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B Additional Discussions

In this appendix, we provide additional discussions. The proofs of the results

stated in this section are provided in Appendix C.

B.1 A Probabilistic Disclosure Model

In this subsection, we consider the possibility that disclosure of an action is suc-

cessful with probability less than one. Specifically, if player j moves after i and

i plays (ai, pay), then j’s private information contains information about ai and

i’s moving time with probability r, while with the complementary probability his

private information does not contain ai or i’s moving time; so in particular j

does not observe whether i has moved or not. Formally, define the dynamic game

(S, T , p, c, r) which is the extension of the standard game (S, T , p, c) such that

disclosure is successful with probability r. The game in the main text corresponds

to (S, T , p, c, 1).

Proposition 11. Fix a common-interest component game S, a moving-time dis-

tribution (T , p) and a number r ∈ [0, 1]. Suppose that there is q ∈ (0, r) such

that for each player i the game S is si-common with si ≥ 1 − r + q, and (T , p)
is (1 + ε − q)-dispersed for some ε ∈ (0, q). Then, there is c̄ > 0 such that for

all c < c̄, the dynamic game (S, T , p, c, r) has a unique PBE. On the path of the

unique PBE, each player i plays (a∗i , not) at any realization of Ti.
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The argument is similar to the one for the case with r = 1, in that we first show

that playing (ai, ·) with ai 6= a∗i is worse than playing (a∗i , pay), and then show

that (a∗i , not) gives a higher payoff than (a∗i , pay). We need an extra condition to

ensure that (a∗i , pay) generates a high payoff when r < 1 because paying is less

likely to affect the opponent’s action when r is small. For (a∗i , pay) to give rise

to a higher payoff than (ai, ·) for ai 6= a∗i , it suffices that the probability of the

opponent observing the player’s action is high relative to the riskiness of a∗i . This

last condition is captured by si-commonality and (1 + ε− q)-dispersion.

We note that the potential leader condition and the unlikely leader condition,

which are key conditions in the main analysis, are not relevant for the analysis

in this section. The reason is that not observing the opponent’s action is always

on the path of any PBE if r < 1. This implies that, at r = 1, there is a lack of

upper hemicontinuity of the set of timing distributions inducing a unique PBE, as

a function of r.

B.2 Sense of Calendar Time

Example 3 demonstrates why we need SAP to prove uniqueness. In that example,

any private information about a player’s own moving time does not reveal suffi-

ciently precise information about the order of moves. To make this point even

clearer, here we consider an extreme case in which players do not have a sense of

calendar time.

More specifically, consider a two-player extensive-form game in which the Na-

ture chooses one of the two states with probability 1/2 each. Player 1 moves first

in the first state, and player 2 moves first in the second state. Players do not know

the state unless the opponent reveals the action, so if the strategy profile assigns

probability one to no one revealing any action, then at each information set, each

player assigns probability 1/2 to being the first mover. The set of available actions

and the payoff functions are exactly the same as in Example 3 in Section 3.1 (see

Figure 3). Figure 7 shows the extensive form of this game with payoffs at each

terminal node. As in Figure 2, we omit a player’s actions that are strictly sub-

optimal (conditional on reaching the corresponding information set) when she has

observed the opponent’s action.
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Figure 7: Extensive-form of the game with no sense of calendar time

As in Example 3, there are at least two PBE. One is that each player plays

(A, not) under no observation of a disclosure, while the other is that each player

plays (B, not) under no observation of a disclosure. The second strategy profile is

a PBE because if one follows it, the expected payoff is 1, while if she deviates to

play (A, pay), the expected payoff reduces to 1
2
· 3 + 1

2
· (−3)− c = −c.

B.3 Incomplete Information

In the main text, we considered the situation in which the component game is com-

mon knowledge among players from the beginning of the dynamic game. This in

particular implies that the best action profile is common knowledge, which helped

implement the contagion argument in Step 1 of the Proof Sketch for Proposition 1.

In this section, we consider a possibility of incomplete information about the com-

ponent game in a simple setting, and provide a sufficient condition that guarantees
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θA:
A B

A α, α 0, 0
B 0, 0 1, 1

θB:
A B

A 1, 1 0, 0
B 0, 0 α, α

Figure 8: Two possible games

uniqueness of a PBE.

Specifically, there are two possible component games, θ = θA, θB, as in Figure

8 with α > 1. Observe that, in either game, (A,A) and (B,B) are strict Nash

equilibria, but only one of them gives payoff α to each player, and which action

profile gives payoff α depends on the realized game. Note that action a ∈ {A,B}
is 1

1+α
-dominant in game θa.

