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Abstract

This paper proposes a class of games called revision games. In a revision

game, players start with initially prepared actions, followed by a sequence of

random revision opportunities until a predetermined deadline. In the course of

revisions, players monitor each other’s behavior. It is shown that players can co-

operate and that their behavior under the optimal equilibrium is described by a

simple differential equation. We present the necessary and sufficient conditions

for cooperation to be sustained in revision games. We also present applications

to the preopening activities in the stock exchange and to an electoral campaign.
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1 Introduction

We show that cooperation can be sustained when players prepare and revise their

strategies before playing a game. Specifically, we propose a class of stylized models,

which we call revision games, to formulate and analyze such a situation. A revision

game starts at time −T and ends at time 0 (time is continuous). Players prepare

actions at the beginning, and then they obtain revision opportunities according to a

Poisson process. When a revision opportunity arises, players simultaneously revise

their actions.1 The initial and revised actions are mutually observable, and the actions

chosen at the last revision opportunity are played at time 0. We show that, under

a certain set of conditions, players can cooperate by using a version of the trigger

strategy defined over the revision process. The optimal revision plan has a tractable

characterization: it is given by a simple differential equation.

The revision game represents a situation where common random revision opportu-

nities arrive before the “deadline” to play a game. For example, in the stock exchange

markets, traders prepare and revise their orders before the opening of the market.

The prepared orders are observable on the public screen, which is refreshed frequently.

Each refreshment of the screen can be regarded as a random revision opportunity (see

Section 4.1).2 In an electoral campaign, an effective revision opportunity of candi-

dates’ policies is likely to be tied to the arrival of a random event that triggers (i)

debates within each party, (ii) voters’ attention, and (iii) voters’ willingness to accept

policy changes. In the 2017 Korean presidential election campaign, the two candidates

announced and revised their national defense policies after the arrival of important

political news (see Section 4.2 for the detail).

Let us illustrate how the revision game works when applied to the familiar game

of Cournot duopoly.3 One can imagine that two fishing boats, operating side by side,

dynamically adjust their catch until the fish market opens. Random revision oppor-

tunities correspond to the arrivals of fish schools. Players’ behavior in the revision

game is represented by a revision plan q(t). When a revision opportunity arrives

at time −t, they are supposed to adjust their quantity to q(t). The trigger strategy

(in revision games) stipulates that, if anyone fails to follow the revision plan, players

1In Section 6, we analyze the case where revision opportunities are player-specific.
2Calcagno and Lovo (2010) were the first to point out that the “preopening phase” of stock

exchange is a good example of the situation where players revise their strategies before the deadline.
3See Example 2 in Section 3 for the detail.
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Figure 1: The optimal trigger strategy equilibrium plan and a sample path for the
revision game of Cournot duopoly. Arrival rate λ = 1.

choose the static Nash equilibrium quantity at all future revision opportunities. We

will show that the optimal revision plan supported by the trigger strategy is given by

a simple differential equation

dq

dt
=
λ
(
d(q) + π(q)− πN

)
d′(q)

,

where d(q) and π(q) are the gain from deviation and the payoff when each player

chooses quantity q, πN is the Nash equilibrium payoff, and λ is the Poisson arrival

rate. A closed-form solution q(t) is obtained and it is depicted as a dashed curve of

Figure 1.4

This optimal trigger strategy equilibrium plan starts at the collusive quantity

and then follows the differential equation. Finally, it reaches the Nash equilibrium

quantity at the end of the revision game. In contrast, the bold segments depict a typ-

ical realized path of quantity. Whenever a revision opportunity arrives, the prepared

quantity is adjusted according to the revision plan. At time −t′, the first revision

opportunity arrives, but players do not revise their quantity. Closer to the deadline at

time −t′′, a revision opportunity comes again, and the players increase their quantity

to q′′. Then, they encounter no more revision opportunities, and the amount shipped

into the market is q′′ (thus, the final outcome is random and determined by when the

last revision opportunity arrives).

4See equation (8) in Section 3.
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Why can we sustain cooperation in revision games? When a revision opportunity

arrives near the end of a revision game, there is still a small but positive probability

that another revision is possible in the remaining time. This means that, if a player

cheats at the current revision opportunity, she has some (small) probability of being

punished in the remaining time. Hence, players can cooperate a little near the end

of the game. Using this as a foothold, players can cooperate more when a revision

opportunity arrives earlier. By a repeated application of this mechanism, players

can cooperate substantially when they are far away from the end of the revision

game. This logic does not always hold, however, and in some games no cooperation

is possible. We provide necessary and sufficient conditions for cooperation to be

sustained in revision games.

1.1 Related literature

Several papers examine revision processes that are different from ours. Kalai (1981)

and Bhaskar (1989) examine models where players can always react to their op-

ponents’ revisions, and show that a unique and efficient outcome is obtained. In

contrast, players in our revision games may not obtain a chance to react, and thus

full cooperation cannot be obtained. In Caruana and Einav (2008a,b), a revision is

possible at any moment of time with some switching costs5 Thus, players have an

incentive to act like the Stackelberg leader, using the switching cost as a commitment

device. Their second paper (2008b) considers the Cournot duopoly and shows that,

in contrast to our model, the firms end up producing more than the Nash quantity in

their equilibrium. Hence, unlike in our model, the outcome is less cooperative than

the static Nash equilibrium. Nishihara (1997) considers a model in which uncertainty

about the order of moves induces the possibility of cooperation. The domain to which

his cooperation mechanism applies is different from ours because his mechanism relies

on a specific signal structure in which only defection is revealed to the next mover,

while we assume perfect information.

Some existing work examine random revision opportunities. Vives (1995) and

Medrano and Vives (2001) present infinite-horizon discrete-time models, where in

each period n, with probability γn, the stage game payoff in that period is realized

and the game ends immediately. The probability γn is nondecreasing in n. Those

5See also Iijima and Kasahara (2016).
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papers consider a continuum of agents (and a single large agent in Medrano and Vives

(2001)), and therefore there does not exist the kind of strategic interaction that is the

main focus of our paper. Ambrus and Lu (2015) analyze a multilateral bargaining

problem in a continuous-time finite-horizon setting where opportunities of proposals

arrive via Poisson processes. Although their model is similar to ours, they focus on

(the unique) Markov perfect equilibrium, which corresponds, in our model, to the

trivial equilibrium where the Nash equilibrium action is always played. Ambrus,

Burns and Ishii (2014) analyze a model of eBay-style auctions in which bidders have

chances to submit their bids at Poisson opportunities before the deadline.6 They

show that there are equilibria in which bidders gradually increase their bids. Their

equilibria are built on the existence of multiple best replies in the eBay-style auction,

and the mechanism behind the revision behavior in their model is different from ours.

Revision games are similar to repeated games, in the sense that the possibility of

future punishment provides incentives to cooperate.7 We elaborate on this point in

Section 7.2. In this respect, the paper by Chou and Geanakoplos (1988) is the most

closely related to ours. They consider T -period repeated games in which a player can

commit to a ε-optimal action in the final period and prove that, if the stage game

has a “smooth” payoff function, the folk theorem obtains as T →∞. That is, a little

bit of commitment at the last period provides a basis for substantial cooperation in

the entire game. Our paper shows that a similar mechanism can operate in revision

processes, without the need for suboptimal behavior at the deadline.

Finally, various follow-up papers have been written while we were circulating

earlier versions of the present paper. Given the growing volume of such research, here

we provide a brief summary of recent work. First, a group of papers are concerned

with uniqueness of equilibrium (and comparative statics on such a unique equilibrium)

in revision games where (i) revision opportunities are player-specific and (ii) there are

finitely many actions. Those papers include: Calcagno, Kamada, Lovo and Sugaya

(2014), Ishii and Kamada (2011), Romm (2014), Kamada and Sugaya (2019), and

Gensbittel, Lovo, Renault and Tomala (2018). Second, some other papers attempt to

obtain general properties of revision games. For example, Moroni (2015) and Lovo and

6See also Hopenhayn and Saeedi (2016).
7Such punishment for deviations can also be carried out in the form of commitment in a

simultaneous-move game, for example using price-matching guarantees (e.g., Edlin (1997)) or the
use of computer programs (e.g., Tennenholtz 2004). In our dynamic setting, an action at a given
time cannot condition on the future actions, and this feature is absent in these papers.
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Tomala (2015) show the existence of equilibria in their respective generalizations of

revision games. Finally, Roy (2017) conducts laboratory experiments that are related

to our quantity revision game.8 The paper shows that the experimental results exhibit

some important features of the trigger-strategy equilibrium that we identify in the

present paper.

2 Revision Games

We consider a normal-form game with two players i = 1, 2.9 Player i’s action and

payoff are denoted by ai ∈ Ai and πi(a1, a2). Players prepare their actions in advance,

and they also have stochastic revision opportunities. Formally, time is continuous,

−t ∈ [−T, 0] with T > 0. At the beginning (at time −T ), players simultaneously

choose their actions. Then, revision opportunities arrive according to Poisson pro-

cess(es). Players can revise their actions costlessly, and they observe each other’s

initial and revised actions. At time 0, which we call the deadline, player i obtains

payoff πi(a
′
1, a
′
2), where a′j is j’s action chosen in the last revision opportunity. There

are two specifications of the revision process:

1. Synchronous case: There is a single Poisson process with arrival rate λ > 0. At

each arrival, players simultaneously choose their revised actions.

2. Asynchronous case: For each player, there is a Poisson process with arrival rate

λi > 0 (independent across players). At each arrival for player i, she/he chooses

a revised action.

We mainly focus on the synchronous case. In Section 6, however, we show that our

main results for the synchronous case continue to hold for the asynchronous case when

the payoff function satisfies a certain condition. The entire dynamic game of revision

process is referred to as the revision game, while the game πi(a1, a2) is referred to as

its component game.10

8Avoyan and Ramos (2018) also conduct experiments on revision games.
9Our analysis can be extended to the N -player case.

10The assumption that revisions can be made even at times very close to the deadline may not
always be realistic. Section 7.1 discusses a modification of the revision game by introducing willing-
ness to punish a deviator and/or a soft deadline. For the main part of the paper, however, we focus
on our simple setup presented in the current section.
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3 The Optimal Trigger Strategy Equilibrium

We analyze a symmetric revision-game equilibrium that uses a trigger strategy defined

below. Consider a symmetric component game, where A1 = A2 =: A and π1(a, a′) =

π2(a′, a) for all a, a′ ∈ A. The action space A is a convex subset (interval) in R. In

what follows, we present the main logic to characterize the optimal trigger strategy

equilibrium, while all technical propositions are relegated to Appendix A.

We assume the following properties, where π(a) := π1(a, a) = π2(a, a).

• A1: There exist a unique pure symmetric Nash equilibrium action aN with

payoff πN := π(aN) and a unique best symmetric action a∗ that maximizes

π(·). The Nash and the best actions are distinct.

