows what action profiles were chosen in those occasions.

Let Hs be the set of all those histories at s. A (pure) strategy of player i, denoted

σi, both in the revision game and in Game F, is a mapping from histories to current

actions σi :
⋃T
s=0Hs → A, where HT is a singleton set of the initial dummy history

to determine the initial action.

A strategy profile σ and Poisson arrival rate λ determines the probability measure

P σ,λ
s over the set of possible histories at s, Hs. Since a Poisson arrival at time −s is

16The action distribution induced by the optimal trigger strategy equilibrium (Proposition 1) fails
to attach probability close to 1 to the efficient action.
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independent of the past history, P σ,λ
s is also equal to the probability measure of the

past history conditional on a Poisson arrival at time −s. Hence, the expected payoff

associated with the action profile chosen at s is expressed as∫
Hs

πi(σ(h))dP σ,λ
s (h) =: πi(s).

Given this definition, by the same argument as in Appendix S3.2, the expected payoff

to player i, both in the revision game and in Game F, is given by

πi(T )e−λT +

∫ T

0

πi(s)e
−λsλds.
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