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Abstract

We show that players can cooperate even when they interact only once, if

they prepare and revise their actions before they actually interact. We propose a

class of games called revision games, to formalize such a situation. In a revision

game, players start with initially prepared actions, followed by a sequence of

random revision opportunities. In the course of revisions players closely monitor

each other’s behavior. It is shown that players can cooperate, and that their

behavior under the optimal equilibrium is described by a simple differential

equation. In the case of quantity competition, players can achieve 97% of fully

collusive profit.
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1 Introduction

The purpose of this paper is two-fold. First, we present a previously unidentified

mechanism to sustain cooperation. In particular, we show that cooperation can be

sustained in a non-repeated interaction, if players prepare and revise their actions

before they interact. Second, we propose a class of stylized models, which we call

revision games, to formulate and analyze such a situation.

In social or economic problems, agents often prepare and revise their actions in

advance before they interact. For example, when researchers compete for a research

grant, they prepare and revise their research proposals before the deadline for submis-

sion. Likewise, although quantity competition is usually treated as a simultaneous-

move game, in reality firms prepare their outputs in advance, and they often revise

their production plans over time. In the case of price competition, firms may quote

prices before the opening of a market, and they may revise their prices after ob-

serving each other’s quotes. We show that in such a situation players can cooperate

(or collude) even though they interact only once, if their prepared actions cannot be

hidden.

A revision game starts at time −T and ends at time 0 (time is continuous).

Players prepare actions at the beginning, and then they obtain revision opportunities

according to a Poisson process. Prepared actions are mutually observable, and the

actions chosen at the last revision opportunity are played at time 0. In the class of

well-behaved smooth payoff functions, we show that players can cooperate by a version

of the trigger strategy defined over the revision process. The optimal revision plan has

a tractable characterization: it is given by a simple differential equation. We apply

this result to various problems including quantity competition, price competition and

electoral campaigns, and show that players can often achieve substantial level of

cooperation.1

Let us explain how revision games work, when applied to the Cournot duopoly

(quantity competition) with a linear demand curve and an identical and constant

marginal cost. Players’ behavior in the revision game is represented by a revision

plan x(t). This means that, when a revision opportunity arrives at time −t, they are

supposed to adjust their quantity to x(t). The trigger strategy (in revision games)

1The present paper analyzes the Cournot market. All other applications can be found in a
companion paper, Kamada and Kandori (2017).
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Figure 1: The optimal trigger strategy equilibrium plan and a sample path for the
revision game of Cournot duopoly. Arrival rate λ = 1

stipulates that, if anyone fails to follow the revision plan, they choose the static

Nash equilibrium quantity at all future revision opportunities. We will show that the

optimal revision plan supported by the trigger strategy is given by a simple differential

equation
dx

dt
=
λ
(
d(x) + π(x)− πN

)
d′(x)

,

where d(x) and π(x) are the gain from deviation and the payoff when each player

chooses quantity x, πN is the Nash equilibrium payoff, and λ is the Poisson arrival rate.

A closed-form solution x(t) is obtained and it is depicted as a dashed curve of Figure

1. This optimal trigger strategy equilibrium plan starts at the collusive quantity and

then follows the differential equation. Finally it reaches the Nash equilibrium quantity

at the end of the revision game. In contrast, the bold segments depict a typical realized

path of quantity. Whenever a revision opportunity arrives, the prepared quantity is
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adjusted according to the revision plan. At time −t′, the first revision opportunity

arrives, but players do not revise their quantity. Closer to the deadline at time −t”,

a revision opportunity comes again, and the players increase their quantity to x′′.

Then they encounter no more revision opportunity, and the amount shipped into the

market is x′′ (thus, the final outcome is random and determined by when the last

revision opportunity arrives). The expected profit turns out to be substantial: it is

97% of the fully collusive level.

Why can we sustain cooperation in revision games? When a revision opportunity

arrives near the end of a revision game, there is still a very small but positive prob-

ability that another revision is possible in the remaining time. This means that, if a

player cheats now, he has some (small) probability of being punished in the future.

Hence players can cooperate a little bit near the end of the game. Using this as a

foothold, players can cooperate more, when a revision opportunity arrives before. By

a repeated application of this mechanism, players can cooperate substantially when

they are far away from the end of the revision game.

A motivating story would be helpful to understand a situation that could possibly

be represented by the quantity revision game. Two fishing boats depart from a harbor

early in the morning, and they must return when the fish market, located near the

harbor, opens at 6:00 am (this is the end of the revision game). They wish to collude

(i.e., to restrict their catch) so as to increase the price at the fish market. They start

with a small amount of catch (the collusive quantity). They operate side by side,

closely monitoring each other’s behavior. A revision opportunity of their quantities

corresponds to the arrival of a fish school, which follows a Poisson process.2 When the

Poisson arrival rate is λ = 0.1 and the time unit is a minute, a fish school comes every

ten minutes on average. According to the optimal trigger strategy equilibrium, the

fishermen do not touch fish schools until 5:49AM. In the last eleven minutes, however,

whenever a fish school visits them, they catch additional fish. If anyone deviates from

this equilibrium plan, they catch a large amount (so that the total amount becomes

the Nash quantity) when the next fish school arrives. In this way, the fishermen can

happily obtain 97% of fully collusive profit.

Cooperation cannot always be sustained in revision games, and we derive a nec-

essary and sufficient condition for cooperation. In particular, we show that the pos-

sibility of cooperation in revision games hinges on the well-known effect recognized

2Pun not intended.
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by Akerlof and Yellen (1985). They observed that deviating from an optimal action

entails a negligible effect on one’s own payoff (because of the first order condition of

optimality) but typically affects others’ payoffs substantially. We will show that this

is essential: cooperation is sustained if and only if the Akerlof-Yellen effect is present

in an appropriate sense (see Section 6.1).

1.1 Related literature

Several papers examine revision processes that are different from ours. Kalai (1981)

and Bhaskar (1989) examine models where players can always react to their oppo-

nents’ revisions, and show that a unique and efficient outcome is obtained. In contrast,

players in our revision games may not obtain a chance to react, thus full cooperation

cannot be obtained. In Caruana and Einav (2008a, b) revision is possible at any mo-

ment of time with some switching costs. Thus, players have an incentive to act like

the Stackelberg leader, by using the switching cost as a commitment device. Their

second paper (2008b) considers the Cournot duopoly, and shows that the firms end

up producing more than the Nash quantity in their equilibrium. Hence, unlike in our

model, the outcome is less cooperative than the static Nash equilibrium.

Some existing works examine random revision opportunities. Vives (1995, 2001)

present infinite-horizon discrete-time models, where in each period n, with probability

γn the stage game payoff in that period is realized and the game ends immediately.

The probability γn is nondecreasing in n. This includes the “stationary” revision game

that we discuss in Section 2 as a special case (by assuming γn is a constant).3 Those

papers consider a continuum of agents (and a single large agent in Vives (2001)),

and therefore there does not exist the kind of strategic interaction that is the main

focus of our paper. Ambrus and Lu (2015) analyze a multilateral bargaining problem

in a continuous-time finite-horizon setting where opportunities of proposals arrive

via Poisson processes. Although their model is similar to ours, they focus on (the

unique) Markov perfect equilibrium, which corresponds, in our model, to the trivial

equilibrium where the Nash equilibrium action is always played.

Revision games are similar to repeated games, in the sense that the possibility

of future punishment provides incentives to cooperate. We elaborate on this issue in

Section 2 and Section 6.2. In this respect, the paper by Chou and Geanakoplos (1988)

3For the case of non-constant γn, Vives’s model is closely related to Bernheim and Dasgupta
(1995) that we discuss shortly. See Section 6.2 for detail.
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is the most closely related to ours. They consider T -period repeated games in which a

player can commit to a ε-optimal action in the final period, and prove that, if the stage

game has a “smooth” payoff function, the folk theorem obtains as T →∞. That is, a

little bit of commitment at the last period provides a basis for substantial cooperation

in the entire game. Our paper shows that a similar mechanism can operate in revision

processes, without the need for suboptimal behavior at the deadline. Bernheim and

Dasgupta (1995) consider discrete-time, infinite-horizon repeated games in which a

time-dependent discount factor tends to zero over time, and show that cooperation

can be sustained if the discount factor falls sufficiently slowly. Our model is not

isomorphic to theirs, as is explained in Section 6.2.

Ambrus et al. (2014) analyze a model of eBay-style auctions in which bidders

have chances to submit their bids at Poisson opportunities before the deadline. They

show that there are equilibria in which bidders gradually increase their bids. Their

equilibria are built on the existence of multiple best replies in the eBay-style auction,

and the mechanism behind the revision behavior in their model is different from ours.

Finally, various follow-up papers have been written while we were circulating

earlier versions of the present paper. We discuss those papers in the companion

paper (Kamada and Kandori, 2017).

The rest of the paper is organized as follows: The next section presents revision

games without a deadline to help the readers build up some intuition. The main model

(with a deadline) is presented in Section 3. In Section 4, we first prove existence,

essential uniqueness and differentiability of the optimal plan. Then we derive the

differential equation that characterizes the optimal plan. Section 5 provides a leading

example of quantity competition. Section 6 examines the conditions for cooperation

and compares our model to a repeated-game model with a decreasing discount factor.

Section 7 concludes. The companion paper (Kamada and Kandori, 2017) presents

various applications and examine the robustness of the results.
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2 An Example (Two Samurai): Stationary Revi-

sion Games

The purpose of this paper is to analyze a class of games where (i) a normal-form

game is played only once, (ii) players must prepare their actions in advance, (iii) the

opportunities to revise prepared actions arrive randomly over time, and (iv) prepared

actions are observable. We refer to those games as revision games. In this section,

we start with a simple case, where the problem is stationary in the sense that in

each period t = 0, 1, 2, ..., there is a fixed, positive probability p with which a given

normal-form game is played. We refer to this class of revision games as stationary

revision games. This class will turn out to be isomorphic to a familiar class of games,

and it helps to build some intuition on how revision games work. The point we make

is a simple one, so we just present an example.

Suppose that a rural village faces an attack of bandits. In each period t = 0, 1, 2, ...

the bandits attack the village with probability p ∈ (0, 1) around midnight. They

attack only once. The villagers hired two samurai, i = 1, 2, and they must prepare to

defend the village (to show up at the village gate around midnight) or not (to hide

away and watch the gate from a distance). Hence in each period they observe each

other’s prepared actions. When the bandits attack, the samurai receive the following

payoffs.