• A2: If aN < a∗, π(a) is strictly increasing for a < a∗ (a symmetric condition

holds if a∗ < aN).

• A3: π1(a1, a2) is continuous, and maxa1 π1(a1, a2) exists for all a2 so that we

can define the (maximum) gain from deviation at a symmetric profile (a, a) by

d(a) := max
a1

π1(a1, a)− π1(a, a). (1)

• A4: If aN < a∗, d(a) is strictly increasing on [aN , a∗] and non-decreasing for

a∗ < a (symmetric conditions hold if a∗ < aN).

Assumptions A1 and A3 are mostly innocuous technical assumptions (the unique-

ness of Nash equilibrium makes it harder to sustain cooperation in our setting). The

requirement that actions are continuous variables, however, is crucial. We discuss this

issue in Section 5.2. A2 and A4 are monotonicity conditions that simplify our analy-

sis. Assumption A2 requires that the symmetric payoff π(a) monotonically decreases

as we move away from the optimal action a∗ (in the relevant region for our analysis).

Assumption A4 says that the gain from deviation monotonically increases as we move

away from the Nash equilibrium (again in the relevant region for our analysis).

At this moment we define the term “cooperation” (or “collusion”). We say that

action a is cooperative (collusive) or achieves (some degree of) cooperation (collusion)

if it provides a higher payoff than the Nash equilibrium: π(a) = πi(a, a) > πN .

A symmetric trigger strategy is characterized by its revision plan x : [0, T ]→
A. Players start with the initial action x(T ), and when a revision opportunity arrives
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at time −t, they choose action x(t). Note that t, the argument of revision plan

x(t), refers to the remaining time in the revision game which can be regarded as

the payoff-relevant state variable. If any player fails to choose x(t) when a revision

opportunity arrives at−t, both players choose the Nash action aN in all future revision

opportunities.

We would like to remind the reader that the plan x(·) should not be confused

with the path of revised actions. As Figure 1 in the Introduction shows, even when

the graph of plan x(·) is a smooth curve, the realized path of revised actions is

discontinuous and piecewise constant.

We will characterize the optimal trigger strategy equilibrium, which we formally

define as follows: First, in order to guarantee that the expected payoffs are well

defined, we restrict attention to trigger strategies with plan x(·) in the following set

of feasible plans :

X := {x : [0, T ]→ A | π ◦ x is measurable} .

Then, the expected payoff (to each player) associated with plan x(·) ∈ X can be

written as:

V (x) := π(x(T ))e−λT +

∫ T

0

π(x(t))λe−λtdt. (2)

The coefficient of π(x(T )), e−λT , is the Poisson probability that no revision oppor-

tunity arises in the future. In that case, the initial action x(T ) is implemented. To

interpret the integral in (2), note that λ is a density of a Poisson arrival at any mo-

ment of time and e−λt is the probability of no Poisson arrival in the remaining time t.

Therefore, λe−λt is the density of the last revision opportunity. Overall, the integral

represents the expected payoff when the last revision opportunity arrives in (−T, 0].

The incentive constraint at time t for the trigger strategy with plan x(t) to be a

subgame-perfect equilibrium is

(IC(t)): d(x(t))e−λt︸ ︷︷ ︸
deviation gain

≤
∫ t

0

(
π(x(s))− πN

)
λe−λsds︸ ︷︷ ︸ .

punishment

(3)

The left hand side is interpreted as follows: With probability e−λt, there is no revision

opportunity in the remaining time t, and with this probability the deviation gain

d(x(t)) (defined by (1)) materializes. The right hand side shows that the payoff
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is decreased under the trigger strategy, when a revision opportunity arrives in the

remaining time. In particular, when s is the last revision opportunity in the future,

the realized payoff is decreased from π(x(s)) to the Nash payoff πN . As we explained

above, the density of the last revision opportunity is λe−λs, and therefore the integral

in (3) represents the expected loss. In summary, the incentive constraint (3) is the

condition for subgame-perfect equilibrium: it shows that, at any time −t, a player

cannot increase her payoff by deviating now and possibly obtaining the equilibrium

payoff in the subgames after the deviation (= the Nash payoff).11 Note that (3)

implies an obvious requirement x(0) = aN (if a revision opportunity arrives at the

deadline, players should choose the Nash action).

The set of trigger strategy equilibrium plans is formally defined as

X∗ := {x ∈ X | IC(t) holds for all t ∈ [0, T ]}.

A plan that achieves the highest ex ante expected payoff within X∗ is referred to as

an optimal trigger strategy equilibrium plan.12

Proposition 5 in Appendix A shows that under assumptions A1-A4, (i) the max-

imum trigger strategy equilibrium payoff exists and (ii) it is achieved by plan x(·)
that is continuous and satisfies the incentive constraint (3) with equality as long as

x(t) 6= a∗.13 This plan, which we call the optimal plan, therefore satisfies the following

binding incentive constraint if x(t) 6= a∗.

d(x(t))e−λt︸ ︷︷ ︸
deviation gain

=

∫ t

0

(
π(x(s))− πN

)
λe−λsds︸ ︷︷ ︸

punishment

. (4)

The binding incentive constraint (4) reveals the following central mechanism to

sustain cooperation in the revision game. Near the deadline, the punishment in the

future revision opportunities happens with a very small probability. Therefore, not

11Under the trigger strategies, it is obviously a mutual best reply to play the stage game Nash
action after a deviation. Given this, checking one-time deviation on the equilibrium path of play is
sufficient to verify subgame perfection.

12An optimal trigger strategy equilibrium plan achieves the highest ex ante payoff across all
subgame-perfect equilibria if π(aN ) is the minimax payoff of game π. This includes the case when
π is additively separable across two players’ actions.

13To be more precise, there are multiple plans that achieve the maximum trigger strategy equilib-
rium payoff, but they are essentially the same in the sense that they differ only on a measure zero
set in (0, T ) (Proposition 6 in Appendix A).
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much cooperation is sustained. This is captured by the condition (4) for t close to

0: the right hand side is close to zero and so is the deviation gain d(x(t)). Hence,

when t is small, x(t) must be close to the Nash action, where the deviation gain is

small. As the time to the deadline t increases, players have more opportunities to

punish (the right hand side of (4) increases) and therefore more cooperation can be

sustained. This effect can be shown by differentiating the both sides of (4).

Actually, with the following additional assumption, we can formally show that the

optimal plan is differentiable (Proposition 7 in Appendix A).

• A5: On (aN , a∗], the gain from deviation d is differentiable and d′ > 0 if aN < a∗

(a symmetric condition holds if a∗ < aN).

By differentiating both sides of the binding incentive constraint (4), we obtain(
d′(x(t))

dx

dt
− λd(x)

)
e−λt =

(
π(x(t))− πN

)
λe−λt. (5)

This is interpreted as follows. If we marginally increase the remaining time from t

to t + dt, the magnitude of future punishment (the right hand side of the binding

incentive constraint (4)) increases, where the increment is equal to the right hand

side of (5) times dt. This stronger punishment sustains a more cooperative action

at time −(t + dt), which is captured by dx
dt

on the left hand side of (5).14 The other

term on the left hand side, −λd(x)e−λt, reflects the fact that a deviation becomes

less profitable as the time to the deadline t increases. This is because the probability

that the current deviation gain materializes (= the probability of no revision in the

remaining time) decreases. This effect, which reduces the temptation to deviate, also

helps to sustain a more cooperative action at t+ dt.

Equation (5) can be rearranged to obtain the differential equation

dx

dt
=
λ
(
d(x) + π(x)− πN

)
d′(x)

, (6)

as long as d′(x) 6= 0. The optimal plan is a solution to this differential equation that

14When increasing the action (from the Nash action) increases the total payoff, the optimal plan
satisfies x(t) > aN and therefore d′(x(t)) > 0 for t > 0 (by Assumption A5). This and condition (5)
imply dx/dt > 0 (players can increase their action as the remaining time increases). A symmetric
argument applies when decreasing the action (from the Nash action) increases the total playoff
(d′(x(t)) < 0 and dx/dt < 0).
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satisfies x(0) = aN . However, there is an important caveat to solve the differential

equation with x(0) = aN as the boundary condition:

Remark 1. The differential equation may not be defined at the Nash action x = aN .

This happens, for example, when the deviation gain d is a smooth function and aN

is in an interior point in the action space A. Since the deviation gain is minimized

at aN , in such a case d′(aN) = 0 (the first order condition of the minimization) and

therefore the denominator of the right hand side of (6) would be zero.

Because of this fact, our formal statements are a bit convoluted. Let us now

formally summarize our findings by the following theorem. In this section and Section

3.1, we focus on the case where aN < a∗. Symmetric statements apply to the case

where a∗ < aN .

Theorem 1. Under Assumptions A1 - A5, there is a plan x(·) (the optimal plan)

that achieves the maximum trigger strategy equilibrium payoff. It is continuous in t

with x(0) = aN and satisfies the differential equation dx̄
dt

= f(x̄(t)) if x̄(t) 6= a∗ and

d′(x̄(t)) 6= 0, where

f(x) :=
λ
(
d(x) + π(x)− πN

)
d′(x)

.

Moreover, x(t) ∈ [aN , a∗] for all t ∈ [0, T ] and f(x) > 0 on (aN , a∗).

Proof. This follows from Propositions 5 and 7 in Appendix A.

Next, we derive a necessary and sufficient condition for the optimal plan to sustain

(some degree of) cooperation (i.e., x(t) ∈ (aN , a∗] for some t).15 The following example

shows that sometimes the optimal plan is identically equal to the Nash action (

x(t) = aN for all t) so that no cooperation is sustained by trigger strategies in the

revision game.

Example 1 (Linear Exchange Game16). Two players i = 1, 2 exchange goods.

Player i chooses a quantity (or quality) ai ∈ [0, 1] of the goods she provides to the

other player. The cost of effort of player i is equal to ai/2. In total, player i’s payoff

is equal to πi = a−i − ai/2.

15In fact, under our necessary and sufficient condition, a stronger property x̄(t) ∈ (aN , a∗] for all
t > 0 holds.

16This is also known as the linear public good provision game.
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The Nash action is no effort aN = 0, the optimal action is a∗ = 1, the symmetric

payoff is π(a) = a− a/2 = a/2, and the gain from deviation is d(a) = a/2 (saving the

cost of effort a/2). This example satisfies A1 - A5, but the optimal plan is the trivial

one that always plays the Nash action. The differential equation for the optimal plan

is

dx/dt =
λ
(
d(x) + π(x)− πN

)
d′(x)

= 2x,

which has a unique solution x(t) ≡ 0(= aN) under the boundary condition x(0) =

aN .17

Note that the differential equation was derived from the binding incentive con-

straint (4), and it always has a trivial solution x(t) ≡ aN . In the above example, this

was the only solution. Our remaining task is to find out the condition under which the

binding incentive constraint (and the associated differential equation) admits another

solution that achieves cooperative actions. To this end, we introduce an innocuous

technical assumption.

