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Abstract

We study a multi-agent search problem with a deadline: for instance, the situa-

tion that arises when a husband and a wife need to find an apartment by September

1. We provide an understanding of the factors that determine the search duration

in reality. Specifically, we show that the expected search duration does not shrink

to zero even in the limit as the search friction vanishes. The limit expected duration

increases for two reasons: the ascending acceptability effect and the preference het-

erogeneity effect. The convergence speed is high, suggesting that the mere existence

of some search friction is the main driving force of the positive duration in reality.

Welfare implications and a number of discussions are provided.
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1 Introduction

This paper studies a search problem with two features that arise in many real-life sit-

uations: The decision to stop searching is made by multiple individuals, and there is

a predetermined deadline by which a decision has to be made. Our primary goal is to

provide an understanding of the factors that determine the search duration in reality.

To fix ideas, imagine a couple who must find an apartment in a new city by September

1, as the contract with their current landlord terminates at the end of August. Since

they are not familiar with the city, they ask a broker to identify new apartments as they

become available. The availability of new apartments depends on many factors; there

is no guarantee that a new apartment will become available every day. Whenever the

broker finds an apartment, the husband and wife both express whether they are willing to

rent it or not. If they cannot agree, they forfeit the offered apartment—since the market

is a sellers’ market, there is no option to “hold” an offer while searching for a better one.

Although the couple agree on the need to rent some apartment, their preferences over

specific apartments are not necessarily aligned. The search ends once an agreement is

made; if the couple cannot agree on an apartment by September 1, they will be homeless.

Search problems in finite horizon are abundant in real economic situations. In single-

agent search problems, a worker may want to find a job before the term of the current

contract ends at a known date; a student may want to find a job before graduating;

a single may be searching an apartment before her moving. For multiple-agent cases,

apart from the above apartment search problem, there can be a firm that needs to fill a

position before the start of a new project whose recruiting committee consists of several

key decision makers; a family-operated manufactory may want to receive orders before

the current orders are completed in order to prevent the facilities from becoming idle.

Many questions arise regarding these situations: What are the incentives in the pres-

ence of finite horizon? How do they change when search is conducted with other agents

(e.g., when the wife needs to search with the husband)? What are the implications of

these changes on equilibrium behaviors?

To understand the answers to these questions, we consider an n-player search problem

with a deadline. Time is continuous and “opportunities” arrive according to a Poisson

process. Opportunities are i.i.d. realizations of payoff profiles. After viewing an oppor-

tunity, the players respond with “accept” or “reject.” The search ends if and only if all

players accept. If the search does not end by the deadline, players obtain an a priori speci-

fied payoff. Notice that the arrival rate of the Poisson process captures “friction” inherent

in the search process: larger arrival rates correspond to smaller friction. Since there is a

trivial subgame perfect equilibrium in which all players always reject whenever there are

two or more players, we analyze an (appropriately defined) trembling-hand equilibrium

that we show is (essentially) unique. Our focus in this paper is on an analysis of search
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duration in trembling-hand equilibrium, which is one of the observable characteristics of

equilibrium behaviors.1

Analyzing finite horizon problems, however, is difficult because of the non-stationarity,

so we take an indirect approach in order to understand the search duration. First we

analyze the limit expected search duration as the arrival rate goes to infinity—so there are

many offers until the deadline is reached—, which is relatively easier to analyze. Then we

argue that the limit expected duration is reasonably close to the expected durations given

finite arrival rates. Specifically, our analysis consists of three steps. The first two steps

are about the limit expected duration, and the third step is the “closeness” argument.

In the first step, we show that for any number of players and under minimal assump-

tions on the payoff distribution, the expected search duration does not shrink to zero

even in the limit as the search friction vanishes. Hence the mere existence of some search

friction has a nonvanishing impact on the search duration. This result is intuitive but by

no means obvious.2 The incentives are complicated. Waiting for future opportunities to

come offers a possibility of an incremental gain in payoffs, but an increased probability

of reaching the deadline. Both the reward and the cost go to zero as the search friction

vanishes; the optimal balance is difficult to quantify because agents need to make de-

cisions before observing all future realizations of offers. For this reason, we employ an

indirect proof that bounds the acceptance probability at each moment in time. The result

is in contrast with what the existing models of multi-agent search with infinite horizon

(Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2013)) imply because

the limit expected duration is zero due to discounting in these models.3

The second step investigates the agents’ incentives when they face opponents, and

explores the implication of these incentives on equilibrium behaviors. Specifically, our

comparative-statics results show that in the limit, the expected duration increases with

the number of agents involved in the search. The reason for this, which we call the

“ascending acceptability effect,” is that a player faces a larger incentive to wait if there

are more opponents, as in equilibrium the opponents become increasingly willing to accept

offers as time goes on. In addition, for a fixed number of agents, we demonstrate that the

limit expected search duration increases as heterogeneity of preferences are magnified.

We call this the “preference heterogeneity effect.” Given this observation, we solve for

the formula of the limit expected search duration as a function of the distribution of

payoff profiles of n agents. The formula enables us to understand how the number of

players and the payoff distribution affect the search duration.

1Search duration has indeed attracted attention in the job search literature, e.g., Mortensen (1970)
in a stationary environment, and Kiefer and Neumann (1979) and Heckman and Singer (1984) in non-
stationary environments. See Kiefer (1988) for a survey.

2Indeed, in Appendix A.9, we offer examples in which our assumptions do not hold and the result
fails.

3We discuss a comparison later in the Introduction as well as in Section 6 and Appendix A.1.
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Number of agents 1 2 3 5 10 100

Limit expected
duration

Cube .333 .500 .600 .714 .833 .980

Smooth Pareto frontier .333 .571 .692 .806 .901 .990

Table 1: The limit expected search durations with horizon length 1.
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Figure 1: Examples of the domain of feasible payoff profiles

In the third step, we analytically show that the speed of convergence for the ex-

pected search duration is fast. Moreover, we use numerical examples to show that the

limit expected duration of search is actually close to expected durations with small (but

nonnegligible) search friction. This provides evidence that our limit analysis contains

economically-meaningful content, and the mere existence of some friction is actually the

main driving force of the positive duration in reality—so the effects that we identify in

the first and second steps are the keys to understanding the duration in reality.

Table 1 illustrates how the limit expected search durations change with respect to

the number of agents n. When the feasible payoff set is an n-dimensional cube [0, 1]n,

the limit expected search duration increases in n. We formally show in Step 2 that

this is general: When the distributions of payoffs are independent across players, the

limit expected search duration increases in the number of agents. In a fully general

setting, however, we do not assume independence and the duration formula depends on

the distribution in a complicated manner. In a special case where the feasible payoff

set has a smooth Pareto frontier as in the two-player examples in Figure 1 and the

distribution has a strictly positive and continuous density over its support, the limit

expected search duration depends only on and increases in n. As the table shows, the

difference from the case with n = 1 under distributions with smooth Pareto frontiers is

larger than the difference under independent distributions, and our formula of the limit

expected duration clarifies why it is so. In short, when the Pareto frontier is smooth the

preferences are more heterogeneous around the limit expected payoff profile, which makes

the limit expected duration longer. Figure 2 depicts the cumulative distribution functions

of the durations given various arrival rates when the feasible payoff set is as depicted in the

left panel of Figure 1. The figure shows that the limit cumulative distribution function

is non-degenerate, and the convergence speed with respect to the arrival rate is fairly

fast. For example, the arrival rate of 10 (and the horizon length of 1) corresponds to the
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Figure 2: The cumulative distribution functions of the durations for the case with two
players where the payoff profile is uniformly distributed on the set shown in the left panel
of Figure 1. The parameter λ is the Poisson arrival rate, and the horizon length is 1.

case where there are ten weeks to search an apartment, and the information of a new

apartment comes only once in every week on average—quite a high friction. Even in this

case, it is clear in the figure that the finiteness of arrival rates has little effect on the

duration. A straightforward calculation shows that the expected search duration in this

case is 0.608, which is only about 6.5% higher than the limit.