Defend Hide

Defend 2, 2 -1, 3

Hide 3, -1 0, 0

This is a Prisoner’s Dilemma game. Now consider player i’s expected payoff. We

denote player i’s payoff by πi(t), when the bandits’ attack occurs at time t. We also

assume that players have a common discount factor δ ∈ (0, 1). Player i’s expected

payoff is

pπi(0) + δ(1− p)pπi(1) + δ2(1− p)2pπi(2) + · · ·

= p

∞∑
t=0

δ
t
πi(t),

where δ := δ(1−p). Theorefore, stationary revision games are isomorphic to infinitely

repeated games, and cooperation can be sustained in a subgame perfect equilibrium
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if δ is high and p is small.4 Even though the prisoner’s dilemma game is played only

once, players manage to cooperate. A mechanism to sustain cooperation is the trigger

strategy, which works as follows. As long as the samurai have been showing up at the

gate, they continue to do so (to prepare to defend the village). If anyone hides away,

however, they stop showing up at the gate in the future.

The next section deals with our main model, where there is a fixed deadline to

prepare actions. We will show that some cooperation can be sustained in such games

(revision games with a deadline), and the basic mechanism to sustain cooperation is

essentially the same as in the model in the present section.

3 Revision Games with a Deadline - The Main

Model

Consider a normal-form game with players i = 1, ..., N . Player i’s action and payoff

are denoted by ai ∈ Ai and πi(a1, ..., aN), respectively. This game is played at time

0, but players have to prepare their actions in advance, and they also have some

stochastic opportunities to revise their prepared actions. Hence, technically the game

under consideration is a dynamic game with preparation and revisions of actions,

where the normal-form game π is played at the end of the dynamic game (time 0).

To distinguish the entire dynamic game and the game π played at the deadline, the

former is referred to as a revision game and π is referred to as the component game.

In what follows a “revision game” refers to the one with a prespecified deadline.

Specifically, we consider two specifications. In both cases, time is continuous,

−t ∈ [−T, 0] with T > 0. At time −T , each player i simultaneously chooses an

action from Ai. In time interval (−T, 0], revision opportunities arrive stochastically,

according to a process defined shortly. There is no cost of revision. At time 0,

the payoffs π(a′) = (π1(a
′), . . . , πN(a′)) materialize, where a′i is i’s action in the last

revision opportunity.

1. Synchronous revision game: There is a single Poisson process with arrival rate

λ > 0 defined over the time interval (−T, 0]. At each arrival, each player i

simultaneously chooses an action from Ai.

4Sherstyuk, Tarui, and Saijo (2013) independently make the same observation about the equiva-
lence of repeated games and stationary revision games.
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2. Asynchronous revision game: For each player i, there is a Poisson process with

arrival rate λi > 0 defined over the time interval (−T, 0]. At each arrival, i

chooses an action from Ai.

In the present paper, we analyze the first case. The second case is addressed in

the companion paper (Kamada and Kandori (2017)), and a more general treatment

can be found in Kamada and Kandori (2012). We assume that players observe all the

past events in the revision game, and analyze subgame perfect equilibria.

4 The Optimal Trigger Strategy Equilibrium

In this section, we develop a general theory for the case of synchronous moves. We

restrict our attention to two players with one-dimensional continuous action space.

The assumption of two players is just for simplicity: our results easily extend to the

case of N players. The assumption of continuous actions, in contrast, is crucial, and

its role is discussed in great depth in the companion paper (Kamada and Kandori,

2017).

Consider a general two-person symmetric component game with action ai ∈ Ai and

payoff function πi, i = 1, 2. A player’s action space Ai is a convex subset (an interval)

in R: Examples include Ai = [ai, ai] or [0,∞). Symmetry means A1 = A2 =: A and

π1(a, a
′) = π2(a

′, a) for all a, a′ ∈ A.

Here we confine our attention to symmetric revision-game equilibrium that uses

the “trigger strategy.” A symmetric trigger strategy is characterized by its equilib-

rium revision plan x : [0, T ]→ A. Players start with initial action x(T ), and when a

revision opportunity arrives at time −t, they choose action x(t). Note that we adopt

a convention to measure the time backwards: t refers to the remaining time in the

revision game. If any player fails to follow the revision plan, then both players choose

the Nash equilibrium action of the component game (which we will assume to be

unique) in all future revision opportunities.

Below we characterize the optimal symmetric trigger strategy equilibria, which

maximizes the sum of two players’ payoffs. First, we provide a heuristic explanation.

Then we provide rigorous statements and proofs in the following subsections.
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A Heuristic Description: First, the expected payoff of the revision game asso-

ciated with the trigger strategy equilibrium plan x is defined by

V (x) := π(x(T ))e−λT +

∫ T

0

π(x(t))λe−λtdt. (1)

The coefficient of the first term on the right hand side, e−λT , is the Poisson probability

that no revision is possible in the entire duration of the revision game (T ). In that

case, the initially chosen action x(T ) is implemented. The integral in (1) is interpreted

as follows. Note that λ is a density of a Poisson arrival at any moment of time and e−λt

is the probability that no revision is possible in the remaining time t. Therefore, λe−λt

is the density of the last revision opportunity. Overall, the integral in (1) represents

the expected payoff when at least one revision opportunity arrives in the revision

game.

The incentive constraint at time t for the trigger strategy equilibrium is

(IC(t)): d(x(t))e−λt ≤
∫ t

0

(
π(x(s))− πN

)
λe−λsds, (2)

where d(x(t)) represents the gain from deviation (d(a) := maxa1 π1(a1, a)− π1(a, a))

and πN = πi(a
N , aN) is the symmetric Nash equilibrium payoff. This is the most

important condition in our analysis, and it is interpreted as follows. With probability

e−λt, there is no revision opportunity in the remaining time t, and in that case the

player receives the gain from deviation at the current revision opportunity d(x(t)).

If at least one revision opportunity arrives in the remaining time, the realized payoff

(given by the action profile in the last revision opportunity) is decreased. In particular,

when s is the last revision opportunity, the realized payoff is decreased from π(x(s))

to πN . As we explained above, the density of the last revision opportunity is λe−λs,

and the associated expected loss is given by the integral on the right hand side of (2).

It can be shown that the optimal trigger strategy equilibrium path satisfies the

incentive constraints with equalities:

d(x(t))e−λt =

∫ t

0

(
π(x(s))− πN

)
λe−λsds, for all t (3)

and in particular this implies an obvious requirement x(0) = aN (if a revision opportu-

nity arrives at the deadline, players should choose the Nash action). By differentiating
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both sides of the binding incentive constraint (3), we obtain the differential equation

dx

dt
=
λ
(
d(x) + π(x)− πN

)
d′(x)

,

and hence the optimal path is a solution to this differential equation with x(0) = aN .

The heuristic description above needs to be made precise in a number of points.

First, we need to find a set of conditions under which the above procedure works. In

particular, the existence and differentiability of the optimal path should be derived,

rather than assumed. Also, proving the binding incentive constraint (3) turns out

to be non-trivial. Those issues are addressed in the next subsection. Secondly, one

may expect that cooperation is always sustained, but this turns our to be false. The

sustainability cooperation requires a certain condition, and we derive a necessary and

sufficient condition in the second subsection. The third subsection states the main

result, and the fourth considers an important special case of smooth games. Finally,

the last subsection discusses the properties of the expected equilibrium payoffs.

4.1 Existence, Differentiability, and the Binding Incentive

Constraints

In what follows we present a set of regularity conditions that ensure the existence of

the optimal trigger strategy equilibrium and its characterization by means of a simple

differential equation. Let the payoff function for symmetric actions be defined as

π(a) := π1(a, a) = π2(a, a).

We assume the following properties.

• A1: A unique pure symmetric Nash equilibrium action aN and the unique best

symmetric action a∗ := arg maxa∈A π(a) exist, and they are distinct.

• A2: If aN < a∗, the symmetric payoff π(a) is strictly increasing for a < a∗ (a

symmetric condition holds if a∗ < aN).
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For simplicity of exposition, except for Section 5 (the Cournot duopoly example),

we will focus on the case aN < a∗.

• A3: π1(a1, a2) is continuous. Furthermore, maxa1 π1(a1, a2) exists for all a2, and

therefore we can define the gain from deviation at a symmetric profile (a, a) by

d(a) := max
a1

π1(a1, a)− π1(a, a). (4)

• A4: If aN < a∗, d(a) is strictly increasing on [aN , a∗] and non-decreasing for

a∗ < a (symmetric conditions hold if a∗ < aN).

Assumptions A1 and A3 are innocuous technical assumptions (the requirement

that actions are continuous variables, however, is one of the crucial conditions for our

result). A2 and A4 are monotonicity conditions that simplify our analysis. Assump-

tion A2 requires that the symmetric payoff π(a) monotonically decreases as we move

away from the optimal action a∗ (in the relevant region for our analysis). Assumption

A4 says that the gain from deviation monotonically increases as we move away from

the Nash equilibrium (again in the relevant region for our analysis).

Assumptions A1-A4 guarantee the existence of the optimal trigger strategy equi-

librium path that is continuous and satisfies the binding incentive constraint. To state

this result, we need to introduce some concepts and notation. As we have explained,

the expected payoff at the beginning of the game (i.e., at time −T ) associated with

the trigger strategy equilibrium path x is defined by

V (x) := π(x(T ))e−λT +

∫ T

0

π(x(t))λe−λtdt. (5)

We define the set of feasible plans X as the set of paths over which expected payoff

(5) can be defined (i.e., π(x(·)) is Lebesgue measurable):

X := {x : [0, T ]→ A | π ◦ x is measurable} .

Given a feasible plan x ∈ X, the (trigger strategy) incentive constraint at time t is

(IC(t)): d(x(t))e−λt ≤
∫ t

0

(
π(x(s))− πN

)
λe−λsds, (6)
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The set of trigger strategy equilibrium plans is formally defined as

X∗ := {x ∈ X | IC(t) holds for all t ∈ [0, T ]} .

A plan that achieves the highest ex ante expected payoff within X∗ is referred to as

an optimal trigger strategy equilibrium plan.