• A6: f(x) :=
λ(d(x)+π(x)−πN)

d′(x)
is Lipschitz continuous on [aN + ε, a∗] for any

ε ∈ (0, a∗ − aN ], if aN < a∗ (a symmetric requirement holds if a∗ < aN).

Lipschitz continuity of f , which says that the slope of f is bounded, guarantees

the uniqueness of a solution to the differential equation. Recall, however, that we may

not use the Nash action as the boundary condition to solve the differential equation

(Remark 1). A6 implies a unique solution when the boundary condition is given by

a non-Nash action in (aN , a∗].

When the optimal plan sustains a cooperative action (x(t′) = a′ ∈ (aN , a∗] for some

t′ > 0), Assumption A6 guarantees a unique solution to the differential equation with

boundary condition x(t′) = a′, and the optimal plan must satisfy such a differential

equation by Theorem 1. The unique solution travels from this action a′ to the optimal

action a∗ in finite time because dx/dt = f(x) is positive and can be shown to be

bounded away from 0 for x ∈ [a′, a∗) under our assumptions. From action a′, the

solution (the optimal plan) must approach the Nash action aN in the remaining

time t′ because x(0) = aN . Hence, when the optimal plan sustains cooperation, the

following condition must be satisfied:

17Note that the Nash action 0 is a boundary point in the action space and d′(0) = 1/2 6= 0, so
that the differential equation is defined at the Nash action (cf. Remark 1). Hence the optimal plan
must be a solution to the differential equation with the boundary condition x(0) = aN = 0.
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• Finite Time Condition (FTC): The solution to dx/dt = f(x) travels from opti-

mal action a∗ to Nash action aN (as t decreases) in a finite amount of time.18

Conversely, if the above condition is satisfied, the solution that travels from a∗

to aN in a finite time corresponds to an equilibrium plan because it satisfies the

binding incentive constraint. Therefore, the Finite Time Condition is the necessary

and sufficient condition for the optimal trigger strategy to sustain cooperation. Lastly,

note that
∫ a∗
a

1
f(x)

dx =
∫ a∗
a

dt
dx
dx represents the time to reach a∗ from a (as t increases),

following the solution to the differential equation. Hence, FTC is represented as

follows:

(FTC: Finite Time Condition) lim
a↓aN

∫ a∗

a

1

f(x)
dx <∞. (7)

Our argument is formally summarized as follows:

Theorem 2. Under Assumptions A1-A6, the optimal trigger strategy equilibrium plan

x(·) sustains cooperation (i.e., x(t) ∈ (aN , a∗] for some t) if and only if the Finite

Time Condition (7) is satisfied.

Proof. See Appendix A.

The preceding theorems and some minor additional analysis completely charac-

terize the optimal plan as follows. Recall that we are focusing on the case aN < a∗.

Corollary 1 (Summary of the Main Results). Under Assumptions A1 - A6,

cooperation is sustained by the trigger strategy, if and only if the Finite Time Con-

dition (7) is satisfied. Under this condition, the optimal plan x(·) exists, and it is a

unique plan that has the following properties: (i) it is continuous in t and departs aN

at t = 0, (ii) for t > 0, it solves the differential equation dx̄
dt

= f(x̄(t)), where

f(x) :=
λ
(
d(x) + π(x)− πN

)
d′(x)

> 0

until x(t) hits the optimal action a∗, and (iii) if x(t) hits the optimal action a∗ it stays

there.19 Furthermore, if the time horizon T is large enough, the optimal plan always

18Formally, ∃t0 > 0 such that the solution x(·) to dx/dt = f(x) with terminal condition x(t0) = a∗

satisfies limt↓0 x(t) = aN (the solution travels from a∗ to aN in finite time t0). The limit is taken
because the differential equation may not be defined at the Nash action aN , as Remark 1 shows.

19That is, x̄(t′) = a∗ for some t′ ≤ T implies x̄(t′′) = a∗ for all t′′ ∈ [t′, T ].
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hits the optimal action a∗ when the remaining time is

t(a∗) := lim
a↓aN

∫ a∗

a

1

f(x)
dx.

Proof. See Appendix A.

The unique optimal plan has the following features: If the time to deadline is long

enough, players start with the best action a∗, and they do not revise their actions

until the remaining time reaches t(a∗). After that, if a revision opportunity arrives,

they choose an action x(t), which is closer to the Nash action. The closer the revision

opportunity −t is to the deadline 0, the closer the revised action x(t) is to the Nash

equilibrium. We illustrate the corollary for the familiar game of Cournot duopoly.

Example 2 (Cournot duopoly). Consider firms i = 1, 2 with constant and identical

marginal cost c > 0, and a linear demand curve P = a−bQ with a > c and b > 0. The

component game payoff function for firm i is πi = (a− b(qi + q−i)− c) qi, where qi is

i’s quantity. This game satisfies assumptions A1-A6. Hence, Corollary 1 implies that

the optimal trigger strategy equilibrium plan x(·) departs from the Cournot Nash

quantity a−c
3b

, and solves the following differential equation:20

dx

dt
=

λ
(
d(x) + π(x)− πN

)
d′(x)

=
λ

18

(
x− 5

a− c
3b

)
for t such that x(t) ∈ (a−c

4b
, a−c

3b
) where a−c

4b
is the optimal quantity. This differential

equation has a simple solution:

x(t) =
a− c

3b
(5− 4e

λ
18
t). (8)

For all t ≥ t(a−c
4b

) = 18
λ

ln
(

17
16

)
, x(t) stays at the optimal quantity, a−c

4b
. Thus, the

optimal plan is non-decreasing over time, starting with a small collusive quantity and

gradually increasing towards the Nash quantity (recall that t refers to the remaining

time in the revision game, so it refers to time −t). Figure 1 in the Introduction shows

the shape of the optimal plan and a realized path. The Supplementary Information on

the authors’ websites offers a possible story for the revision game of Cournot quantity

20This follows from d(q) = (a−c−3bq)2
4b , π(q) = (a− c− 2bq)q, and πN = (a−c)2

9b .
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competition as well as the calculation of the expected payoff from the optimal trigger

strategy equilibrium.

One can also show that suboptimal cooperation can also be sustained. Specifically,

for any expected payoff π ∈ [πN , π̌] where π̌ is the expected payoff from the optimal

plan, there exists a plan that achieves π.21

The necessary and sufficient condition for cooperation, the Finite Time Condition

(7), is easy to check, but it is not clear what it requires intuitively. In Section 5, we

show that the Finite Time Condition is satisfied when the cost of cooperation ( d(a))

tends to zero faster than the benefit of cooperation (π(a)−πN) does, as action a tends

to the Nash equilibrium.

3.1 Action Distribution and Arrival Rate Invariance

Since the action at the deadline in the revision game depends on random revision

opportunities, the revision game induces a probability distribution over the set of

action profiles. In this subsection, we determine this distribution, which enables us

to calculate the expected payoff. First, we show that the outcome of the revision

game does not depend on the Poisson arrival rate λ in the following sense.

Remark 2. (Arrival Rate Invariance) Under the optimal plan, the probability

distribution of the final action is independent of the Poisson arrival rate λ, as long as

the optimal action a∗ is chosen at time −T .

The simple reason is as follows. Compare two revision games (T, λ) and (T, λ′)

where λ < λ′, assuming that the optimal actions are chosen initially in those games.

In general, when two revision games with (T, λ) and (T 0, λ0) share the same outcome

distribution under the optimal plan, let us write (T, λ) ≈ (T 0, λ0). We will show

(T, λ) ≈
(A)

(
λ

λ′
T, λ′) ≈

(B)
(T, λ′),

21To see this, we first note that any plan x(·) such that there exist t′, t′′ ∈ R+ with t′ ≤ t′′

satisfying the following three properties is a trigger strategy equilibrium plan: (i) x(t) = aN for
t ∈ [0, t′], (ii) x(t) follows the differential equation presented in Theorem 1 in t ∈ [t′, t′′] and x(t)
travels from aN to a∗, and (iii) x(t) = a∗ for t ∈ [t′′, T ]. Now, if t′ = T (i.e., x(t) = aN for all
t ∈ [0, T ]), the expected payoff is the Nash payoff πN . As t′ changes from T to 0, the expected
payoff continuously increases from πN to the expected payoff from the optimal plan π̌. This shows
the desired property.
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The equivalence (A) holds because the two games can be mapped to each other by

changing the unit to measure time.22 Since the optimal action a∗ is played in game

(T, λ), the same is true in the equivalent game ( λ
λ′
T, λ′). This implies that starting

the game ( λ
λ′
T, λ′) earlier at −T (< − λ

λ′
T ) does not change the distribution of the

final outcome under the optimal plan because players just keep playing a∗ until time

− λ
λ′
T and then they follow the optimal plan in game ( λ

λ′
T, λ′) (Corollary 1). This

shows the equivalence (B), which completes the proof.

The above remark shows that the probability distribution of the realized action

profile can be obtained by focusing on the case λ = 1. Let x1(·) be the optimal trigger

strategy equilibrium plan under λ = 1. Assume that Assumptions A1-6 and the Finite

Time Condition are satisfied so that x1(·) departs the Nash action and eventually hits

the optimal action (if the horizon is long). To calculate the distribution, the time for

x1(·) to hit a ∈ [aN , x1(T )], denoted by t1(a), turns out to be useful. Formally, t1(a)

is given by

t1(a) := lim
a′↓aN

∫ a

a′

dt

dx
dx = lim

a′↓aN

∫ a

a′

d′(x)

d(x) + π(x)− πN
dx.

Now consider the density of realized action x1(t) ≤ a. The density is λe−λt = e−t,

which is the product of

• λ = 1 (the density of revision opportunity at time t) and

• e−λt = e−t (the probability that the revised action at time t, x1(t), will never

be revised again).

Therefore, the cumulative distribution function of realized action a, denoted by

F (·), is given by

F (a) =

∫
{t|x1(t)≤a}

e−tdt =

∫ t1(a)

0

e−tdt = 1− e−t1(a),

for a ∈ [aN , x1(T )). For a ≥ x1(T ), F (a) = 1 holds because the realized action

cannot be more than x1(T ). This implies that, at x1(T ), the distribution function

22Formally, introduce a new time variable s in game (T, λ) by s = λ
λ′ t. The resulting alternative

representation is the game ( λλ′T, λ
′). Note that the probability of a Poisson arrival in an infinitesimal

time interval in the game ( λλ′T, λ
′) is λ′ds = λ′ λλ′ dt = λdt, and the two games share the same

expected number of revision opportunities, λT .

16



F (·) jumps by e−t1(x1(T )). The jump means that a probability mass of e−t1(x1(T )) is

attached to action x1(T ). This is the probability that no revision opportunity arises

after time −t1(x1(T )) under the Poisson arrival rate λ = 1. Below we summarize our

arguments.