Difficulties

The two key features in our model, deadline and multiple agents, give rise to new theoreti-

cal challenges. First, the existence of a deadline implies that the problem is nonstationary :

the problems faced by the agents at different moments of time are different. Nonstation-

arity often results in intractability, but we partially overcome this by taking an indirect

approach: we first analyze the limit expected duration (the first and second steps) which

is relatively easier to characterize, and then argue that the limit case approximates the

cases with finite arrival rates reasonably well (the thrid step). Second, one may argue

that since each player’s decision at any given opportunity is essentially conditional on the

situation where all other agents accept, the problem essentially boils down to a single-

player search problem. This argument misses an important key feature of our model. It is

indeed true in equilibrium that, at each given opportunity, the decisions by the opponents

do not affect a player’s decision. However, the player’s expectation about the opponents’

future decisions affects her decision today, and such future decisions by opponents are in

turn affected by other agents’ decisions even further in the future. The two “futures” are

different precisely due to the nonstationarity—hence these two difficulties derived from

the two key features of our model interact and produce an additional difficulty. It will

become clear in our analysis that it is this interaction that is crucial to our argument in

the three steps.

These conceptual challenges invite technical difficulties that we need to handle. On

one hand we want a model to be tractable enough to characterize the search duration, so

we employ a continuous-time framework.4 On the other hand, when time is continuous

4Sakaguchi (1978) analyzed a continuous-time model with finite horizon as ours and considered a
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the recursive dependence of the actions on future strategies that we discussed above

continues indefinitely. This implies that there is a possibility for an infinite sequence of

punishments, which induces the potential for multiplicity of equilibria that would prevent

us from conducting unambiguous comparative statics. To overcome this difficulty, we

use trembling-hand equilibrium as a refinement concept.5 The idea is that the small

probability of a tremble by the opponents pins down the behavior when the offer is either

highly desirable or highly undesirable. We show that when the horizon is finite so that the

continuation payoff at the deadline is uniquely determined, even a small probability of a

tremble is enough to actually pin down the behavior at almost all the payoff realizations

at any moment of time. Uniqueness can be proven under subgame perfect equilibrium if

the order of moves at each opportunity is sequential. However, due to the possibility for

an infinite sequence of punishments, this would need a proof similar to the one for the

uniqueness of trembling-hand equilibrium payoffs in our model. One merit of employing

trembling-hand equilibrium is that the timing of responses at a given opportunity (e.g.,

simultaneous vs. sequential) does not affect the set of equilibrium outcomes, while it does

under subgame perfect equilibrium.

Even under the continuous-time setting, it is difficult to directly analyze the duration

so we employ the indirect approach in which we first consider the limit as the arrival rate

goes to infinity. The characterization of the limit behavior depends on the probability

distribution of offers around the efficiency frontier of the feasible payoff set, and it is easier

to handle when we impose the technical assumptions employed in the literature of multi-

agent search (Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2013)),

namely the compact and convex feasible payoff set with strictly positive and continuous

density.6 However, we would like to be as agnostic as possible about reasonability of

different assumptions in part because the simplifying assumptions in the literature rule

out several cases that some other strings of the literature on search have paid a particular

attention to (e.g. log-normal or exponential distributions).7 For this reason, we do not use

the proof technique used in the literature of multi-agent search that makes extensive use

of particular distributional assumptions; rather we employ a new proof technique that is

free from almost all distributional assumptions. This enables us to better understand the

incentives faced by agents in our model; for example, it turns out that the result that the

limit expected duration is strictly positive is orthogonal to the simplifying assumptions.

The proof of positive limit expected duration identifies a lower bound of the cutoff for

each moment of time, and then use that to bound the acceptance probability. This lower

special class of distributions of payoffs. He focused on Markov cutoff strategies, and did not prove
uniqueness even in that class. He did not analyze equilibrium durations either.

5The uniqueness of trembling-hand equilibrium is straightforward in a discrete-time model with finite
horizon since the usual backward induction works.

6Cho and Matsui (2013, Section 4.4) generalize some of their results to non-convex cases.
7Restricting attention to strictly positive densities over a compact feasible payoff set rules out the

distributions that are continuous over Rn
+.
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bound is computed by specifying a continuation strategy that is not necessarily a best

response. We find that the specified continuation strategy is necessarily nonstationary

for the bound to be tight enough. The duration formula can be obtained under general

distributions as well, and it gives us insights on how different aspects of distributions

affect the duration.8 For example, we can discuss which term in the duration formula is

derived from what aspect of the payoff distribution.

A Brief Summary of the Relation to the Literature

The present paper is related in various ways to a number of lines of the literature. Due

to its volume we opted to provide a more comprehensive review in Appendix B. Here,

we delve into the detail of the comparison to the literature on multi-agent search with

infinite horizon because, in the subsequent sections, we repeatedly compare our results

to the ones in that literature.

Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2013) consider multi-

agent search models with infinite horizon in which a unanimous agreement is required

to accept an alternative, and show that the equilibrium outcome approaches the Nash

bargaining solution irrespective of the distribution of offers, as the frequency of offers

goes to infinity. In the discussion section (Section 6), we consider a model in which

payoffs realize as soon as an agreement is reached and show a similar result (convergence

to the Nash bargaining solution) even with the presence of a deadline. The difference

between these results and our main result is that the payoffs are discounted in the former.

With discounting, the effect of the deadline (if any) vanishes as the deadline becomes far

away, so the continuation payoff profile converges to a point that does not depend on the

payoff distribution around low payoffs, which are not accepted anyway in the relevant

future. In our main model with payoffs realizing at the deadline (or equivalently, without

discounting), however, the effect of the deadline does not vanish, and the equilibrium

dynamics close to the deadline, which are affected by the payoff distribution at low

payoffs, critically determines the continuation payoffs at times far from the deadline.

This is because the continuation payoff is increasing in the remaining time (as the more

offers there are the better off players are), so if the continuation payoff profile at some

point in time is close to the Pareto frontier, then further back in time it stays close to

that point.

Compte and Jehiel (2010) and Albrecht et al. (2010) consider general majority rules.

Albrecht et al. (2010) analyze an infinite-horizon model with independent payoff distri-

butions across agents. Among their results, the most related to ours is the one on the

unanimity case, in which they show that the expected search duration increases in the

number of agents. The logic is that the cutoff decreases in the number of agents while

the expected gain conditional on future acceptance does not change so much due to their

8See Section 4.2.2 and Appendix A.15 for the detail.
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distributional assumption, and hence the equilibrium condition implies that the expected

wait time until the acceptance has to increase. This is because the cutoff is equal to

the continuation payoff, which in turn is roughly equal to the discounted value of the

sum of the cutoff payoff and the expected gain. We show the same comparative statics

with respect to the number of agents. However, as we explain in Section 4.2.1, our logic

relies on nonstationarity of cutoffs which is not present in their analysis where stationary

equilibrium is assumed.

Under the settings of all the above papers,9 the expected search duration shrinks to

zero in the limit as the frequency of offers goes to infinity, while it often converges to a

positive duration under our setting. The characterization of the expected search duration

can be neatly done by analyzing the limit expected duration because of this positiveness.

Structure of the Paper

The paper is organized as follows. Section 2 provides the model. Section 3 provides

preliminary results. In particular, we show that trembling-hand equilibria take the form

of cutoff strategies, by which we mean each player at each moment of time has a “cutoff”

of payoffs below which they reject offers and otherwise accept. Section 4 is the main

section of the paper. Subsections 4.1, 4.2, and 4.3 correspond to Steps 1, 2, and 3 of

our argument, respectively. Section 5 provides a welfare analysis of our main model.

There, we discuss Pareto efficiency of the limit payoff profile, and examine how the payoff

distribution affects the limit payoff profile.

In order to isolate the effects of multiple agents and a finite horizon as clearly as pos-

sible, the departure from the standard model is kept minimal. This enables us to extend

and/or modify our model in a wide variety of directions. In Section 6, we provide dis-

cussions on such extensions/modifications. Section 7 concludes. The Appendix contains

materials that we could not cover in the main text: additional discussion topics, numer-

ical examples, and a comprehensive literature review. Proofs are given in Appendix D

unless otherwise noted.