The following is a key technical result that rigorously establishes the existence of

the optimal trigger strategy equilibrium and its two crucial properties: the optimal

plan is continuous and satisfies the binding incentive constraints.

Theorem 1 Under Assumptions A1 - A4, there is an optimal trigger strategy equi-

librium plan x(t) (V (x) = maxx∈X∗ V (x)) that is continuous for all t and satisfies the

binding incentive constraint when x(t) 6= a∗:

d(x(t))e−λt =

∫ t

0

(
π(x(s))− πN

)
λe−λsds. (7)

Furthermore, x(t) ∈ [aN , a∗] for all t if aN < a∗ (and a symmetric condition holds if

a∗ < aN).

The proof is given in Appendix A. Note that the binding incentive constraint

at the deadline t = 0 implies d(x(0)) = 0 (there is no gain from deviation). Thus,

Theorem 1 shows that x(0) should be a (symmetric) Nash equilibrium action aN .

Let us make a small technical remark about the multiplicity of the optimal plans.

Recall that x(t) is a particular optimal trigger strategy equilibrium plan with the

binding incentive constraint (the one that is described in Theorem 1). There are,

however, other optimal plans. One can see that

x(t) :=


aN if t is in a measure zero set in (0, T )

x(t) otherwise

.

is also a trigger strategy equilibrium plan that satisfies the incentive constraint (6)

and achieves the same expected payoff as x(t) does, because the probability that

revision opportunities happen in the measure-zero set is zero. Hence, the above plan

is also optimal. However, it is easy to show that there is essentially a unique optimal

plan.
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Proposition 1 The optimal plan is essentially unique: If y(t) is an optimal trig-

ger strategy equilibrium plan, then y(t) = x(t) almost everywhere, where x(t) is the

optimal plan that satisfies the binding incentive constraint (7).

The proof is given in Appendix B. Hereafter, the continuous optimal plan x(t)

that satisfies the binding incentive constraint is referred to as the optimal plan.

Next we present an additional assumption that guarantees the differentiability of

the optimal plan x(t).

• A5: The gain from deviation d (defined by (4)) is differentiable, and d′ > 0 on

(aN , a∗] if aN < a∗ (a symmetric condition holds if a∗ < aN).

Below is an important remark about the derivative of the gain from deviation at

the Nash action, d′(aN).

Remark 1 By definition, the gain from deviation d(a) is minimized (equal to zero)

at the Nash action aN . If aN is an interior point and d(a) is smooth, then the first

order condition for the minimization implies

d′(aN) = 0.

A number of applications satisfy the above condition, and we need to pay special

attention to this fact when solving for the differential equation in the next Lemma

(namely, the denominator on the right hand side of differential equation (8) vanishes

at the Nash action aN).

Next we derive a differential equation to characterize the optimal plan. Heuristi-

cally, the differential equation is derived by differentiating both sides of the binding

incentive constraint (7) that was established by Theorem 1. In the following lemma,

we make this argument precise, by deriving (rather than assuming) the differentiabil-

ity of the optimal plan. We present this result for the case aN < a∗.

Lemma 1 Under Assumptions A1-A5, the optimal plan x(t) is differentiable when

x(t) 6= aN , a∗, and satisfies differential equation

dx

dt
=
λ
(
d(x) + π(x)− πN

)
d′(x)

:= f(x) (8)

for x ∈ (aN , a∗).
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Proof. Note that x(t) ∈ [aN , a∗] (by Theorem 1). By Assumption A5, d has an

inverse function on (aN , a∗], denoted by d−1. Thus, if x(t) ∈ (aN , a∗), the binding

incentive constraint implies

x(t) = d−1
(
eλt
∫ t

0

(
π(x(s))− πN

)
λe−λsds

)
. (9)

The crucial step to show the differentiability of x(t) is to note the differentiability

of integral
∫ t
0

(
π(x(s))− πN

)
λe−λsds with respect to t. Specifically, the continuity

of x, established by Theorem 1, implies that
(
π(x(s))− πN

)
λe−λs is continuous,

and the fundamental theorem of calculus shows that
∫ t
0

(
π(x(s))− πN

)
λe−λsds is

differentiable with respect to t (with the derivative
(
π(x(t))− πN

)
λe−λt). Also, A5

implies that d−1 is differentiable with derivative 1/d′(a) (note that A5 guarantees

d′(a) 6= 0 for a ∈ (aN , a∗]). Therefore the right hand side of (9) is differentiable with

respect to t, and differentiating both sides of (9), we obtain the differential equation

(8) when x(t) ∈ (aN , a∗).

4.2 FTC: A Necessary and Sufficient Condition for Cooper-

ation

One may expect that cooperation can always be sustained in the revision game under

our Assumptions A1-A5. This turns out to be false. Sustainability of cooperation

requires some conditions. This conceptually important point is closely related to the

following technical issue. The optimal plan appears to be obtained by solving the

differential equation (8) with the boundary condition x(0) = aN (and in this way we

can find if cooperation is possible or not). There are, however, important caveats.

• Caveat 1: In a well-behaved smooth game, the derivative of the gain from

deviation is equal to zero at the Nash action (d′(aN) = 0), as we have explained

in Remark 1. In such a case, the differential equation dx/dt =
λ(d(x)+π(x)−πN)

d′(x)
is

not defined at the Nash equilibrium point aN (because the denominator d′(x)

vanishes at the Nash action). Hence we cannot solve the differential equation

with the boundary condition x(0) = aN .

• Caveat 2: When d′(aN) 6= 0, the differential equation is defined at the Nash

action. However, it always has a trivial solution x(t) = aN for all t. (Note that
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x(t) = aN satisfies dx/dt = 0 and d(aN) + π(aN) − πN = 0 + πN − πN = 0.)

In such a case, cooperation is possible only if the differential equation with the

boundary condition x(0) = aN admits multiple solutions.

In what follows, we will address those concerns. The caveats above ultimately

stem from the following observation. The differential equation (8) is derived by (dif-

ferentiating) the binding incentive constraint (it must be satisfied by the optimal

trigger strategy equilibrium plan, according to Theorem 1);

d(x(t))e−λt =

∫ t

0

(
π(x(s))− πN

)
λe−λsds for x(t) 6= a∗, (10)

but this integral equation always has a trivial solution x(t) = aN for all t. To show

that cooperation is possible, we need to establish that this integral equation has

another solution that sustains cooperation.

Our conditions A1 - A5 alone do not guarantee that the integral equation (10)

has a non-trivial solution. In some cases, cooperation cannot be satisfied in a revision

game, even if A1-A5 are satisfied. Consider the following example.

Example 1 Linear Exchange Game5: Two players i = 1, 2 exchange goods. Player i

chooses a quantity (or quality) ai ∈ [0, 1] of the goods she provides to the other player.

The cost of effort of player i is equal to ai/2. In total, player i’s payoff is equal to

πi = a−i − ai/2.

The Nash and optimal actions, the symmetric payoff, and the gain from deviation

are aN = 0 (the dominant strategy), a∗ = 1, π(a) = a − a/2 = a/2, and d(a) = a/2

(the optimal deviation is to produce zero and save the cost a/2, respectively). This

example satisfies A1 - A5, but the only trigger strategy equilibrium is the trivial one

that always plays the Nash action. The reason is as follows. This example has a

feature that the derivative of the gain from deviation d′(a) is non-zero at the Nash

action aN = 0 (d′ is always equal to 1/2), so that Caveat 2 applies. The differential

equation is

dx/dt =
λ
(
d(x) + π(x)− πN

)
d′(x)

= 2x,

and this differential equation with boundary condition x(0) = 0 has a unique, trivial

solution x(t) = 0(= aN) for all t. Hence it is the only plan that satisfies the binding

5This is also known as the linear public good provision game.
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incentive constraint. Therefore, by Lemma 1, this is the optimal (and only) trigger

strategy equilibrium.

Conceptually, cooperation is impossible in this example because the gain from

deviation d(a) = a/2 and the benefit π(a) − πN = a/2 are of the same order of

magnitude near the Nash equilibrium action. For cooperation to be sustained, the

former should be much smaller than the latter around the Nash action. The full

discussion is given in Section 6.1.

How can we identify the condition under which a non-trivial optimal plan exists?

Because of Caveat 1, we do not directly solve the differential equation (8) with bound-

ary condition x(0) = aN . Instead, we employ the following procedure. Consider the

case aN < a∗. Note that, by Theorem 1, the optimal plan lies in a certain interval;

x(t) ∈ [aN , a∗] for all t.

• Step 1: Solve the differential equation (8) with a boundary condition with

an arbitrary non-Nash action; x(0) = a0 ∈ (aN , a∗]. A standard regularity

condition assures that the differential equation is well-defined and has a unique

solution on (aN , a∗] (this regularity condition will be stated in A6).

• Step 2: Ask if the solution x(t) can approach the Nash equilibrium aN in a

finite amount of time, when we follow the differential equation before time 0 (i.e.,

if x(t)→ aN as t→ −t∗ for some t∗ <∞).6 This is the Finite Time Condition

(FTC) that we will introduce. If this condition is satisfied, shift the origin of

time by t∗ to construct a new plan y(t) := x(t− t∗). This plan starts with the

Nash action y(0) = aN , is continuous, and follows the differential equation (8)

for t > 0. Thus it satisfies the binding trigger strategy incentive constraint. It

is non-trivial, because it reaches a0 ∈ (aN , a∗] at t = t∗.

Hence, the necessary and sufficient condition for the existence of non-trivial plan

is the FTC (assuming that the innocuous regularity condition (A6) is satisfied). FTC

is a clear-cut condition that is easy to check. However, it does not provide much

intuition when and why cooperation can be sustained. In Section 6.1, we discuss

economically meaningful conditions for and against FTC.