Proposition 1. Suppose that Assumptions A1 - A6 and the Finite Time Condition

(7) are satisfied. When aN < a∗, the cumulative distribution function of the symmet-

ric action realized at t = 0 is given by

F (a) =


0 if a < aN

1− e−t1(a) if aN ≤ a < x1(T )

1 if x1(T ) ≤ a

, where t1(a) := lim
a′↓aN

∫ a
a′

d′(x)
d(x)+π(x)−πN

dx.23

4 Applications

In this section, we present two applications of the revision-game model: preopening

in the stock exchange and electoral campaigns. All proofs are found in the Online

Appendix.

4.1 Preopening in the Stock Exchange

Stock exchanges across the world such as Nasdaq or Tokyo Stock Exchange have

the “preopening” phase before the opening time. As Calcagno and Lovo (2010) first

observed, revision games can be regarded as a stylized model of this situation. Traders

can submit and revise orders in the preopening phase, and the final set of orders at the

opening time determines the opening price and quantities. The aggregate orders in

the preopening phase are displayed on a public screen. This public screen is refreshed

at (frequent but) stochastic times, which can be regarded as the revision opportunities

in our model. We aim to point out that participants may have an incentive to change

their orders over time in the preopening phase. To illustrate this point, we consider

the simplest setting with two sellers and a fixed demand.

The challenge in this application is to deal with the rich strategy space, which is

the set of all supply schedules. We will show, however, that we can effectively reduce

the strategy space to a one-dimensional interval and apply our technique.

23When a∗ < aN , it is given by F (a) = 0 if a < x1(T ), F (a) = e−t1(a) if x1(T ) ≤ a ≤ aN , and
F (a) = 1 if aN < a, where t1(a) is defined symmetrically to the case with aN < a∗.
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Figure 2: Limit orders and a supply scheme.

Component game (supply-schedule game)

There are two sellers i = 1, 2, who value the stock at a constant (and identical)

value c > 0. Demand curve is linear p = a − bq (a > c, b > 0) and the associated

demand function is denoted by D(p).24

In the stock exchange, sellers can submit a “limit order” to sell quantity q at

any price no less than p (panel (a) of Figure 2). Sellers can submit any number of

limit orders, and therefore they can approximately submit any non-decreasing supply

schedules. Accordingly, we assume that seller i can choose any si ∈ S = {s : R+ → R+

| s is non-decreasing}. Panel (b) of Figure 2 illustrates a stock market equilibrium,

and it shows that, given supply schedules (s1, s2) ∈ S2, price p(s1, s2) is given by

p(s1, s2) = sup{p ∈ R+|s1(p) + s2(p) ≤ D(p)},

when s1(a) + s2(a) > 0.25 The “sup” in this formula deals with the case where

rationing is required to clear the market, as we explain in what follows.

If no supply rationing happens, the quantity sold by seller i, denoted qi(s1, s2),

is equal to her supply si(p(s1, s2)). When supply rationing happens as in Figure 2

(b), “orders below the market price” (X in Figure 2 (b)) are accepted but “orders at

the market price” (Y in Figure 2 (b)) are rationed.26 For each seller i, define Xi :=

limp↑p(s1,s2) si(p) (the “orders below the market price”) and Yi := si(p(s1, s2)) − Xi

24Specifically D(p) = max{0, a−pb }.
25If s1(a) + s2(a) = 0, we set p(s1, s2) = a and qi(s1, s2) = 0.
26This corresponds to the “price first” rationing rule in stock exchanges in reality.
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(the “order at the market price”). Formally, when supply is rationed,

qi(s1, s2) = Xi + fi(s1, s2)Yi.

where fi(s1, s2) ∈ [0, 1] is any rationing rule that satisfies q1(s1, s2) + q2(s1, s2) =

D(p(s1, s2)).27 The requirements that supply schedules be non-decreasing and the

orders below the market price be accepted play crucial roles in the analysis. Finally,

seller i’s payoff is

πi(s1, s2) = (p(s1, s2)− c) · qi(s1, s2).

This component game has a large number of Nash equilibria. It turns out that

submitting a “vertical supply” at the Cournot-Nash quantity qN (∀p si(p) = qN)

constitutes a Nash equilibrium. The “Bertrand outcome” with p(s1, s2) = c and zero

profit is also supported by a Nash equilibrium.28

Despite the large strategy space (the set of all supply schedules), we are able

to identify the set of all (pure strategy) Nash equilibria. The set of corresponding

quantity profiles is the triangular area bounded by the reaction curves R1, R2 and

the zero-profit line q1 + q2 = q, where q̄ = a−c
2

satisfies D(q̄) = c.29

Lemma 1 (Nash equilibria). (s1, s2) ∈ S2 is a Nash equilibrium of the supply-schedule

game if and only if the associated quantity profile (q1(s1, s2), q2(s1, s2)) is in

QN :=
{

(q1, q2) ∈ R2
+ | qi ≥ Ri(q−i) for each i = 1, 2, and q1 + q2 ≤ q

}
,

27Tokyo Stock Exchange uses a rationing rule that does not depend on the times of submitting
orders. At some other markets, the “time priority” rule is used (after using the “price first” rule)
where the excess demand is rationed so that the first seller submitting the order gets priority in
supplying stocks. An analysis similar to the one given here can be made for those markets as well.
We note that Tokyo Stock Exchange allows the sellers to observe all the supply schedules submitted
in the past if they subscribe for the “full quotes” functionality (similar functionality is present at
other places as well), being consistent with our model.

28A symmetric equilibrium strategy to achieve zero-profit is to supply D(c)/2 if p < c and to
supply large quantity D(0) if p ≥ c. Note that the opponent is unable to raise price above c under
this supply scheme.

29Klemperer and Meyer (1989) analyzed supply function equilibria for general demand and
marginal costs. They showed that any quantity profile that satisfies a certain condition can be
sustained by a supply function equilibrium. In the case of linear demand and constant identical
marginal costs, one can check that their condition is satisfied in the strictly positive-profit region
of the Nash quantity profile set QN in Lemma 1. The zero-profit points of QN (the line segment
q1+q2 = q̄, q1, q2 ≥ 0) cannot be sustained in their model because they require that supply functions
be twice continuously differentiable. The zero-profit points, however, are crucial to construct the op-
timal trigger strategy equilibrium, and we show they can be sustained in our model by discontinuous
supply functions, which correspond to combinations of limit orders.
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where Ri(q−i) = a−c−bq−i
2b

is the reaction function of the Cournot game and q = a−c
b

is

the sum of the quantities that induces zero-profit.

The best symmetric Nash equilibrium of the component game corresponds to the

Cournot-Nash equilibrium, and the best trigger strategy equilibrium plan we will

construct approaches that quantity as t → 0. If a deviation happens, however, the

best trigger strategy equilibrium will implement the worst Nash equilibrium of the

component game that induces zero profit.

Reduction of the problem

It turns out that we can effectively reduce the supply-schedule component game

into a much simpler one that we call a semi-Cournot competition. This game is

obtained from the Cournot game by incorporating an additional action ∅ that induces

a zero-profit Nash equilibrium. More specifically, the semi-Cournot competition has

a payoff function (π̄i)i=1,2 such that the following hold:

1. Each seller i = 1, 2 chooses qi ∈ R+ ∪ {∅}.

2. π̄i(q1, q2) is specified as the Cournot profit for any (q1, q2) ∈ R2
+.30

3. π̄i(q1, q2) = 0 if qi = ∅ for some i = 1, 2.

It has two symmetric pure strategy Nash equilibria, the Cournot-Nash equilib-

rium (qN , qN) and (∅, ∅), the latter of which induces zero-profit to each player. Note

that they correspond to the best and worst symmetric Nash equilibria in the supply

schedule game.

In the Online Appendix, we prove that the reduction works in the sense that the

optimal trigger strategy equilibria for the supply-schedule game and for the semi-

Cournot game share the same outcome (the same quantity plan at almost all time

−t). The key idea is the following: For any supply schedule profile, we can consider

an alternative profile of vertical supply schedules that achieves the same price and

quantities. The gains from deviation under the vertical profile turn out to be no

greater than those under the original profile as long as the associated outcome Pareto

30Specifically, π̄i(q1, q2) = (max{a− b(q1 + q2), 0} − c) · qi for any (q1, q2) ∈ R2
+.
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dominates the Cournot-Nash equilibrium.31 As a result, one can confine attention to

such vertical profiles, which correspond to the quantities in the semi-Cournot compe-

tition game. The zero-profit equilibrium of this game (∅, ∅), in contrast, corresponds

to the worst Nash equilibrium of the supply-schedule game that is implemented by

the optimal trigger strategy equilibrium after a deviation.

Optimal plan

The reduction argument enables us to use the characterization of the optimal

trigger strategy equilibrium plan in Section 3. For a plan q(·) to be the optimal

trigger strategy equilibrium plan in the semi-Cournot competition, it needs to be the

solution for the following differential equation for q(t) ∈ (a−c
4b
, a−c

3b
]:32

dq

dt
=
λ (d(q) + π(q)− 0)

d′(q)
= λ

(a− c− bq)2

6b(3bq − (a− c))
.

One can solve this differential equation with the initial condition limt↓0 q(t) = qN . In

the Online Appendix, we formally define trigger strategies and the optimal plan in

an analogous way as in Section 3. We also define essential uniqueness of the optimal

plan, taking care of zero-measure events (see footnote 13). With such terminology,

we obtain the following:

Proposition 2 (Optimal plan). In the revision game of the supply-schedule game,

there exists an essentially unique optimal plan of quantities q(t). For t ∈ [0, t∗], where

t∗ = 1
λ

(36 ln(3)− 52 ln(2)− 2), q(t) is the unique solution to

ln

(
3− q(t)

qN

2

)
+

(
2

3− q(t)
qN

)
=

λ

18
t+ 1

that satisfies q(t) ≤ qN for all t ∈ [0, T ], and q(t) is equal to the optimal quantity a−c
4b

31The reason is sketched out as follows: Suppose supply schedule profile (s1, s2) induces price p∗

and quantities (q1, q2). Given that the supply schedules are non-decreasing, we have si(p) ≤ qi for
p < p∗ for each i. Hence, the residual demand for the opponent, D(p)− si(p), is reduced if i changes
her supply schedule from si to the vertical supply at qi, for p < p∗. When (q1.q2) Pareto dominates
the Cournot-Nash profile, players have an incentive to reduce the price and steal the customers from
the opponent. Switching to the vertical supply makes such a deviation less profitable, by making
the residual demand smaller. Note that the requirement that the supply schedule be non-decreasing
plays a crucial role.

32Note that a−c
4b is the most collusive quantity and a−c

3b = qN is the Nash quantity in the standard

Cournot competition. The differential equation follows from d(q) = (a−c−3bq)2
4b and π(q) = (a− c−

2bq).
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Figure 3: The optimal trigger strategy equilibrium plan for the supply-schedule game.

for t ∈ [t∗,∞).