2 Model

The Basic Setup

There are n players searching for an indivisible object. Let N = {1, . . . , n} be the set of

players. A typical player is denoted by i, and the other players are denoted by −i. The
players search within a finite time interval [−T, 0] with T > 0, on which opportunities

of agreement arrive according to the Poisson process with arrival rate λ > 0. At each

9The “Finite vs. infinite horizon with multiple agents” section in Appendix B discusses additional
papers: Alpern and Gal (2009), Alpern et al. (2010), Moldovanu and Shi (2013), Bergemann and Välimäki
(2011), and Herings and Predtetchinski (2014).
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opportunity, Nature draws an indivisible object which is characterized by a payoff profile

x = (x1, . . . , xn) following an identical and independent probability measure µ defined

on the Borel sets of Rn. We call a payoff profile x ∈ Rn an allocation or an offer. After

allocation x is realized, each player observes x and simultaneously responds by either

accepting or rejecting x without a lapse of time.10 Let B = {accept, reject} be the set of

responses in this search process. If all players accept, the search ends, and at time 0 the

players receive the corresponding payoff profile x. If at least one of the players rejects the

offer, then they continue to search. If players reach no agreement before the deadline at

time 0, they obtain the disagreement payoff profile normalized at xd = (0, . . . , 0) ∈ Rn.11

Support and Pareto Efficiency

Let X = {x ∈ Rn |µ(Y ) > 0 for all open Y ∋ x} be the support of µ. Note that, by

definition, X ⊆ Rn is a closed subset on which µ has a full support. Without loss of

generality, we assume that X ⊆ Rn
+.

12 An allocation x = (x1, . . . , xn) ∈ X is Pareto

efficient in X if there is no allocation y = (y1, . . . , yn) ∈ X such that yi ≥ xi for all i ∈ N

and yj > xj for some j ∈ N . An allocation x ∈ X is weakly Pareto efficient in X if there

is no allocation y ∈ X such that yi > xi for all i ∈ N . The set of all Pareto efficient

allocations and that of all weakly Pareto efficient allocations in X are called the Pareto

frontier and the weak Pareto frontier of X, respectively. We sometimes consider weak

Pareto efficiency also in X̂ = {v ∈ Rn
+ |x ≥ v for some x ∈ X} which is the nonnegative

region of the comprehensive extension of X.

Assumptions

We make the following mild assumptions throughout the paper.

Assumption 1. (a) The expectation
∫
X
xi dµ is finite for all i ∈ N .

(b) If n ≥ 2, for all i ∈ N , the marginal distribution of µ on i’s payoffs has a density

function that is locally bounded.13

Condition (a) is necessary and sufficient for existence of a best response. If it is

violated, a player always wants to wait for better payoffs before the deadline, so a best

response does not exist. Condition (b) rules out a distribution which has infinitely large

10The assumption that each player i observes not only xi but also x−i does not affect our analysis.
That is, even in the model in which each player i only observes xi, all of our results hold.

11This is without loss of generality as long as payoffs realize at the deadline because we can consider
an equivalent game in which the origin is shifted to the disagreement point. When the payoffs realize
upon agreement as in Appendix A.1, such a shifting cannot induce an equivalent game. However, the
change would be minor, as we will explain in footnote 63 in Appendix A.1.

12This is without loss of generality as long as there is a positive probability in Rn
+ since the strategic

environment is identical to the case where the arrival rate is adjusted to µ(Rn
+)λ because it will turn out

that no player accepts any strictly negative payoffs according to the equilibrium concept we will employ.
13A function g(y) : R → R is locally bounded if for all y ∈ R, there exist C > 0 and ε > 0 such that

|g(y′)| ≤ C for all y′ ∈ (y − ε, y + ε). This property reduces to the (global) boundedness whenever X is
a bounded set.

9



density at some point, while it still allows for a distribution under which there is a positive

probability that an allocation falls on degenerate subsets such as a line segment that is not

orthogonal to any axis. In Appendix A.9, we will provide an example that demonstrates

the need for condition (b) for our main results to hold.

Histories and Strategies

A history at −t ∈ (−T, 0] where players observed k (≥ 0) offers14 in [−T,−t) consists of

1. a sequence of times (t1, . . . , tk) when there were Poisson arrivals before −t, where
−T ≤ −t1 < −t2 < · · · < −tk < −t,

2. allocations (x1, x2, . . . , xk) drawn at opportunities (t1, t2, . . . , tk),

3. acceptance/rejection decision profiles (b1, . . . , bk), where each decision profile bl (l =

1, . . . , k) is contained in Bn \ {(accept, . . . , accept)},

4. allocation x ∈ X ∪ {∅} at −t (x = ∅ if no Poisson opportunity arrives at −t).

We denote a history at time −t by
(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
. Let H̃k

t be the set

of all such histories at time −t, H̃t =
∪

k=0,1,2,... H̃k
t and H̃ =

∪
−t∈[−T,0] H̃t.

15 Let

Hk
t =

{(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
∈ H̃k

t | x ̸= ∅
}

be the history at time −t when players have an opportunity and there have been k

opportunities in the past. Let Ht =
∪

k=0,1,2,... Hk
t and H =

∪
−t∈[−T,0] Ht. A (behavioral)

strategy σi of player i is a function from H to the set of probability distributions over the

set of responses B. Let Σi be the set of all strategies of i, and Σ =×i∈NΣi. For σ ∈ Σ,

let ui(σ) be the expected payoff of player i when players play σ.16

Equilibrium Notions

A strategy profile σ ∈ Σ is a Nash equilibrium if ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ

′
i ∈ Σi

and all i ∈ N . Let ui(σ |h) be the expected continuation payoff of player i given that

14Precisely speaking, there are histories in which infinitely many opportunities arrive. We ignore these
possibilities since such histories happen with probability zero under Poisson processes.

15We let H̃0
T be {(T,∅)} and H̃k

T be an empty set for each k ≥ 1.
16The function ui(σ) is well-defined for the following reason: Hk :=

∪
t Hk

t is seen as a subset of
R(2n+1)k+(n+1) because every history h ∈ Hk is written as h =

(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
where

for each l = 1, . . . , k, (tl, xl) ∈ R×Rn and bl ∈ {accept, reject}n which is equivalent to {0, 1}n ⊂ Rn, and
(t, x) ∈ R×Rn. Thus, Hk is endowed with a Borel sigma-algebra. We assume thatH =

∪
k Hk is endowed

with a sigma-algebra induced by these sigma-algebras on Hk, and a strategy must be measurable with
respect to this sigma-algebra. The measurability ensures that a strategy profile generates a probability
measure on the set of terminal nodes. See Stinchcombe (1992) for a detailed treatment of strategies
in general continuous-time games. The definition of behavioral strategies implicitly assumes that the
random variables given by the distributions of responses at distinct k’s are mutually independent. An
analogue of Kuhn’s theorem holds under this assumption, so the use of behavioral strategies is without
loss of generality. See Aumann (1964) for more discussions on the definition of behavioral strategies and
a proof of Kuhn’s theorem in extensive-form games with uncountably many nodes.
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history h ∈ H̃ is realized and strategies taken after h is given by σ. A strategy profile

σ ∈ Σ is a subgame perfect equilibrium if ui(σi, σ−i |h) ≥ ui(σ
′
i, σ−i |h) for all σ′

i ∈ Σi,

h ∈ H, and all i ∈ N . A strategy σi ∈ Σi of player i is a Markov strategy if for every

history h ∈ Ht at every −t, σi(h) depends only on the time −t and the drawn allocation

x. A strategy profile σ ∈ Σ is a Markov perfect equilibrium if σ is a subgame perfect

equilibrium and σi is a Markov strategy for all i ∈ N . We will later show that players

play Markov perfect equilibrium actions (except at histories in a zero-measure set) if they

follow a trembling-hand equilibrium defined below. For ε ∈ (0, 1/2), let Σε be the set of

ε-constrained strategy profiles which prescribe probability at least ε for both responses

in {accept, reject} after all histories in H. A strategy profile σ ∈ Σ is an extensive-form

(or agent normal-form) trembling-hand perfect equilibrium (henceforth, trembling-hand

equilibrium for short) if there exists a sequence (εm)m=1,2,... and a sequence of strategy

profiles (σm)m=1,2,... such that εm > 0 for all m, limm→∞ εm = 0, σm ∈ Σεm , σm is a Nash

equilibrium in the game with a restricted set of strategies Σεm (εm-constrained game) for

all m, and limm→∞ σm(h) = σ(h) for all h ∈ H with respect to the pointwise convergence

in histories.17

3 Preliminary Results

In this section, we present preliminary results which will become useful in the subsequent

analyses. We will show that there exists an essentially unique trembling-hand equilibrium,

in which every player plays a “cutoff strategy.” We will derive an ordinary differential

equation that characterizes the cutoff strategy profile in the equilibrium. In addition,

we will observe a basic invariance: The change in equilibrium continuation payoffs when

raising the arrival rate is the same as that when stretching the time length from the

deadline with the same ratio. Finally, by examining the differential equation, the limit

equilibrium payoff profile as λ→ ∞ is shown to be weakly efficient.