Our procedure can be illustrated by Figure 2. Panel (a) describes the case where

cooperation is possible. Solving the differential equation dx/dt =
λ(d(x)+π(x)−πN)

d′(x)

6Here we extend the domain of paths from [0, T ] to R. The same reservation applies to other
places where the domain of a path includes negative numbers.
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Figure 2: Illustration of the Finite Time Condition: the condition holds and cooper-
ation is possible in Panel (a), while it does not hold and cooperation is impossible in
Panel (b).

with the boundary condition at the Nash action (at point A) is problematic, because

of Caveats 1 and 2. Instead, we solve the differential equation with an arbitrary

boundary point B and ask if the solution can reach the Nash action within a finite

amount of time (i.e., if the FTC is satisfied). It takes a finite amount of time in Panel

(a), and cooperation can be sustained by the trigger strategies. In contrast, Panel

(b) describes the case where cooperation cannot be sustained (because the solution

takes an infinite amount of time to approach the Nash action: the FTC fails). Let us

now implement our procedure. First, let us assume a standard regularity condition

to guarantee that the solutions to the differential equation (8) exists and is unique

when the boundary condition is a suitable non-Nash action.

• A6: Function f(x) :=
λ(d(x)+π(x)−πN)

d′(x)
is Lipschitz continuous on [aN + ε, a∗] for

any ε ∈ (0, a∗], if aN < a∗7 (a symmetric requirement holds if a∗ < aN).

Lipschitz continuity of f is easy to check, and is satisfied in a wide range of

applications. For example, in the smooth games that we analyze in Section 4.4, A6

is automatically satisfied.

The following theorem identifies the necessary and sufficient condition for coop-

eration to be sustained by the trigger strategy.

7A function f(x) is Lipschitz continuous on [aN + ε, a∗] if there exists a finite number K ≥ 0

such that
∣∣∣ f(x)−f(y)x−y

∣∣∣ ≤ K for all x 6= y in [aN + ε, a∗]
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Theorem 2 Under Assumptions A1-A6, the optimal trigger strategy equilibrium plan

x(t) is non-trivial (i.e., x(t) 6= aN for some t) if and only if 8

(Finite Time Condition) lim
a↓aN

∫ a∗

a

1

f(x)
dx <∞ (11)

is satisfied, where f(x) =
λ(d(x)+π(x)−πN)

d′(x)
.

The proof is given in Appendix C. Here we present basic intuition. The differential

equation dx/dt = f(x) implies that
∫ a∗
a

1
f(x)

dx =
∫ a∗
a

dt
dx
dx represents the time to reach

a∗ from a, following the solution to the differential equation. Hence, the Finite Time

Condition (11) means that it is possible to find a finite upper bound of the time for a

solution to the differential equation dx/dt = f(x) to travel from any point arbitrarily

close to the Nash action aN to the optimal action a∗.

4.3 Summary: the Main Result

Our main result is summarized as the following corollary to the key technical theorems

in the previous subsections.

Corollary 1 Under Assumptions A1 - A6, cooperation is sustained by the trigger

strategy, if and only if the Finite Time Condition (11) is satisfied. There exists an

essentially unique optimal trigger strategy equilibrium plan x(t) and it satisfied the

following properties: (i) it is continuous in t and departs aN at t = 0 (i.e., x(t) = aN

if and only if t = 0), (ii) for t > 0, it solves differential equation

dx

dt
=
λ
(
d(x) + π(x)− πN

)
d′(x)

=: f(x) (12)

until x(t) hits the optimal action a∗, and (iii) if x(t) hits the optimal action a∗ it

stays there (i.e., x̄(t′) = a∗ for some t′ ≤ T implies x̄(t
′′
) = a∗ for all t′′ ∈ [t′, T ]).

Furthermore, if the time horizon T is large enough, x(t) always hits the optimal action

a∗ at

t(a∗) := lim
a↓aN

∫ a∗

a

1

f(x)
dx. (13)

8Here we consider the case aN < a∗. When aN > a∗. lima↓aN in the Finite Time Condition
should be replaced with lima↑aN .
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The proof is given in Appendix D. The optimal trigger strategy equilibrium has

the following feature. Recall that x(t) is the action to be taken at time −t. If the time

horizon is long enough (i.e., if T ≥ t(a∗)), players start with the best action a∗, and

they do not revise their actions until time −t(a∗). After that, if a revision opportunity

arrives, they choose an action x(t), which is closer to the Nash action. The closer the

revision opportunity −t is to the deadline, the closer the revised action x(t) is to the

Nash equilibrium. At the deadline, the actions at the last revision opportunity are

implemented. The realized actions are stochastic and the expected payoff is calculated

in Section 4.5.

The necessary and sufficient condition for cooperation, the Finite Time Condition

(11), is easy to check, but it is not as clear, intuitively speaking, what it requires.

In Section 6.1, we show that the Finite Time Condition is satisfied when the cost of

cooperation tends to zero faster than the benefit of cooperation does, as action tends

to the Nash equilibrium. In the next subsection, we present a fairly general class of

games where this requirement is naturally satisfied. It is the class of games with

smooth payoff functions.

4.4 Smooth Games

In this subsection, we show that cooperation can be sustained in revision games when

the component game has well-behaved smooth payoff functions. This is a fairly gen-

eral class, and a leading example is the Cournot quantity competition. The conditions

for smooth games are the following. Recall that we are focusing on two-player sym-

metric games, so that the component game is characterized by the symmetric payoff

function π1(a1, a2).

• S1: The payoff function π1(a1, a2) is twice continuously differentiable.

• S2: There is a unique best reply BR(a) for any action a, and the first and

second order conditions are satisfied at the best reply:

∂π1(BR(a), a)

∂a1
= 0,

∂2π1(BR(a), a)

∂a1
2 < 0

• S3: π′(aN) > 0 if aN < a∗ and π′(aN) < 0 if a∗ < aN .
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Conditions S1 and S2 are standard smoothness requirements. S3 adds a fairly mi-

nor modification to our former condition A2, which states that π(a) strictly increases

if we change the action from the Nash action aN to the optimal action a∗. Also note

that S1 and a part of S2 (the existence of a best reply) directly imply A3. It also

turns out that the Lipschitz condition A6 is also derived from S1-S3. Now we can

state one of our main results.

Proposition 2 If conditions A1, A2, A4, A5 and S1-S3 are satisfied, cooperation

is sustained in the revision games. The optimal trigger strategy equilibrium plan is

given as in Corollary 1.

The proof is given in Appendix E, and here we provide its sketch. Note that the

Finite Time Condition is

lim
a↓aN

∫ a∗

a

d′(x)

d(x) + π(x)− πN
dx <∞,

and it is satisfied if either (i) the integrand d′(x)
d(x)+π(x)−πN tends to a finite number as

x ↓ aN or (ii) d′(x)
d(x)+π(x)−πN tends to ∞ sufficiently slowly as x ↓ aN . Appendix E

shows that condition (i) is satisfied in the smooth games (and therefore cooperation

can be sustained).

4.5 Expected Payoffs and Arrival Rate Invariance

In this subsection, we examine the expected payoff associated with the optimal trig-

ger strategy equilibrium. One might expect that the probability distribution of the

realized actions, and hence the expected payoffs, may depend on the arrival rate λ of

revision opportunities. Frequent arrival of revision opportunities might make it easier

(or more difficult) to cooperate. The next proposition, which is actually nothing but

a simple observation, shows that this is not the case. To state the proposition, recall

that the first time to hit the optimal action is denoted t(a∗) (see (13)). To explicitly

show its dependence on arrival rate λ, let us now denote it by tλ(a
∗).

Proposition 3 (Arrival Rate Invariance) Suppose that Assumptions A1 - A6

and the Finite Time Condition (11) are satisfied. Let tλ(a
∗) be the (first) time to

reach the optimal symmetric action as defined by (13) in Corollary 1. Then, as long
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as tλ(a
∗) ≤ T , the probability distribution of the action profile at period 0 under the

optimal trigger strategy equilibrium is independent of the Poisson arrival rate λ.

Proof. Consider a model with λ such that tλ(a
∗) ≤ T and call it Model 1. Change

the time scale so that one unit of time in Model 1 corresponds to λ units in the new

model. Under the new time scale, the model has arrival rate 1 and time horizon λT .

Call it Model 2. Models 1 and 2 represent the same revision game under different

time scales. In Model 1, under the optimal trigger strategy equilibrium, no revision is

made in [−T,−tλ(a∗)]. Thus in Model 2, the same is true in [−λT,−t1(a∗)]. Deleting

this inactive time interval from Model 2 does not change the probability distribution

of the realized action profile. Hence, revision games with any arrival rate λ such that

tλ(a
∗) ≤ T are outcome equivalent to the one with arrival rate 1 and T = t1(a

∗).

Note that the fact that payoffs realize only at the deadline t = 0 plays a crucial

role in this proposition (otherwise, the expected payoffs would be affected by the

arrival rate and the discount factor). Proposition 3 shows the following attractive

feature of revision games: we can obtain a unique prediction that does not depend on

the fine detail, namely the arrival rate λ of the revision opportunities. In particular,

even if λ is sufficiently high (so that there are many chances to revise actions right

before the deadline), the expected outcome in the component game is the same as in

the case of low λ.

The above proposition shows that the probability distribution of the realized ac-

tion profile can be obtained by focusing on the case λ = 1. Let x1(t) be the optimal

trigger strategy equilibrium plan under λ = 1. To calculate the distribution, the time

for x1(t) to hit a ∈ [aN , a∗], denoted by t1(a), turns out to be useful. Note that t1(a)

is given by

t1(a) := lim
a′↓aN

∫ a

a′

dt

dx
dx = lim

a′↓aN

∫ a

a′

d′(x)

d(x) + π(x)− πN
dx.

Now consider the density of realized action x1(t) ≤ a. The density is λe−λt = e−t,

which is the product of

• λ = 1 (the density of revision opportunity at time t) and

• e−λt = e−t (the probability that the revised action at time t, x(t), will never be

revised again).
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Therefore, the cumulative distribution function of realized action a, denoted by

F (a), is given by

F (a) =

∫
{t|x1(t)≤a}

e−tdt

=

∫ t1(a)

0

e−tdt = 1− e−t1(a),

for a ∈ [aN , a∗). For a ≥ a∗, F (a) = 1, because the realized action cannot be more

than a∗. This implies that, at a∗, the distribution function F (a) jumps by e−t1(a
∗).

The jump means that a probability mass of e−t1(a
∗) is attached to action a∗. This is

the probability that no revision opportunity arises after time −t1(a∗) under Poisson

arrival rate λ = 1. Below we summarize our arguments.

