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Abstract

We study a class of games in which the timing of players’ moves is private

information, but players have the option to disclose their actions by incurring

a small cost. Payoffs net of a disclosure cost are as in a common-interest

game. We show that every such dynamic game has the unique prediction

that players coordinate on the efficient equilibrium while not disclosing their

action if and only if the timing distribution features a form of asynchronicity

and uncertainty. We allow players to choose their moving time as well and

find an analogous uniqueness result.
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1 Introduction

In numerous social and economic situations, knowledge about timing matters. A

firm may want to conduct a costly investigation of the pricing strategy of its

competing firm only if the rival already had an internal meeting to determine

such a strategy. A salesperson at an appliance store may change her sales pitch

depending on whether the customer has already visited another store and could

benefit from communication from that store. Investors may want to condition their

funding decisions for a start-up company on whether other investors had enough

time to make their investment decisions for the company. Knowing this, early

investors may want to disclose to others—if possible—that they invested. In all

these situations, choices of actions depend on what one believes about the timing

of the choices by other actors, and on the communication technology available.

This paper proposes a new class of games that we call games with private tim-

ing to analyze how uncertainty about timing affects economic interactions. In

particular, these games allow us to model dynamic situations in which the play-

ers have uncertainty about their order of moves, moves are unlikely to take place

at the exact same time (timing may be fine) and players are able to communi-

cate information about their chosen action to an opponent. These assumptions

hold in various business and economic environments including the aforementioned

examples.

Games with private timing have an underlying two-player normal-form game

which we call the component game. In particular, we focus on component games

that are of common-interest. These are games that have a “best action profile,”

which strictly Pareto-dominates all other action profiles.1 Each of two players

learns privately the time at which they are able to choose an action, once and

for all, in the component game. In doing so, they face uncertainty regarding the

time at which the opponent is able to choose her action. If there is no informa-

tion disclosure between periods, then these games are strategically equivalent to

simultaneous-move games. We assume, however, that each player has the option

to disclose her own action to the opponent at a small cost, and that the oppo-

nent may use the information if he has not yet moved. The main model assumes

1A common example of a common-interest game is the Stag Hunt game.
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that players do not choose their time to move. Rather, the moving times are

exogenously given.

Our main result shows that, under certain timing assumptions that we explain

below, all such games have a unique equilibrium outcome when the component

game is of common-interest. In this unique equilibrium outcome, players coordi-

nate on their best action profile implicitly, i.e., without communicating anything

to their opponent. In contrast, in the simultaneous move version of the game, it

is possible, in equilibrium, that players coordinate on a Pareto-dominated equilib-

rium of the component game. Interestingly, a game with private timing may look

“in practice” as a simultaneous move game, as players do not exchange information

in equilibrium. However, once one accounts for the underlying timing of moves

and informational structure explicitly the predictions of the game can be starkly

different.

More specifically, we characterize the set of timing distributions D such that:

timing distribution p ∈ D ⇐⇒ ∀common-interest game S, ∃small enough cost c

s.t. the dynamic game (S, p, c) has a unique PBE.

Furthermore, in the unique equilibrium, players choose the best coordination equi-

librium of the component game and do not disclose their action.

The distributions of timing that we identify (i.e., those in the set D) satisfy two

conditions. The first condition is what we call strong asynchronicity, which requires

that players’ moving times be asynchronous—allocating zero probability weight to

simultaneous moves—and rule out a strong type of correlation of moving times that

is akin to synchronicity. Second, players must have sufficient uncertainty about

their opponent’s moving time. To be precise, we require that a player cannot know

with certainty that they are the last player to move (potential leader property), or, if

a player does, she must assign positive probability to the event that the opponent

has thought he would be a second-mover with a very high probability (unlikely

leader condition). Intuitively, such conditions hold in settings in which time is

“fine” and there is any, however small, level of inherent uncertainty regarding

a player’s ability to act at a given time. For example, in real-world settings,

players are subject to uncertain response times, their attention is scarce, drawn

by multiple competing sources, or else they need an uncertain amount of time to
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process information that allows them to make a decision.2

The second set of results analyzes games in which players may choose their

moving times but, as before, their choice of action and timing is private unless it is

disclosed at a small cost. We define a concept of trembling hand perfect equilibrium

with uncertainty about timing (THPE) in which the players are relatively more

likely to err in their choice of moving time than they are in their action and

disclosure decisions. We show that the dynamic game with an endogenous timing

has a unique THPE if the players’ first possible moving times do not coincide and,

for each possible moving time of a player, the opponent has the option to choose

a later moving time. In the unique equilibrium, the players take their Pareto

dominant action and do not pay to disclose it. Our results in this section do

not require that the players be unable to move simultaneously as in the exogenous

move case. Under a strategy profile in which players move simultaneously and play

an inefficient action profile, players would choose to move asynchronously instead,

in order to coordinate on the efficient action profile.

To illustrate our model and results, consider the problem of two firms deciding

on a product’s concept and design. Each firm has its own strength, and hence

would like to target, through its design, one specific segment which differs from

the other firm’s preferred segment. If they target different segments, they can

avoid direct competition. The game between the two firms can be expressed as a

common-interest game in which the preferred equilibrium is that each firm targets

their preferred segment.

The firms face uncertainty about the time at which the opponent decides on its

product design. Such uncertainty may arise exogenously or endogenously. In some

situations, the opponent itself may be facing uncertainty about its own timing for

some exogenous reasons. For example, the time necessary to develop prototypes

may be stochastic, and delaying decisions may not be an option if the firm needs

to secure future funding or needs to have cash in hand. In other settings, however,

firms may have control over timing so uncertainty arises endogenously from a

2In our arguments, asynchronicity implies less strategic uncertainty about the opponent’s
choice than synchronicity when the players have the choice to disclose their actions. Uncertainty
about the timing distribution implies, in practice, less freedom on allowable beliefs at information
sets. More specifically, it rules out instances of equilibrium multiplicity produced by freedom on
the off-path beliefs.
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strategic reason. In either case, our result then predicts that if the firms can talk

to the opponent firm at a small cost,3 and as long as the timing and information

structure features the conditions as explained above, they will each target the

segment they prefer without resorting to communications.

The result sheds light on the implementation of antitrust law. Explicit collusive

agreements, such as price-fixing agreements, are illegal per se. In addition, in some

cases, informal practices that do not involve explicit communication about prices

or other decisions may be deemed illegal as well. Our result shows that the mere

existence of the possibility of communication, even if it is not used, can induce firms

to coordinate in a unique equilibrium, hence suggesting a limitation of sole reliance

on evidence of explicit collusion. Note that the uniqueness makes this claim strong,

compared to, say, an argument that relies on a repeated-games reasoning where

collusion is just one equilibrium out of many possibilities.

The present paper is part of the literature that tries to understand the re-

lationship between timing and economic behavior. As discussed, asynchronicity

and uncertainty are the keys to our results. The role of asynchronicity in equilib-

rium selection is present in the literature. Lagunoff and Matsui (1997) consider

asynchronous repeated games and show a uniqueness result for games in which all

players have the same payoff function.4Caruana and Einav (2008) consider a finite-

horizon model with switching costs and show that there is a unique equilibrium

under asynchronicity. Calcagno et al. (2014) show uniqueness of equilibrium in a

finite-horizon setting with asynchronicity and a stage game that is a (not necessar-

ily perfect) coordination game.5 Similar to our work, in these papers asynchronic-

ity is important for the selection of an equilibrium. However, their informational

setting differs from ours: while those papers assume perfect information, we as-

sume that players may not observe the actions taken by their opponent. In fact,

our result shows that if the component game is a common-interest game, under our

assumptions, players do not observe any action by the opponent on the equilibrium

path.

Our paper adds to the literature on uncertainty about timing. Kreps and

3This cost may arise from a small probability of detection by the anti-trust agency.
4See also Yoon (2001), Lagunoff and Matsui (2001), and Dutta (1995).
5Ishii and Kamada (2011) further examine the role of asynchronicity by considering a model

with a mix of asynchronous and synchronous moves.
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Ramey (1987) provide an example of an extensive-form game in which players

do not have a sense of calendar time and do not know which player moves first.

They argue that such situations may naturally arise in reality and show that they

may give rise to a new issue in specifying players’ beliefs at off-path information

sets. Matsui (1989) considers a situation involving private timing in a context

quite different from ours: He considers an espionage game in which, with a small

probability prior to the infinite repetition of the stage game, a player can observe

the opponent’s supergame strategy and revise her own supergame strategy in re-

sponse to it, but whether there has been such a revision opportunity is private

information. The equilibrium strategies in his model have a similar flavor to the

costly-disclosure option in our model, in that they use a supergame strategy in

which a player signals to the opponent that he has been able to observe the op-

ponent’s strategy, by taking an action that is costly in terms of instantaneous

payoffs. Our paper adds also to the more recent literature in which players have

uncertainty about the extensive form of a game. Nishihara (1997), Salcedo (2017),

and Doval and Ely (2020) find in their respective settings that allowing the timing

to be private may, together with a cleverly-crafted information structure, expand

the set of equilibria. In contrast, we prove uniqueness under private timing.

Our model studies how timing affects behavior, but some papers have analyzed

how behavior affects timing. Ostrovsky and Schwarz (2005, 2006) consider models

in which players can target their activity times but their choices are subject to

exogenous noise, which results in uncertainty. Park and Smith (2008) consider

a timing game in which players choose their timing to be on the right “rank”

in terms of moving times, and the equilibrium strategies entail mixing. Thus

uncertainty about timing endogenously arises as a result of mixing by the players.

Our paper differs in that players can change their actions depending on their

exogenously given moving time and observation at that point. Such conditioning,

which seems to fit to the real-life examples that we mentioned, is not present in

the aforementioned papers. We note that we also consider the case of endogenous

moving times in Section 4. In particular, our results imply that in a game in which

players choose their moving times, every trembling hand perfect equilibrium with

uncertainty about timing features coordination on the best Nash equilibrium of

the component game without action disclosure.
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The organization of the paper is as follows. Section 2 provides the model.

Section 3 presents our main results. In Section 4, we consider the case where

players have a choice of moving time. Section 5 provides discussions to deepen

the understanding of our results. Section 6 concludes. The Appendix contains

proofs that are not provided in the main text and the Online Appendix provides

additional discussions.

2 Model

Component Game The component game is a strategic-form game S =

(N, (Ai)i∈N , (gi)i∈N), where N = {1, 2} is the set of players, Ai is player i’s finite

action space, and gi : A → R is player i’s payoff function, where A := A1 × A2.6

In the bulk of the paper, we focus on component games that are common-interest

games. These are normal-form games in which there is a Nash equilibrium a∗ such

that gi(a
∗) > gi(a) for all a 6= a∗. The action profile a∗ in this case is called best

action profile.

Dynamic Game In the dynamic game, time progresses in an ascending manner.

There is a countable set of times T ⊂ R, and each player moves once at a stochastic

time Ti ∈ T which is drawn by Nature according to a commonly-known probability

mass function p(T1, T2). A countable T can accommodate settings in which time

is fine, if for example T = Q, or discrete, if for example T = Z.7 For any pair

of events E and F such that F has positive probability, let Probp(E|F ) be the

conditional probability of E given F induced by p. Let Ti = supp(Ti). Given a

realization of times (t1, t2), player i chooses an element from Ai×{pay, not} at time

ti, after observing her own ti, and additionally (aj, tj) if tj < ti and the opponent

6In most of the paper, we focus on the two-player case except in some of the analysis, such as
the existence result (Proposition 5), where we consider n players. See footnote 12 for a further
discussion on the case of n players.

7 We chose this countable-time setting instead of one with continuous time in order to avoid
non-essential technical burdens associated with measure theoretic issues. We note that we do
not restrict T to be of the form T = {tk}k∈N with tk1 < tk2 if k1 < k2. For example, T may
be dense in R like the rational numbers. A further discussion on this can be found in Section
5.5. Also, our analysis is independent of how T is “embedded” into R. However, viewing T as a
subset of R helps us understand and interpret our conditions and results, so we let T ⊂ R.
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j chose (aj, pay) at tj.
8 If player i chooses (ai, pay) for some ai ∈ Ai, then she

pays the cost c > 0. We denote by Γ = (S, T , p, c) the complete specification of

the dynamic game. We will omit the reference to Γ whenever there is no room for

ambiguity.

Strategies A history h is composed of a sequence of times and action choices

by all players:

h = (ti, ai, di)i∈N ∈ ×i∈N [Ti × Ai × {pay, not}]

where ti is the moving time of player i and (ai, di) ∈ (Ai×{pay, not}) is the profile

of the action and disclosure decision of player i at that time. If h = (ti, ai, di)i∈N

is such that p(t1, t2) > 0, we say that h is feasible. Let H be the set of feasible

histories.

Player i’s private history at her moving time, hi, is defined as an element in

[(T−i × A−i) ∪ {∅}]× Ti.

The interpretation is that a history takes the form of ((t−i, a−i), t) when i moves

at time t and observes −i’s disclosure of his action a−i at time t−i, while if it takes

the form of (∅, t), then i moves at time t and observes no disclosure.

We say that a history h̃ = (t̃j, ãj, d̃j)j∈N is compatible with a private history

ĥi if (i) ĥi = (∅, t̃i) and either t̃i ≤ t̃−i or d̃−i = not, or (ii) ĥi = ((t̃−i, ã−i), t̃i),

t̃−i < t̃i and d̃−i = pay. That is, a history is compatible with a player’s private

history if it is not ruled out by the player’s own observation, contained in her

private history.