The next proposition shows that trembling-hand equilibrium is essentially unique.

Proposition 1. Suppose that σ and σ′ are both trembling-hand equilibria. Then for

almost all t ∈ [0, T ] and almost all histories h, h′ ∈ H̃t \ Ht, ui(σ|h) = ui(σ
′|h′) for all

i ∈ N .18

That is, regardless of the history, any two trembling-hand equilibria give rise to the

same continuation payoff at time −t. Four remarks are in order: First, we ruled out histo-

17The εn does not need to be the same across all histories. All the results in the paper remain true
as long as there is a sequence (ε̄mi )i∈N,m of maps with ε̄mi : H → (0, 1/2) such that for each i ∈ N , (i)
infh∈H ε̄mi (h) > 0 for each m, and (ii) ε̄mi (h) → 0 as m → ∞ for all h ∈ H.

18We assume that the set of histories H̃k
t \ Hk

t with k realizations is endowed with a measure induced
by the product of the Lebesgue measure (for t’s), the measure µ (for x’s), and the counting measure
(for accept/reject choices), and that H̃t \ Ht =

∪
k H̃k

t \ Hk
t is endowed with the measure given by the

countable sum of the measures. “Almost all” histories are considered with respect to this measure.
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ries inHt, because different payoffs realized at −t clearly give rise to different continuation

payoffs if these payoffs are high enough for players to accept. Second, the proposition in

particular implies that the equality holds with probability one if h and h′ are induced as

a result of the play by σ and σ′, respectively. Third, since agents move simultaneously,

there exists a subgame perfect equilibrium in which all players reject any allocations.

Trembles rule out such a trivial equilibrium. In an ε-constrained game, a player will

optimally accept a favorable allocation for herself, expecting the others to accept it with

a small probability. Fourth, and relatedly, there exist subgame perfect equilibria in which

players accept low offers but reject high offers, and have strict incentives at almost all

histories in H.19 Our trembling-hand equilibrium also rules out such equilibria. Since

we work with continuous time, essential uniqueness is not an easy consequence of finite

horizon. Indeed, an analogous proof would be necessary even when the moves at each

opportunity were sequential. We detail the intuition behind the result in Section 6.

A Markov strategy σi of player i ∈ N is a cutoff strategy if there exists a function

ci : [0, T ] → R+ such that player i who is to respond at time −t accepts allocation

x ∈ X whenever xi ≥ ci(t), and rejects it otherwise. We call ci(t) the cutoff of σi at

time −t. For a payoff profile v = (v1, . . . , vn) ∈ Rn
+, we define a set of payoff profiles

that each agent i finds weakly better than vi by A(v) = {x ∈ X |xi ≥ vi for all i ∈ N}.
When players play cutoff strategies with cutoff profile c(t) :=

(
c1(t), . . . , cn(t)

)
, we call

A(c(t)) an “acceptance set” as they agree with an allocation x at time −t if and only if

x ∈ A(c(t)). We often denote this acceptance set by A(t) with a slight abuse of notation

when the cutoff profile in consideration is not ambiguous.

If players play a Markov strategy profile σ and there is no Poisson arrival at time

−t, then player i has an expected payoff ui(σ|h) at −t that does not depend on history

h ∈ H̃t \ Ht realized at time −t. To simplify the notation, as long as a Markov strategy

profile in consideration is clear, we hereafter omit to explicitly refer to it, and denote by

vi(t) the continuation payoff of i conditional on histories in H̃t \ Ht when it is played.

The following proposition shows that there exists a trembling-hand equilibrium that

consists of cutoff strategies, and characterizes the path of cutoffs.

Proposition 2. There exists a trembling-hand equilibrium that consists of (Markov) cut-

off strategies such that (i) the cutoff profile at each time −t ∈ [−T, 0] equals the equilibrium
continuation payoff profile v(t) = (v1(t), . . . vn(t)), (ii) v(t) is differentiable in t, and (iii)

v(t) is given by a solution of the following ordinary differential equation (ODE)

v′(t) = λ

∫
A(t)

(
x− v(t)

)
dµ (1)

with an initial condition v(0) = (0, . . . , 0).

19An example similar to the one in Cho and Matsui (2013, Proposition 4.4) can be used to show this
result.
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This proposition is shown by the following argument. First, suppose that players

play a cutoff strategy profile σ whose cutoff profile coincides with the continuation payoff

profile v(t) at each time −t. Given the cutoff strategy σi, player i accepts the drawn

payoff profile x ∈ X if and only if player i finds xi to be no worse than her continuation

payoff. Since such a behavior clearly maximizes her continuation payoff at each time −t,
σ is a Markov perfect equilibrium.

We can next show that there exists a cutoff strategy profile whose cutoff profile coin-

cides with the continuation payoff profile v(t) at each time −t if vi(t) satisfies the following
recursive expression for each i ∈ N and each −t ∈ [−T, 0]:

vi(t) =

∫ t

0

(∫
X\A(τ)

vi(τ) dµ+

∫
A(τ)

xi dµ

)
λe−λ(t−τ) dτ

=

∫ t

0

(
vi(τ) +

∫
A(τ)

(
xi − vi(τ)

)
dµ

)
λe−λ(t−τ) dτ . (2)

This is because of the following: Suppose that the cutoff profile is c(t) at each time −t.
After time −t, players receive the first Poisson opportunity at time −τ ∈ (−t, 0) with

probability density λe−λ(t−τ). If all players accept the offer x, i.e., x ∈ A(c(τ)), then

an agreement is reached with x which gives xi to each i. If some player rejects x, then

search continues with continuation payoff vi(τ) for each i. Recalling that we defined

A(τ) = A(v(τ)), if vi(t) satisfies (2) for each i ∈ N and each −t ∈ [−T, 0], then there

exists a cutoff strategy profile with cutoff profile c(t) = v(t) for each −t such that the

continuation payoff profile is v(t) for each −t.
We can show that Bellman equation (2) implies differentiability of vi(t).

20 Multiplying

both sides of (2) by eλt and differentiating with respect to t yield the ordinary differential

equation (1) of continuation payoff profile v(t) defined in X̂.

Now, a standard argument for ordinary differential equations shows that ODE (1)

has a solution whenever Assumption 1 holds.21 The above argument only shows that

ODE (1) has a solution, and if a cutoff strategy profile employs a cutoff profile given by

a solution of (1), it is a Markov perfect equilibrium. In Appendix D.3, we will show that

it is in fact a trembling-hand equilibrium. By Proposition 1 and the above argument, the

solution of ODE (1) is essentially unique, and since a solution v(t) must be continuous,

ODE (1) has a unique solution.

Therefore the game has an essentially unique trembling-hand equilibrium for any given

µ satisfying Assumption 1. Let us denote the unique solution of (1) by v∗(t;λ), which is

the continuation payoff profile in the trembling-hand equilibrium. We simply denote this

by v∗(t) as long as there is no room for confusion. The probability that all players accept

20We show this in Appendix D.3.
21This is because Assumption 1 (b) ensures continuity in v of the right hand side of (1). See Coddington

and Levinson (1955, Chapter 1) for a general discussion about ODE.
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Figure 3: The path and the velocity vector of ODE (1)

a realized allocation at time −t on the equilibrium path conditional on the event that an

opportunity arrives at −t, i.e., µ(A(v∗(t))), is referred to as the “acceptance probability”

at time −t. Because this is unique for each −t, the expected search duration is uniquely

defined. This uniqueness will be helpful in conducting unambiguous comparative statics.

Let us make three observations about ODE (1). First, Figure 3 describes an illustra-

tion of a typical path and the velocity vector that appear in this ODE for n = 2. The

shaded area shows the acceptance set A(t), whose barycenter with respect to the proba-

bility measure µ is
∫
A(t)

xdµ
/
µ(A(t)). The velocity vector v∗′(t) is parallel to the vector

from v∗(t) to the barycenter of A(t), which represents the gain upon agreement relative

to v∗(t). The absolute value of v∗′(t) is proportional to the weight µ(A(t)). Note that

ODE (1) immediately implies v∗′i (t) ≥ 0 for all t and i ∈ N , and v∗′i (t) = 0 if and only

if µ(A(t)) = 0. Thus, for each i ∈ N , the continuation payoff v∗i (t) grows as t increases,

and eventually either converges to the limit payoff, or diverges to infinity.