To model the knowledge structure, we consider a finite state space Ω over which

there are information partitions P1 and P2 of the two players and a probability

distribution f . A function θ̄ : Ω → {θA, θB} specifies the realized game. That is,

if the state is ω, then the realized game is θ̄(ω). Before the dynamic game starts,

each player i is informed that the state belongs to cell g ∈ Pi with probability∑
ω∈g f(ω).

We assume the following genericity condition: For each player i ∈ {1, 2}, for

any g ∈ Pi,
∑

ω∈g,θ̄(ω)=θA
f(ω) 6= 1

2
·∑ω∈g f(ω). This assumption implies that,

at each state ω ∈ Ω, qi · α + (1 − qi) · 1 6= qi · 1 + (1 − qi) · α holds where qi

is the probability i assigns to game θA before the dynamic game starts but after

she observes the cell of her information partition. Hence, each player i strictly

prefers to take some action over the other conditional on her signal, assuming that

the opponent best-responds to her action. Let qia(g) denote the probability that

player i believes that the game is θa at cell g ∈ Pi. Let ai(g) ∈ {A,B} denote

the action a satisfying qia(g) > 1
2
, which uniquely exists by assumption. That is,

(ai(g), ai(g)) is the action profile that i strictly prefers conditional on observing the

cell of her information partition g, assuming the opponent’s static best response.

Let q̄i(g) = max{qiA(g), qiB(g)}.
We assume that player i always has some uncertainty about what player −i

believes to be the best action profile. Formally, we assume that there exists ε > 0
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such that

max
i∈{1,2},gi∈Pi,a∈{A,B},g−i∈P−i

Probp
(
a−i(g−i) = a

∣∣∣ai(gi) = a
)
< 1− ε.

Consider an asynchronous timing distribution with probability distribution

(T , p) that is independent across players. Specifically, suppose that supp(T1) ∩
supp(T2) = ∅ and supp(T1) ∪ supp(T2) = Q. Also we suppose that for any

t, t′ ∈ R with t < t′, Probp(Ti ∈ (t, t′)) > 0 holds for each i = 1, 2. Note

that, because probabilities have finite measures, for all t′ ∈ R and i = 1, 2,

limt→t′ Probp(Ti ∈ (t, t′)) = 0.

We denote the incomplete-information dynamic game specified above by

((θA, θB), T , p, c,Ω, (P1, P2), f). PBE is defined in an analogous manner as in

Section 2. We let σi(g)(hi) be the distribution over actions when the observed

information cell is g and the private history is hi.

Proposition 12. Fix ((θA, θB), T , p,Ω, (P1, P2), f). There exists c̄ > 0 such that

for any disclosure cost c < c̄, the dynamic game ((θA, θB), T , p, c,Ω, (P1, P2), f)

has a unique PBE σ∗. This σ∗ satisfies the following for each player i and each

g ∈ Pi.

1. For each h that contains no observation, σ∗i (g)(h)(ai(g), pay) = 1.

2. For each h that contains an observation, σ∗i (g)(h)(a, not) = 1 where a is the

static best response to the first-mover’s action.

The proposition implies that, given no observation, players always pay to dis-

close their actions. The reason is that there is a lack of common knowledge about

which action is optimal, and thus there is always a risk of miscoordination when

there is no disclosure, even on the equilibrium path. This risk can be avoided by

paying a small cost, and thus players prefer to pay.

C Proofs for the Results in the Online Appendix

C.1 Proof for Proposition 11

Step 1:
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Step 1-1 Fix a common-interest game such that profile a∗ is (r− q)-dominant

and a timing distribution p that is (1+ε−q)-dispersed. Fix a PBE of (S, T , p, c, r)
and, for i ∈ {1, 2}, let Ni ⊆ Ti be the set of times t such that there exists a private

history under which the fixed PBE designates a probability distribution over player

i’s actions at t that assigns strictly positive probability to an action that is not

a∗i . For contradiction, we suppose that Ni is nonempty for some i ∈ N . Let

t∗ := inf(N1 ∪N2). We claim that, at time t∗, all players must choose a∗i . To see

why this holds, notice that the probability that any opponent j chooses an action

other than a∗j before time t∗ is zero. Therefore, if player i chooses (a∗i , pay) at

time t∗, then −i responds with a∗−i with probability at least r − q + ε ≥ 1 − si.
Therefore, as discussed when we posed equation (9), player i must choose a∗i at

time t∗.