The set of all possible private histories that have some feasible history compat-

ible with them is denoted Hi := {hi|∃h ∈ H s.t. h is compatible with hi.}.
Player i’s strategy, σi : Hi → ∆(Ai×{pay, not}), is a map from private histories

to probability distributions over Ai and disclosure decisions. Let Σi be the set of

all strategies for player i. Define Σ = ×i∈NΣi.

8We assume that disclosures succeed with probability 1. Online Appendix B.1 discusses the
case in which disclosures fail with positive probability.
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Payoffs To summarize the specifications of payoffs described so far, if the chosen

action profile is a and i chooses di ∈ {pay, not}, then her overall payoff is

gi(a)− c× Idi=pay

with c > 0 which we assume to be common across players.9 The expected payoff

for player i from strategy profile σ is denoted by ui(σ).10 A belief µ ∈ ∆(H) is a

probability measure over histories. A continuation payoff ui(σ|µ, t) is well defined

given that (i) the distribution of the past play at times strictly before t is given

by the belief µ, (ii) the distribution of moving times at and after time t is given

by µ, and (iii) the play at and after time t is given by σ.11

Equilibrium Notion A strategy profile σ induces a probability distribution

over the set of histories H. Let H(σ) be the set of histories that have positive

probability given σ. The strategy profile σ is a weak perfect Bayesian equilibrium

(henceforth we simply call this a “PBE”) if, for each player i, the following two

conditions hold:

1. (On-path best response) ui(σ) ≥ ui(σ
′
i, σ−i) for all σ′i ∈ Σi.

2. (Off-path best response) For each hi ∈ Hi such that i moves at t, there exists

9As will become clear, the assumption that the disclosure cost c does not vary across players
is imposed only for notational simplicity and is not crucial for any of our results, which pertain to
small costs. Also, if c = 0, then we would obtain multiple equilibria because, when the opponent
is playing a∗−i, (a∗i ,pay) would now yield the same payoff as (a∗i ,not). To make our exposition
succinct, we assume c > 0 throughout the paper.

10Player i’s expected payoff given strategy σ is given by

ui(σ) =
∑

(t,t′)∈T 2

p(t, t′)Eσ
[
gi(a

(t,t′))− c× I
d
(t,t′)
i =pay

∣∣∣∣T1 = t, T2 = t′
]
,

where (a(t,t
′), (d

(t,t′)
1 , d

(t,t′)
2 )) ∈ A × {pay,not}2 denotes a choice in the support of σ at moving

times (t, t′). The expectation is taken over probabilities over actions and disclosure choices
induced by σ at (t, t′).

11Note that, absent a belief, a pair of a strategy profile and a private history (together with
Bayes rule) does not necessarily determine the continuation payoff. For example, it may be that
a given strategy profile assigns probability one to the event that j discloses before time t and
the given private history of i at time t does not include a disclosure by j.
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µ ∈ ∆(H) such that every h ∈ supp(µ) is feasible and compatible with hi,

and ui(σ|µ, t) ≥ ui(σ
′
i, σ−i|µ, t) for all σ′i ∈ Σi.

That is, we require optimality on the equilibrium path of play, while off the path

we only require optimality against some (possibly correlated) distribution over

the strategy profile of the opponents and Nature’s moves that is compatible with

the observation.12 Note that condition 1 implies that players best-respond to the

beliefs computed by Bayes rule on the equilibrium path. In Section 5.4, we discuss

what would happen if we did not impose condition 2. Existence of a PBE is not

trivial because the support of the times of play, T , may not be finite. We show

existence in Section 5.1.

3 Unique Equilibrium in Common-Interest

Games

3.1 An Example

Here we consider a simple example that provides part of the intuition for our

uniqueness result. For each ε > 0, consider a timing distribution pε such that

there exists a probability mass function f ε over the possible moving times T = Z
with an associated cumulative distribution function F ε, satisfying13 (i) pε(t1, t2) =

f ε(t1) · f ε(t2) for all t1, t2 ∈ T and (ii) 0 < fε(t)
1−F ε(t−1)

≤ ε for every t ∈ T . That is,

the moving times are independently and identically distributed across players, and

each player’s distribution of moving times has full support and a hazard rate that

is bounded from above by ε. For example, f ε could be a geometric distribution on

12This allows for correlated beliefs over Nature’s moves and the opponent’s deviations. This
weak notion is enough to establish uniqueness in the two-player games that we consider in our
main analysis.

13One may wonder if it is plausible to have a support that is unbounded on the left, which
may suggest there is no “beginning” of the dynamic game. However, it is for simplicity that
we define the support to be Z. In fact, the support of the timing distribution does not have
to be unbounded on the left or the right for the argument to go through. This is because we
can equivalently define a dynamic game in which there are countably many moving times in a
bounded interval. For instance, the example works with a support of moving times {`(x)|x ∈ Z}
defined by a mapping ` : Z→ (−1, 1) with `(x) = 1− e−x for x ≥ 0 and `(x) = ex − 1 for x < 0.
See footnote 7 as well.
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A B
A 2, 2 0, 0
B 0, 0 1, 1

Figure 1: A coordination game Ŝ

both the positive and negative integers, with hazard rate ε.

Consider the payoff matrix in Figure 1 and let Ŝ denote this coordination game.

We can show the following:

Proposition 1. There exist ε̄ > 0 and c̄ > 0 such that for all ε ∈ (0, ε̄) and

c ∈ (0, c̄), there is a unique PBE in the game (Ŝ,Z, pε, c). On the path of the

unique PBE, each player i takes (A, not) for any realization of Ti.

Proposition 1 implies that by having the option to disclose their actions, players

are able to coordinate on the best action profile (A,A) without exercising the

option to disclose.

The result requires that the disclosure cost c > 0 be sufficiently small. In fact,

the proof we will present goes through as long as 0 < c < gi(A,A)− gi(B,B) = 1.

Remark 4 discusses the case of large disclosure cost.

To illustrate the subtleties of the result in Proposition 1, let us provide three

examples of alternative timing distributions that yield multiple equilibria.14

Example 1. [Simultaneous-Move Game]

Suppose that T = {1} and p(1, 1) = 1. That is, it is common knowledge that,

at time 1, both players take actions with probability one. The component game is

as in Figure 1 and c is any strictly positive real number. First, no player pays the

disclosure cost in any PBE because even if i pays, −i does not have a chance to

move after observing it. Hence, the game is strategically equivalent to the static

simultaneous-move game. There are three Nash equilibria in such a game, namely

(A,A), (B,B) and a mixed equilibrium, and each of them corresponds to a PBE

of the dynamic game.

14We note that the constructions of multiple equilibria do not rely on the wide freedom in
belief choice allowed by condition 2 of the definition of PBE. Indeed, the PBE we construct are
sequential equilibria as well.

11



Player 1

(
1− c
1

)(
2− c
2

)

(
1
1

)(
0
0

)(
0
0

)(
2
2

)

Player 2

(B, pay)(A,pay)(B, not)(A,not)

(B, not)(A,not)(B, not)(A,not)

Figure 2: A forward-induction argument

Example 2. [Deterministic Sequential-Move Game (and Forward Induction)]

Suppose T = {1, 2}, c < 1, and p(1, 2) = 1. That is, it is common knowledge

that player 1 moves at time 1 and player 2 moves at time 2 with probability one.

The component game is as in Figure 1. There are at least two PBE in this game.

In the first PBE, each player plays (A, not) on the path of play. In the event that 2

observes 1’s action, 2 takes a static best response. The second PBE is what we call

the pessimist equilibrium. In this equilibrium, player 1 plays (A, pay), and player

2 plays a static best response if 1 discloses her action, while he plays (B, not) if 1

does not.

Let us check that this second strategy profile constitutes a PBE. First, player

1 takes a best response given 2’s strategy. Also, 2’s strategy obviously specifies a

best response after 1’s disclosure. After no disclosure, (B, not) is a best response

under the belief that 1 has played (B, not).

Let us note that this pessimist equilibrium would be ruled out by a so-called

“forward induction” argument. To see this point, consider the extensive-form

representation in Figure 2 of the game in consideration. Note that we omitted

actions corresponding to player 2’s “pay,” as they are obviously suboptimal. We

also omitted 2’s actions following 1’s payment, as it is a unique best response to
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A B
A 3, 3 −3, 0
B 0,−3 1, 1

Figure 3: A risky common-interest game

play (A, not) after (A, pay) and to play (B, not) after (B, pay). The payoffs after

1’s payment are written assuming 2’s best response. In this game, for player 1,

(B, not) yields a payoff of at most 1 and thus is dominated by (A, pay) when c > 0

is small, as the latter gives 2 − c. On the other hand, (A, not) is not dominated.

A forward induction argument would then dictate that at player 2’s information

set, his belief must assign probability 0 to the right node. Given this belief, player

2’s unique best response at the information set is to play (A, not). Hence, 1 can

obtain the best feasible payoff in the game by playing (A, not), and thus it must

be the unique action that can be played by player 1.

Our private-timing game rules out such an outcome without resorting to a

“forward induction” argument. Still, we will see that the proof relies on a similar

idea.15

Example 3. [Correlated-Move Game]

Suppose that T = Z. For all t1 ∈ Z, p satisfies
∑

t2∈Z p(t1, t2) = 1
2

1−r
r
r
|t1|+1

2

with r ∈ (0, 1) for odd t1, and
∑

t2∈Z p(t1, t2) = 0 for even t1. We also assume

that Probp(T2 = t1 − 1|T1 = t1) = Probp(T2 = t1 + 1|T1 = t1) = 1
2
. That is, T1 is

positive with probability 1
2
, negative with probability 1

2
, and follows a geometric

distribution with rate r over the odd integers on each side of zero. Player 2’s moving

time is either right before or right after player 1’s, with equal probability. These

conditions imply that Probp(T1 = t− 1|T2 = t) : Probp(T1 = t + 1|T2 = t) = 1 : r

for all even t ≥ 2 and an analogous condition holds for all even t ≤ −2 (the ratio

is 1 : 1 if t = 0). The component game is given in Figure 3.

There are at least two PBE in this game when r < 1 is sufficiently close to 1.

In the first PBE, each player plays (A, not) on the path of play. In the event that

player i observes the opponent j’s action, i takes the static best response. The

second PBE is one in which each player plays (B, not) on the path of play. In the

event that i observes j’s action, i takes the static best response.

15See Remark 2 for discussion on this similarity.
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The second strategy profile is a PBE because a deviation by player 1 to A

can only be profitable if it involves disclosure, in which case she would succeed in

coordination with probability 1/2 and miscoordinate with player 2 with probability

1/2. Hence, the expected payoff from the deviation is 1
2
·3+ 1

2
·(−3)−c = −c, which

is less than the payoff of 1, obtained under no deviation. A similar reasoning applies

to player 2’s incentive when r < 1 is sufficiently close to 1 that the probability

that 1 moves before or after 2 is close to 1
2

at every possible moving time of hers.

The key difference relative to the game in Proposition 1 is that, at any real-

ization of a player’s moving time, the probability that the player assigns to being

the first mover is only (close to) 1/2 . In the game in Proposition 1, however, this

probability becomes arbitrarily close to 1 as t→ −∞, due to the independence of

the players’ moving times.16

Proof Sketch of Proposition 1

Here we provide a rough sketch of the proof of Proposition 1. For a formal proof

we refer to that of Theorem 3, as Proposition 1 is a corollary of that theorem.17

The proof consists of two steps. In the first step, we prove that players must play

A on the path of play of every PBE. The second step shows that no player pays

the disclosure cost.

• First Step: A is chosen at every moving time. Suppose that player i gets her

move at time t and she has observed no action disclosed. The assumption

that the timing distribution is independent across players and the probability

of simultaneous moves is small implies that, if t is early enough, the prob-

ability that she assigns to the event that the opponent moves later is close

to 1. At such t, the expected payoff from playing (A, pay) is close to 2 − c,
while that from playing (B, pay) or (B, not) is at most 1. Hence, at t, player

i does not play B upon no observation in any PBE as long as c < 1. By the

16In this example, any private information about a player’s own moving time does not reveal
sufficiently precise information about the order of moves. Online Appendix B.2 makes this point
even clearer by considering an extreme case in which players do not have a sense of calendar
time.

17In the language in Theorem 3, S is 1
2 -common for each player and is q-dispersed for any

q ≤ 1 − ε, where ε is the upper bound of the hazard rate at a moving time, as defined in this
section.

14



independence of the timing distribution, this is true for all times before t as

well.

Now, consider the incentives of player −i at time t + 1 when he does not

observe any disclosure. Player −i is on the path of play because i moves

after t with positive probability, and hence he uses Bayes rule to conclude

that i must have chosen A at times before t+1 and calculate the probability

of i moving at t+ 1. Specifically, this latter probability is at most f(t+1)
1−F (t)

≤ ε

for any strategy profile that the players may follow.18 Note that, since

– we have already concluded that i plays A at a moving times before t+1

and

– playing (A, pay) at t + 1 guarantees that i will play A at times after

t+ 1,

player −i’s payoff from choosing (A, pay) at t+ 1, upon observing no disclo-

sure, is no less than 2(1− ε)− c against any equilibrium strategy of i. Since

ε and c are small, this payoff is greater than 1. Since the payoff from playing

(B, pay) or (B, not) is at most 1, at t+1, player −i does not play B upon no

observation in any PBE as long as ε and c are small enough. Applying this

argument iteratively shows that, for any time, the moving player chooses A.