Second, since the right hand side of ODE (1) is linear in λ, we have v∗(t;αλ) =

v∗(αt;λ) for all α > 0 and all t such that −t,−αt ∈ [−T, 0]. By considering the limit as

α→ ∞, we have the following proposition:

Proposition 3. The two limits of v∗(T ;λ) coincide, i.e., limλ→∞ v∗(T ;λ) = limT→∞ v∗(T ;λ),

if one of them exists.

We henceforth denote this limit by v∗ ∈ Rn
+. In the next section, we sometimes deal

with these two limits interchangeably. Note that the equality implies that limλ→∞ v∗(T ;λ)

does not depend on T > 0.

Third, we argue weak Pareto efficiency of the limit allocation. Suppose that v∗ :=

limλ→∞ v∗(T ;λ) = limT→∞ v∗(T ;λ) exists but is not weakly Pareto efficient. Then there

exists x ∈ X that strictly Pareto dominates v∗. Since x belongs to the support of µ,

µ(Y ) > 0 for any open set Y ⊆ Rn
+ that includes x. Since A(v∗) contains an open

neighborhood of x, µ
(
A(v∗)

)
> 0. This implies that the right hand side of ODE (1)

is strictly positive, contradicting the starting assumption that v∗ = limλ→∞ v∗(t;λ) =

limt→∞ v∗(t;λ). Hence we obtain the following proposition:

14



Proposition 4. Fix t > 0, and suppose that the solution v∗(t;λ) of equation (1) converges

to v∗ ∈ X̂ as λ→ ∞. Then v∗ is weakly Pareto efficient.22

We note that if n = 1, weak Pareto efficiency immediately implies Pareto efficiency.

For the case with n ≥ 2, we will have further discussions about efficiency in Section 5,

where we will show in particular that the limit allocation v∗ is Pareto efficient for all

convex X.

4 Duration of Search

In this section, we discuss the duration of search in our model. Our argument consists

of three steps: In Section 4.1 we show that even under quite mild conditions, search

takes a positive amount of time even in the limit as the friction vanishes. In Section 4.2,

we investigate the agents’ incentives when they face the opponents, and explore the

implications of these incentives on equilibrium behaviors. In Section 4.3, we demonstrate

that the limit expected duration is “close” to the expected durations for finite arrival

rates. This provides evidence that our limit analysis contains economically-meaningful

content, and the mere existence of some friction is actually the main driving force of

positive duration in reality—so the effects that we identify in Steps 1 and 2 are the keys

to understanding the duration in reality.

Let D(λ) be the expected duration in the equilibrium for given λ when T = 1.23

Note again that this is uniquely defined due to the essential uniqueness that we proved

in Propositions 1 and 2. Since we have v∗(T ;λ) = v∗(1;λT ) as discussed in Section 3,

the expected duration for general T with arrival rate λ is written as D(λT )T . We define

D(∞) = limλ→∞D(λ) whenever the limit is well-defined.24

4.1 Step 1: Positive Duration

The first step of our argument shows the following: For any number of players n and

any probability distribution µ satisfying fairly mild assumptions, the limit expected search

duration as the search friction vanishes is strictly positive.

We first show the result for the case with n = 1 (Theorem 1) and detail the intuition.

Then we generalize the result to the case of an arbitrary number of players (Theorem 2).

Nonstationarity of strategies will be important in both proofs.

22Note that this does not necessarily imply weak Pareto efficiency in the convex hull when X is
nonconvex. That is, the convex hull can contain payoff profiles that strictly Pareto-dominate the limit
expected payoff profile, while such allocations cannot be achieved under a trembling-hand equilibrium.
See Example 4 in Section 5 for a further discussion on this.

23We do not express dependence on n and µ explicitly as long as there is no room for confusion.
24In Section 4.2.2, we will be explicit about the conditions that guarantee existence of the limit.
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4.1.1 Single Agent

Roughly, there are two effects of having a higher arrival rate. On one hand, for any given

(small) time interval, there are an increasing number of opportunities, thus it becomes

more likely to get a lucky draw. On the other hand, since there will be more and more

opportunities in the future as well, the player becomes pickier. Our result shows that

these two effects balance each other out. The incentives are complicated because the

value of the second effect is difficult to quantify. This difficulty is caused by the fact

that agents need to make decisions before observing all future options, and in such an

environment we need to investigate the trade-off between an incremental gain in payoffs

from waiting for a future opportunity to arrive and an increased probability of reaching

the deadline.

To explain the detailed intuition for our result, let us specialize to the case ofX = [0, 1]

and µ being the uniform distribution. We first show that if the acceptance probability as

a function of time −t < 0 is O( 1
λt
) then the limit expected duration is strictly positive.25

Then we show that the acceptance probability must be indeed O( 1
λt
).

Suppose that the acceptance probability is O( 1
λt
). Then, the probability that an

agreement does not take place until time −T
2
is at least

e−λC 1
λT/2 = e−2C

T

for some constant C > 0, and this is strictly positive. This means that the limit expected

duration is at least a strict convex combination of 0 and T
2
, and therefore is strictly

positive.

Now we explain why we expect such a small acceptance probability. Fix time −t. Note
that the cutoff at −t must be equated with the continuation payoff at −t by optimality

at −t, and the continuation payoff must be at least as good as the expected payoff by

playing some arbitrarily specified strategy from time −t on by optimality in the future.

Also, the cutoff at −t uniquely determines the acceptance probability at −t. That is,

by specifying a future strategy, we can obtain a lower bound of the continuation payoff

which must be equal to the cutoff, and this gives us an upper bound of the acceptance

probability:

The acceptance probability

= 1− the cutoff of the optimal strategy

= 1− the continuation payoff from the optimal future strategy

≤ 1− the continuation payoff from an arbitrarily specified future strategy.

25In general, for functions g(y) and h(y), we say that g(y) = O(h(y)) if there exist C > 0 and ȳ such
that |g(y)| ≤ C · |h(y)| for all y ≥ ȳ. In this expression, λt is substituted for y.

16



To see what type of future strategies will generate an interesting bound, we note that

a good future strategy would satisfy two features. The first is that the payoff conditional

on acceptance is high, and the second is that the probability of acceptance over the

whole time horizon is high. In order to examine the tradeoff between these two, below

we examine two scenarios with constant future cutoffs. In each of them, either one of the

two features fails. Then we examine an alternative future strategy that takes the best of

both worlds and gives us the desired bound.

As the first scenario, suppose that the cutoff is 1 − O( 1
λt
) at any time −s after −t.

Then, a lower bound of the probability that there will be no acceptance in the future can

be calculated as

e−λC 1
λt = e−

C
t

for some constant C > 0, and this is strictly greater than 0 irrespective of λ. This means

that even in the limit as λ → ∞, the probability of no agreement at time 0 does not

shrink to zero. But then, the continuation payoff from this strategy must be at most a

strict convex combination of 1 (the best possible payoff) and 0 irrespective of λ, which

means that the acceptance probability at −t is bounded from below by a strictly positive

number that is independent of λ, and thus cannot be O( 1
λt
).

In the second scenario, consider a future strategy such that at any time −s after −t,
the cutoff is such that the player accepts with a probability of a higher order than 1

λt

(thus she accepts with a higher probability; e.g., 1√
λt
). Then the probability of acceptance

in the future indeed tends to 1 as λ → ∞, but the payoff conditional on acceptance is

smaller than the best payoff (i.e., 1) by the amount of the order higher than 1
λt
. Hence

the cutoff at −t must be smaller than the best payoff by such an amount, which means

that the acceptance probability at −t is of the order higher than 1
λt
.

The analysis of the above two scenarios reveals the tradeoff faced by the player:

Setting high future cutoffs gives her a high payoff conditional on acceptance, but reduces

the acceptance probability. On the other hand, setting low future cutoffs results in a

low payoff conditional on acceptance but raises the acceptance probability. This suggests

that a good strategy must specify a high cutoff for a sufficiently long time to ensure a

high payoff conditional on acceptance, and lower cutoffs towards the deadline to ensure

a high enough acceptance probability. Specifically, consider a non-stationary cutoff plan

1− 2
λs+2

for each time −s after time −t. This plan has a feature that at any time −s < 0,

the acceptance probability is

2

λs+ 2
=
λt+ 2

λs+ 2
· 2

λt+ 2
= O

( 1

λt

)
.