Note that the formula in the proposition above shows q(0) = qN . In the Ap-

pendix, we compute the expected profit from the optimal equilibrium and show that

it achieves a significant percentage of the most collusive payoff. The plan of quantities

is depicted in Figure 3, where the quantities increase over time towards the Cournot-

Nash quantity. As a result, the price decreases over time in the preopening phase,

and the opening price is higher than any Nash equilibrium prices of the component

game with probability one. This conclusion, of course, should be taken with some

reservation because we have not modeled the dynamics on the demand side. Our re-

sults should be interpreted not as a perfect description of the preopening phase, but

rather a demonstration of the possibility of implicit collusion among the participants.

Remark 3 (Contribution to the literature). A body of empirical literature investi-

gated how accurately the prices in the preopening period reflect the fundamental stock

values (Barclay and Hendershott (2003), Barclay, Hendershott and Jones (2008), Bi-

ais, Hillion and Spatt (2009)). Medrano and Vives (2001) presented a stylized model

of preopening and analyzed how a large informed trader, who knows the fundamen-

tal stock value, can manipulate the behavior of other traders. To the best of our

knowledge, the possibility of collusion in preopening has not been systematically an-

alyzed.

4.2 Election Campaign: Policy Platforms Gradually Approach

the Median

In this application, we show that candidates may revise their policies during the

election campaign from their bliss points towards that of the median voter. As an
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example, consider the Korean presidential election in 2017, in which Moon Jae-in and

Ahn Cheol-soo fought and the deployment of THAAD (Terminal High Altitude Area

Defense) was considered to be one of the biggest issues.33 The election had originally

been planned for December 2017, but due to the unexpected impeachment of the

former president, voted in December 2016, the election date was shifted to May 2017.

When THAAD was first introduced into South Korea in July 2016, both can-

didates announced a position against THAAD.34 After the news of impeachment,

however, they shifted their positions towards supporting THAAD.35 From the begin-

ning of 2016 until the election day, the approval of the deployment of THAAD was

always the most popular poll result, and thus it would be difficult to explain the two

candidates’ move by a change of the voters’ preferences.

Our model presumes that revision opportunities are synchronized for players and

arrive exogenously. The Korean presidential election case admittedly does not per-

fectly match those assumptions, but the model captures some important aspects of

reality. Although the presidential candidates can announce policy changes at any

time, the matters should be discussed and approved within their parties, and also the

messages should be effectively transmitted to the voters. Hence, an effective revision

opportunity is likely to be tied to the arrival of important news or event, which trig-

gers (i) debates within each party, (ii) voters’ attention, and (iii) voters’ willingness to

accept policy changes. In the Korean presidential election case, there were two such

events: the introduction of THAAD by the former president in July 2016, and the

unexpected shift of the election date in December 2016. Note that these two events

are both exogenous. Moreover, since two candidates respond to the same event each

time, their announcements can be considered effectively synchronous.

Model

The policy space is [0, 1]. The position 0 represents perfect opposition to THAAD,

33THAAD is an American defense system designed to shoot down ballistic missiles in their terminal
phase by intercepting with a hit-to-kill approach. The warhead of nuclear-tipped ballistic missiles
will not detonate on a kinetic-energy hit by THAAD.

34Moon said “[THAAD] will do more harm than good to our national interest,” and Ahn also
released a statement expressing his firm opposition to THAAD.

35In an interview in January 2017, Moon said “I am not saying that [the issue] should be handed
over to the next government with the policy of canceling the decision of the THAAD deployment.”
Ahn said “South Korea and the United States have already concluded an agreement on the deploy-
ment” in February 2017.
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and position 1 represents perfect support. Positions in (0, 1) represent various degrees

of middle grounds. There are two candidates, A and B. To formulate the situation

where the majority favors THAAD, we assume that, given the policy profile (xA, xB),

the probability of A winning is

PA(xA, xB) =
1 + δ(xA − xB)

2
, (9)

where δ ∈ (0, 1]. This functional form has a feature that, if xA = xB, then the

winning probability is 1/2, and it increases if candidateA is more favorable to THAAD

(xA > xB).36

We define candidate A’s expected payoff as follows (candidate B’s payoff is sym-

metrically defined):

πA(xA, xB) = PA(xA, xB)((1− xA) + w) + PB(xA, xB)γ(1− xB), (10)

where w ≥ 0 and γ ∈ [0, 1). This payoff function assumes that, in the event that

candidate A wins, A’s payoff is (1 − xA) + w, while her payoff is γ(1 − xB) if she

loses. This specification is motivated as follows: The defense policy of candidate i

is a combination of the deployment of THAAD and the candidate’s own alternative

defense policy, where the weights of the former and the latter are xi and (1 − xi),

respectively. Both candidates dislike THAAD, and its value is normalized at 0 for

both A and B. We assume that a candidate values his own alternative defense policy

more than the opponent’s, so that the value of his own alternative defense policy is 1

while the value of the opponent’s is γ < 1. Additionally, candidates receive utility w

from being in the office. Call this component game the election game.

This game has a unique pure strategy Nash equilibrium and it is symmetric.

We denote this Nash equilibrium by (xN , xN). It depends on the strength of office

motivation w (the utility of being elected per se) as follows:

xN =


0 if w ≤ (1−δ)+δγ

δ

w−γ−( 1
δ
−1)

1−γ if (1−δ)+δγ
δ

< w ≤ 1
δ

1 if 1
δ
< w

. (11)

36The winning probability (9) has a microfoundation based on voters’ utility from each candidate
and their voting behavior, whose detail we present in the Supplementary Information on the authors’
webpages.
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Figure 4: The optimal trigger strategy equilibrium plan x̄(t) for various values of w
for the election game: λ = 1, γ = 1

2
, and δ = 1.

Optimal trigger strategy equilibrium plan

The differential equation for the optimal plan is

dx

dt
= −λ(1− γ)2(1− x1) + (1− γ)δw + 3 + 5γ

2δ(1− γ)2
.

This admits the following closed-form solution.

Proposition 3. In the revision game of the election game, the optimal trigger strategy

equilibrium plan, x̄(t), is characterized by the following:

1. If w ≤ (1−δ)+δγ
δ

, then x̄(t) = 0 for all t.

2. If (1−δ)+δγ
δ

< w ≤ 1
δ
, then

x̄(t) =

xN −
(e
λ
2 t−1)(4+4γ)
δ(1−γ)2

if t ≤ t∗

0 if t∗ < t
, where t∗ = 2

λ
ln( δ(1−γ)(w+1−γ)+3+5γ

4+4γ ).37

3. If 1
δ
< w, then x̄(t) = 1 for all t.

The above proposition shows that, when the office motivation is not too large

or too small (Case 2), each candidate starts from announcing their most preferred

policy, which is the far-left. They stick to their original announcements until a certain

time (time −t∗) before the election day, and then begin catering to the right towards

the end of the campaign period. Thus, the model captures the dynamics of policy

37This case exists because (1−δ)+δγ
δ < 1

δ holds for any γ < 1 and δ ∈ (0, 1].
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announcements in the 2017 Korean Presidential election. The plan characterized in

Proposition 3 is depicted in Figure 4 for various values of parameter w, supposing

γ = 1
2

and δ = 1. Notice that there is a discontinuity at w = 1/δ = 1, i.e., the limit

of the optimal plan as w ↓ 1 (which is a trivial plan such that x̄(t) = 1 for all t) does

not converge to the optimal plan at w = 1 (which is a nontrivial plan).

Remark 4. A simple modification of the above model can capture the situation where

two candidates have opposing bliss points (−1 and 1 in the policy space [−1, 1]) and

their policies gradually approach the middle (0). See the Supplementary Information

on the authors’ webpages for the detail.

Remark 5 (Contribution to the election literature). Previous literature on the dy-

namics of election campaigns mainly focused on the case in which elections are

repeated or there are primary and general elections (see e.g., Alesina (1988) and

Meirowitz (2005)). Kamada and Sugaya (2019) was the first to apply our revision-

games framework to analyze the dynamics within a single election campaign. Unlike

in our model, they considered the case in which policy announcements are irreversible

and there are candidate-specific revision opportunities. They showed that the candi-

dates remain silent until shortly before the deadline. Their analysis is based on an

analogue of backward induction, and thus different from ours.

5 What Determines the Possibility of Coopera-

tion?

Our main result (Theorem 2) shows that the Finite Time Condition is necessary and

sufficient for cooperation to be sustained by a trigger strategy equilibrium. In this

section, we consider all revision game strategies and ask a more general question:

When is cooperation sustained in revision games by any equilibrium? We find a

simple answer that the following is necessary and almost sufficient for cooperation to

be sustained in revision games.

• [Convergence Condition] As the action profile converges to the Nash equi-

librium, the gain from deviation d(a) tends to zero faster than the benefit of

cooperation π(a)− πN does.
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More precisely, if a slightly stronger version of this condition is satisfied, cooper-

ation is sustained by an equilibrium (actually, by a trigger strategy equilibrium: see

Section 5.1). If this condition is not satisfied, cooperation cannot be sustained by

any equilibrium (Section 5.2). We are able to show the latter result for a very general

class of component games. Note that those results also clarify when the Finite Time

Condition (FTC) is satisfied: the Convergence Condition above is necessary for the

FTC, and a slightly stronger version of this condition ((13) in the next section) is

sufficient for the FTC.

Intuitively, why is the Convergence Condition equivalent to the possibility of co-

operation in revision games? Near the deadline, say at time −ε, the probability that

a current deviation is retaliated in the remaining time is very small. Hence, we may

only sustain a near-Nash action a with a small gain from deviation d(a). Note that

the continuity of the action space plays an important role here. The associated ben-

efit of cooperation π(a)− πN contributes to the magnitude of punishment to sustain

cooperation slightly before time −ε. If π(a)− πN is large, much more cooperation is

sustained if we further move away from the deadline. Therefore, when small d(a) can

provide large π(a) − πN , as players move away from the deadline, they can quickly

achieve more and more cooperative actions. This “snowball effect” enables players

to depart from the Nash equilibrium. The formal analysis in the following sections

makes this intuition precise.

5.1 Sufficient Condition for Cooperation

We derive a sufficient condition for cooperation under a set of assumptions weaker

than A1-A6. We consider the case where larger actions are more efficient than the

Nash action aN .38 We assume that the component game has a symmetric action space

A ⊆ R and a measurable symmetric payoff function π with a unique symmetric Nash

equilibrium aN . Let d(a) := supa′∈A π(a′, a)− π(a).

Assumption (*): There exists ε > 0 such that:

1. [aN , aN + ε] ⊆ A,

2. d is continuous in [aN , aN + ε], and

38Symmetric statements apply to the opposite case.
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3. π(a) ≥ πN for all a ∈ [aN , aN + ε].

Call the component games satisfying the above assumptions the symmetric uni-

dimensional component games.