• Second Step: players do not disclose their action. Suppose that player i

moves at time t, and has not observed any disclosed action. From the first

step we know that i plays A at time t. If she plays (A, pay), her expected

payoff is at most 2 − c. However, by the first step, regardless of i’s belief

about −i’s moving time, i knows that if she does not pay, −i’s action is A

with probability 1.19 Thus, the expected payoff from i’s playing (A, not) is

18This probability is highest, and equal to f(t+1)
1−F (t) , if the opponent pays at every opportunity

before t+ 1, in which case −i is certain, in equilibrium, that i has not moved yet. We note that

the fact that the probability is at most f(t+1)
1−F (t) does not depend on −i being on the path of play.

This is because, if he were off the path of play, the conditional probability would be 0 as the only
way for −i to be off-path is that i deviated before time t+ 1. In such an event, the conditional
probability of i moving again at t+ 1 must be 0.

19Note that it is important that there is common knowledge about which action is the “good”
action. If there is incomplete information about which action profile brings about a larger payoff,
then players might pay the cost to disclose when the disclosure cost is small. We analyze one
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2. Hence, it is a unique best response to play (A, not). Since the choice of

t was arbitrary, this shows that on the path of any PBE, at any t, player i

does not pay the disclosure cost.

Remark 1. [Relation to Examples]

How does this proof relate to the three examples that we examined? In Example

1, we demonstrated that simultaneity may prevent uniqueness. In the first step of

the Proof Sketch, we used the fact that the probability of simultaneous moves is

small to conclude that −i never plays B at time t+1. To obtain this conclusion, we

could effectively ignore the possibility that i moves at t+1 because the conditional

probability of such an event is small.

Example 2 illustrated the effect of a deterministic order of moves on multiplic-

ity. In the first step of the Proof Sketch, we used the fact that the players are

unsure about the opponent’s moving time, to conclude that −i plays A at each

moving time as he knows he is on the equilibrium path. Such a conclusion cannot

be obtained in Example 2: If player 2 has not had any observation, he is off the

equilibrium path under the pessimist equilibrium.

Example 3 showed that multiplicity is possible under a highly correlated timing

distribution. In particular, in the second PBE in Example 3, for any realized

moving time, the moving player assigns a nontrivial probability to the event that

the other player has already moved. We used the fact that the timing distribution

is independent in the first step of the Proof Sketch, where we argued that, at early

enough times when i has not observed the opponent’s disclosure, she assigns only

a small probability to the event that the opponent has already moved.

Remark 2. [Similarity to the Forward Induction Argument]

Step 1 resembles the logic of forward induction, described in Example 2, in that

action (A, pay) is used to eliminate B. However, in forward induction, the fact that

2’s information set after no disclosure is reached is interpreted as containing sure

information regarding 1’s choice. In our model, on the other hand, the reasoning

relies on uncertainty about the timing of moves. Due to the recursive argument in

such model in Online Appendix. B.3.
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Step 1, player 1 chooses A on the path of play, and thus, when player 2 receives

a move in the absence of a disclosure, he still entertains the possibility that 1 has

not moved yet and is, therefore, on the path of play.

Remark 3. [Lack of Lower Hemicontinuity]

Suppose T = Z. Recall the definition of f ε and consider a distribution param-

eterized by ξ ∈ (0, 1), p(ξ), such that

p(ξ)(t1, t2) := [((1− ξ) · I{t1=1} + ξf ε(t1)] · [((1− ξ) · I{t2=2} + ξf ε(t2)].

That is, under p(ξ), the players’ moving times are independently distributed, and

with probability (1− ξ)2 the order of moves is as in the deterministic-move game

in Example 2. When the disclosure cost c > 0 and hazard rate ε are small enough,

for any ξ ∈ (0, 1), the same logic as in the above Proof Sketch applies to show that

there is a unique PBE, and in that unique PBE each player plays (A, not).20

These timing distributions converge pointwise to the distribution with p(1, 2) =

1 as ξ → 0. However, as Example 2 shows, there are multiple equilibria under this

limit distribution. Thus, there is a lack of lower hemicontinuity with respect to

the timing distribution.21 One additional PBE that obtains in the limit is the

pessimist equilibrium. The reason for the lack of lower hemicontinuity is that

in the approximating timing distributions, at each of her moving times, player

i attaches positive probability to −i moving after her. This condition will be

formalized as the “potential leader condition” in Definition 3 in Section 3.2.

Remark 4. [Large Disclosure Cost]

What happens if the disclosure cost is large? In that case, there exists a PBE

in which each player plays (B, not) upon no observation. The Proof Sketch of

20To be precise, the proof does not go through as is because player 2 expects a large conditional
probability of simultaneous moves if he is called upon to move at time 1. However, we can show
that player 1 chooses A at time 1 just as in step 1 of the Proof Sketch, and therefore, so does
player 2. Analogously, although player 1 expects a large conditional probability of simultaneous
moves at time 2, she still continues to plays A at that time.

21Consider, for example, the sup norm: For two timing distributions p and p′, the distance
between them is d(p, p′) = supt,t′∈R |p(t, t′)− p′(t, t′)|. The equilibrium correspondence is lower
hemicontinuous if for every equilibrium σ under p and every ε > 0 if d(p, p′) is sufficiently small,
then there is an equilibrium σ′ under p′ such that |σ − σ′| < ε, where |σ − σ′| is also defined as
a sup norm over private histories defined both under p and p′.
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Proposition 1 uses the assumption that c is small. It says that if the time is early

enough, the payoff from playing (A, pay) is close to 2− c and that is greater than

the payoff from playing (B, ·). But this conclusion fails if c is large. That is, for

the non-communication coordination to be the unique outcome of the game, it is

important that communication not be prohibitively expensive.

3.2 General Common-Interest Games

Examples 1, 2 and 3 illustrate how simultaneous moves, the lack of uncertainty

about timing, and a high correlation between the timing of moves lead to multiplic-

ity of equilibria. In this section, we ask what are exactly the timing distributions

that guarantee that, in equilibrium, players uniquely coordinate in the Pareto

dominant outcome. That is to say, we characterize the set of timing distributions

such that the best action profile with no disclosure is the unique PBE outcome

when the component game is a common-interest game.

The set is characterized by three conditions that we call the strong asynchronic-

ity property, potential leader property and unlikely leader property. Let us define

these properties before stating our main theorem.

Given a time t′′ ∈ {−∞} ∪ R, a set Bj ⊆ Tj and qi > 0, let22

Ti(Bj, t
′′, qi) := {t ∈ Ti|Probp(Tj ∈ [t′′, t] ∩Bj|Ti = t, Tj ≥ t′′) ≥ qi}

That is, Ti(Bj, t
′′, qi) is the set of i’s moving times t such that, conditional on i

moving at time t and j moving no earlier than t′′, the probability that j has moved

in Bj and in between t′′ and t is no less than qi. Thus, supposing that j does not

disclose her actions when she moves in [t′′,∞)∩Bj, at each time t ∈ Ti(Bj, t
′′, qi),

player i believes, conditional on knowing that j moved no earlier than t′′, that j

moved in Bj ∩ [t′′, t] with probability at least qi.

To illustrate, suppose Bj = Tj, and T1 and T2 are independently distributed.

Then, Ti(Bj, t
′′, qi) is the set of times at which, conditional on player j moving no

earlier than t′′, j moves between t′′ and t with a probability of at least qi. If T1

and T2 are not independent, the latter probability conditions also on Ti = t. If

22We use the convention that for any two events A and E, Probp(A|E) = 0 if p(E) = 0, and
for a, b ∈ R, [a, b] = ∅ if a > b. .
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Bj = {t̂} for some t̂ ∈ Tj, then Ti(Bj, t
′′, qi) is the set of times t ≥ t̂ at which the

probability that j moves at time t̂, conditional on i moving at time t and j moving

no earlier than t′′, is at least qi.

Definition 1. The distribution of the timing of moves, p, satisfies the strong

asynchronicity property (SAP) if for all t′′ ∈ R ∪ {−∞}, q1, q2 > 0 and

B1 ⊆ T1, B2 ⊆ T2,

∅ 6= Bi ⊆ Ti(B−i, t
′′, qi) =⇒ B−i 6⊆ T−i(Bi, t

′′, q−i),

for each i ∈ {1, 2}.

In words, assuming players do not disclose their actions, there cannot be two

sets of players’ moving times B1, B2, a time t′′ and fixed probabilities q1, q2 > 0

satisfying the following property: Conditional on i moving at any time t ∈ Bi and

−i moving weakly after t′′, the probability that −i moves at a time in B−i ∩ [t′′, t]

is bounded below by qi.

Thus, two players, i and j, cannot simultaneously think that, at times in any

pair of sets Bi and Bj, the opponent moved “before” (or at the same time as)

them with a probability that is bounded away from zero. Moreover, by setting

Bi = Bj = {t′′}, one can see that SAP implies that players move asynchronously,

i.e. p(t′′, t′′) = 0 for every t′′ ∈ T .

The SAP further excludes some situations in which two players move simulta-

neously in a certain approximate sense. To see this, first recall Example 3. The

SAP fails in this example as both players think it likely that the opponent has just

moved at each moving time. Formally, it fails by taking t′′ = −∞, Bi = Ti, and

qi = r
1+r

for each i. Now, consider mapping this example with T = Z to a model

with T ⊂ [−1, 1] by, for instance, associating each t in the former model with time

1 − e−t if t ≥ 0 and with time et − 1 if t < 0.23 Then, players’ moving times are

correlated in a way that is as if the two players move “close to simultaneously at

time −1” with positive probability. The reason is that with a probability that is

bounded away from zero, conditional on a player moving at time t in the trans-

formed model, the moving time of the opponent must become closer and closer to

23This is a transformation that we discussed in footnote 13.
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−1 as t approaches −1.

In our arguments we show that if sets Bi and Bj that make SAP fail existed,

then there would be a common-interest component game in which a Pareto domi-

nated equilibrium is played with positive probability because players believe with

enough probability that the opponent already moved and played the dominated ac-

tion, and therefore, coordination on the dominated equilibrium cannot be excluded

from the set of PBE outcomes.

As hinted by the previous discussion, if an opponent is unlikely to move just

before a player, SAP is satisfied. More formally, the following easier-to-interpret

condition, which we view to be a mild and natural assumption in settings with

asynchronous moving times, implies SAP. This point is shown in Proposition 2

below.

Definition 2. The timing distribution p has the dispersed potential moves

property if for each t′′ ≥ inf(T ), there is a player i ∈ {1, 2} such that

lim
t→t′′

Probp(T−i ∈ [t′′, t]|Ti = t, T−i ≥ t′′) = 0.

That is, the dispersed potential moves property requires that at every time t′′,

there is a player i and a small enough interval [t′′, t′), such that for every t ∈ [t′′, t′),

i attaches a small probability to the event that the other player moves within [t′′, t],

conditional on i moving at time t. Thus, at least one player must find it unlikely

that the opponent moved in a short time interval just before their moving time.

The dispersed potential moves property also requires that there is at least one

player who assigns a small probability to the event that she is the second mover

if she moves early enough (note that this property corresponds to the dispersed

potential moves property when t′′ is equal to inf T ). That is, when it is early

in the game, at least one player believes it is unlikely that the other player has

already moved. We refer to this property as the “knowing that it’s early when it’s

early.”24 This property is not satisfied in the timing distribution of Example 3. The

“knowing that it’s early when it’s early” condition is satisfied if the distributions

of moving times are independent across players and asynchronous.

24More formally, the distribution p satisfies “knowing that it’s early when it’s early” if the
dispersed potential moves property holds for t′′ = inf T .
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Under asynchronous moves, the dispersed potential moves property holds true

for t′′ > −∞ when we impose T ⊆ Z (or whenever T is comprised of isolated

points). Thus, if T ⊆ Z, the dispersed potential moves property is equivalent to

requiring, in addition to asynchronous moves, that one player satisfies “knowing

that it’s early when it’s early.” SAP, dispersed potential moves and asynchronous

moves are all equivalent to each other if T ⊆ N.

An important setting where the dispersed potential moves property holds is

one in which moving times are asynchronous and independently distributed. The

intuition is that what makes SAP fail is i’s inference from her moving time that j

moved right before her with sufficiently high probability (as in Example 3). When

moving times are independently distributed, however, a player’s moving time does

not contain information about the opponent’s moving time.

The following proposition formalizes the relationship between SAP and the

dispersed potential moves property.

Proposition 2. 1. If p has the dispersed potential moves property, then it sat-

isfies SAP.

2. There are distributions that satisfy SAP that do not satisfy dispersed potential

moves.

Part 2 of this proposition is shown by Example 5 that we provide in Appendix

A.2.

The discussion so far is summarized in Figure 4.

Define T<i = {t ∈ Ti|Probp(T−i ≥ t|Ti = t) = 0}. That is, T<i is the set of

times at which i is sure she moves after the opponent.

Definition 3. Player i is a potential leader under p if T<i = ∅.
Player −i is an unlikely leader under p if T<i is non-empty and for every

non-empty E ⊆ T<i ,25

inf{r > 0| r = Probp(Ti ∈ E|T−i = t̃) for t̃ ∈ T−i} = 0.

25Note that, by the definition of T<i , for any non-empty E ⊆ T<i , there exists t̃ ∈ T−i such
that Probp(Ti ∈ E|T−i = t̃) > 0.
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Asynchronous moves

SAP

Dispersed potential moves property

Independence T ⊆ Z

Ex. 3Ex. 2

Ex. 1

Ex. 4

Ex. 5

Figure 4: Comparison of timing distributions. The distributions in the examples
in the paper are represented by dots.