Thus for any positive future time, the player’s payoff conditional on acceptance is smaller

than the best payoff by the amount O( 1
λt
). Yet this gives us the limit acceptance proba-
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time

acceptance prob.

0
T/2

≈ 2/λT

T/4

≈ 4/λT

T/8

≈ 8/λT

T/16

≈ 16/λT

· · ·

Figure 4: A computation of a lower bound of the agreement probability.

bility of 1, as the probability for no acceptance can be calculated as:

e−
∫ t
0 λ 2

λs+2
ds = e−[2 ln(λs+2)]t0 =

( 2

λt+ 2

)2
→ 0 as λ→ ∞.

We now provide rough intuition for why this can achieve the limit acceptance proba-

bility of 1. In Figure 4, the curve represents the acceptance probability when the agent

plays the above strategy. The height of the rectangle in subinterval [− T
2k−1 ,− T

2k
] for fixed

k approximates 2k/(λT ) when λ is sufficiently large. Thus the area of the rectangle is

approximately 1/λ, which is independent of k. Since the expected number of opportu-

nities in a subinterval is proportional to λ, the agreement probability in a subinterval is

constant in k, and the disagreement probability over all subintervals decreases with an

exponential speed as the number of subintervals increases.

More precisely, we can show that for any small ε > 0, the acceptance probability is

higher than 1− ε for a large enough λ. Let K ≥ −2 log ε and λ ≥ 2K/T . Let us consider

division [− T
2k−1 ,− T

2k
) for k = 1, 2, . . . , K of the interval [−T,− T

2K
). The strategy with

cutoff 1− 2
λs+2

makes an acceptance in each subinterval with probability at least

1− e
−λ· 2

λ(T/2k−1)+2
· T

2k = 1− e
− λT

λT+2k ≥ 1− e−1/2 > 0.

Then the probability of reaching an agreement within the K subintervals is higher than

1− e−K/2 ≥ 1− ε.26

Finally, under the strategy given, the continuation payoff is 1 − O
(

1
λt

)
for all t > 0.

Thus, conditional on accepting, the loss from the best payoff is only of the order of O
(

1
λt

)
for any t > 0.

Overall, a lower bound of the continuation payoff at time −t with the given future

strategy is 1 − O
(

1
λt

)
, which implies that O

(
1
λt

)
is an upper bound of the acceptance

probability at time −t. Hence, we conclude that, when X = [0, 1] and the distribution µ

26In the kth subinterval, agents disagree with probability at most e−1/2 for every k. Therefore the
probability that agents disagree over all K subintervals is at most e−K/2.
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is uniform, the limit expected duration is strictly positive. This argument is generalized

to the cases of any distributions satisfying Assumption 1 and the following assumption.

Let F (x) be the cumulative distribution function of µ.

Assumption 2. There exists a concave function φ such that 1 − φ(x) is of the same

order as 1− F (x) in X.27

To see what this assumption means, consider two separate cases—bounded X and

unbounded X. If X is bounded, the assumption follows from a simple condition that

there exists a neighborhood of the supremum payoff such that F is differentiable and has

a bounded slope. If X is unbounded, a sufficient condition is that there exists x̃ such that

F is concave on (x̃,∞), or equivalently, there exists a nonincreasing density function f

on (x̃,∞).

Recall that D(λ) is the expected duration in the equilibrium for the arrival rate λ and

T = 1. We obtain the following:

Theorem 1. Suppose n = 1. Under Assumptions 1 and 2, lim infλ→∞D(λ) > 0.

Remark 1. (a) In Assumption 2, we assumed that the cumulative distribution function

F is approximated by a concave function. In the proof of Theorem 1, concavity of φ

lets us invoke the Jensen’s inequality to bound the cumulative acceptance probability.

To understand the role of concavity, consider µ with a concave cumulative distribution

function F over R+. Notice that this search problem is equivalent to the search

problem in which the monetary offer m is distributed uniformly over the support

[0, 1], and the agent has a utility function u(m) = F−1(m). Since F is concave, u is

convex, i.e., the agent is risk-loving in this new problem. What we discussed before

stating Assumption 2 can be interpreted as showing that a risk-neutral agent spends

a positive amount of time on search in the limit as λ→ 0, when monetary offers are

distributed uniformly over [0, 1]. It would be intuitive that risk-loving agents spend

more time on search than risk-neutral agents on average under the same distribution

of monetary offers.28

(b) In Appendix D.4, we prove Theorem 1 under a weaker assumption than Assumption 1

that there exists α > 0 such that
(
1 − φ(x)

)α
is of the same order as 1 − F (x).

This generalization is possible because one can show that the limit expected search

duration is positive under F (x) = xα with support [0, 1] by the same technique as the

one that we used in the discussion before stating Assumption 2. In the context of the

interpretation in Remark 1 (a) with the uniform distribution of monetary offers, this

27For functions g(y) and h(y), we say that g(y) is of the same order as h(y) in Y ⊆ R if there exist
c, C > 0 and ỹ < sup(Y ) such that c|h(y)| ≤ |g(y)| ≤ C|h(y)| for all y ≥ ỹ.

28Nachman (1972) shows that risk-loving agents spend more time on search than risk-neutral agents
in his discrete-time model.
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implies that the result of positive duration holds with a wide class of utility functions

including those exhibiting risk aversion.

4.1.2 Multiple Agents

Now we extend our argument to the case of n ≥ 2. The basic argument is the same as in

the case of n = 1: We fix some strategies for players other than i, and consider bounding

i’s continuation payoff. However, it is not the case that we can implement this proof for

any given strategies by the opponents. To see this point, consider the case of 2 players

with X = {x ∈ R2
+ |x1 = x2 ≤ 1} and the uniform distribution. Suppose that we are

given player 2’s strategy to set the cutoff v2 = 0 for the time interval
[
−t,−

(
t− 1√

λt

)]
, and

then the cutoff v2 = 1 for the rest of the time. Then, an upper bound of the acceptance

probability at each time over
[
−t,−

(
t − 1√

λt

)]
cannot be given by O( 1

λt
) because, to

ensure the acceptance of a positive payoff, player 1 must accept within the time interval[
−t,−

(
t− 1√

λt

)]
, and to do so she must set a low enough cutoff.29

What is missing in the above strategy of player 2 is the feature that a player’s cutoff

must be decreasing over time. In the above strategy, the cutoff starts from 0 and then

jumps up to 1. We use the decreasingness to show our result.

To see how the decreasingness helps, fix t and consider player −i’s equilibrium cutoffs

at time −t, and suppose for the moment that they will keep using these cutoffs in the

future as well. Then, by the result in the case of n = 1, we know that the acceptance

probability at−t by playing optimally in the future against such strategies is O( 1
λt
) as long

as Assumption 2 is met for any cutoff profiles of the other players (sufficient conditions

for this to hold are analogous to what we discussed after introducing Assumption 2). Let

p(s) for s < t be the acceptance probability given by i’s optimal strategy against −i’s
fixed cutoffs. Now, consider the actual equilibrium cutoff strategy for −i and consider

a new future strategy for player i, which is to accept at each time −s with probability

p(s). Such a strategy exists because the marginal cumulative distribution of payoffs is

continuous by Assumption 1. Notice that, since each opponent’s cutoff is decreasing,

player i’s marginal payoff distribution conditional on acceptance at each time −s first-

order stochastically dominates the one with fixed cutoffs for −i, while at each moment

the acceptance probability does not change. This means that i’s continuation payoff at

−t must be higher than in the original case, which implies that the acceptance probability

at −t must be O( 1
λt
).

Hence, we obtained the following: Recall that D(λ) is the expected duration in

the equilibrium for given arrival rate λ and T = 1. For any given v ∈ X̂ such that

µ(A(0, v−i)) > 0, let F v
i be the marginal cumulative distribution function of player i’s

payoff conditional on the event A(0, v−i).

29There also exist strategies for player 2 that are independent of λ and still give rise to a low enough
cutoff for player 1 so that the limit expected duration is zero, such as v2(t) = e−t.
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Assumption 2′. There is i ∈ N such that for all v ∈ X̂ with µ(A(0, v−i)) > 0, there

exists a concave function φ such that 1 − φ(xi) is of the same order as 1 − F v
i (xi) in

{xi ∈ R | (xi, v−i) ∈ X}.30

Theorem 2. Suppose n ≥ 2. Under Assumptions 1 and 2′, lim infλ→∞D(λ) > 0.