Under Assumption (*), a straightforward formulation of the Convergence Condi-

tion would be

lim
x↓aN

d(x)

π(x)− πN
= 0. (12)

Since condition (12) itself is not quite strong enough for the sustainability of

cooperation, we will slightly strengthen condition (12).39 Note that, when d(x) is

small (less than 1), for any k ∈ (0, 1), d(x)k > d(x). Our condition for cooperation

is that this larger value d(x)k tends to zero faster than the benefit of cooperation

π(x)− πN does:

lim
x↓aN

d(x)k

π(x)− πN
= 0 for some k ∈ (0, 1). (13)

Note that this is only a slightly weakened version of (12) because the constant k can

be arbitrarily close to 1. The following theorem shows that cooperation is sustained

under this condition.

Theorem 3. Consider the revision game with a symmetric uni-dimensional compo-

nent game. If condition (13) holds, cooperation can be sustained by a trigger strategy

equilibrium.40

We prove this theorem by explicitly constructing a trigger strategy plan, which

is presented in the Online Appendix.41 Here we illustrate the construction in the

following example. Consider the component game with

πi(a1, a2) = ((a−i)
l + (a−i)

m)− (ai)
m with 0 < l < m.

In this case,
d(a)k

π(a)− πN
=
amk

al
,

39To be more precise, we have been unable to show that (12) implies the Finite Time Condition.
40“Cooperation can be sustained” means that cooperative action profiles that provide higher

payoffs than the Nash equilibrium can be realized with a positive probability.
41We do not show that condition (13) implies FTC but construct an equilibrium plan. The reason

is that Theorem 3 considers a symmetric uni-dimensional component game, which imposes a weaker
restriction than A1-A6 (under which Theorem 2 shows that FTC is equivalent to sustainability of
cooperation).
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and therefore condition (13) holds for any k ∈ ( l
m
, 1).

The incentive constraint at time −t for a trigger strategy equilibrium plan x(·)
can be written as:

e−λtx(t)m ≤
∫ t

0

x(t)lλe−λτdτ.

Since e−λτ ≥ e−λt for all τ ∈ [0, t], the following condition is sufficient for this incentive

constraint to hold.

x(t)m ≤
∫ t

0

x(τ)lλdτ.

For sufficiently small t, we consider x(t) = t
2

m−l . Then, this sufficient condition is

equivalent to:

t
4m
m−l ≤

∫ t

0

τ
2l
m−lλdτ =

1
2l

(m−l) + 1
t

2l
(m−l)+1λ =

λ
2l

(m−l) + 1
t
l+m
m−l ,

which holds for sufficiently small t ≥ 0 because l < m.

5.2 Sufficient Condition for No Cooperation

We consider a very general component game with an arbitrary action space Ai,

i = 1, 2. Let A = A1 × A2. Suppose that there exists a unique pure Nash ac-

tion profile aN = (aN1 , a
N
2 ). For any action profile a ∈ A, let πi(a) and di(a) :=

supa′i∈Ai πi(a
′
i, a−i)−πi(a) be the payoff and the “supremum gain” from deviation for

player i. Let πNi = πi(a
N), and assume that π̄i = supa∈A πi(a) and πi = infa∈A πi(a)

exist. Call this component game the general component game.

When the gain from deviation di(a) is bounded away from zero outside a neighbor-

hood of the Nash profile aN , the negation of the Convergence Condition (12) (when

the limit in (12) exists) is

inf
a∈A\{aN}

di(a)

|πi(a)− πNi |
> 0.42 (14)

For example, this condition is always satisfied if the action space Ai is finite for each

i = 1, 2. The next theorem shows that condition (14) implies no cooperation in

revision games under any subgame-perfect equilibrium.

42In the environment under A1-A6, condition (14) is stronger than the negation of (12) because
A1-A6 allows for a possibility that lima↓inf A d(a) = 0 when (inf A) 6∈ A.
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Theorem 4. Consider the revision game with a general component game defined

above. Under condition (14), there exists a unique pure strategy subgame-perfect

equilibrium. It specifies the Nash action profile aN at any revision opportunity after

any history.

The proof is based on a continuous-time backward induction: Fix any time −t and

suppose that only the Nash action can be played at every time strictly after time −t
in any pure strategy subgame perfect equilibrium (SPE). Note that this is vacuously

satisfied at time −t = 0. Then we show that there exists ε > 0 such that for all time

in [−t − ε,−t], only the Nash action can be played in any SPE. Proceeding in this

way, we can show that there is no time −t such that a non-Nash action is taken. A

formal proof is given in the Online Appendix.

6 Asynchronous Revisions

In some real-life cases, players’ revision opportunities are not necessarily synchronized.

In this section, we show that our analysis carries over to the asynchronous case if the

component-game payoff function satisfies a certain property.

Let λ1 > 0 and λ2 > 0 be player 1 and 2’s arrival rates, respectively. We assume

that players observe all the past events in the revision game, including when revision

opportunities have arrived to the opponent (so i can see if j has actually followed

the equilibrium action plan), and analyze the optimal symmetric trigger strategy

equilibrium. Assume that the payoff function is additively separable with respect to

each player’s action: For each i = 1, 2,

πi(ai, a−i) = b(a−i)− c(ai). (15)

We assume that there is a unique minimizer of c(·), aN , and normalize the payoff so

that b(aN) = c(aN) = 0. Notice that there is a unique Nash equilibrium, (a1, a2) =

(aN , aN) that induces zero payoffs. The linear exchange game in Section 3 and the

games we will present in Section 7.1 with ε = 0 fit this framework.

In general, player i’s incentive in the asynchronous case depends not only on

how much time is left but also on the opponent’s action that is fixed at the time of

the revision. Consequently, player i’s equilibrium revision plan at −t would depend

on the payoff-relevant state variable (t, a−i), where a−i is the fixed action of the
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opponent at revision time −t. For this reason, the analysis of the asynchronous case

is substantially more complicated. If the payoff is separable across players’ actions,

however, a player’s current gain from deviation is not affected by the fixed action of

the opponent, and the size of the opponent’s future punishment is not affected by the

current deviation action of the player. This is the main reason why we can apply the

same analysis as in the synchronous case.

Specifically, for each i = 1, 2, consider revision plan xi : [0, T ]→ A for each player

i = 1, 2 that depends only on the remaining time. For any opponent’s current action

aj, player i’s continuation payoff under this revision plan at time −t is

e−λjtb(aj) +

∫ t

0

b(xj(τ))λje
−λjτdτ −

(
e−λitc(xi(t)) +

∫ t

0

c(xi(τ))λie
−λiτdτ

)
.

Under the Nash reversion, i’s continuation payoff under defection at time −t is

e−λjtb(aj).

Hence, the incentive compatibility condition for player i at time −t is:

e−λitc(xi(t)) ≤
∫ t

0

(
b(xj(τ))λje

−λjτ − c(xi(τ))λie
−λiτ

)
dτ. (16)

Notice that this condition does not depend on aj, the fixed action of the opponent.

In the case of homogeneous arrival rates λ1 = λ2 = λ, the incentive compatibility

condition (16) is identical to the incentive compatibility condition (3) of the syn-

chronous case. This gives us the following proposition, which implies that our main

results apply to the case of asynchronous revisions if the arrival rates are homoge-

neous.

Proposition 4. When the component-game payoff is separable as in (15) and the

arrival rates are equal λ = λ1 = λ2 in the asynchronous case, symmetric trigger

strategy plan x1(t) = x2(t) = x(t) constitutes an equilibrium if and only if x(t) is a

symmetric trigger strategy equilibrium plan in the synchronous case.

We end this subsection with two remarks. First, although the equilibrium plans

are the same in the synchronous and asynchronous cases, the probability distributions

of action profiles at the deadline are different from each other. This is because two
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players’ actions are perfectly correlated under synchronous revisions, while they are

independent under asynchronous revisions. However, by additive separability, the

expected payoffs stay the same in the two cases.

Second, when payoffs are additively separable and arrival rates are heterogeneous

λ1 6= λ2, we need to work with two distinct incentive constraints ((16) for the two

players) simultaneously. As a consequence, the optimal trigger strategy equilibrium

has a property x1(t) 6= x2(t). Despite the difference, some key features of optimal

equilibria we found in this paper are robust. For example, the incentive constraints

are binding when the time is close to the deadline, xi(t) is increasing in t when t

is sufficiently small, and xi(t) = a∗ when t is sufficiently large. Those results for

the asynchronous case under additively separable payoffs and heterogeneous arrival

rates are the subject of Kamada and Kandori (2012). A full-fledged analysis of the

asynchronous case under general payoff functions is an important open problem.

7 Further Analysis

In this section, we briefly sketch further analysis on the robustness of our main re-

sults and the relationship between our model and related dynamic games (stochastic

games). The full details can be found in the Supplementary Information on the

authors’ webpages.

7.1 Robustness

For cooperation to be sustained in the revision game, it is essential that there is

always a chance that another revision can happen before the deadline is reached.

In real-life applications, however, if a revision opportunity arrives near the deadline,

no more revisions are practically possible. We can show, however, that the main

message of the revision game survives in such a situation if we allow that either (i)

the deadline is soft or (ii) players have a small incentive to punish a deviator. We

consider the effects of introducing (i) and (ii) in a discrete time baseline model with

t = −T, ....,−2,−1, 0, where a revision opportunity arrives with probability γ > 0 in

each period. Note that, since this baseline model has the last revision opportunity,

the backward induction implies that players cannot sustain cooperation.43

43We continue to assume the uniqueness of the Nash equilibrium of the component game.
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First, we introduce a soft deadline by adding periods 1, 2, .... The game goes

on until time 0 (the deadline) with probability 1, while it ends with probability

1−ε ∈ (0, 1] at the end of each period 0, 1, 2, . . . , independently. Parameter ε measures

how “soft” the deadline is. If ε = 0, then the deadline is firm. It is shown that our

main results survive in the following sense:

• The sufficient condition (13) for cooperation in the revision game implies that

cooperation can be sustained under a trigger-strategy equilibrium for any degree

of non-zero softness of the deadline (ε > 0).

• Under the sufficient condition (14) for no cooperation in the revision game, no

cooperation can be sustained in any trigger-strategy equilibrium if the deadline

is sufficiently firm.44

Secondly, to examine the effects of a small incentive to punish, we consider modifi-

cations of the linear exchange game in Section 3, with payoff function πi = a−i−cε(ai),
ai ∈ [0, 1].45 Parameter ε, which determines the cost of cooperation cε(·), is inter-

preted as the willingness to punish a deviator. We consider the following models.

• Model 1 : cε(ai) = max{a2
i − ε, 0}.

• Model 2 : cε(ai) = max{ai − ε, 0}.

When ε = 0, the component game has the unique Nash action ai = 0, and one can

check that cooperation in the revision game is possible in Model 1 but not in Model

2.