Proposition 4 Suppose that Assumptions A1 - A6 and the Finite Time Condition

(11) are satisfied. Suppose also that the time horizon is long enough so that the

efficient action a∗ is chosen at the beginning of the revision game, under the optimal

trigger strategy equilibrium. When aN < a∗, the cumulative distribution function of

the symmetric action realized at t = 0 is given by

F (a) =


0 if a < aN

1− e−t1(a) if aN ≤ a < a∗

1 if a∗ ≤ a

,

where t1(a) is given by

t1(a) := lim
a′↓aN

∫ a

a′

d′(x)

d(x) + π(x)− πN
dx. (14)

When a∗ < aN , it is given by

F (a) =


0 if a < a∗

e−t1(a) if a∗ ≤ a ≤ aN

1 if aN < a

.
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5 Quantity Competition: Substantial Collusion is

Possible via Revisions

In this section, we consider a Cournot duopoly game. The revision game in this case

describes the situation where two firms gradually adjust their quantities before the

market is open and they closely monitor each other’s process of quantity adjustment.

We will show that the firms can achieve almost 97% of the fully collusive profit.

Each firm i = 1, 2 with constant (and identical) marginal cost c > 0 chooses the

quantity xi, and the price P is determined by a linear demand curve P = a−b(x1+x2)

with a > c > 0 and b > 0. Hence the (component game) payoff function for player

i is πi = (a− b(xi + x−i)− c)xi. This is an example of smooth games in Section

4.4. The optimal trigger strategy equilibrium plan x(t) is a solution for the following

differential equation:9

dx

dt
=

λ
(
d(x) + π(x)− πN

)
d′(x)

=
λ

18

(
x− 5

a− c
3b

)
.

The differential equation has a simple solution

x(t) =
a− c

3b
(5− 4e

λ
18
t).

This plan departs from the Cournot Nash quantity xN = a−c
3b

at t = 0, and hits the

optimal quantity x∗ = a−c
4b

at t∗ = t(x∗) = 18
λ

ln
(
17
16

)
. Therefore, we have obtained

the following.

Proposition 5 In the revision game of the Cournot duopoly game, the optimal trig-

ger strategy equilibrium plan, q̄(t), is characterized by

x(t) =


xN
(

5− 4e
λ
18
t
)

if t < t∗

x∗ if t∗ ≤ t

,

where xN = a−c
3b

and x∗ = a−c
4b

are Nash and the optimal quantities, respectively, and

9This follows from d(q) = (a−c−3bq)2
4b , π(q) = (a− c− 2bq)q, and πN = (a−c)2

9b .
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t∗ = 18
λ

ln
(
17
16

)
.

When the firms collude, they produce less than the Nash quantity. Thus the

optimal plan is non-decreasing over time, starting with a small collusive quantity and

gradually increasing towards the Nash quantity (recall that t in the proposition above

refers to the remaining time in the revision game, so it refers to time −t). Figure 1

in the Introduction shows the shape of the optimal plan and a realized path. The

Introduction also presents a real-life situation that might reasonably be formulated

as the quantity competition revision game.

Next, we consider the welfare implication of the revision game of the Cournot

duopoly. By Proposition 4, we can compute the equilibrium expected payoff, and it

turns out that a surprisingly high degree of collusion can be achieved in this game.

The next corollary says that, when two firms gradually adjust their quantities before

the market is open (and if they closely monitor each other’s process of quantity

adjustment), then they can achieve almost 97% of the fully collusive profit. Those

numbers are independent of the position and the slope of the demand curve (a and

b) and the marginal cost c.

Corollary 2 In the revision game of the Cournot duopoly game, there exists T ′ such

that for all T > T ′, the expected payoff under the optimal trigger strategy equilibrium

is more than 0.968 of the fully collusive payoff.

The proof is given in Appendix F.

6 Discussion

In this section, we first discuss a conceptually important issue of identifying condi-

tions for sustainability of cooperation in revision games. Our analysis in Section 4.2

shows a clear-cut necessary and sufficient condition (the Finite Time Condition), but

this condition itself is not easy to interpret. We will provide more intuitive conditions,

which relate the relative magnitudes of gain from deviation and the benefit of coop-

eration near the Nash equilibrium. Secondly, we examine the relationship between

the revision games and infinitely repeated games with time-varying discount factors.
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6.1 What Determines the Possibility of Cooperation?

Our main result (Theorem 2) shows that the Finite Time Condition (FTC)

t(a∗) := lim
a↓aN

∫ a∗

a

d′(x)

d(x) + π(x)− πN
dx <∞

is necessary and sufficient for a trigger strategy equilibrium to sustain cooperation.

In this subsection, we will show that FTC is (almost) equivalent to the following

(informally stated) intuitive property:

• [Convergence Condition] As the symmetric action profile (x, x) converges to

the Nash equilibrium, the gain from deviation (d(x)) tends to zero faster than

the benefit of cooperation (π(x)− πN) does.

It is intuitive that this condition would guarantee cooperation. Recall that in

the revision game, cooperation is sustained in much the same way as in the repeated

game: instantaneous gain from deviation is outweighed by the destruction of the

future benefit of cooperation. When the Convergence Condition is satisfied, near the

Nash action, the gain from deviation is much smaller than the benefit of cooperation.

Hence, a little bit of cooperation is sustained near the deadline of the revision game.

Using this as a foothold, more substantial cooperation is sustained as we move further

away from the deadline.

Note also that the Convergence Condition is satisfied in smooth games. Since Nash

equilibrium admits no gain from deviation, d(x) is minimized at the Nash action aN

(and equal to zero). If d is smooth, the minimization implies d′(aN) = 0, and therefore

the gain from deviation is almost identically equal to zero near the Nash action. In

contrast, this is not the case for the benefit of cooperation (π(x)− πN). Those facts,

taken together, imply that d(x) tends to zero faster than π(x)−πN as x tends to the

Nash action. This is nothing but the Akerloff-Yellen effect: a little bit of cooperation

(i.e., taking an action near the Nash equilibrium) entails a small cost, while it provides

a benefit that is an order of magnitude larger.

A straightforward formulation of the Convergence Condition would be

lim
x↓aN

d(x)

π(x)− πN
= 0. (15)

Recall that, except in Section 5, we are focusing on the case where players wish to
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increase their action relative to the Nash action (i.e., aN < a∗). Hence what is relevant

is the behavior of d(x)
π(x)−πN for x ≥ aN . This is why we have “limx↓aN” in the above

condition (15). Note also that, under our Assumption A2,

d(x)

π(x)− πN
≥ 0 for x ≥ aN .

Hence, “Not (15)” is equivalent to

lim
x↓aN

inf
d(x)

π(x)− πN
> 0.

We will show that this condition implies no cooperation. On the other hand, condition

(15) itself is not quite strong enough for the sustainability of cooperation.10 Hence

we will slightly strengthen condition (15). Note that, when d(x) is small (less than

1), for any k ∈ (0, 1), d(x)k > d(x). Our condition for cooperation is that this larger

value d(x)k tends to zero faster than the benefit of cooperation π(x)− πN does:

lim
x↓aN

d(x)k

π(x)− πN
= 0 for some k ∈ (0, 1).

This is stronger than the limit condition (15) (i.e., it implies (15)), because d(x)k ≥
d(x) and d(x)

π(x)−πN ≥ 0 imply d(x)k

π(x)−πN ≥
d(x)

π(x)−πN ≥ 0. Moreover, the above condition is

almost equal to the limit condition (15), because the constant k can be any number

arbitrarily close to 1 (for example, k = 0.999). We will show that cooperation is

sustained under this condition.

Theorem 3 Suppose A1-A6 hold.

1. If limx↓aN inf d(x)
π(x)−πN > 0, the Finite Time Condition fails and the unique trigger

strategy equilibrium is to play the Nash action all the time: x(t) ≡ aN .

2. If limx↓aN
d(x)k

π(x)−πN = 0 for some k ∈ (0, 1), then the Finite Time Condition holds

and cooperation can be sustained by the trigger strategy equilibria.

The proof is given in Appendix G.

10To be more precise, we have been unable to show that (15) implies the Finite Time Condition.
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6.2 Comparison with Infinite Repeated Games with Decreas-

ing Discount Factors

Bernheim and Dasgupta (1995) (referred to as BD hereafter) consider an infinitely

repeated game with time-dependent discount factor. Since their model and ours have

similar features, let us compare the two models in detail. Their model is in discrete

time and the objective function is

π(a0) +
∞∑
s=1

π(as)
s∏

τ=1

δ(τ),

where the time-dependent discount factor δ(τ) shrinks over time (δ(τ) → 0 as τ →
∞).11A straightforward extension in continuous time, which is most readily compa-

rable to the revision game, would be to assume (1) opportunities to play the stage

game arrive according to a Poisson process, (2) payoff accrues only at the Poisson

arrival time and (3) instantaneous discount rate ρ(s) diverges over time (ρ(s) → ∞
as s→∞). The continuation payoff in the repeated game at a Poisson arrival time

s′ is given by

π(as′) +

∫ ∞
s′

π(as)e
(
∫ s
s′ −[ρ(τ)]dτ)λds, and 0 < ρ(s)→∞ as s→∞. (16)

Let us represent the time in the revision game by t ∈ [0, T ) (i.e., time runs from 0 to

T ). We will map the repeated game time s ∈ [0,∞) to the revision game time s by

a strictly increasing, continuously differentiable function t = f(s) such that f(0) = 0

and f(s)→ T as s→∞. The revision-game expected payoff at an arrival time t′ is

e−λ(T−t
′)π(at′) +

∫ T

t′
π(at)λe

−λ(T−t)dt.

11The models in Vives (1995, 2001), which we discussed in the Introduction, have similar structure.
Let γτ := 1− δ(τ) be the probability that the game ends in period τ . The expected payoff in period
0 in the papers by Vives is given by

(1− δ(0))u(a0) +

∞∑
s=1

(1− δ(s))u(as)

s∏
τ=1

δ(τ).

This is similar to the payoff in BD, and our argument in this subsection also applies to Vives (1995)
and (2001).