4.2 Step 2: Comparative Statics of Limit Expected Durations

The second step of our argument conducts comparative statics that arises when the agents

face the opponents. Two effects, which we call the “ascending acceptability effect” and

the “preference heterogeneity effect,” determine the way the search duration is affected by

changes in the number of players and the distribution of payoffs, respectively. We explain

these effects in turn.

4.2.1 Ascending Acceptability Effect

In Section 4.1.2 we demonstrated that the decreasingness of the opponents’ cutoffs can

be used to reduce the acceptance probability (through the rise of continuation payoffs).

The ascending acceptability effect is also based on the fact that the opponents’ cutoffs

are decreasing.

To isolate such an effect, let us consider the case in which we add players whose

preferences are independent of those of the existing players. Specifically, consider the

following three models with T = 1:

(i) the n-player model with probability measure µ on Rn
+;

(ii) the m-player model with probability measure γ on Rm
+ ; and

(iii) the (n+m)-player model with product probability measure µ× γ on Rn+m
+ .

Suppose that µ and γ satisfy Assumption 1. Let Dµγ(λ) be the expected duration in

model (iii) when the arrival rate is λ.

Theorem 3. If the limit expected duration Dµ exists for model (i) and the probability of

agreement before the deadline goes to one as λ→ ∞ in model (ii), then lim infλ→∞Dµγ(λ) ≥
Dµ.

Thus, by adding problem (ii) to problem (i), the limit expected duration weakly

increases.

Remark 2. Two remarks are in order.

30This assumption reduces to Assumption 2 when n = 1.
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(a) There are two premises in the theorem. The first premise, that the limit expected du-

ration in model (i) exists, is not essential to the result—we assume it only to simplify

the exposition.31 For the second premise, we note that the agreement probability is

one at the deadline if the limit payoff profile is Pareto efficient by Proposition 8 in

Section 5.32 We exploit this premise in our proof. We will indicate below when we

use this premise.

(b) If models (i) and (ii) satisfy a mild technical condition that we provide later to ensure

the existence of the limit expected durations,33 this result turns out to be a corollary

of stronger results that we prove later. First, in Section 4.2.2, we will actually provide

the explicit formula for the limit probability distribution of the duration. The formula

in particular implies that the limit distribution of the duration in model (i) is first-

order stochastically dominated by that of model (iii), which implies Theorem 3. The

dominance is strict, rather than weak as indicated in Theorem 3, if Dµ < 1 and the

limit expected duration Dγ in model (ii) is strictly positive. Next, the formula for

the probability distribution also gives us the formula for the limit expected duration,

and it turns out that this gives us the formula of the limit expected duration Dµγ in

model (iii) as a function of Dµ and Dγ, which again in turn implies Theorem 3.34

There is a simple reasoning behind Theorem 3. Note first that for any t, there exists

t′ such that the locus of the path in model (iii) in the time interval [−t, 0] projected on

X is identical to the one in model (i) in [−t′, 0] because, by (1), the direction of the

vector is determined by the position of the barycenter in the acceptance set. Notice

further that if we exogenously specify the strategies of the additional m players to be

the ones that accept any payoff profiles, then the time path of the cutoffs for the original

n players should remain unchanged. In equilibrium, however, these m players’ cutoffs

are decreasing, so there are increasing chances for desirable draws to be accepted over

time (“ascending acceptability”). This is roughly why we expect a longer duration with

more players. Another way to put this is that the increase in the acceptance probability

caused by the additional m players corresponds to an increase in arrival rates over time.

This means that a larger fraction of opportunities comes at the late stage of the game,

so we expect a longer duration. Consistent with this intuition, under a mild technical

assumption (Assumption 3 in Section 4.2.2), there exist the limit expected durations Dγ

and Dµγ in models (ii) and (iii), respectively, and the ratio of remaining times 1−Dµγ

1−Dµ
can

be shown to be strictly increasing in Dγ . This is intuitive: Higher Dγ implies that the

31If the limit does not exist, then we can replace “Dµ” in the right hand side of the inequality in the
theorem with “lim infλ→∞ Dµ(λ),” where Dµ(λ) denotes the expected duration in model (i) when the
arrival rate is λ.

32In Section 5, we argue that the limit payoff profile is Pareto efficient under quite general environments.
33Assumption 3 in Section 4.2.2.
34The formula is Dµγ = 1− (1−Dµ)(1−Dγ)

1−DµDγ
.
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acceptance probability given by the additional players does not increase so much until

the deadline comes close enough. Thus players in model (i) have more incentives to wait

than in the case with a lower Dγ.

Formally, let J and −J be the sets of players in models (i) and (ii), respectively. By

Propositions 1 and 2, the probability that all the players in −J accept at time −t in
model (iii) depends only on t and λ. Let this probability be p∗−J(t;λ). By Proposition 2,

this is decreasing in t (i.e., p∗−J increases as time passes). Thus, each player in J in

model (iii) chooses an (essentially unique) equilibrium strategy in model (i) given a time-

dependent arrival rate λp∗−J(t;λ). Since this is decreasing, it follows that the expected

duration in this game is strictly higher than that of the game with a constant arrival

rate l(λ) :=
∫ 1

0
λp∗−J(t;λ) dt because these two games become identical after rescaling the

measurement of time. Note that this arrival rate l(λ) diverges to infinity as λ→ ∞ since

the agreement probability is one in the limit.35

Now, take a sequence of arrival rates {λk}∞k=1 such that limk→∞Dµγ(λk) = lim infλDµγ(λ).

The above argument shows that Dµγ(λk) > Dµ(l(λk)) for each k, where Dµ(λ
′) denotes

the limit expected duration given arrival rate λ′ in model (i). This inequality implies

that limk→∞Dµγ(λk) ≥ limk→∞Dµ(l(λk)).
36 Hence we obtain lim infλ→∞Dµγ(λ) ≥ Dµ

because (a) the arrival rate l(λ) diverges to infinity, (b) Dµ exists, so limk→∞Dµ(l(λk)) =

limλ′→∞Dµ(λ
′), and (c) limk→∞Dµγ(λk) = lim infλDµγ(λ) by the definition of the se-

quence {λk}∞k=1. This ends the proof of Theorem 3.

4.2.2 Preference Heterogeneity Effect

Theorem 3 considers the case where preferences of players in model (i) are independent

of those of players in model (ii). In many relevant cases, however, players’ preferences

are not independent; they are often heterogeneous. We now analyze how heterogeneity

in preferences, captured by the change in X and µ, affects the duration. Specifically, we

find that there are two channels through which preference heterogeneity affects the search

duration. In this subsection we first give two examples (Examples 1 and 2) to intuitively

explain these two channels, and then provide a general duration formula which depends

on two terms that correspond to the two channels. Then we use this formula to analyze

a specific class of search problems that the literature of multi-agent search with infinite

horizon has extensively analyzed (Example 3).

Example 1 (Preference heterogeneity implies a larger probability of an “extra

region.”).

35This is because the probability of no agreement until the deadline in model (ii) is given by e−l(λ).
36As we noted earlier, this does not show that a strict inequality holds. This is because here we do

not pin down in what way p∗−J (t, λ) approaches a “flat” curve with respect to t. The precise argument
to show the strict inequality needs to identify the order of p∗−J in λ and its coefficient when λ is large.
A rigorous proof for the strict inequality can be made once we impose Assumption 3 that will be stated
in Section 4.2.2, where the detail of this argument is provided.
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Figure 5: The limit expected duration for the quadrilateral with vertices
(0, 0), (1, 0), (q, q), (0, 1).

We consider the two-player case with the uniform distribution on a quadrilateral with

vertices (0, 0), (1, 0), (q, q), and (0, 1) (q > 0). Here, we intend to capture the idea of

preference heterogeneity by the parameter q: As q grows, the kink of the boundary at

the limit payoff profile becomes sharper, which we interpret as preferences becoming less

heterogeneous.

By applying the formula that we will obtain in Theorem 4, one can show that the

limit expected duration is 2q+1
5q+1

when T = 1, which is decreasing in q. The limit expected

duration is depicted in Figure 5 as a function of q. The intuition for this comparative

statics is as follows: The ascending acceptability effect states that a player’s opponent

accepts more offers in the future by lowering the cutoff, so expanding the acceptance

region. The significance of this effect is determined in part by the probability assigned

to such an “extra region” of the acceptance set. For a large q, the “extra region” does

not contain relatively favorable allocations for the player, while for a small q, the region

contains relatively favorable allocations for the player, so has a large probability.