The potential leader property is satisfied when, without any observation, no

player can ever be sure that she is the follower (the second mover). This condition

is not satisfied in the timing distribution of Example 2, as in the example, player

2 assigns probability 0 to being the first mover (he is not a “potential leader”).

The unlikely leader condition holds if for any event in which player i is certain

that she is the follower, there is a moving time of −i in which −i thinks it possible

but very unlikely that such an event will happen, i.e., it is unlikely that −i is the

leader (the first mover) of such i. Note that if there is i who is an unlikely leader

under p, then there must be infinitely many points in T before the time inf T<i .26

Define the set D ⊆ ∆(T 2) as follows. The distribution p is an element of D if

and only if each of the following two conditions hold:

1. p satisfies SAP.

2. For each i, either one of the following two conditions holds.

(a) i is a potential leader under p.

26This claim holds because, in the definition of unlikely leader, we must be able to take a
sequence of t̃ such that Probp(Ti ∈ T<i |T−i = t̃) is strictly positive and converges to 0.
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(b) −i is an unlikely leader under p.

Theorem 1. Fix T . The timing distribution p is in the set D if and only if, for

any common-interest game S, there exists c̄ > 0 such that for all c ∈ (0, c̄), there

is a unique PBE outcome in the game (S, T , p, c).27 In the unique PBE outcome,

each player i plays (a∗i , not) at any realization of Ti.

Let us give an intuition for the necessity and sufficiency of SAP. For a given

time t′′, suppose the sets Bi ⊆ Ti ∩ [t′′,∞) and Bj ⊆ Tj ∩ [t′′,∞) represent the set

of times at which actions other than a∗i and a∗j are taken with positive probability

(upon no disclosure) by players i and j, respectively, starting at some t′′ ∈ R∪{∞}.
In order for players to choose those actions, they must deem it sufficiently likely

that the opponent will choose one of those actions. Under SAP, the latter can

never be true. To see this, suppose that for each k ∈ {1, 2}, k must choose an

action other than a∗k with probability at least qk for an action other than a∗−k to be

a static best response. Then, Ti(Bj, t
′′, qi) is the set of i’s moving times at which

she deems it at least likely with probability qi that j moved in Bj between t′′ and

the present time t. Therefore, we must have Bi ⊆ Ti(Bj, t
′′, qi). The SAP requires

that Bj 6⊆ Tj(Bi, t
′′, qj). That is to say, it requires that there is at least one time

t̃ in Bj at which player j believes that i had moved in Bi between t′′ and t̃ with

probability strictly less than qj—implying that j would not be willing to choose

aj 6= a∗j at time t̃. This is true for every qi and qj. Thus, every pair of sets, Bi

and Bj, is an inadequate candidate to be the sets of times in which players should

play an action other than a∗i and a∗j .

Conversely, if SAP does not hold, one can construct a game in which players

choose an action other than a∗i or a∗j at the corresponding sets Bi and Bj. The idea

is to construct a game in which miscoordination is sufficiently costly that there

is a PBE in the dynamic game in which each player i plays ai 6= a∗i at times in

Bi because she deems it sufficiently likely that her opponent chose aj 6= a∗j right

before (or at the exact same time) at a time in Bj. The construction covers the

case in which Bi = Bj = {t′′}, i.e., when the players move simultaneously with

positive probability.

27Although the outcome is unique, there may exist multiple PBE. The reason is that at off-
path information sets in which the first mover chooses an action ai 6= a∗i and discloses it, the
opponent −i may have multiple best responses against ai.
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The purpose of condition 2 is to rule out beliefs after off-path play that can force

a player i to choose (a∗i , pay) as in Example 2. To understand why these conditions

rule out those “undesirable” beliefs, notice that failure to observe disclosure can be

off-path only at times in which player i knows for sure that −i has already moved

(i.e., times in T<i ). In such cases it is possible, as in Example 2, that upon no

disclosure i chooses an action other than a∗i in equilibrium. Condition 2a requires

that the set T<i be empty. Condition 2b, in contrast, guarantees that in the event

that player i moves at a time in T<i , “no disclosure” is on the equilibrium path

in every PBE: it requires that there be times in which −i thought it so unlikely

that i would move in any subset of T<i that the cost of disclosure was not justified.

Example 4 below illustrates the role of condition 2b.

The discussions so far imply that, if T ⊆ N, SAP is equivalent to asynchronicity,

and no −i can be an unlikely leader. Thus, Theorem 1 reduces to the following:

Corollary 3. Fix T ⊆ N. The timing distribution p satisfies asynchronicity and

each i is a potential leader if and only if, for any common-interest game S, there

exists c̄ > 0 such that for all c ∈ (0, c̄), there is a unique PBE outcome in the

game (S, T , p, c). In the unique PBE outcome, each player i plays (a∗i , not) at any

realization of Ti.

Remark 5. Let us make some remarks regarding Theorem 1.

1. The argument in the proof for sufficiency of the two conditions in this corol-

lary (asynchronicity and potential leader) has some analogies with those in

the starting example in Section 3.1. In the example, however, we were only

concerned with sufficiency. The asynchronicity condition was not satisfied in

the example but the result held because the timing distribution was “close to”

the one satisfying the asynchronicity condition for a fixed component game.

Section 5.2 explores the connection between the degree of commonality of the

players’ interest in the component game and the level of “dispersion” of the

two players’ moving times, where the degree of commonality is measured by

the difference between each player’s best payoff and her second-best payoff.

2. The proof for necessity is by construction. That is, for each timing distribu-

tion violating any of the conditions characterizing the set D, we construct an
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example of a component game such that the corresponding dynamic game

has multiple PBE. For example, for a distribution that puts positive proba-

bility on synchronous moves at some time t, we construct a component game

and a strategy profile for the corresponding dynamic game such that an ac-

tion other than a∗i may be a best response for each player i at time t. The

existence of such a strategy profile, i.e., the one featuring ai 6= a∗i at time

t and specifying a fully contingent plan at other times, is established using

an argument that is analogous to the one for the general existence result in

Section 5.1.

3. Notice that condition 2a requires that t < supt′∈T t
′ hold for every t ∈ T ,

while condition 2b requires that there be infinitely many times before t if

t = supt′∈T t
′. At least one of these conditions is necessary to guarantee

uniqueness. In particular, if T is finite, then the uniqueness result does not

hold. We make this point clear in Section 5.3.

4. A possible setting in which the theorem can be applied is one in which the

analyst only knows that the players face a common-interest game, that the

disclosure costs are small, and that the structure of the game is common

knowledge among the players, but she does not know the exact cardinal

utility of the players. The theorem identifies the conditions under which the

analyst can be certain that the Pareto efficient outcome (i.e., a∗ is played

and no payment for disclosure takes place) is obtained. It is possible that

the analyst’s interest is only in the actions in the component game and not

in the disclosure behavior. In the proof of Theorem 1, it is shown that SAP

is a necessary and sufficient condition on the timing distribution p for a∗ to

be played with probability one in all PBE.

Example 4. [Second-Mover Game]

Suppose that the component game S is as in Figure 1. The timing distribution

p over T = Z is given by the following rule: With probability 1
2
, T1 follows a

geometric distribution over positive integers with parameter p, while T2 follows a
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geometric distribution over nonpositive even integers with parameter p.28

With the complementary probability 1
2
, T1 follows a geometric distribution over

negative odd integers with parameter p′ < p, while T2 = T1 + 1.

Note that the distribution p does not satisfy the potential leader condition,

because player 1 always knows which event is drawn—she either moves at positive

or negative integers—and in the first event she is the second mover with probability

one. Player 2 does not know which event he is at because his moving time is always

a negative even time. However, p′ < p implies that the likelihood of him being

in the second event (and hence being the second mover) becomes arbitrarily close

to 1 as time goes to −∞. Thus, for any common-interest game, there exists t̄

such that for all t < t̄, it is not worthwhile for player 2 to pay the disclosure cost

because player 2 is so certain that he is the second mover. This implies that, in

every PBE, even though player 1 knows she is the second mover at positive times,

she believes she is on the path of equilibrium play even if she does not observe any

past disclosure.

Formally, the distribution p satisfies condition 2b, and by Theorem 1, the

dynamic game (S, T , p, c) has a unique PBE outcome.

4 Choice of Moving Times

We have so far assumed that players do not have any control over when to move.

However, in some situations, players may have some control over the timing of their

moves. In this section, we consider games in which players can choose their timing

of moves within a fixed set. We show that, under mild conditions on the set, the

efficient action profile of the component game is played without disclosure under a

trembling-hand perfect equilibrium refinement in which trembles on moving times

are sufficiently more likely than those on actions.

To begin, let us first consider a setting in which players can choose their moving

time but are not subject to uncertainty about timing. For each i = 1, 2, fix a

28If a random variable T is distributed according to a geometric distribution with parameter
p over a sequence of times {tk}∞k=1, then Prob(T = tk) = p(1− p)k−1 for each k ∈ N. In the first
event described in the text, T1 has support over {t̂k}∞k=1 with t̂k = k and T2 has support over

{ˆ̂tk}∞k=1, with ˆ̂tk = −2·k.
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countable set of times Ti ⊂ R. Consider an extensive-form game in which the

following occurs.

1. First, each agent i simultaneously chooses an element of Ti. Each agent does

not observe the other agent’s choice.

2. Second, the private-timing game is played. That is, if an agent chooses

t in the previous stage, the agent moves at t, choosing her action in the

component game S and her disclosure decision, where disclosure costs c > 0.

When doing so, she observes the opponent’s action if it is played and disclosed

at a time strictly before t.

We call this game the game with moving-time choice. It is characterized by

(S, (Ti)i∈N , c).
In this game, given the choices of the times at the first stage, the histories

and the strategies for the second stage can be defined in the exact same manner

as in the main model. For this reason, we use the same notation for the space

of histories. We use πi to denote player i’s strategy. Note that πi specifies i’s

first-stage action as well. Since i makes a choice of the moving time without any

information in the first stage, we denote by ∅ the null history that i faces at the

first stage, i.e., πi(∅)(t) is the probability that i assigns to time t at the first stage.

Let Πi be the set of behavioral strategies of player i, and Π = ×i∈NΠi. We extend

the definition of the payoff function in a natural way by letting ui : Π→ R.

Note first that, if each Ti has the same minimum, there may exist a PBE in

which two players choose to play a Pareto-inefficient Nash equilibrium action at

that minimum time. The following Lemma shows that, in all other cases, only a∗

is played on the equilibrium path.

We assume without loss of generality that inf T1 ∪ T2 = 0, and sup T1 ∪ T2 = 1.

Lemma 4. Let (S, (Ti)i∈N , c) be a game with moving-time choice, with S being a

two-player common-interest component game, and suppose 0 6∈ T1∩T2. Then there

is c̄ > 0 such that for all c ≤ c̄, on the path of play of every PBE each player i

plays (a∗i , ·).

The idea is that if the two players do not share the minimum time, there is a

player i that “always has an earlier moving time,” and that player can choose to
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play the efficient action and pay a small disclosure cost c, to ensure the payoff of

ui(a
∗)− c.
Lemma 4 does not preclude equilibria in which players disclose their action.

This is because players can choose to move in a deterministic order in equilibrium.

For example, without loss of generality, take t1 ∈ T1 and t2 ∈ T2 such that t1 < t2.

Then, there is a PBE in which player 1 chooses T1 = t1 in the first stage and

(a∗1, pay) in the second stage, while player 2 chooses T2 = t2 and B in the absence

of a disclosure (as in Example 2).

To formally introduce uncertainty about timing to the endogenous-timing envi-

ronment, let us consider a notion of Trembling Hand Perfect Equilibrium in which

players are more prone to make a mistake about the choice of their timing of moves

than they are to jointly make a mistake about their choice of a component-game

action and disclosure decision.

A totally mixed behavioral strategy profile πε ∈ Π is an ε-constrained equi-

librium if there are functions ε : ∪i∈{1,2} (Hi × Ai)×{pay, not} → (0, ε), εi : Ti →
(0, ε) for each i = 1, 2, such that, for each i = 1, 2,

πεi ∈ arg max
π′i∈Πi

{
ui(π

′
i, π

ε
−i)

∣∣∣∣
π′i(∅)(t) ≥ εi(t), π

′
i(hi)(ãi, d̃i) ≥ ε(hi, ãi, d̃i),

for every hi , t ∈ Ti, ãi ∈ Ai, and d̃i ∈ {pay, not}

}
.

The functions ε(·) and εi(·) are called trembles.

Thus, in an ε-constrained equilibrium each player i must assign a positive

weight on all their available actions and moving times.

Definition 1. A strategy profile π∗ is an extensive-form trembling-hand

equilibrium with uncertainty about timing (THPE) if there are sequences

(εn)∞n=1⊆ R++ and (πn)∞n=1 ⊆ Π, with associated trembles εn(·) and εni (·), such

that the following hold.

1. πn is an εn-constrained equilibrium for each i ∈ N and each n = 1, 2, . . . ,

and εn → 0.

2. π∗i (hi) = limn→∞ π
n
i (hi) for each private history hi ∈ Hi and i ∈ {1, 2}.

3. For every t′, t̃ ∈ Ti and ai ∈ Ai, di ∈ {pay, not}, limn→∞
∑

t>t′ ε
n
i (t)/εni (t′) =

limn→∞
∑

t>t′ ε
n
i (t)/εn(t̃, ai, di) =∞.
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Condition 3 requires that the moving time be the primary source of uncertainty

and the uncertainty about the choice of actions be secondary—the situation that

we want to capture. In fact, for each time interval in (t, 1) ⊆ [0, 1], the chance that

a player moves in (t, 1) is assumed to vanish slower, as εn → 0 than the chance

that she erroneously moves at time t or takes a wrong action at any given time.