When ε > 0, in contrast, every ai ∈ [0, ε] constitutes a Nash equilibrium of the

component game. This means that players can switch from the “good Nash action”

ai = ε to the “bad one” ai = 0 in the last period in our discrete time model, when

a deviation has happened. By solving the model backwards, we find that the main

results of the revision game survive: substantial cooperation is possible if and only if

cooperation is sustained in the revision game. In particular, substantial cooperation

44When the unique Nash equilibrium is the minimax point in the component game (e.g., the
linear exchange game in Example 1 or its modification with ε = 0 that we will shortly discuss),
the trigger-strategy entails the severest punishment; hence the result that no cooperation can be
sustained under any trigger-strategy equilibrium implies that the same is true for any equilibrium.

45A well-documented fact shows that real people have small incentive to punish a deviator (for
example, see Fehr and Gachter (2002)).
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is possible in Model 1 even for small ε, while substantial cooperation in Model 2 is

not possible for small ε.

7.2 Comparison to Related Dynamic Games

Although payoffs accrue only at time 0 in the revision game, we can show that the

revision game is strategically equivalent46 to a discrete-time model where a flow payoff

accrues to each player in periods n = 0, 1, 2, ..... and the game terminates randomly

in a way similar to Shapley (1953). This game has a state variable s(n) ∈ [0, T ],

which corresponds to the remaining time in the revision game, and the nth period

corresponds to the nth revision opportunity in the revision game. In each period n,

player i receives payoff πi(ai, a−i)e
−λs(n) where (ai, a−i) is the action profile taken at

period n.

By using this equivalence, we can directly compare the revision game to other

related dynamic games with flow payoffs. In particular, we can show that (i) the

revision game does not belong to the class of dynamic games (stochastic games) where

the folk theorems have been proved (Dutta (1995) and Hörner, Sugaya, Takahashi

and Vieille (2011)) and (ii) the revision game is closely related but not equivalent to

the model with a decreasing discount factor (Bernheim and Dasgupta, 1995).
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A Appendix: Technical Results on the Optimal

Trigger Strategy Equilibrium

Assumptions A1-A4 guarantee the existence of the optimal trigger strategy equilib-

rium plan that is continuous and satisfies the binding incentive constraint. To show

this, we first present a simple but useful lemma. Recall that we are focusing on the

case aN < a∗. The next lemma shows that we can restrict our attention to the trigger

strategy equilibria whose actions always lie in [aN , a∗].

Lemma 2. For any trigger strategy equilibrium plan x ∈ X∗, there is a trigger strategy

equilibrium plan x̂ ∈ X∗ such that ∀t x̂(t) ∈ [aN , a∗] and π(x̂(t)) ≥ π(x(t)) with a

strict inequality if x(t) 6∈ [aN , a∗].

Proof. Construct x̂(t) from a given x(t) as follows. First, if x(t) > a∗, let x̂(t) = a∗.

This assures π(x̂(t)) = π(a∗) > π(x(t)) and, by Assumption A4, d(x̂(t)) ≤ d(x(t)).
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Second, if x(t) < aN , let x̂(t) = aN . This assures d(x̂(t)) = 0 < d(x(t)) and, by

Assumption A2, π(x̂(t)) > π(x(t)). Finally, let x̂(t) = x(t) if x(t) ∈ [aN , a∗]. Overall,

x̂(t) provides weakly higher payoffs and weakly smaller gains from deviation, and thus

it also satisfies the trigger strategy incentive constraint

d(x̂(t))e−λt ≤
∫ t

0

(
π(x̂(s))− πN

)
λe−λsds.

This lemma shows that the optimal trigger strategy (if it exists) can be found in

the set X∗∗ of trigger strategy equilibria whose range is [aN , a∗]:

X∗∗ :=
{
x ∈ X∗|∀t x(t) ∈ [aN , a∗]

}
.

Now we are ready to prove the following.

Proposition 5. Under Assumptions A1-A4, there is an optimal trigger strategy equi-

librium plan x(t) (V (x) = maxx∈X∗ V (x)) that is continuous for all t and satisfies the

binding incentive constraint when x(t) 6= a∗:

d(x(t))e−λt =

∫ t

0

(
π(x(s))− πN

)
λe−λsds. (17)

Furthermore, x(t) ∈ [aN , a∗] for all t if aN < a∗ (and a symmetric condition holds if

a∗ < aN).

Proof. We show that there is a trigger strategy equilibrium in X∗∗ that attains

maxx∈X∗∗ V (x) (by Lemma 2, it is the true optimum in X∗).

In the first step, we construct a candidate optimal plan x(t) and show its conti-

nuity. In Step 2, we will verify that this plan is feasible and it is indeed the optimal

trigger strategy equilibrium plan. In Step 3, we show that the binding incentive

constraint holds under the plan x.

[Step 1] Since V (x) is bounded above by π(a∗) = maxa π(a), supx∈X∗∗ V (x) is a

finite number. Hence, we can find a sequence xn ∈ X∗∗ such that limn→∞ V (xn) =

supx∈X∗∗ V (x).

Note that {π(xn(·))}n=1,2,... is a collection of countably many measurable functions.

This implies that π(t) := supn π(xn(t))(< ∞) is also measurable. Now let us define
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x(t) to be the solution to

Problem P(t): max
x(t)∈[aN ,a∗]

π(x(t))

s.t. d(x(t))e−λt ≤
∫ t

0

(
π(s)− πN

)
λe−λsds. (18)

Note that the right hand side of the constraint (18) is well-defined because π(·) is

measurable. Also note that the right hand side is nonnegative by π(s) ≥ πN .47

Under Assumptions A2 and A4, both π(a) and d(a) are strictly increasing on

[aN , a∗]. Furthermore, by Assumption A3, d(a) is continuous by Berge’s Theorem

of Maximum. Hence, the solution x(t) to Problem P(t) is either a∗ or the action

in [aN , a∗) with the binding constraint (18). Let us write down the solution x(t)

to the above problem P(t) in the following way. Since d is continuous and strictly

increasing on [aN , a∗], on this interval its continuous inverse d−1 exists. Then, the

optimal solution x(t) can be expressed as

x(t) =

{
a∗ if d(a∗) < h(t)

d−1 (h(t)) otherwise
, (19)

where

h(t) := eλt
∫ t

0

(
π(s)− πN

)
λe−λsds.

A crucial step in the proof, that shows the continuity of the optimal plan, is to note

that the integral
∫ t

0

(
π(s)− πN

)
λe−λsds in the definition of h(t) is continuous in t

for any measurable function π(·).48 Since d−1 is continuous, this observation implies

that x(t) is continuous whenever x(t) ∈ [aN , a∗). Moreover, since h(t) is increasing in

t, (19) means that x(t) = a∗ implies x(t′) = a∗ for all t′ > t. Hence x̄ is continuous

for all t.

[Step 2] We show that x is actually feasible and a trigger strategy equilibrium.

The continuity of x and π implies that π(x(·)) is a measurable function. Therefore,

x is feasible. We show that x also satisfies the (trigger strategy) incentive constraint

IC(t) for all t. Recall that xn is a trigger strategy equilibrium for all n = 1, 2, ....

47By A2, xn(t) ∈ [aN , a∗] implies π(xn(t)) ≥ πN . Hence π(t) = supn π(xn(t)) ≥ πN .
48A standard result in measure theory shows that, for any measurable function f(t), the Lebesgue

integral
∫ t
0
f(s)ds is absolutely continuous in t. Therefore, it is continuous in t.
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Then we have, for all n = 1, 2, . . . ,

d(xn(t))e−λt ≤
∫ t

0

(
π(xn(s))− πN

)
λe−λsds (xn is an equilibrium)

≤
∫ t

0

(
π(s)− πN

)
λe−λsds. (by the definition of π)

This means that xn(t) satisfies the constraint of Problem P(t). Since x(t) is the

solution to Problem P(t), we have

∀n ∀t π(x(t)) ≥ π(xn(t)) (20)

and therefore

∀t π(x(t)) ≥ π(t) = sup
n
π(xn(t)). (21)

This implies that, for all t, x(t) satisfies the incentive constraint IC(t):

d(x(t))e−λt ≤
∫ t

0

(
π(s)− πN

)
λe−λsds (x(t) satisfies (18))

≤
∫ t

0

(
π(x(t))− πN

)
λe−λsds.

Thus, we have shown that x is a trigger strategy equilibrium (x ∈ X∗), and

V (x) ≥ V (xn) for all n (by (20)). By definition limn→∞ V (xn) = supx∈X∗∗ V (x), and

the above inequality implies V (x) ≥ supx∈X∗∗ V (x). Since x ∈ X∗∗, we must have

V (x) = supx∈X∗∗ V (x) = maxx∈X∗∗ V (x)(= maxx∈X∗ V (x) by Lemma 2). Hence, we

have established that there is an optimal and continuous trigger strategy equilibrium

x.

[Step 3] Lastly we prove that the optimal plan x satisfies the binding incentive

constraint. Step 1 shows that, if x(t) 6= a∗, then the following “pseudo” binding

incentive constraint is satisfied:

d(x(t))e−λt =

∫ t

0

(
π(s)− πN

)
λe−λsds. (22)

Our remaining task is to show the “true” binding incentive constraint

d(x(t))e−λt =

∫ t

0

(
π(x(t))− πN

)
λe−λsds.
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Since π(x(t)) ≥ π(t) for all t (inequality (21)), the pseudo binding incentive constraint

(22) implies

d(x(t))e−λt ≤
∫ t

0

(
π(x(t))− πN

)
λe−λsds. (23)

We show that this is satisfied with an equality. If the above inequality were strict for

some t, we would have
∫ t

0
π(s)λe−λsds <

∫ t
0
π(x(s))λe−λsds. Given π(x(s)) ≥ π(s) for

all s ∈ (t, T ] (inequality (21)), we would have

e−λTπ(T ) +

∫ T

0

π(s)λe−λsds < e−λTπ(x(T )) +

∫ T

0

π(x(s))λe−λsds = V (x).

Since π(s) := supn π(xn(t)), the left hand side is more than or equal to V (xn) for all n.

Since limn→∞ V (xn) = supx∈X∗∗ V (x), the above inequality implies supx∈X∗∗ V (x) <

V (x). In contrast, x ∈ X∗∗ implies supx∈X∗∗ V (x) ≥ V (x), and this is a contradiction.

Hence, (23) should be satisfied with an equality (i.e., x satisfies the binding incentive

constraint), if x(t) 6= a∗.

Let us make a technical remark about the multiplicity of the optimal plans. Recall

that x is a particular optimal trigger strategy equilibrium plan with the binding

incentive constraint (the one that is described in Theorem 5). This plan x is referred

to as the optimal plan. There are, however, other optimal plans if x is not trivial. For

example,

x(t) :=


aN if t is in a measure zero set in (0, T )

x(t) otherwise

.

is also a trigger strategy equilibrium plan that satisfies the incentive constraint (3)

and achieves the same expected payoff as x does. This is because the probability that

revision opportunities happen in the measure-zero set in (0, T ) is zero. Hence, the

above plan is also optimal. Formally, there is essentially a unique optimal plan in the

following sense.