Step 1-2: By the definition of (1 + ε− q)-dispersion, there must exist i ∈ N
and t′ > t∗ such that for j 6= i and t ∈ (t∗, t′] ∩ Ti, Probp(t∗ < Tj ≤ t|Ti = t, Tj ≥
t∗) < q − ε. Therefore, if player i chooses (a∗i , pay) at time t, player −i responds

with a∗−i with probability at least r(1 + ε − q) ≥ r + ε − q, as q > ε. Since the

game S is si-common with si ≥ 1− r+ q, the payoff of playing a∗i is strictly above

the payoff from any other action if −i plays a∗−i with probability at least r − q.
Thus, there exists c̄ > 0 such that for all c < c̄, player i prefers to play a∗i at time

t, which implies (t∗, t′] ∩ Ni = (t∗, t′] ∩ Nj = ∅. This contradicts the definition of

t∗. Therefore, Ni is empty for each i.

Step 2:

Suppose for contradiction that, under the fixed PBE that we denote here by

σ∗, there exist t and i such that there is a positive ex ante probability with which i

pays the disclosure cost at t. As we have shown above, σ∗ must assign probability

one to a∗, so i’s payoff from σ∗ is g∗i − c. But consider i’s deviation to playing

(a∗i , not) with probability 1 at all the information sets at time t that can be reached

with positive probability under σ∗, while no change is made to the distribution of

actions conditional on other private histories. Call this strategy σ′i. Then, under

no observation, for any realization of T−i ∈ T−i, −i is at an information set that

can be reached with positive probability under σ∗, so plays (a∗−i, ·). Therefore, the

payoff from (σ′i, σ
∗
−i) is g∗i , and the deviation is profitable. This is a contradiction

6



to the assumption that σ∗ is a PBE. Hence, there is no private history of any i at

which i pays the disclosure cost under σ∗.

The proposed strategy profile is indeed a PBE. At every private history at

time t under which there has not been an observation about player j, each player

i’s belief assigns probability one to the the event in which j plays (a∗j , not) at j’s

moving time. Hence, (a∗i , not) is i’s best response at t.

C.2 Proof of Proposition 12

For each disclosure cost c > 0, fix an arbitrary PBE σc. We first prove that there

exists c̄ > 0 such that for all c < c̄, σc = σ∗ must hold. Then we show that σ∗ is

indeed a PBE.

Step 1: Showing that σc = σ∗ if σc is a PBE.

Given strategy profile σc, for each set M ⊆ (−∞,∞), conditional on receiving

an opportunity at some time t and the private history up to time t, player i forms

a belief about the probability that −i’s opportunity is in M . Let µσc (M, t) ∈ [0, 1]

denote i’s belief that −i’s opportunity is in set M , given that i’s opportunity is

at time t and i has not observed a disclosure. Let πσc (M, t) denote c plus the

expected payoff of player i conditional on her moving at time t, not observing

a disclosure, playing (ai(g), pay) at time t where g is the observed cell, and −i
moving at a time in set M and playing according to σc−i. If M has probability zero

according to i’s conditioning then πσc (M, t) is taken to be zero.

Conditional on the realized cell g ∈ Pi and receiving an opportunity at time

t ∈ Ti without an observation, a lower bound on player i’s payoff from playing

(ai(g), pay) at time t is given by

µσc ((−∞, t], t) πσc ((−∞, t], t) + (1− µσc ((−∞, t], t)) (αq̄i(g) + (1− q̄i(g)))− c.
(10)

Under the same conditioning, an upper bound of the payoff from (a′, ·) where

a′ 6= ai(g) is

q̄i(g) · 1 + (1− q̄i(g)) · α. (11)

This expression is an upper bound because it assumes that, conditional on each
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action by i, player −i takes an action that maximizes i’s payoff.

Now, noting that the state space is finite, there exists δ > 0 such that for all

g ∈ Pi and i = 1, 2, q̄i(g) > 1
2
+δ holds. Thus, by asynchronicity and independence,

there exist t̃> −∞ and c̄1 > 0 such that for all c < c̄1, (10) is strictly higher than

(11) for each i = 1, 2 and t < t̃. Therefore, σci (g)(hi) must assign probability 1 to

(a(g), ·) for every private history hi without observation at every time t < t̃.

Let H∅i,t be the set of i’s time-t private histories that have no observation.

Define the following two pieces of notation:

t̂F (σc) = inf
i∈{1,2}, g∈Pi

{t ∈ R ∪ {−∞,∞}|σci (g)(hi)(ai(g), ·) < 1 for some hi ∈ H∅i,t};

t̂D(σc) = inf
i∈{1,2}, g∈Pi

{t ∈ R∪{−∞,∞}|σci (g)(hi)(ai(g), pay) < 1 for some hi ∈ H∅i,t}.

By definition, t̂F (σc) ≥ t̂D(σc) holds. Also, as we argued, t̂F (σc) > −∞ holds.