28



Dividing both sides by e−λ(T−t
′), we can see that this is proportional to

π(at′) +

∫ T

t′
π(at)λe

λ(t−t′)dt. (17)

Using the alternative time parameter s ∈ [0,∞) and defining s′ by t′ = f(s′), the

above normalized continuation payoff in the revision game is expressed as

π(af(s′)) +

∫ ∞
s′

π(af(s))λe
λ(f(s)−f(s′)) dt

ds
ds

= π(af(s′)) +

∫ ∞
s′

π(af(s))e
(
∫ s
s′ −[−λf

′(τ)]dτ) [λf ′(s)] ds (18)

This representation of the revision game continuation payoff shows that the revision

game is isomorphic to the continuous time infinite horizon repeated game with the

following three properties.

1. The stage game arrives at time-dependent Poisson arrival rate λ(s) = λf ′(s)

(since f ′(s)→ 0 as s→∞, the arrival rate converges to zero).

2. The stage payoff accrues only at the Poisson arrival time.

3. The instantaneous discount rate at s is negative and is given by −λf ′(s).

Note that the stage game arrives increasingly infrequently over time (item 1), and

the future payoff is more important than the present one (item 3). Those properties

are not present in BD’s payoff representation (16), and can be understood as follows.

Recall the revision game continuation payoff (17). It has the following two properties.

• A If one compares two future times s < s′ in the continuation payoff, more

weight is attached to the payoff at the latter time s′.

• B However, the total future payoff becomes less important over time.12

The revision game has seemingly contradicting features that the future is more

important in one sense (A), while the opposite is true in another sense (B). Properties

A and B of the revision game translate into properties 3 and 1 of the equivalent

12Note that future discounted payoff
∫ T
t′
π(at)λe

λ(t−t′)dt decreases over time, because the inte-
grating interval [t, T ] shrinks.
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repeated game, respectively. BD and our model share a common feature B, but

property A is unique to our model. Therefore, although BD and our model have

some similarities, the two models are not isomorphic to each other. Indeed, Appendix

H proves that it is impossible to rewrite (18) in such a way that (i) the stage game

arrives with a continuous arrival-rate function λ̃(s) (that may not be equal to [λf ′(s)])

and (ii) the continuous instantaneous time-dependent discount rate diverges as time

tends to infinity.

7 Concluding Remarks

We analyzed a new class of games that we call “revision games,” a situation where

players prepare their actions in advance in a game. After the initial preparation, they

have some opportunities to revise their actions, which arrive stochastically. Prepared

actions are assumed to be mutually observable. We showed that players can achieve

a certain level of cooperation in such a class of games. Cooperation is possible if the

gain from deviation is a smaller order of magnitude than the benefit of cooperation

near the Nash equilibrium. We characterized the equilibrium by a simple differential

equation and applied it to analyze the Cournot duopoly game. Our paper sheds

new light on the possibility of cooperation. In particular, cooperation and collusion

might be possible in a non-repeated interaction, when players prepare and revise their

actions before their actual interaction. Part II of the project (Kamada and Kandori,

2017) shows various applications, and the robustness of the results is also examined

in depth.
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APPENDIX

A Proof of Theorem 1

We provide the proof of Theorem 1 (the existence and differentiability of the optimal

plan). First, we present a simple but useful lemma. Recall that we are focusing on

the case aN < a∗.The next lemma shows that we can restrict our attention to the

trigger strategy equilibria whose action always lies in [aN , a∗].

Lemma 2 For any trigger strategy equilibrium plan x ∈ X∗, there is a trigger strategy

equilibrium plan x̂ ∈ X∗ such that ∀t x̂(t) ∈ [aN , a∗] and π(x̂(t)) ≥ π(x(t)) with a

strict inequality if x(t) 6∈ [aN , a∗].

Proof. Construct x̂(t) from a given x(t) as follows. First, if x(t) > a∗, let x̂(t) =

a∗. This assures π(x̂(t)) = π(a∗) > π(x(t)) and, by Assumption A4, d(x̂(t)) ≤ d(x(t)).

Second, if x(t) < aN , let x̂(t) = aN . This assures d(x̂(t)) = 0 < d(x(t)) and, by

Assumption A2, π(x̂(t)) > π(x(t)). Finally, let x̂(t) = x(t) if x(t) ∈ [aN , a∗]. Overall,

x̂(t) provides weakly higher payoffs and weakly smaller gains from deviation, and thus

it also satisfies the trigger strategy incentive constraint

d(x̂(t))e−λt ≤
∫ t

0

(
π(x̂(s))− πN

)
λe−λsds.

This lemma shows that the optimal trigger strategy (if any) can be found in the

set X∗∗ of trigger strategy equilibria whose range is [aN , a∗]:

X∗∗ :=
{
x ∈ X∗|∀t x(t) ∈ [aN , a∗]

}
.

Now we are ready to prove Theorem 1.

Proof. We show that there is a trigger strategy equilibrium in X∗∗ that attains

maxx∈X∗∗ V (x) (by Lemma 2, it is the true optimum in X∗).

In the first step, we construct a candidate optimal plan x(t) and shows its conti-

nuity. In Step 2, we will verify that this plan is feasible and it is indeed the optimal

trigger strategy equilibrium plan. In Step 3, we show that the binding incentive

constraint holds under the plan x.
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[Step 1] Since V (x) is bounded above by π(a∗) = maxa π(a), supx∈X∗∗ V (x) is a

finite number. Hence, we can find a sequence xn ∈ X∗∗ such that limn→∞ V (xn) =

supx∈X∗∗ V (x).

Note that {π(xn(·))}n=1,2,... is a collection of countably many measurable functions.

This implies that π(t) := supn π(xn(t))(< ∞) is also measurable. Now let us define

x(t) to be the solution to

Problem P(t): max
x(t)∈[aN ,a∗]

π(x(t))

s.t. d(x(t))e−λt ≤
∫ t

0

(
π(s)− πN

)
λe−λsds. (19)

Note that the right hand side of the constraint (19) is well-defined, because π(·) is

measurable. Also note that the right hand side is nonnegative by π(s) ≥ πN .13

Under Assumptions A2 and A4, both π(a) and d(a) are strictly increasing on

[aN , a∗]. Furthermore, by Assumption A3, d(a) is continuous by Berge’s Theorem

of Maximum. Hence the solution x(t) to Problem P(t) is either a∗ or the action

in [aN , a∗) with the binding constraint (19). Let us write down the solution x(t)

to the above problem P(t) in the following way. Since d is continuous and strictly

increasing on [aN , a∗], on this interval its continuous inverse d−1 exists. Then the

optimal solution x(t) can be expressed as

x(t) =

{
a∗ if d(a∗) < h(t)

d−1 (h(t)) otherwise
, (20)

where

h(t) := eλt
∫ t

0

(
π(s)− πN

)
λe−λsds.

A crucial step in the proof, that shows the continuity of the optimal plan, is to note

that the integral
∫ t
0

(
π(s)− πN

)
λe−λsds in the definition of h(t) is continuous in t

for any measurable function π(·).14 Since d−1 is continuous, this observation implies

that x(t) is continuous whenever x(t) ∈ [aN , a∗). Moreover, since h(t) is increasing in

t, (20) means that x(t) = a∗ implies x(t′) = a∗ for all t′ > t. Hence x̄ is continuous

for all t.

13By A2, xn(t) ∈ [aN , a∗] implies π(xn(t)) ≥ πN . Hence π(t) = supn π(xn(t)) ≥ πN .
14A standard result in measure theory shows that, for any measurable function f(t), the Lebesgue

integral
∫ t
0
f(s)ds is absolutely continuous in t. Therefore, it is continuous in t.
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[Step 2] We show that x is actually feasible and a trigger strategy equilibrium.

The continuity of x and π implies that π(x(·)) is a measurable function. Therefore,

x is feasible. We show that x also satisfies the (trigger strategy) incentive constraint

IC(t) for all t. Recall that xn is a trigger strategy equilibrium for all n = 1, 2, ....

Then we have, for all n = 1, 2, . . . ,

d(xn(t))e−λt ≤
∫ t

0

(
π(xn(s))− πN

)
λe−λsds (xn is an equilibrium)

≤
∫ t

0

(
π(s)− πN

)
λe−λsds. (by the definition of π)

This means that xn(t) satisfies the constraint of Problem P(t). Since x(t) is the

solution to Problem P(t), we have

∀n ∀t π(x(t)) ≥ π(xn(t)) (21)

and therefore

∀t π(x(t)) ≥ π(t) = sup
n
π(xn(t)). (22)

This implies that, for all t, x(t) satisfies the incentive constraint IC(t):

d(x(t))e−λt ≤
∫ t

0

(
π(s)− πN

)
λe−λsds (x(t) satisfies (19))

≤
∫ t

0

(
π(x(t))− πN

)
λe−λsds.

Thus we have shown that x is a trigger strategy equilibrium (x ∈ X∗), and V (x) ≥
V (xn) for all n (by (21)). By definition limn→∞ V (xn) = supx∈X∗∗ V (x), and the above

inequality implies V (x) ≥ supx∈X∗∗ V (x). Since x ∈ X∗∗, we must have V (x) =

supx∈X∗∗ V (x) = maxx∈X∗∗ V (x)(= maxx∈X∗ V (x) by Lemma 2). Hence we have

established that there is an optimal and continuous trigger strategy equilibrium x.

[Step 3] Lastly we prove that the optimal plan x satisfies the binding incentive

constraint. Step 1 shows that, if x(t) 6= a∗, then the following “pseudo” binding

incentive constraint is satisfied:

d(x(t))e−λt =

∫ t

0

(
π(s)− πN

)
λe−λsds. (23)
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Our remaining task is to show the “true” binding incentive constraint

d(x(t))e−λt =

∫ t

0

(
π(x(t))− πN

)
λe−λsds.

Since π(x(t)) ≥ π(t) for all t (inequality (22)), the pseudo binding incentive constraint

(23) implies

d(x(t))e−λt ≤
∫ t

0

(
π(x(t))− πN

)
λe−λsds. (24)

We show that this is satisfied with an equality. If the above inequality were strict for

some t, we would have
∫ t
0
π(s)λe−λsds <

∫ t
0
π(x(s))λe−λsds. Given π(x(s)) ≥ π(s) for

all s ∈ (t, T ] (inequality (22)), we would have

e−λTπ(T ) +

∫ T

0

π(s)λe−λsds < e−λTπ(x(T )) +

∫ T

0

π(x(s))λe−λsds = V (x).

Since π(s) := supn π(xn(t)), the left hand side is more than or equal to V (xn) for all n.