Proposition 6. The optimal plan is essentially unique: If y(·) is an optimal trigger

strategy equilibrium plan, then y(t) 6= x(t) only on a measure zero set in (0, T ), where

x is the optimal plan that satisfies the binding incentive constraint (17).

Proof. Suppose H := {t ∈ (0, T )|π(y(t)) > π(x(t))} has a positive measure.49 Then,

49Since y is a feasible plan, H is a measurable set.
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define

z(t) :=


y(t) if t ∈ H

x(t) otherwise

.

This has a measurable payoff π(z(t)) = max {π(y(t)), π(x(t))} and achieves a strictly

higher expected payoff than x(t). Furthermore, z satisfies the incentive constraints

∀t d(z(t))e−λt ≤
∫ t

0

(
π(z(s))− πN

)
λe−λsds.

This follows from the incentive constraints for x and y, together with π(z(t)) =

max {π(y(t)), π(x(t))}. Hence, z is a trigger strategy equilibrium plan, which achieves

a strictly higher payoff than x(t) does. This contradicts the optimality of x, and there-

fore H must have measure zero. Hence, π(y(t)) ≤ π(x(t)) almost everywhere in (0, T ).

If {t ∈ (0, T )|π(y(t)) < π(x(t))} has a positive measure, y attains a strictly smaller

payoff than x(t) does, which contradicts our premise that y is optimal. Therefore, we

conclude that π(y(t)) = π(x(t)) almost everywhere in (0, T ).

Now, note that Lemma 2 implies that if {t ∈ (0, T )|y(t) 6∈ [aN , a∗]} has a positive

measure, then y(t) cannot be optimal inX∗. Hence, y(t) ∈ [aN , a∗] almost everywhere.

This and π(y(t)) = π(x(t)) almost everywhere in (0, T ) imply that y(t) = x(t) almost

everywhere in (0, T ) because π is strictly increasing on [aN , a∗].

Finally, we show y(t) = x(t) for t = 0, T . By the incentive constraint, y(0) =

x(0) = aN . If y(T ) 6= x(T ), by the same argument as above (using Lemma 2), we

obtain π(y(T )) 6= π(x(T )). This and the fact that y(t) = x(t) almost everywhere in

(0, T ) imply that y(·) and x(·) achieve different payoffs, which contradicts the premise

that those plans obtain the same optimal payoff.

Next, we prove the differentiability of the optimal plan. We present this result for

the case aN < a∗.

Proposition 7. Under Assumptions A1-A5, the optimal plan x(t) is differentiable

when x(t) 6= aN , a∗, and satisfies the differential equation dx̄
dt

= f(x̄(t)), where

f(x) :=
λ
(
d(x) + π(x)− πN

)
d′(x)

for x ∈ (aN , a∗).
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Proof. Note that x(t) ∈ [aN , a∗] (by Proposition 5). By Assumption A5, d has an

inverse function on (aN , a∗], denoted by d−1. Thus, if x(t) ∈ (aN , a∗), the binding

incentive constraint implies

x(t) = d−1

(
eλt
∫ t

0

(
π(x(s))− πN

)
λe−λsds

)
. (24)

The crucial step to show the differentiability of x(t) is to note the differentiability

of integral
∫ t

0

(
π(x(s))− πN

)
λe−λsds with respect to t. Specifically, the continuity

of x, established by Proposition 5, implies that
(
π(x(s))− πN

)
λe−λs is continuous,

and the fundamental theorem of calculus shows that
∫ t

0

(
π(x(s))− πN

)
λe−λsds is

differentiable with respect to t (with the derivative
(
π(x(t))− πN

)
λe−λt). Also, A5

implies that d−1 is differentiable with derivative 1/d′(a) (note that A5 guarantees

d′(a) 6= 0 for a ∈ (aN , a∗]). Therefore, the right hand side of (24) is differentiable

with respect to t, and differentiating both sides of (24), we obtain the differential

equation presented in the statement of Proposition 7 when x(t) ∈ (aN , a∗).

We prove Theorem 2 on the Finite Time Condition.

Proof. [of Theorem 2]: By Propositions 5 and 7, the optimal plan x(t) satisfies the

following conditions:

(i) it lies in [aN , a∗] for all t,

(ii) it is continuous in t,

(iii) it follows the differential equation dx/dt = f(x) if x ∈ (aN , a∗), and

(iv) it starts with Nash action aN at t = 0.

We first show that the existence of a non-trivial optimal plan implies the Finite

Time Condition. Properties (i), (ii) and (iv) imply that, if x(t) is non-trivial (i.e., not

equal to the Nash action aN for all t), then x(t0) = a0 ∈ (aN , a∗) for some t0 > 0 and

some a0. At this point the optimal plan satisfies the differential equation dx/dt = f(x)

by (iii). By A2 and A5, f(x) =
λ(d(x)+π(x)−πN)

d′(x)
> 0 (recall that d(aN) = 0 and

π(aN) = πN), when x ∈ (aN , a∗). Hence, once the optimal plan departs from the Nash

action aN , it is strictly increasing and never goes back to aN . Given that the optimal

plan starts with aN , this implies the following. First, the plan stays at the Nash action

for some time interval [0, tN ] (this interval may be degenerate: tN may be equal to 0).

Second, after this time interval, the plan is continuous and strictly increasing with

x(tN) = aN < x(t0) = a0. Therefore, on [tN , t0], function x(t) has a continuous inverse
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that we denote by t(x), and its derivative is defined on (tN , t0] and equal to dt
dx

= 1
f(x)

.

This implies that lima↓aN
∫ a0
a

dt
dx
dx = lima↓aN (t(a0)− t(a)) = t(a0)− t(aN), where the

last equality follows from the continuity of the inverse function t(·). By definition,

t(a0) = t0 and t(aN) = tN , and therefore lima↓aN
∫ a0
a

dt
dx
dx < ∞ holds. In addition,

since f(x) is Lipchitz continuous over [a0, a∗], the differential equation dx
dt

= f(x) with

an initial condition x(t0) = a0 has a unique solution, and x is equal to such a solution.

Hence, letting t̂ be x(t̂) = a∗, we obtain t̂ < ∞. Hence,
∫ a∗
a0

1
f(x)

dx = t̂ − t0 < ∞.

Overall, we conclude that

lim
a↓aN

∫ a∗

a

dt

dx
dx =

(
lim
a↓aN

∫ a0

a

dt

dx
dx

)
+

∫ a∗

a0

dt

dx
dx <∞,

so the Finite Time Condition (7) holds.

Next, we show that the Finite Time Condition implies that the optimal plan is

non-trivial. Choose any a0 ∈ (aN , a∗). By Assumption A6 (the Lipschitz continuity),

the differential equation dx/dt = f(x) with boundary condition x(0) = a0 has a

unique solution, denoted by xε(t), on (aN + ε, a∗) for any small enough ε > 0. By the

same argument as above, our assumptions ensure dx/dt = f(x) > 0 for x ∈ (aN , a∗).

Define

t∗ := lim
ε→0

∫ a0

aN+ε

1

f(x)
dx <∞,

where the finiteness follows from the Finite Time Condition (7). The above argument

shows that there is a solution to the differential equation x(t) such that x(0) = a0

and x(t) ↓ aN as t→ −t∗. Shift the origin of time and construct a new plan y(t) :=

x(t− t∗). The new plan is also a solution to the differential equation, and it satisfies

y(t∗) = a0 and y(t) → aN as t → 0. Now, construct another plan z(t) by suitably

extending y(t):

z(t) =


aN if t = 0

y(t) if t ∈ (0, t∗]

a0 if t > t∗

This plan satisfies the trigger strategy incentive constraint (3): the incentive con-

straint is binding on [0, t∗] (because it satisfies the differential equation), and for

t > t∗ the incentive constraint is satisfied with strict inequality. Hence, z(t) is a non-
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trivial trigger strategy equilibrium. This implies that the optimal trigger strategy

equilibrium is non-trivial.

Lastly, we prove Corollary 1.

Proof. [of Corollary 1]: Recall that the optimal plan x(t) satisfies conditions (i)-(iv) in

the proof of Theorem 2. It turns out that there are multiple plans which satisfy those

conditions. For example, trivial constant plan x(t) ≡ aN satisfies those conditions. In

what follows, we identify all plans that satisfy conditions (i)-(iv) and find the optimal

one among them.

The proof of Theorem 2 shows that there is a solution to the differential equation

x∗(t) that satisfies x∗(t(a∗)) = a∗ and x∗(t) → aN as t → 0. From x∗(t), construct

the following plan

xτ (t) :=


aN if t ∈ [0, τ ]

x∗(t− τ) if t ∈ (τ, τ + t(a∗))

a∗ if t ∈ [τ + t(a∗),∞)

.

This plan xτ (t) departs from aN at time τ , follows the differential equation, and then

hits the optimal action a∗ and stays there (In a revision game with time horizon T ,

we must consider the restriction of xτ (t) on [0, T ]).

Those plans xτ (t), τ ≥ 0 obviously satisfy (i)-(iv). Next we show the converse:

any plan satisfying (i)-(iv) is equal to xτ (t) for some τ ∈ [0,∞]. This comes from

the standard result in the theory of differential equation: dx/dt = f(x) defined on an

open domain (x, t) ∈ (aN , a∗)× (−∞,∞) has a unique solution given any boundary

condition, if f(x) is Lipschitz continuous. The uniqueness of the solution then implies

that any plan satisfying (i)-(iv) is equal to xτ (t) for some τ ∈ [0,∞) ∪ {∞}.50

Among the plans xτ (t), τ ∈ [0,∞] the one that departs from aN immediately (i.e.,

x0(t)) obviously has the highest payoff. Therefore, the optimal plan is given by the

restriction of x0(t) on [0, T ], which has the stated properties in Corollary 1.

50A formal proof goes as follows: The trivial path, which satisfies (i)-(iv), is equal to xτ with
τ =∞. Consider any non-trivial path x0(t) that satisfies (i)-(iv), where x0(t0) =: a0 ∈ (aN , a∗) for

some t0. Define t′ := t0− lima↓aN
∫ a0
a

1
f(x)dx (which is finite by the Finite Time Condition), so that

x∗(t− t′) hits a0 at t = t0. The uniqueness of the solution to the differential equation (for boundary
condition x(t0) = a0) implies x0(t) = x∗(t − t′) for t ≥ t′. If t′ ≥ 0, we obtain the desired result
x0(t) = xτ (t) for τ = t′. If t′ < 0, x0(0) = x∗(−t′) > aN and x0(0) cannot satisfy (iv) (x∗(−t′) > aN

leads to a contradiction because we are considering the case aN < a∗).
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