Thus, compared to erring into a time t or taking a wrong action, erring in moving

after t is more likely to occur.

Theorem 2. Let (S, (Ti)i∈N , c) be a game with moving-time choice, with S being

a two-player common-interest component game. Let T1 and T2 be such that (a)

0 6∈ T1 ∩ T2 and (b) for each i ∈ {1, 2}, sup Ti = 1 and 1 /∈ Ti. Then, the game

has a THPE, and there exists c̄ > 0 such that for all c < c̄, on the path of play of

every THPE, each player i plays (a∗i , not).

Theorem 2 says that if there is a player who always has an earlier moving time,

and there is no time that is the last moving time of a player, then the unique

equilibrium outcome is (a∗i , not) for each player i. The result relies on Lemma

4, which under condition (a) guarantees that the Pareto optimal action profile is

realized in every equilibrium. Condition (b) guarantees that in an ε-constrained

equilibrium there is enough uncertainty about timing that players do not pay for

disclosure. Notice that the condition is akin to the potential leader condition, and

analogously to the arguments in Theorem 1, it guarantees that players are always

on the path of play.

Theorem 2 does not restrict the joint distribution of the players’ moving times

to not being synchronous or “close to” synchronous, as SAP does in the exogenous

timing case. Such restrictions are not necessary for two reasons. First, if there

is a risk of miscoordination due to simultaneous moves, the players would choose

to change their moving times to prevent it. The requirement that a player i can

always choose an earlier time guarantees that this is possible. Second, since an

equilibrium is a strategy profile, the distributions of the players’ moving times

are independent. Moreover, trembles on moving times are not correlated across

players.
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5 Discussion

5.1 Existence

So far, we have only studied common-interest games, but is our framework appli-

cable to other settings of interest? As a first step in answering this question, we

present a general existence result pertaining to general component games. Specif-

ically, we show that there exists a PBE in a private timing game with any com-

ponent game. This result is encouraging, as it suggests that it may be worthwhile

to study other settings featuring private timing.29

Proposition 5. Every game (S, T , p, c) has a PBE.

In our game, the support of the times of play can be infinite, so the finite-

dimensional fixed-point argument does not apply. Moreover, since we deal with

general component games, there is no obvious way to design a constructive proof

as was possible in the main sections of the paper. We overcome these difficulties by

reformulating a game with private timing as a two-period stochastic game in which

the first-period state is comprised of the first player to move and her moving time,

and the second-period state is the second player’s moving time. At each player i’s

moving time, i’s signal consists of her moving time, and −i’s action and moving

time if the latter moved earlier and chose to disclose. Unless a player has observed

the opponent’s move, she does not receive any information (besides her own moving

time) regarding whether she is in the first or second period of the stochastic game.

With this reformulation, we can use Moroni (2022)’s result on the existence of a

Trembling Hand Perfect Equilibrium, which applies due to the finiteness of the

action sets and the countability of the state and signal space. As shown in Moroni

(2022), a Trembling Hand Perfect Equilibrium is also a PBE. Note that, since we

show the existence of a Trembling Hand Perfect Equilibrium, the fact that our

definition of PBE is not stringent does not play a key role in proving existence.

29Indeed, Kamada and Moroni (2023) study some other types of component games, such as
opposing-interest games in which there are multiple Pareto unranked Nash equilibria.

30



5.2 q-Dispersed Timing Distribution and si-Common-

Interest Games

Although Theorem 1 requires asynchronicity of moves, Proposition 1 proves

uniqueness of PBE allowing for a small degree of synchronicity. This difference

is due to the fact that the former result applies to any common-interest games,

while the latter to a fixed common-interest game. This suggests that there may be

a relationship between the type of common-interest game that we fix, the degree

of synchronicity of the timing distribution, and uniqueness of a PBE. This section

provides one way to formalize such a relationship.

Given a common-interest game S with more than two action profiles, let

g∗i := gi(a
∗) be player i’s payoff from the best action profile. We also let g

i
:=

mina∈A gi(a) be the minimum payoff, and gSi := max{gi(a)|a ∈ A, gi(a) 6= g∗i } be

the second-highest payoff for player i. Notice that g∗i > gSi , gi holds because the

component game is a common-interest game.

Definition 2. For any si > 0, a common-interest game is si-common for i if
g∗i−gSi
g∗i−gi

= si.

Note that si ∈ (0, 1], and it measures how good the best payoff is, in relative

terms, for player i.

Definition 3. The timing distribution p is q-dispersed if for each t′′ ≥ inf(T ),

there is a player i ∈ {1, 2} such that

lim sup
t→t′′

Probp(T−i ∈ [t′′, t]|Ti = t, T−i ≥ t′′) < 1− q.

From this definition, q-dispersion implies that the probability that the two

players move at the same time at any one time t is less than 1−q. If a distribution is

q-dispersed for every q ∈ (0, 1) then it has dispersed potential moves. In particular,

q-dispersion is satisfied when T1 and T2 are independent and their hazard rate is

strictly less than 1 − q (this includes our starting example in Section 3.1 with

ε ≤ 1− q). Notice that in Example 3, the assumption fails for t′′ = inf T = −∞,

when q < 1 is sufficiently close to 1. This is because for any t ∈ T , the probability

that the opponent moves earlier than the player moving at t is at least r
1+r

.
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We now provide a sufficient condition on the joint distributions of T1 and T2

and the component game S such that (a∗, not) is the only outcome of the private-

timing game when the cost of disclosure is small enough. In order to simplify

the statement and proof, we do not consider the unlikely leader condition but we

impose the potential leader condition.

Theorem 3. Fix a dynamic game (S, T , p, c) with S being a two-player common-

interest game. Suppose that there exist (s1, s2) ∈ R2
++ and ε > 0 such that S is

si-common for each i ∈ N and p is (1+ε−mini∈N si)-dispersed. Then there exists

c̄ > 0 such that for all c < c̄, a∗ is assigned probability one under any PBE of

(S, T , p, c). Moreover, if each player i is a potential leader under p, then there is

a unique PBE outcome. On the path of this unique PBE outcome, each player i

takes (a∗i , not) for any realization of Ti ∈ Ti.
This theorem implies Proposition 1.

5.3 Horizon Length

As we noted when stating Theorem 1 (Remark 5-3), it is important that the

support of the moving times is infinite in at least one direction. We formalize this

claim here. To avoid notational complexity, we restrict T to be a subset of Z. The

results can be readily extended to more general settings.

Proposition 6. 1. For any t∗ ∈ Z, there exist T ⊆ Z with mint∈T t = t∗ and p

such that for every two-player common-interest game S, there is c̄ > 0 such

that for every c < c̄, the dynamic game (S, T , p, c) has a unique PBE. On

the path of the unique PBE, each player i plays (a∗i , not) at any realization

of Ti.

2. For any t∗ ∈ Z, there exist T ⊆ Z with maxt∈T t = t∗ and p such that for

every two-player common-interest game S, there is c̄ > 0 such that for every

c < c̄, the dynamic game (S, T , p, c) has a unique PBE. On the path of the

unique PBE, each player i plays (a∗i , not) at any realization of Ti.

3. For any t∗, t∗∗ ∈ Z, for all T ⊆ Z with mint∈T t = t∗ and maxt∈T t = t∗∗ and

for every p, there exists a common-interest game S such that there is c̄ > 0

such that for every c < c̄, the dynamic game (S, T , p, c) has multiple PBE.
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The proofs in this section are omitted as they are straightforward.30 The

proposition implies that a game in which the distribution of moving times has

finite support must have multiple PBE. This seeming discontinuity of the set of

PBE outcomes occurs due to the order of limits31: we fix a timing distribution and

then consider all possible common-interest games. If we flip the order of limits,

then we retain continuity. The next proposition makes this point clear.

Proposition 7. Consider a family of pairs {(TK , pK)}K∈N defined by TK =

{1, . . . , K} and let pK be the uniform distribution over TK, independent across

players.

1. For any K ∈ N, there exists a two-player common-interest game S and c̄ > 0

such that, for all c < c̄, the dynamic game (S, TK , pK , c) has multiple PBE.

2. For any two-player common-interest game S, there exists K̄ <∞ and c̄ > 0

such that, for all K > K̄ and c < c̄, the dynamic game (S, TK , pK , c) has a

unique PBE. On the path of the unique PBE, each player i plays (a∗i , not) at

any realization of Ti.

The first part of the proposition is a corollary of the third part of Proposition 6,

while the second part shows that for any game one can find a sufficiently dispersed

distribution that yields the Pareto optimal outcome as the unique equilibrium

outcome. We omit the proof of Proposition 7 as it follows from our previous

results.32

30For part 1, consider the timing distribution p such that player 1’s moving time has a full
support over positive odd integers, and player 2’s moving time has a full support over positive
even integers, and the two players’ moving items are independent. The desired distribution can
be obtained by “shifting” the support by t∗− 1. For part 2, modify Example 4 by letting T1 = 1
if and only if the example specifies that T1 is positive. Again, “shifting” the support by t∗ − 1
would yield the desired distribution. Part 3 follows by applying Theorem 1 because condition 2
cannot hold.

31Consider, e.g., a metric d(p, p′) =
∑

(t1,t2)
|Probp(T1 = t1, T2 = t2) − Probp

′
(T1 = t1, T2 =

t2)|.
32Specifically, part 1 of Proposition 7 follows from part 3 of Proposition 6, and part 2 of

Proposition 7 follows from Theorem 3.
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5.4 Bayes Nash Equilibrium

In the unique PBE for common-interest games, even if we did not assume opti-

mality after deviations have been detected, deviations would not be optimal. This

may suggest uniqueness might hold even under the notion of Bayes Nash equilib-

rium (BNE) which requires only condition 1 in the definition of PBE. But this is

not the case. That is, there may exist multiple BNE. To see this, consider the

component game as in Figure 1 and an independent timing distribution such that

T1 is the set of odd natural numbers and T2 is the set of even natural numbers.

By inspection, one can verify that the strategy profile in which each player plays

(B, not) under all private histories is a BNE. This BNE can be supported by an

off-path strategy specification in which each player chooses a different action than

the opponent’s once the opponent deviates to disclose his action.

The reason why we do not obtain uniqueness is that, without off-path opti-

mality, which requires players to best-respond to an observed action, Step 1 of

the Proof Sketch for Proposition 1 does not go through. Thus, off-path optimality

plays a key role in eliminating inefficient outcomes.

5.5 Discrete Time vs. Continuous Time

In this paper, we analyzed a discrete-time rather than continuous-time settings.

We do not take a stance on which of discrete- and continuous-time models are

more realistic but focused on the former. This is because we wanted to avoid

non-essential technicalities associated with conditional measures. Recall that we

imposed SAP to show Theorem 1. A wide class of atomless full-support distri-

butions on continuous time satisfying certain regularity conditions would satisfy

a version of SAP.33 Although an atomless full-support distribution is not neces-

sarily a consequence of continuous time, it is somewhat a standard assumption.

Additionally, as we have seen in the formulation of SAP, our assumptions allow

for a countable set of times T that is dense on the continuum, such as the rational

numbers. Therefore, one can interpret our conditions on asynchronicity and un-

certainty as being akin to the properties of many commonly-studied distributions

in continuous-time settings.

33For example, one could assume that a density is strictly positive and continuous on [0, 1]2.
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6 Conclusion

This paper studied games with private timing. These games satisfy the often

realistic assumption that the timing of moves in a strategic interaction can be

private information. Many questions arise if additionally players have an option

to disclose information between moves: Do players want to disclose their own

actions to the opponent? Do they want to commit to monitor the opponent’s

actions? What if actions are disclosed with some exogenously given probability?

How do these possibilities affect the players’ choice of the component-game actions?

In this paper, we focus on one particular information revelation mechanism that

highlights the non-triviality of these problems. Namely, when the component

game is a coordination game and players have an option to disclose their actions

at a small cost, we proved that uniqueness of the Pareto optimal outcome in

every PBE holds if and only if the game satisfies conditions that require, in rough

terms, a strong form of asynchronicity of moves and enough uncertainty about

the opponent’s moving time conditional on one’s information. We also provided a

number of discussions and extensions to further understand those results.

Our paper demonstrates that the class of games with private timing is simple

but involves non-trivial strategic interactions. Let us discuss a number of other

questions that we believe are worth tackling in the context of private timing, both

in theory and in applications. For example, we focused on common-interest games,

but one could consider a wider class of component games. Kamada and Moroni

(2023) considers various other component games, such as opposing-interest games,

constant-sum games, games with a dominant action for each player, and a game

that is solvable by iterated dominance. One prominent example that we do not

cover is the Cournot quantity-competition game. It is straightforward to show that

there exists a PBE in which the first mover plays the Stackelberg action and pays

the disclosure cost, but it is an open question whether it is the unique equilibrium.

Beyond the examination of different component games, there are other avenues

for future research in the framework of games with private timing. First, one

could investigate the effect of monitoring options. With common-interest games

with costly monitoring, the best action profile may not be the unique outcome.