Since limn→∞ V (xn) = supx∈X∗∗ V (x), the above inequality implies supx∈X∗∗ V (x) <

V (x). In contrast x ∈ X∗∗ implies supx∈X∗∗ V (x) ≥ V (x), and this is a contradiction.

Hence (24) should be satisfied with an equality (i.e., x satisfies the binding incentive

constraint), if x(t) 6= a∗.

B Proof of Proposition 1

We provide the proof of Proposition 1 (essential uniqueness of the optimal plan):

Proof. Suppose H := {t|π(y(t)) > π(x(t))} has a positive measure.15 Then,

define

z(t) :=


y(t) if t ∈ H

x(t) otherwise

.

This has a measurable payoff π(z(t)) = max {π(y(t)), π(x(t))} and achieves a strictly

15Since y is a feasible plan, H is a measurable set.
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higher expected payoff than x(t). Furthermore, z satisfies the incentive constraints

∀t d(z(t))e−λt ≤
∫ t

0

(
π(z(s))− πN

)
λe−λsds.

This follows from the incentive constraints for x and y, together with π(z(t)) =

max {π(y(t)), π(x(t))}. Hence, z is a trigger strategy equilibrium plan, which achieves

a strictly higher payoff than x(t) does. This contradicts the optimality of x(t), and

therefore H must have measure zero. Hence π(y(t)) ≤ π(x(t)) almost everywhere. If

{t|π(y(t)) < π(x(t))} has a positive measure, y attains a strictly smaller payoff than

x(t) does, which contradicts our premise that y is optimal. Therefore, we conclude

that π(y(t)) = π(x(t)) almost everywhere.

Now, note that Lemma 2 shows that if {t|y(t) 6∈ [aN , a∗]} has a positive measure,

then y(t) cannot be optimal in X∗. This implies that y(t) ∈ [aN , a∗] almost every-

where. This and π(y(t)) = π(x(t)) almost everywhere imply that y(t) = x(t) almost

everywhere because π is strictly increasing on [aN , a∗].

C Proof of Theorem 2

We prove Theorem 2.

Proof. By Theorem 1 and Lemma 1, the optimal plan x(t) satisfies the following

conditions:

(i) it lies in [aN , a∗] for all t,

(ii) it is continuous in t,

(iii) it follows the differential equation dx/dt = f(x) if x ∈ (aN , a∗), and

(iv) it starts with Nash action aN at t = 0.

We first show that the existence of a non-trivial optimal plan implies the Finite

Time Condition. Properties (i), (ii) and (iv) imply that, if x(t) is non-trivial (i.e., not

equal to the Nash action aN for all t), then x(t0) = a0 ∈ (aN , a∗) for some t0 > 0 and

some a0. At this point the optimal plan satisfies the differential equation dx/dt = f(x)

by (iii). By A2 and A5, f(x) =
λ(d(x)+π(x)−πN)

d′(x)
> 0 (recall that d(aN) = 0 and

π(aN) = πN), when x ∈ (aN , a∗). Hence, once the optimal path departs from the Nash

action aN , it is strictly increasing and never goes back to aN . Given that the optimal

path starts with aN , this implies the following. First, the plan stays at the Nash action
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for some time interval [0, tN ] (this interval may be degenerate: tN may be equal to 0).

Second, after this time interval, the plan is continuous and strictly increasing with

x(tN) = aN < x(t0) = a0. Therefore, on [tN , t0], function x(t) has a continuous inverse

that we denote by t(x), and its derivative is defined on (tN , t0] and equal to dt
dx

= 1
f(x)

.

This implies that lima↓aN
∫ a0
a

dt
dx
dx = lima↓aN (t(a0)− t(a)) = t(a0)− t(aN), where the

last equality follows from the continuity of the inverse function t(·). By definition,

t(a0) = t0 and t(aN) = tN , and therefore lima↓aN
∫ a0
a

dt
dx
dx < ∞ holds. In addition,

since f(x) is Lipchitz continuous over [a0, a∗], the differential equation dx
dt

= f(x) with

an initial condition x(t0) = a0 has a unique solution, and x is equal to such a solution.

Hence, letting t̂ be x(t̂) = a∗, we obtain t̂ < ∞. Hence,
∫ a∗
a0

1
f(x)

dx = t̂ − t0 < ∞.

Overall, we conclude that

lim
a↓aN

∫ a∗

a

dt

dx
dx =

(
lim
a↓aN

∫ a0

a

dt

dx
dx

)
+

∫ a∗

a0

dt

dx
dx <∞,

so the Finite Time Condition (11) holds.

Next, we show that the Finite Time Condition implies that the optimal plan is

non-trivial. Choose any a0 ∈ (aN , a∗). By Assumption A6 (the Lipschitz continuity),

the differential equation dx/dt = f(x) with boundary condition x(0) = a0 has a

unique solution, denoted by xε(t), on (aN + ε, a∗) for any small enough ε > 0. By the

same argument as above, our assumptions ensure dx/dt = f(x) > 0 for x ∈ (aN , a∗).

Define

t∗ := lim
ε→0

∫ a0

aN+ε

1

f(x)
dx <∞, (25)

where the finiteness follows from the Finite Time Condition (11). The above argument

shows that there is a solution to the differential equation x(t) such that x(0) = a0

and x(t) ↓ aN as t→ −t∗. Shift the origin of time and construct a new plan y(t) :=

x(t− t∗). The new plan is also a solution to the differential equation, and it satisfies

y(t∗) = a0 and y(t) → aN as t → 0. Now, construct another plan z(t) by suitably
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extending y(t):

z(t) =



aN if t = 0

y(t) if t ∈ (0, t∗]

a0 if t > t∗

This plan satisfies the trigger strategy incentive constraint (6): the incentive con-

straint is binding on [0, t∗] (because it satisfies the differential equation), and for

t > t∗ the incentive constraint is satisfied with strict inequality. Hence z(t) is a non-

trivial trigger strategy equilibrium. This implies that the optimal trigger strategy

equilibrium is non-trivial.

D Proof of Corollary 1

We prove Corollary 1.

Proof. Recall that the optimal plan x(t) satisfies conditions (i)-(iv) in Appendix

C. It turns out that there are multiple plans which satisfy those conditions. For

example, trivial constant plan x(t) ≡ aN satisfies those conditions. In what follows,

we identify all plans that satisfy conditions (i)-(iv) and find the optimal one among

them.

The Finite Time Condition is

t(a∗) := lim
a↓aN

∫ a∗

a

1

f(x)
dx <∞.

The proof of Theorem 2 shows that there is a solution to the differential equation

x∗(t) that satisfies x∗(t(a∗)) = a∗ and x∗(t) → aN as t → 0. From x∗(t), construct

the following plan

xτ (t) :=



aN if t ∈ [0, τ ]

x∗(t− τ) if t ∈ (τ, τ + t(a∗))

a∗ if t ∈ [τ + t(a∗),∞)

.
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This plan xτ (t) departs from aN at time τ , follows the differential equation, and then

hits the optimal action a∗ and stays there (In a revision game with time horizon T ,

we must consider the restriction of xτ (t) on [0, T ]).

Those plans xτ (t), τ ≥ 0 obviously satisfy (i)-(iv). Next we show the converse:

any plan satisfying (i)-(iv) is equal to xτ (t) for some τ ∈ [0,∞]. This comes from

the standard result in differential equation: dx/dt = f(x) defined on an open domain

(x, t) ∈ (aN , a∗) × (−∞,∞) has a unique solution given any boundary condition, if

f(x) is Lipschitz continuous. The uniqueness of the solution then implies that any

plan satisfying (i)-(iv) is equal to xτ (t) for some τ ∈ [0,∞) ∪ {∞}.16

Among the plans xτ (t), τ ∈ [0,∞] the one that departs from aN immediately (i.e.,

x0(t)) obviously has the highest payoff. Therefore the optimal plan is given by the

restriction of x0(t) on [0, T ], which has the stated properties in Corollary 1.

E Proof of Proposition 2

We prove Proposition 2. First, we show the following technical lemma.

Lemma 3 Under A1, A2, A4, A5 and S1-S3, both d′(x) and d′′(x) exist and are

continuous. In particular,

d′(x) =
∂π1(BR(x), x)

∂x2
− ∂π1(x, x)

∂x1
− ∂π1(x, x)

∂x2
, (26)

d
′′
(x) = −

(
∂2π1(BR(x), x)

∂x1∂x2

)2

/
∂2π1(BR(x), x)

∂x21
+
∂2π1(BR(x), x)

∂x22

−∂
2π1(x, x)

∂x21
− 2

∂2π1(x, x)

∂x1∂x2
− ∂2π1(x, x)

∂x22
, and (27)

d′′(aN) =
−
(
∂2π1(aN ,aN )

∂x21
+ ∂2π1(aN ,aN )

∂x1∂x2

)2
∂2π1(aN ,aN )

∂x21

. (28)

16A formal proof goes as follows. The trivial path, which satisfies (i)-(iv), is equal to xτ with
τ =∞. Consider any non-trivial path x0(t) that satisfies (i)-(iv), where x0(t0) =: a0 ∈ (aN , a∗) for

some t0. Define t′ := t0− lima↓aN
∫ a0
a

1
f(x)dx (which is finite by the Finite Time Condition), so that

x∗(t− t′) hits a0 at t = t0. The uniqueness of the solution to the differential equation (for boundary
condition x(t0) = a0) implies x0(t) = x∗(t − t′) for t ≥ t′. If t′ ≥ 0, we obtain the desired result
x0(t) = xτ (t) for τ = t′. If t′ < 0, x0(0) = x∗(−t′) > aN and x0(0) cannot satisfy (iv) (x∗(−t′) > aN

leads to a contradiction because we are considering the case aN < a∗).
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Proof. We first examine the properties of BR(x). To this end, we apply the

implicit function theorem to the first order condition ∂π1(BR(x),x)
∂x1

= 0 (S2). The

assumptions of the implicit function theorem are satisfied:

• ∂2π1(BR(x),x)

∂x21
6= 0 (by S2) and

• ∂π1(x1,x2)
∂x1

is continuously differentiable (S1).