Note that, before t̂F (σc), both players play according to (ai(g), ·) when g is

the observed cell. Moreover, with probability at least ε, conditional on i choosing

(ai(g), not), player −i would choose a′ 6= ai(g) under such a strategy profile (in

which case i’s payoff is zero). These two facts imply that an upper bound of the

expected payoff from playing (ai(g), not) at t ∈ Ti ∩ (−∞, t̂F (σc)) is

µσc ((−∞, t], t) πσc ((−∞, t], t) +
[
µσc

(
(t, t̂F (σc)), t

)
(1− ε)

+ µσc

(
[t̂F (σc),∞), t

) ] (
αq̄i(g) + (1− q̄i(g))

)
. (12)

Suppose that there is a sequence {cn}n∈N with cn → 0 such that for each

disclosure cost cn, σcn is different from σ∗. Because σcn is not σ∗, t̂D(σcn) < ∞
for each n ∈ N. From the definition of t̂D(σcn) and the players’ Bayesian belief

updates, µσcn ((−∞, t], t) = µσcn

(
[t̂D(σcn), t], t

)
.

Define sn := Probp
(
T−i ∈ (t̂D(σcn), t̂F (σcn))

)
. Because probabilities are

bounded in R, (sn)n∈N has a convergent subsequence. Passing to the subsequence,

we have the following two cases.

Case 1: Suppose limn→∞ sn = 0.

Due to independence, for every ν > 0, there are n̄(ν) <∞ and t(ν) > t̂F (σcn)

such that µσcn

(
[t̂D(σcn), t], t

)
= µσcn ((−∞, t], t) < ν for every t ∈ (t̂F (σcn), t(ν))
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and n ≥ n̄(ν).

This implies that there exist ν̄> 0 and c̄2> 0 such that, if ν < ν̄ and c < c̄2,

then expression (11) is strictly less than (10) for t ∈ (t̂F (σcn), t(ν)). That is, i

chooses ai(g) for t ∈ (t̂F (σcn), t(ν)) under σcn where g is the observed cell, which

contradicts the definition of t̂F (σcn).

Case 2: Suppose limn→∞ sn > 0. There is ¯̄n<∞ and λ > 0 such that for all

n ≥ ¯̄n, Probp
(
T−i ∈ (t̂D(σcn), t̂F (σcn))

)
> λ. Let τn ∈ (t̂D(σcn), t̂F (σcn)) be such

that Probp
(
T−i ∈ (τn, t̂F (σcn))

)
> λ/2 for each n ≥ ¯̄n. Such τn exists because

we have limt→t′ Probp(Ti ∈ (t, t′)) = 0 for all t′ ∈ R and i = 1, 2 and p is an

independent distribution. We have

µσcn

(
(t, t̂F (σcn)), t

)
≥ µσcn

(
(τn, t̂F (σcn)), τn

)
≥ Probp(T−i ∈ (τn, t̂F (σcn))) > λ/2

for all t ∈ [t̂D(σcn), τn) and n ≥ ¯̄n, where the second inequality follows from the

fact that it is possible that under σcn , −i would have disclosed before τn with

positive probability.

But then, there must exist c̄3> 0 such that expression (10) is strictly greater

than (12) for all t ∈ (t̂D(σcn), τn) and cn ≤ c̄3. Fix n such that cn ≤ c̄3. The

previous statement contradicts the definition of t̂D(σcn) because it implies that i

strictly prefers (ai(g), pay) to (ai(g), not) at times in (t̂D(σcn), τn) where g is the

observed cell.

Thus, we have shown that for each c < min{c̄1, c̄2, c̄3}, if there is a PBE, then

it must be σ∗.

Step 2: Showing that σ∗ is a PBE.

We now show that σ∗ is indeed a PBE. We have µσ∗ ((−∞, t], t) = 0, where

the right-end point of the interval in the first argument can be taken to be closed

due to asynchronicity. As before, there is c̄4 > 0 such that for every t ∈ Ti, (10) is

strictly above (11) for c < c̄4 under σc = σ∗. This implies that, under σ∗, players

do not have incentives to deviate to a′ 6= ai(g) for c < c̄4, where g is the observed

cell. Also, given a disclosure, it is immediate that taking a static best reply in the

component game is optimal.

9



Furthermore, under σ∗, we have t̂F (σ∗) = t̂D(σ∗) = ∞, which implies

µσ∗ ((−∞, t], t) = 0 and µσ∗
(
(t, t̂F (σ∗)), t

)
= 1 for all t ∈ Ti ∩ (−∞, t̂F (σ∗)).

Thus, under σ∗, there exists c̄5 > 0 such that for c < c̄5, expression (12) is strictly

less than (10) for every t ∈ Ti when σc = σ∗ in these equations. That is, players

do not have incentives to deviate to non-disclosure under σ∗ and, therefore, σ∗ is

a PBE whenever c < min{c̄4, c̄5}. This completes the proof.
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