One can construct examples in which a Pareto-dominated action profile is played
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and no monitoring takes place. Second, one could consider a cost of secrecy.34

Third, one can consider settings in which disclosure produces an informative yet

imperfect signal about the action taken, and examine the effect of the noisiness of

the signal on the set of equilibrium outcomes. In Online Appendix B.1, we consider

a setting where a signal is probabilistically sent, but it is correct whenever it is

generated. Another possibility that we do not study is that there be a signal

that is always generated but may be incorrect. Fourth, it would be interesting to

examine how private information about timing interacts with private information

about the payoff functions. Online Appendix B.3 considers a simple case where

two players are uncertain about which of two possible coordination games is the

true one and shows that, in that setting, players pay the disclosure cost. Finally,

the present paper concentrated on the case in which each of two players moves

only once before an action profile is determined. One may want to extend this

setting to the case where there are more players and/or each player moves more

than once.

34We thank Drew Fudenberg for suggesting this possibility.
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A Appendix

Before we start our proofs, let us introduce the following notation. For t ∈ Ti, a

time-t private history of player i is a private history of the form ((tj, aj), t) ∈ Hi

or (∅, t) ∈ Hi. The set of time-t private histories of player i is denoted Hi,t.

A.1 Proof of Theorem 1

The “only if” direction:

Fix a component game that is a common-interest game S, and denote by (gi)i∈N

the payoff functions. Fix a timing distribution p ∈ D with support T . For each

disclosure cost c > 0, fix a PBE σc of the associated dynamic game (S, T , p, c).
Given σ ∈ Σ, let Hi(σ) ⊆ Hi be the collection of i’s private histories that have

positive probability under strategy profile σ.

The proof consists of several steps.

Step 1-1 (a∗i is played on the path):

For each i = 1, 2, let

Bi := {t ∈ R|σci (hi)({(a∗i , pay), (a∗i , not)}) < 1, hi = (∅, t) ∈ Hi(σ
c)}.35

That is, Bi is the set of times at which player i plays an action other than a∗i

with positive probability when there is no observation of disclosure at an on-path

private history.

Suppose for a contradiction that at least one out of B1 and B2 is nonempty.

Let

t′′ := inf (B1 ∪B2) . (1)

That is, t′′ is the infimum time at which some player i does not play a∗i .

For each i ∈ {1, 2} and q ∈ R, consider the following inequality:

(1− q)gi(a∗) + q min
a−i∈A−i

gi(a
∗
i , a−i)− c ≥ max

ai 6=a∗i ,a−i∈A−i

gi(ai, a−i).

Notice that the left-hand side of the above inequality is continuous and strictly

35It is important that hi ∈ Hi(σc) holds. See footnote 36 to see this point.
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decreasing in q by the definition of a∗. Let c̄i = gi(a
∗)−maxai 6=a∗i ,a−i∈A−i

gi(ai, a−i).

Notice that c̄i > 0 by the definition of a∗. Then, for any c ∈ (0, c̄i) , there

exists q̄ci > 0 such that for all q ∈ (0, q̄ci ], the above inequality is satisfied. Let

qci = min{q̄ci , 1}. With this notation, we have that some ai 6= a∗i is a best response

for i at a given time only if she assigns probability no less than qci to her opponent

j playing actions other than a∗j weakly before i moves. Hence, by the definition of

Ti,

Bi ⊆ Ti(B−i, t
′′, qci ) (2)

holds for each i ∈ {1, 2}. This contradicts SAP if Bi 6= ∅, for some i ∈ {1, 2}. The

latter is true by hypothesis.36

Step 1-2 (a∗i is played off the path):

The argument so far proves that, under σc, at a private history such that i has

not observed a disclosure and is on the path of play under σc, i plays a∗i at any

time t ∈ Ti (by “i is on the path of play under σ ∈ Σ,” we mean that i is at some

private information set hi such that hi ∈ Hi(σ). And “off the path” refers to the

complementary event). Let us now show that i plays a∗i even if she is off the path

of σc (the proof eventually implies, however, i cannot be off the path of σc).

Suppose that under σc, i’s realized moving time is t and she does not observe

disclosure while she is off the path of play under σc.

Note that the only way in which player i can be off the path of play at time

t under σc is that t ∈ T<i , i.e., Probp(T−i ≥ t|Ti = t) = 0, because otherwise by

Bayes rule player i assigns positive probability to the event that T−i ≥ t and thus

she is on the path of play under σc. This implies that the set T<i is nonempty.

Let Ei ⊆ T<i be the set of times such that t′ ∈ Ei if and only if

σci (hi)({(a∗i , pay), (a∗i , not)}) < 1 for hi = (∅, t′).

Claim 8. There is c̄ > 0 such that for every c ∈ (0, c̄), Ei is an empty set.

36Notice that the conclusion in (2) does not follow if, in the definition of Bi, we allow hi to
be outside of Hi(σc). For example, consider the game in Example 2, and let j = 1 and i = 2,
and σc be the strategy profile described in the example in which player 2 chooses B upon no
disclosure. Then, without the modification, B1 = B2 = ∅, and hence T2(B1, t

′′, qc2) = ∅ as well,
for every t′′. With the modification, however, B2 = {2} because under σc player 2 plays action
B if player 1 does not pay in the first period. However, B1 = ∅ holds because under σc player 1
always plays A, which implies T2(B1, 2, q

c
2) = ∅. Hence, B2 6⊆ T2(B1, 2, q

c
2) = ∅ holds.
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Proof. Suppose for contradiction that Ei 6= ∅. We will show that there is t′ ∈ Ei
and t̃ ∈ T−i with Probp(T−i = t̃|Ti = t′) > 0 such that player −i assigns probability

1 to (a∗−i, not) at t̃ under σci . Fix ε ∈
(

0, c
maxa∈A(g−i(a∗)−g−i(a))

)
. The unlikely leader

condition implies that there exists t̃ ∈ T−i with Probp(Ti ∈ Ei|T−i = t̃) ∈ (0, ε).

The expected payoff for player −i at t̃ from playing (a∗−i, not) is at least

Probp(Ti 6∈ Ei|T−i = t̃) · g−i(a∗) + Probp(Ti ∈ Ei|T−i = t̃) ·
(

min
a∈A

g−i(a)

)
. (3)

This is due to the definition of Ei.

By the definition of t̃, the value (3) is strictly greater than

(1− ε) · g−i(a∗) + ε ·
(

min
a∈A

g−i(a)

)
.

The definition of ε then implies that this is strictly greater than

(
1− c

maxa∈A (g−i(a∗)− g−i(a))

)
·g−i(a∗)+

c

maxa∈A (g−i(a∗)− g−i(a))
·
(

min
a∈A

g−i(a)

)
.

It is straightforward to see that this is equal to g−i(a
∗)− c. Any action a−i 6= a∗−i

of −i will give him a payoff no greater than maxai 6=a∗i ,a−i∈A−i
g−i(ai, a−i) at time t̃.

Hence, for all c < mini c̄i =: c̄, player −i assigns probability 1 to playing (a∗−i, not).

Now, notice that Probp(Ti ∈ Ei|T−i = t̃) > 0 implies there exists t′ ∈ Ei such

that Probp(T−i = t̃|Ti = t′) > 0. Hence, by Bayes rule, at i’s moving time t′, if i

does not observe disclosure, then she is on the path of play under σc. This implies

that, by our earlier conclusion, if i does not observe disclosure at time t′ and is

on the path of play under σc, she assigns probability one to {(a∗i , pay), (a∗i , not)}.
This contradicts t′ ∈ Ei by the definition of Ei. Hence, we conclude that Ei is an

empty set.

Claim 8 implies that at every time in T<i , i assigns probability one to

{(a∗i , pay), (a∗i , not)} when she observes no disclosure even if she is off the path

of play under σc if c ∈ (0, c̄). Hence, each player i must assign probability one to

{(a∗i , pay), (a∗i , not)} at every moving time on and off the path of play under σc if

c ∈ (0, c̄).
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Step 2 (Disclosure does not occur):

Now, take an arbitrary player j and t ∈ Tj, j expects the payoff of gj(a
∗) by

playing (a∗j , not) if −j follows σc−j when c ∈ (0, c̄). Since any other action of j will

give her a strictly lower payoff than gj(a
∗), this proves that, under σcj , j assigns

probability one to (a∗j , not) at t when there is no disclosure. Thus, under σc, each

player j plays (a∗j , not) with probability one at any private history at which there

is no observation.37 In particular, this means that there is a unique PBE outcome

in which each player i plays (a∗i , not) at any realization of Ti. This completes the

proof of the “only if” direction of the theorem.

The “if” direction:

We are going to show that, if a given time distribution p (which uniquely pins

down T ) is not in the set D, then we can construct a component game S such that

there is c̄ > 0 such that for all c < c̄, there are multiple PBE in the dynamic game

(S, T , p, c). This claim implies the necessity of the conditions in the theorem for

the uniqueness of a PBE.

Specifically, we first assume that SAP fails and show the existence of such c̄.

Then we assume that both the potential leader condition and the unlikely leader

condition fail and show the existence of c̄.

1. Necessity of SAP:

Fix (T , p), and suppose that SAP does not hold. In what follows, i, j ∈ {1, 2}
and i 6= j. There are t′′ ∈ {−∞} ∪ R, q1, q2 > 0 and sets Bk ⊆ Tk ∩ [t′′,∞) for

k ∈ {1, 2} such that, for i ∈ {1, 2},

∅ 6= Bi ⊆ Ti(Bj, t
′′, qi) and Bj ⊆ Tj(Bi, t

′′, qj).

Note that these conditions imply

Probp(Tk ≥ t′′) > 0 and Bk ∩ [t′′,∞) 6= ∅ for k ∈ {1, 2}. (4)

Consider the component game in Figure 5, where ν > 0. Denote it by S. We

37Note that this implies that no player can be off the path of σc if there is no observation of
disclosure.
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a2 b2

a1 q1, q2 −(1− q1)− ν, 0
b1 0,−(1− q2)− ν 0, 0

,

Figure 5: Game S: A counterexample showing the necessity of SAP

consider a dynamic game (S, T , p, c) for an arbitrary c > 0. Notice that in the

component game S, if i thinks that player j plays bj with probability at least qi,

then i’s best response must assign probability 1 to bi. Now, in the dynamic game,

conditional on choosing an action from {(bi, pay), (bi, not)}, there is no gain from

inducing the opponent to choose (bj, not). This is because bi yields a payoff of

0 regardless of the opponent’s play. Therefore, the unique best response when

i believes bj is chosen with probability at least qi is to assign probability 1 to

(bi, not).

Notice that for each i ∈ {1, 2} and t ∈ Bj,

Probp (Ti ∈ Bi ∩ [t′′, t)|Tj = t, Ti ≥ t′′) ≥ qj

holds because Bj ⊆ Tj(Bi, t
′′, qj).

Therefore, it is a best response for j to play (bj, not) at every time in Bj if i

plays (bi, not) with probability one at all times in Bi.

Now, consider a modification of (S, T , p, c) in which, for each player i, if

i’s moving time realizes in Bi, then i is restricted to assign probability one

to (bi, not), while for all other realized moving time, the action set is still

{(ai, pay), (ai, not), (bi, pay), (bi, not)}. In this new dynamic game, a PBE exists

(Moroni (2022)), which we denote by σ.

We check that σ is also a PBE in the original dynamic game (S, T , p, c). First,

it is immediate that each i takes a best response at all times in Ti \ Bi. Second,

for each player i and for times in Bi, we have concluded that, given that j takes

(bj, not) in Bj with probability one, (bi, not) is a best response for i. Since σj

assigns probability one to (bj, not) in Bj, it is indeed a best response for i to play

(bi, not) at times in Bi. Hence, σ is a PBE in (S, T , p, c).
Next, consider another strategy profile that we denote by σ′, in which each

player i plays (ai, not) at all times under no observation of a disclosure, and takes
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A B
A 1, 1 −M, 0
B 0,−M 0, 0

Figure 6: Counterexample showing the necessity of the potential leader condition
or the unlikely leader condition

a static best response after an observation. This is obviously a PBE.

Since (4) holds, Bj 6= ∅ for each player j, and thus σ 6= σ′. Hence, there are

multiple PBE for every c > 0. This completes the proof of this part.

2. Necessity of the potential leader condition or the unlikely follower condition:

Fix a new timing structure (T , p). Suppose, for a contradiction, that there is

a player i and a nonempty set E ⊆ T<i such that

inf{r > 0|r = Probp(Ti ∈ E|T−i = t̃), for t̃ ∈ T−i} = δ > 0. (5)

For each c > 0, consider a dynamic game (S, T , p, c). Define:

E−i = {t̃ ∈ T−i|Probp(Ti ∈ E|T−i = t̃) > 0}, and

Ẽi = {t ∈ T<i |Probp(T−i ∈ E−i|Ti = t) = 1}.

Thus, t ∈ E−i if (i) t ∈ T−i and (ii) conditional on −i moving at time t, there

is a positive probability that i moves at a time in set E. Notice that E−i is non-

empty by equation (5). Also, t ∈ Ẽi if (i) t ∈ T<i and (ii) the probability that −i
moves at E−i given that i moves at time t is 1.

For the following proof, we show the following claim:

a. E ⊆ Ẽi.

b. Probp(Ti ∈ Ẽi|T−i = t) = 0, for t ∈ T−i \ E−i.

Notice that by the definition of E−i, Probp(Ti ∈ E|T−i = t) = 0 for t ∈ T−i \ E−i.
Therefore, Probp(Ti ∈ E, T−i ∈ T−i \ E−i) = 0 and Probp(T−i ∈ E−i|Ti = t) = 1

for t ∈ E, implying (a). Also, at t ∈ T<i \ Ẽi, Probp(T−i ∈ E−i|Ti = t) < 1. By
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the definition of Ẽ−i, Probp(T−i ∈ T−i \ E−i|Ti = t) = 0 for t ∈ Ẽi, which implies

Probp(T−i ∈ T−i \ E−i, Ti ∈ Ẽi) = 0, and, therefore, we have (b).