Hence BR(x) is a continuously differentiable function (and therefore also contin-

uous), with

BR′(x) = −∂
2π1(BR(x), x)

∂x1∂x2
/
∂2π1(BR(x), x)

∂x21
,

which is finite. Given this, differentiating d(x) := π1(BR(x), x)− π1(x, x) and using

the first-order condition ∂π1(BR(x),x)
∂x1

= 0 (S2), we obtain (26). Differentiating this

once again and using the above formula for BR′(x), we obtain (27). By the twice

continuous differentiability of π1 (S1), ∂2π1(BR(x),x)

∂x21
6= 0 (by S2), and the continuity of

BR(x), both d′ and d′′ are continuous. Lastly, (28) is obtained from (27), by noting

that BR(x) = x when x is equal to the Nash action aN .

Now we are ready to prove Proposition 2.

Proof. Since A3 is directly implied by S1 and S2, we need to derive the Lipschitz

condition A6 and the Finite Time Condition (11) (then the Proposition follows from

Corollary 1).

Let us show that f(x) =
λ(d(x)+π(x)−πN)

d′(x)
is Lipschitz continuous on [aN + ε, a∗]

for any ε ∈ (0, a∗]. A sufficient condition for the Lipschitz continuity is that f(x)

is continuously differentiable on [aN + ε, a∗].17 Sufficient conditions for this is that

d(a), π(a), and d′(a) are continuously differentiable, and d′(a) > 0 on [aN + ε, a∗].

Continuous differentiability of π is directly assumed in S1. Lemma 3 above shows the

continuous differentiability of d and d′ (d′ and d′′ exist and are continuous). Finally,

d′(a) > 0 is directly assumed in A5.

It remains to show the Finite Time Condition

lim
a↓aN

∫ a∗

a

d′(x)

λ (d(x) + π(x)− πN)
dx <∞.

17If f(x) is continuously differentiable, the function |f ′(x)| is continuous and thus has the max-
imum value on the compact interval [aN + ε, a∗]. This maximum value serves as the (Lipschitz)

constant K in the definition of Lipschitz continuity:
∣∣∣ f(x)−f(y)x−y

∣∣∣ ≤ K.
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Note that the integral is over a bounded interval, and the integrand is a finite number

for all x ∈ (aN , a∗] under our assumptions. Hence the Finite Time Condition is

satisfied if the integrand d′(x)
λ(d(x)+π(x)−πN )

tends to a finite number as x ↓ aN . The

denominator tends to d(aN) + π(aN)− πN = 0 + πN − πN = 0. The numerator d′(x)

also tends to zero, under our smoothness conditions:

d′(aN) = 0. (29)

This follows from Lemma 3, which states

d′(x) =
∂π1(BR(x), x)

∂x2
− ∂π1(x, x)

∂x1
− ∂π1(x, x)

∂x2
.

At the Nash action x = aN , the second term is zero by the first-order condition. The

first and third terms cancel out, because BR(x) = x at the Nash action x = aN .

Hence, we obtain d′(aN) = 0.

Given that both the numerator and denominator of d′(x)
λ(d(x)+π(x)−πN )

tend to zero as

x ↓ aN , we can apply l’Hopital’s rule:

lim
x↓aN

d′(x)

λ (d(x) + π(x)− πN)
=

d′′(aN)

λ (d′(aN) + π′(aN))

By (29), the denominator of the right hand side is equal to λπ′(aN), and it is non-

zero (strictly positive) by S3. Lemma 3 shows that the numerator d′′(aN) is a finite

number. Hence, the right hand side is a finite number, and therefore the Finite Time

Condition is satisfied.
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F Calculation of Expected Payoffs for Cournot Duopoly

The expected payoff can be calculated as follows:∫ t(x∗)

0

(a− 2bx(t)− c)x(t)λe−λtdt+ e−λt(x
∗) (a− 2bx∗ − c)x∗

=

∫ t(x∗)

0

(
a− 2b

a− c
3b

(
5− 4e

λ
18
t
)
− c
)
a− c

3b

(
5− 4e

λ
18
t
)
λe−λtdt+ e−λt(x

∗)

(
a− 2b

a− c
4b
− c
)
a− c

4b

=
(a− c)2

9b

∫ t(x∗)

0

(
−7 + 8e

λ
18
t
)(

5− 4e
λ
18
t
)
λe−λtdt+ e−λt(x

∗) (a− c)2

8b

=
(a− c)2

9b

[
35e−λt − 72e−

17
18
λt + 36e−

8
9
λt
]t(x∗)
0

+ e−λt(x
∗) (a− c)2

8b

=
(a− c)2

9b

(
35

(
17

16

)−18
− 72

(
17

16

)−17
+ 36

(
17

16

)−16
+ 1

)
+

(
17

16

)−18
(a− c)2

8b

=
(a− c)2

8b

((
17

16

)−18(
35 · 8

9
− 64 · 17

16
+ 32

(
17

16

)2

+ 1

)
+

8

9

)

=
(a− c)2

8b

((
17

16

)−18(
−323

9
+ 32

(
17

16

)2
)

+
8

9

)

On the other hand, the collusive payoff is:(
a− 2b

a− c
4b
− c
)
a− c

4b
=

(a− c)2

8b
.

Thus, the ratio between these two values is:(
17

16

)−18(
−323

9
+ 32

(
17

16

)2
)

+
8

9
' 0.96817 . . .

G Proof of Theorem 3

We first prove Part [1] of Theorem 3. Condition limx↓aN inf d(x)
π(x)−πN > 0 implies that

there is a constant h > 0 such that

d(x)

π(x)− πN
≥ h
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for x sufficiently close to aN . Hence, for a ∈ (aN , a∗],

t(a) = lim
a↓aN

∫ a

a

d′(x)

λ (d(x) + π(x)− πN)
dx ≥ lim

a↓aN

∫ a

a

d′(x)

λ(1 + 1
h
)d(x)

dx

=
1

λ(1 + 1
h
)

lim
a↓aN

∫ a

a

d′(x)

d(x)
dx

=
1

λ(1 + 1
h
)

log d(a)− lim
a↓aN

log d(a).

Since d(aN) = 0, − lima↓aN log d(a) = ∞ and the Finite Time Condition t(a) < ∞
fails.

Now we show Part [2] of Theorem 3. First, limx↓aN
d(x)k

π(x)−πN = 0 for some k ∈ (0, 1)

implies

t(a) = lim
a↓aN

∫ a

a

d′(x)

λ (d(x) + π(x)− πN)
dx ≤ lim

a↓aN

∫ a

a

d′(x)

λ (d(x) + (d(x))k)
dx.

if a > aN is close enough to aN . Now calculate the integral with respect to d instead

of x. For the sake of exposition, let us now denote d(x) by D(x) and recall that it is

strictly increasing for x > aN . Then, by noting D(aN) = 0, we obtain

t(a) ≤ lim
a↓aN

∫ a

a

dD
dx

λ (D +Dk)
dx

= lim
D↓0

∫ D(a)

D

1

λ (D +Dk)
dD

≤ lim
D↓0

∫ D(a)

D

1

λDk
dD

= lim
D↓0

[
1

λ(1− k)
D1−k

]D(a)

D

<∞,

where the last inequality follows from limD↓0D
1−k = 0 because k ∈ (0, 1). Hence the

finite time condition is indeed satisfied.
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H Impossibility of Mapping between the Revision-

Games Payoffs and BD’s Payoffs

Here we show that it is impossible to rewrite (18) in such a way that properties 1

and 2 hold with a continuous arrival-rate function and the continuous instantaneous

discount rate diverges as time goes to infinity.

Such a rewriting is possible if the expression (18) is equal to

π(af(s′)) +

∫ ∞
s′

π(af(s))e
(
∫ s
s′ −[ρ̃(τ)]dτ)λ̃(s)ds (30)

for some continuous functions λ̃ and ρ̃ such that ρ̃(s)→∞ as s→∞. The equality

of two payoffs (18) and (30) requires that

∀s∀s′ e(
∫ s
s′ −[ρ̃(τ)]dτ)λ̃(s) = e(

∫ s
s′ −[−λf

′(τ)]dτ)λf ′(s) (31)

holds.18 This condition (31) for s = s′ implies

∀s′ λ̃(s′) = λf ′(s′).

18To see this, suppose that there exist s and s′ such that the left hand side in (31) is strictly larger
than the right hand side. By the continuity of ρ̃, λ̃ and f ′, both sides of this equality are continuous,
so there exists ε > 0 such that

e

(∫ s′′
s′ −[ρ̃(τ)]dτ

)
λ̃(s′′) > e

(∫ s′′
s′ −[−λf ′(τ)]dτ

)
λf ′(s′′) for all s′′ ∈ [s, s+ ε]. (32)

Now normalize the component game payoff such that π(a′) = 1 and π(a′′) = 0 for some actions a′

and a′′. Let

af(s′′) =

 a′ for s′′ ∈ [s, s+ ε]

a′′ otherwise
.

Then, (32) implies∫ ∞
s′

π(af(s))e
(
∫ s
s′ −[−λf ′(τ)]dτ) [λf ′(s)] ds >

∫ ∞
s′

π(af(s))e
(
∫ s
s′ −[ρ̃(τ)]dτ)λ̃(s)ds,

and therefore (18) and (30) do not represent the same payoff function. Hence, for (18) and (30)
represent the same payoff, condition (31) must be satisfied. A symmetric proof shows that there
cannot exist s and s′ such that the left hand side in (31) is strictly smaller than the right hand side,
either.
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Plugging this into (31), we obtain

∀s∀s′
∫ s

s′
− [ρ̃(τ)] dτ =

∫ s

s′
− [−λf ′(τ)] dτ

This implies ρ̃(τ) = −λf ′(τ) for each τ .19 Hence, ρ̃(s) does not diverge to ∞ as

s→∞ (note that f(s) < T for all T ).

19To see this, suppose that there exists τ̄ such that ρ̃(τ̄) > −λf ′(τ̄). By the continuity of ρ̃ and
f ′, there exist s and s′ with s′ < τ̄ < s such that ρ̃(τ) > −λf ′(τ) for all τ ∈ (s′, s). This implies∫ s
s′
− [ρ̃(τ)] dτ <

∫ s
s′
− [−λf ′(τ)] dτ , leading to a contradiction. A symmetric proof shows that it is

not possible to have ρ̃(τ) < −λf ′(τ), either.
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