We will show that for any M ∈ [0,∞), we can find c̄ > 0 such that if the

component game S is the common-interest game in Figure 6 and c ∈ (0, c̄), then

σ∗, defined as follows, is a PBE of (S, T , p, c). For each t ∈ T−i and h−i,t ∈ H−i,t,
let

σ∗−i(h−i,t) :=





(A, pay) if t ∈ E−i and h−i,t = (∅, t)
(A, not) if t 6∈ E−i and h−i,t = (∅, t)
(A, not) if h−i,t = ((t′, A), t) for some t′ ∈ Ti
(B, not) if h−i,t = ((t′, B), t) for some t′ ∈ Ti

.

Also, for each t ∈ Ti and hi,t ∈ Hi,t, let

σ∗i (hi,t) :=





(B, not) if t ∈ Ẽi and hi,t = (∅, t)
(A, not) if t 6∈ Ẽi and hi,t = (∅, t)
(A, not) if hi,t = ((t′, A), t) for some t′ ∈ T−i
(B, not) if hi,t = ((t′, B), t) for some t′ ∈ T−i

.

Note that, because E−i 6= ∅, we have σ∗ 6= σ′ where σ′ takes (A, not) at any

private history without observation.

Now we specify beliefs. First, for each player j = 1, 2, if a private history is

((t′, a−j), t) for some time t′, then j’s belief is an arbitrary probability distribution

that assigns probability one to the set of histories {((t, aj, dj), (t′, a−j, pay))|aj ∈
{A,B}, dj ∈ {pay, not}}. For each private history (∅, t) of player −i, −i’s belief

is computed by Bayes rule. Also, except at times in Ẽi, for each private history

of player i, i’s belief is computed by Bayes rule. If the private history is (∅, t)
and t ∈ Ẽi, take an arbitrary element t∗(t) of {t′ ∈ T−i | t′ < t, p(t′, t) > 0}.
We define player i’s belief at private histories at time t ∈ Ẽi to be an arbi-

trary probability distribution that assigns probability 1 to the set of histories

{((t∗(t), B, not), (t, ai, di)) |ai ∈ {A,B}, di ∈ {pay, not}}. Thus, in the off-path

private histories at times in Ẽi at which player i does not observe (A, pay), she

believes that −i played (B, not) at time t∗(t).

We now check that each player takes a best response at each private history.
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First, it is straightforward to check that σ∗i and σ∗−i specify best responses after

private histories in which there has been an observation of an action taken by the

opponent. In what follows, we consider each player’s action after a private history

in which there has not been any observation. In the off-path private history at

times in Ẽi at which player i has not observed A, player i’s belief is that −i played

B and, therefore, she best-responds with (B, not). At all other private histories,

player i believes that player −i has played or will play (A, ·) and best-responds

with (A, not). For player −i, if there has been no observation at t′ ∈ E−i, the

payoff of playing (A, pay) is 1 − c, while the payoff of playing (A, not) is at most

δ · (−M) + (1 − δ) · 1 because (a) implies that i chooses B at times in E. Thus,

for c ∈ (0,min{1, δ(M + 1)}), −i’s best response is to play (A, pay) at every time

t′ ∈ E−i. At every time t̃ /∈ E−i, choosing (A, not) is a best response for player

−i as, by (b), player i’s strategy and Bayes rule imply that player −i’s belief at

such a time must assign probability 1 to the event that player i plays (A, not) if

−i chooses (A, not).

Hence, σ∗ is a PBE of (S, T , p, c) for every c ∈ (0,min{1, δ(M + 1)}). Since

σ′ is also a PBE for such c as before and we already concluded σ∗ 6= σ′, there are

multiple PBE in (S, T , p, c) for every c ∈ (0,min{1, δ(M + 1)}). This completes

the proof of this part.

A.2 Proof of Proposition 2

Part 1:

Let us show by contradiction that the dispersed potential moves property

(henceforth, “DPM”) implies SAP. Suppose that p satisfies DPM but there are

t′′, Bj, Bi ⊆ [t′′,∞), and q1, q2 > 0 such that

∅ 6= Bi ⊆ Ti(Bj, t
′′, qi) and Bj ⊆ Tj(Bi, t

′′, qj). (6)

Let t̃ = inf(Bi ∪ Bj), and suppose that i satisfies the limit condition in DPM at

time t̃. By (6), for every t ∈ Bi,

Probp(Tj ∈ [t′′, t] ∩Bj|Ti = t, Tj ≥ t′′)≥qi, (7)
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and for every t ∈ Bj,

Probp(Ti ∈ [t′′, t] ∩Bi|Tj = t, Ti ≥ t′′)≥qj.

By the limit condition in DPM, there is t̂ > t̃ such that

Probp(Ti ∈ [t̃, t] ∩Bi|Tj = t, Ti ≥ t̃) < qj

for every t ∈ [t̃, t̂]. Therefore, for every t ∈ [t̃, t̂],

Probp(Ti ∈ [t′′, t] ∩Bi|Tj = t, Ti ≥ t′′) =

Probp(Ti ∈ [t̃, t] ∩Bi|Tj = t, Ti ≥ t̃) · Probp(Tj = t, Ti ≥ t̃)

Probp(Tj = t, Ti ≥ t′′)
<qj,

where the equality follows from Bi ∩ [t′′, t̃) = ∅ by the definition of t̃, and the

inequality follows from
Probp(Tj=t,Ti≥t̃)

Probp(Tj=t,Ti≥t′′) ≤ 1.

This implies Tj(Bi, t
′′, qj)∩ [t̃, t̂] = ∅. Therefore, by (6), we obtain Bj ⊆ (t̂,∞),

which implies, by (7), Bi ⊆ (t̂,∞). This contradicts the definition of t̃.

Part 2:

The following example shows that SAP does not imply DPM.

Example 5. [Distribution that satisfies SAP and not DPM]

Let T1 =
{

1
n
|n = 1, 4, 5, 8, 9, 12, . . .

}
and T2 =

{
1
n
|n = 2, 3, 6, 7, 10, 11, . . .

}
,

and define p by, for each k = 0, 1, 2, . . . ,

Probp
(
T2 = 1

4k+2
|T1 = 1

4k+1

)
= 1,

Probp
(
T2 < T1|T1 = 1

4k+4

)
= 0,

Probp
(
T1 = 1

4k+4
|T2 = 1

4k+3

)
= 1,

Probp
(
T1 < T2|T2 = 1

4k+2

)
= 0. (8)

To see that this distribution of moves does not satisfy DPM, let t′′ = 0. Then,

for any t′ > 0 and each player i = 1, 2, there is a moving time t ∈ [0, t′] such that
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i assigns probability 1 to the opponent moving in [0, t].38

To see that the distribution of moves satisfies SAP, take B2 ⊆ T2, B2 6= ∅
and B1 ⊆ T1(B2, t

′′, q1) for t′′ ∈ R, and q1 > 0. By (8) and the definition of

T1, B1 ⊆
{

1
4k+1

}∞
k=1

. Therefore, from (8), T2(B1, t
′′, q2) = ∅ for every q2 > 0. A

similar argument applies to every B1 ⊆ T1, B1 6= ∅, and B2 ⊆ T2(B1, t
′′, q2). This

shows that SAP holds.

A.3 Proofs of Section 4

Proof of Lemma 4

Fix a PBE π∗ of a game with moving-time choice and take c̄ < gj(a
∗) −

maxa6=a∗ gj(a) for j ∈ {1, 2}. Take i such that for any t′ ∈ T−i, there is t′′ < t′ with

t′′ ∈ Ti. Such i exists by assumption.

Suppose that there is a time t and an action ai 6= a∗i such that (i) π∗i assigns

positive probability to t, (ii) it is with positive probability that i does not observe

−i’s action at t, and (iii) conditional on no observation at t, it assigns positive

probability to ai. Notice that by (ii), player i is on the path of play at time t upon

no observation.

First, notice that the payoff from π∗i is at most maxa′ 6=a∗ gi(a
′) because player i

must be indifferent between all the possibilities that she assigns positive probability

to. Second, since player i always has an earlier moving time, there is a time t′ ∈ Ti
such that, for all c < c̄,


∑

t′≥t̃

π∗−i(∅)(t̃)



(

min
a
gi(a)− c

)
+


∑

t̃>t′

π∗−i(∅)(t̃)


 (gi(a

∗)− c) > max
a6=a∗

gi(a).

The left-hand side of this inequality is a lower bound of the payoff from choos-

ing t′ with probability one and then playing (a∗i , pay) at t′ with probability one

(notice that we are using the fact that the players’ moving-time distributions are

independent of each other). This is a contradiction.

Now, by our previous argument, when player j 6= i is on the equilibrium path,

38More precisely, for i = 1, take t = 1
4k+1 for any positive integer k such that 1

4k+1 < t′, and

for i = 2, take t = 1
4k+3 for any positive integer k such that 1

4k+1 < t′.
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he knows that player i has chosen a∗i at all previous times. Therefore, at any time

t, on the equilibrium path, the payoff from (a∗j , pay) is at least gj(a
∗) − c, while

the payoff from aj 6= a∗j is at most maxa6=a∗ gj(a). Therefore, for all c < c̄, j must

choose a∗j at any t that he assigns positive probability to.

Proof of Theorem 2

Lemma 9. A THPE exists.

Proof: Let us first show that one can construct a function εi(t) that satisfies

condition (b). To see this, note first that since Ti is countable, we can write

Ti = {tj}j∈N and, by (b), we can extract a sequence from Ti, {t̃k}∞k=d1/εe, such

that 1 − t̃k < 1/k < ε. If we set εi(tj) = ε2/2j for tj /∈ {t̃k}∞k=d1/εe, and εi(t̃k) =

1/k(k + 1) for each k ≥ d1/εe, then, for each t′ ∈ Ti there is a constant κ > 0

such that
∑

t>t′ εi(t)/εi(t
′) ≥ d1/εe−1/ε2 · κ→∞ as ε→ 0 (where in the previous

inequality we used the fact that
∑∞

j=k 1/(j(j + 1)) = 1/k).

To see that a THPE exists, fix t̄i ∈ Ti for each i and notice that the following

is a THPE:

π∗i (∅)(t̄i) = 1

π∗i (∅, t)(a∗i , not) = 1 for all t ∈ Ti
π∗i ((t

′, a−i, pay), t)(ai, not) = 1 for some ai ∈ arg max
ai∈Ai

gi(ai, a−i)

for every a−i ∈ A−i, t ∈ Ti, t′ ∈ T−i.

To see that this is a THPE, let εn → 0, and consider a sequence, {πn}n∈N, of

εn-constrained equilibria, with trembles satisfying εn((∅, t), ai, d̃i) = εn for t 6= t̄i

and ai 6= a∗i , and εn((∅, t̄i), ai, d̃i) = ε2
n for ai 6= a∗i , for each i ∈ {1, 2}. Suppose

also that
∑

t>t̄i
εni (t) is of order

√
εn for i ∈ {1, 2}.39 Along the sequence of εn-

constrained equilibria πn, it is a best response for player i to allocate the maximum

possible weight on t̄i and to choose a∗i with the maximum possible weight at each

time t in the absence of a disclosure. Hence, πn converges to π∗. To see that each

i has no profitable deviation under such a strategy, note that the probability that

39Let {tj}j∈N = {t ∈ Ti, t > t̄i}, we can set εni (tj) = 1
(j+k−1)(j+k) with k = d(1/√εn)e. This

yields εni (tj) ≤ εn, and
∑
j∈N ε

n
i (tj) =

∑
j≥k

1
j(1+j) = 1

k .
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i trembles on her own action at time t̄i is of order ε2
n, while if she chooses t 6= t̄i

the probability is of order εn. At the same time, the probability that the opponent

trembles to a move at a time after t̄i and trembles in his choice of action is bounded

by a function of order of at most
√
εn · εn. Hence the benefit from moving later

to learn whether the opponent trembles is at most of that order. Therefore, πn

specifies a best response.

Let c̄ < minj∈{1,2} [gj(a
∗)−maxa6=a∗ gj(a)] /2 and let π be a THPE in game

(S, (Ti)i∈N , c) with c < c̄, and let {πm}m be a sequence of approximating εm-

constrained equilibria with εm → 0 where εm ∈ (0, 1) for each m ∈ N. Let πm’s

associated tremble functions be εm(·), and εmi (·).

Claim 10. If no observation by player j at time t is on the path of play of π−j for

player j ∈ {1, 2} (i.e.
∑

t̃<t,a−j∈A−j
π−j(∅)(t̃)π−j(∅, t̃)(a−j, pay) < 1), then there is

m̄ < ∞ such that for each m ≥ m̄, either πmj (∅)(t) = εm(t) or πmj (∅, t)(aj, dj) =

εm ((∅, t), aj, dj) for all aj 6= a∗j and dj ∈ {pay, not}.

Proof. Suppose, to the contrary, that there is a time t, a player j ∈ {1, 2} and

an action aj 6= a∗j
40 such that for every m̄ < ∞, there is m > m̄ such that (a)

πmj (∅)(t) > εm(t) and πmj (∅, t)(aj, dj) > εm ((∅, t), aj, dj) for some dj ∈ {pay, not},
(b) it is with positive probability that j does not observe −j’s action at t under

π−j.

Suppose first that j = i where i is such that for any t′ ∈ T−i, there is t′′ < t′

with t′′ ∈ Ti. Such i exists by assumption.

Since πm converges to π, there is m̄1 ∈ N such that player j does not observe

−j’s action at time t with a probability that is bounded away from zero under πm

for every m ≥ m̄1.

Since player j always has an earlier moving time, there is a time t′ ∈ Tj such

that, for all c < c̄,


∑

t̃≤t′
π−j(∅)(t̃)



(

min
a
gj(a)− c

)
+


∑

t̃>t′

π−j(∅)(t̃)


 (gj(a

∗)− c) > max
a6=a∗

gj(a).

40Action aj can be chosen to be constant in m because the action space is finite.
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Since πm converges to π, there is m̄2 ≥ m̄1 such that


∑

t̃≤t′
πm−j(∅)(t̃)



(

min
a
gj(a)− c

)
+


∑

t̃>t′

πm−j(∅)(t̃)


 (gj(a

∗)− c) > max
a6=a∗

gj(a),

for every m ≥ m̄2. This is a contradiction because the left-hand side is O(εm)

away from i’s payoff from (a∗j , pay) at time t′ and the payoff from aj 6= a∗j is at

most maxa6=a∗ gj(a), which is the right-hand side. Therefore, there is m̄3 ≥ m̄2

such that for m ≥ m̄3, player j would strictly prefer to reduce πmj (∅)(t) in favor of

πmj (∅)(t′) and at time t′ choose a∗j with the maximum possible probability under

the εm-constrained game.

Now suppose that (a) and (b) hold for player j = −i, and let

B̃ = {t′ ∈ T−j|π−j(∅)(t′) > 0, π−j(∅, t′)(a−j, ·) > 0, a−j 6= a∗−j}.

From Lemma 4, as a THPE is a PBE (Moroni, 2022), we know that player −j = i

must be off the path of play of π when she chooses a−j 6= a∗−j. Therefore, since

π−j(∅)(t) > 0 for any t ∈ B̃, if player −j moves at time t ∈ B̃, the probability

that the opponent, j, puts probability 1 on moving times strictly before time t is

1 under π. Notice that this observation implies that t > inf Tj for every t ∈ B̃.

Therefore, there is t̂ ∈ Tj such that


 ∑

t̃≤t̂,t̃∈B̃

πm−j(∅)(t̃)



(

min
a
gj(a)− c

)
+


 ∑

t̃>t̂ or t̃ /∈B̃

πm−j(∅)(t̃)


 (gj(a

∗)−c) > max
a6=a∗

gj(a).

At such time t̂, the payoff of aj 6= a∗j is at most maxa6=a∗ gj(a), while the payoff

from a∗j is at least O(εm) away from the left-hand side of the previous equation.

This is a contradiction as there is m̄ ≥ m̄3 such that player j would be better off

by shifting weight from time t to t̂ and choosing a∗j with the maximum possible

probability at time t̂, for every m ≥ m̄.

Now we show that there is no THPE such that a player i plays ai 6= a∗i under

no observation. Suppose towards a contradiction, that there is a THPE π such
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that the set B̃ = {t ∈ Ti|πi(∅, t)(ai, ·), πi(∅)(t) > 0, ai 6= a∗i }—of times such that

i chooses ai 6= a∗i with positive probability upon no disclosure under π—is non-

empty. As before, from Lemma 4, as a THPE is a PBE, we know that player

i must be off the path of play of π when she chooses ai 6= a∗i . Therefore, since

π(∅)(t) > 0 for any t ∈ B̃, if player i moves at time t ∈ B̃, the probability that

−i puts probability 1 on moving times strictly before time t is 1 under π. Notice

that this observation implies that t > inf T−i for every t ∈ B̃.

Since the distributions of players’ moves are independent, there is t̃ ∈ B̃ and

m̄1 ∈ N such that for all t̂ < t̃ and m ≥ m̄1,

(
1− γm(t̂)

)(
min
a∈A

g−i(a)− c
)

+ γm(t̂)(g−i(a
∗)− c) > max

a6=a∗
g−i(a),

where γm(t̂) = (1− εm)
∑

t̂<t′ or t′ /∈B̃ π
m
i (∅)(t′) is a lower bound on the probability

that i moves after t̂ and does not tremble in her best response. Therefore, at every

time t̂ ∈ T−i such that t̂ < t̃, player −i puts the minimum possible weight on

a−i 6= a∗−i, under πm.

Thus, there is m̄ ≥ m̄1 such that for m ≥ m̄, the probability that player −i
chose a−i 6= a∗−i at a time weakly before t̃, denoted btrue

m (t̃), is at most

∑

t≤t̃,a−i 6=a∗−i

πm−i(∅)(t)εm(t, a−i,not)+εm−i(t̃) ≤ max
t∈Ti,a−i 6=a∗−i

εm(t, a−i, not)|A−i|+εm−i(t̃) =: bbound
m (t̃),

where in the previous expression we used the fact that, since πi(∅)(t̃) > 0, if t̃

happens to be an element of T−i, −i is on the path of play of π at time t̃. Hence,

by Claim 10, there is m̄ ≥ m̄1 such that πm−i(∅, t̃)(ai, ·) > εm((∅, t̃), ai, ·) for all

ai 6= a∗i , implies πm−i(∅)(t̃) = εm−i(t̃) for every m ≥ m̄.

The probability that −i chose or will choose a∗−i if i plays (a∗i , pay) at time t̃,

denoted atrue
m (t̃), is at least

abound
m (t̃) :=

∑

t<t̃

πm−i(t, a
∗
−i, not)πm−i(∅)(t) +

∑

t>t̃

πm−i(∅)(t)(1− εm)

for m ≥ m̄, where we used the fact that −i puts the maximum possible weight on

a∗−i upon observing a∗i . Note that abound
m (t̃) is strictly positive for any m because
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t̃ < 1 (because t̃ ∈ B̃ ⊆ Ti and 1 6∈ Ti) and supT−i = 1 by assumption.

Now, note that 0 < abound
m (t̃) ≤ atrue

m (t̃) and btrue
m (t̃) ≤ bbound

m (t̃). This implies

that btruem (t̃)

atruem (t̃)
≤ bboundm (t̃)

aboundm (t̃)
. Hence,

abound
m (t̃)

abound
m (t̃) + bbound

m (t̃)
=

1

1 + bboundm (t̃)

aboundm (t̃)

≤ 1

1 + btruem (t̃)

atruem (t̃)

=
atrue
m (t̃)

atrue
m (t̃) + btrue

m (t̃)
.

Therefore, i’s continuation payoff from (a∗i , pay) at time t̃ is at least

atrue
m (t̃)

atrue
m (t̃) + btrue

m (t̃)
(gi(a

∗
i )− c) +

btrue
m (t̃)

atrue
m (t̃) + btrue

m (t̃)
(min

a
gi(a)− c)

≥ abound
m (t̃)

abound
m (t̃) + bbound

m (t̃)
(gi(a

∗
i )− c) +

bbound
m (t̃)

abound
m (t̃) + bbound

m (t̃)
(min

a
gi(a)− c).

for m ≥ m̄. On the other hand, the continuation payoff from (ai, ·) is at most

maxa6=a∗ gi(a). The former dominates the latter for large enough m and c, since∑
t>t̃ π

m
−i(∅)(t) ≥

∑
t>t̃ ε

m
−i(t) (which implies abound

m (t̃)/bbound
m (t̃) → ∞ as m → ∞

by condition 3 in the definition of THPE). So i would be better off playing a∗i at

t̃ which is in B̃, which is a contradiction, and so B̃ is empty.

Now, at every time t in which −i receives no disclosure with positive probability

under πi, player −i believes that i will choose or has chosen a∗i with probability

1 due to Bayes rule. Therefore, −i chooses (a∗−i, not) with probability 1 at those

times. Since the identity of player i is arbitrary, this implies that at every t with

πj(∅)(t) > 0, each player j ∈ {1, 2} chooses (a∗j , not) on the path of play.

A.4 Proof of Theorem 3

Step 1:

Step 1-1: Fix S, a common-interest game that is si-common for each i ∈ N ,

ε ∈ (0,mini∈N si), and a timing structure p that is (1 + ε −mini∈N si)-dispersed.

Fix a PBE, σ, and take c ∈ (0,mini∈N

[
ε(g∗i − gi)

]
). Notice that, by the definition

of si and gSi , if the probability that the opponent does not choose a∗j is at most

si − ε, then the difference in payoff between a∗i and ai 6= a∗i is at least

(1− (si − ε))g∗i + (si − ε)gi − g
S
i = ε(g∗i − gi) > 0, (9)
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where the equality follows from S being si-common for each i ∈ N .

Let Ni ⊆ Ti be the set of times t ∈ Ti such that there exists a time-t private

history of player i, without observation, such that, under σ, i assigns positive

probability to an action other than a∗i at that private history. For contradiction,

we suppose that Ni is nonempty for some i ∈ N . Let t∗ := inf(Ni ∪ N−i).41 If

t∗ ∈ Ti, any player i who moves at time t∗ must choose a∗i . In fact, the probability

that any opponent j chooses an action other than a∗j before time t∗ is zero. The

probability that the opponent chooses aj 6= a∗j if player i chooses (a∗i , pay) is

bounded above by Probp(T−i = t∗|Ti = t∗, T−i ≥ t∗) ≤ si− ε, where the inequality

follows from (1 + ε − mini∈N si)-dispersion. Therefore, by equation (9), a lower

bound on the difference between i’s payoff from (a∗i , pay) and the one from ai 6= a∗i

at time t∗ is ε(g∗i − gi)− c, which is strictly positive because ε(g∗i − gi) > c.

Step 1-2: Similarly, by the definition of (1 + ε − mini∈N si)-dispersion,

there must exist i ∈ N and t′ > t∗ such that for j 6= i and t ∈ (t∗, t′] ∩ Ti,
Probp(t∗ < Tj ≤ t|Ti = t, Tj ≥ t∗) < si − ε. Therefore, by the definition of t∗ and

equation (9), our choice of c implies that, at any time in (t∗, t′], (a∗i , pay) would

give such i a strictly higher payoff than playing any action other than a∗i . Thus,

i would not take an action different from a∗i at any time in (t∗, t′], and we must

have (t∗, t′] ∩ Ni = (t∗, t′] ∩ Nj = ∅. This contradicts the definition of t∗. Hence,

Ni(a
∗) is empty for each i.

Step 2:

Assume now the potential leader condition. Suppose for contradiction that

under the fixed PBE σ, there exist t and i such that there is a positive ex-ante

probability with which i pays the disclosure cost at t. Player i’s payoff from such

σ is strictly less than g∗i . But consider i’s deviation to playing (a∗i , not) with prob-

ability 1 at all the information sets at time t that can be reached with positive

probability under σ, while no change is made to the distribution of actions condi-

tional on other private histories. Call this strategy σ′i. Then, for any realization of

Tj ∈ Tj, since the potential leader condition holds, j is at an information set that

can be reached with positive probability under σ, so plays (a∗j , ·). Thus, (σ′i, σ−i)

must assign probability one to a∗. Hence, the payoff from (σ′i, σ−i), starting at an

41This infimum is taken in R.
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information set at time t is g∗i , and therefore, the deviation is profitable. This is

a contradiction to the assumption that σ is a PBE. Therefore, there is no time at

which some player pays the disclosure cost.

References

Calcagno, R., Y. Kamada, S. Lovo, and T. Sugaya (2014): “Asynchronic-

ity and Coordination in Common and Opposing Interest Games,” Theoretical

Economics, 9, 409–434.

Caruana, G. and L. Einav (2008): “A Theory of Endogenous Commitment,”

Review of Economic Studies, 75, 99–116.

Doval, L. and J. C. Ely (2020): “Sequential information design,” Economet-

rica, 88, 2575–2608.

Dutta, P. K. (1995): “A Folk Theorem for Stochastic Games,” Journal of Eco-

nomic Theory, 66, 1–32.

Ishii, Y. and Y. Kamada (2011): “The Effect of Correlated Inertia on Coordi-

nation,” Mimeo.

Kamada, Y. and S. Moroni (2023): “Commitment in Games with Private

Timing,” Mimeo.

Kreps, D. M. and G. Ramey (1987): “Structural Consistency, Consistency,

and Sequential Rationality,” Econometrica, 55, 1331–1348.

Lagunoff, R. and A. Matsui (1997): “Asynchronous Choice in Repeated

Coordination Games,” Econometrica, 65, 1467–1477.

——— (2001): “Are “Anti-Folk Theorems” in repeated games nongeneric?” Re-

view of Economic Design, 6, 297–412.

Matsui, A. (1989): “Information Leakage Forces Cooperation,” Games and Eco-

nomic Behavior, 1, 94–115.

53



Moroni, S. (2022): “Existence of trembling hand perfect and sequential equilib-

rium in stochastic games,” Mimeo.

Nishihara, K. (1997): “A resolution of N-person prisoners’ dilemma,” Economic

theory, 10, 531–540.

Ostrovsky, M. and M. Schwarz (2005): “Adoption of Standards under Un-

certainty,” The RAND Journal of Economics, 36, 816–832.

——— (2006): “Synchronization under uncertainty,” International Journal of Eco-

nomic Theory, 2, 1–16.

Park, A. and L. Smith (2008): “Caller Number Five and related timing games,”

Theoretical Economics, 3, 231–256.

Salcedo, B. (2017): “Interdependent choices,” Tech. rep.

Yoon, K. (2001): “A Folk Theorem for Asynchronously Repeated Games,”

Econometrica, 69, 191–200.

54