The problem (X,µ) in this example itself is special, but it captures a wide range

of problems because the acceptance sets in many applications approximate the shape

proportional to X for some q in this example in the limit as t → ∞. For example,

suppose a given problem satisfies Assumption 4 that we will postulate in Example 3

(essentially requiring the limit acceptance set to be bounded and well-behaved) while

the smoothness condition need not be satisfied. Then, the Pareto frontier of X may

have a kink at the limit expected payoff profile, and the conditional distribution on the

acceptance set when t is large can be approximated by the uniform distribution on X for

some q after rescaling on each axis.

Example 2 (Preference heterogeneity implies a higher conditional gain.).

Consider 2-player symmetric X = R2
+ and µ which is associated with a density func-

tion fσ parameterized by σ > 0 as follows:

fσ(x1, x2) =


1

Mσ

e−(x1+x2) · 1√
2πσ2

e−
(x1−x2)

2

2σ2 if (x1, x2) ∈ R2
+.

0 otherwise,
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Figure 6: The probability density functions for σ = .2 (left) and σ = 1 (right).
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Figure 7: Change of the density
when σ increases.

time

continuation payoff

0

Figure 8: If the cutoff falls fast, the cutoff is high
until reaching close to the deadline.

whereMσ =
∫∞
0

1√
2πσ2

e−ye−
y2

2σ2 dy is a constant ensuring that the total probability is one.

That is, we consider an exponential distribution in the direction of the 45 degree line,

and a normal distribution with variance σ2 in the direction of the 135 degree line with

a restriction to R2
+. Here, we intend to capture the idea of preference heterogeneity by

using the parameter σ. Figure 6 illustrates how the distribution given by fσ becomes

more heterogeneous as σ increases. Notice that the limit distribution as σ → 0 is the

(degenerate) exponential distribution over the 45 degree line, and the limit distribution

as σ → ∞ is the product measure in which each player’s marginal distribution is an

exponential distribution with parameter
√
2. The limit expected durations in these two

limit cases can be solved for analytically. In the former case the problem becomes iso-

morphic to that of one-player case and the limit expected duration goes to 1
2
, and in the

latter case it approaches 2
3
. The limit expected durations in the intermediate values of

σ are numerically computed, and are increasing in σ. We note that the “probability of

the extra region” that we discussed in the previous example is invariant with respect to

σ in the current example. Thus this example features another channel through which

preference heterogeneity affects search duration. The channel here is the expected gain

relative to the cutoff conditional on acceptance, and this varies with σ. Specifically, the

expected gain rises with σ from 1√
2
(when σ → 0) to

√
2 (when σ → ∞).

The intuition for why preference heterogeneity implies such an increase of the expected

gain and the gain in turn affects the search duration, is as follows: First, the more
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heterogeneous the preferences are, the more realizations of payoffs are scattered outside

of the acceptance set.37 In Figure 7, the density on the solid line moves to that on the

dashed line as σ increases. Notice that the payoff profiles with small sums of payoffs on

the dashed line move out of the acceptance set, while those with large sums stay in the

acceptance set.

This implies that higher heterogeneity (larger σ) leads to higher expected payoffs

conditional on acceptance. Thus, if preferences are more heterogeneous, the gain relative

to the continuation payoff conditional on acceptance is higher. This means that the loss

from a unit time passing is larger for any given cutoff, so the player will decrease the

cutoff faster for any given cutoff. Thus, as Figure 8 suggests, the cutoff is higher when

the deadline is close. Hence, the cutoff does not fall much until reaching close to the

deadline, implying a longer expected duration.

Now we derive the duration formula. Let us define a variable r as follows:

r = lim
t→∞

∑
i∈N

di(v
∗(t)) · bi(v∗(t)) (3)

where

bi(v) = gi(A(v))− vi, di(v) = −∂µ(A(v))/∂vi
µ(A(v))

,

and g(Y ) = (g1(Y ), . . . , gn(Y )) denotes a barycenter of the set Y ⊆ Rn with respect to

µ.

The assumptions we have imposed do not imply that ∂µ(A(v))/∂vi in the definition

of di exists, or the limit in the definition of r exists. But the existence of these things

holds quite generally. A sufficient condition for the existence of ∂µ(A(v))/∂vi is that µ is

associated with a locally bounded density function over X. In the single-agent case, the

limit in the definition of r exists if there exists some x̃ < supX such that the hazard rate

f(x)/(1− F (x)) is weakly concave in the interval (x̃, supX). An analogous condition is

sufficient for the multiple-agent cases.

For expositional simplicity, in the main text we limit attention to the case in which r

exists. We deal with the fully general case in Appendix D.5.

Assumption 3. (a) The variable r is well-defined, i.e., the partial derivative in the

definition of di and the limit in (3) exist.

(b) The probability measure µ is absolutely continuous with respect to the Lebesgue

37The total probability on the acceptance set is independent of σ whenever v is on the 45 degree line
because for all δ > 0 and all (x1, x2) ∈ R2

+, we have fσ(x1 + δ, x2 + δ)/fσ(x1, x2) = e−2δ.
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measure on Rn
+.

38,39

We denote the acceptance probability by p(t;λ) = µ(A(v∗(t;λ))), which induces the

probability of no agreement until time −t, denoted by P (t;λ).40 Recall that D(∞) is the

limit expected duration when T = 1. Now we can show that P (t;∞) := limλ→∞ P (t;λ)

and D(∞) can be written in the following way:

Theorem 4. Under Assumptions 1 and 3, for all −t ∈ [−T, 0], the limits P (t;∞) and

D(∞) exist, and

P (t;∞) =
( t
T

)1/r
and D(∞) =

1

1 + r−1

if r > 0, and P (t;∞) = 1{t=T} and D(∞) = 0 if r = 0.

Proof Sketch. Here, we consider the case with r > 0. A formal proof is given in Ap-

pendix D.5. To show the result, we prove

lim
λ→∞

p(t) · λt = 1

r

where p(t) = µ(A(v∗(t))). To see this, notice that by the ODE (1), v∗′(t) = λ(g(A(v∗(t)))−
v∗(t)) ·p(t). Since ∂µ(A(v))

∂vi
exists by Assumption 3 (b), p(t) = µ(A(v∗(t))) is differentiable,

and we obtain

p′(t) =
∑
i∈N

∂µ(A(v))

∂vi

∣∣∣
v=v∗(t)

v∗′i (t)

=
∑
i∈N

∂µ(A(v))

∂vi

∣∣∣
v=v∗(t)

λ · (gi(A(v∗(t)))− v∗i (t)) · p(t)

= −
∑
i∈N

di(v
∗(t))p(t) · λbi(v∗(t)) · p(t).

Therefore,

p′(t)

λp(t)2
= −

∑
i∈N

di(v
∗(t))bi(v

∗(t)).

This implies that r is the limit of −p′(t)
/
λp(t)2 as t → ∞, which exists by Assump-

38Assumption 3 (b) is not crucial. We argue in Appendix D.5 that a more elaborate definition of r
enables us to rule out Assumption 3 (b).

39If Assumption 3 (b) fails, the duration formula we will present in Theorem 4 may fail even when r is
well-defined in (3). For example, consider the one-dimensional uniform distribution on X = {(x1, x2) ∈
R2 | 0 ≤ x1 = x2 ≤ 1}. Since this is equivalent to a single-agent problem with the uniform distribution
on [0, 1], we can obtain D(∞) = 1/3. However, according to the definition of r in (3), we would obtain
r = 1, with which the duration formula would yield a false value of D(∞) = 1/2.

40This probability is computed by P (t;λ) = exp
(
−
∫ T

t
λp(s;λ) ds

)
.
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tion 3 (a). Thus, for any ε > 0, there exists t̄ such that t ≥ t̄ implies

r − ε ≤ − p′(t)

λp(t)2
≤ r + ε. (4)

This means that p(t) is approximated by the solution of ODE p′(t) = −rλp(t)2 with an

initial condition at t = t̄. Solving this equation, for large t,

p(t) ≈ 1

rλ(t− t̄) + p(t̄)−1
.

Hence we get limλ→∞ p(t) ·λt = 1
r
. This equality enables us to compute the approximated

probability of disagreement P , and show that P (t;∞) =
(

t
T

) 1
r and D(∞) = 1

1+r−1 .
41

In the above discussion, we used the fact that the expected duration is determined by

the evolution of the acceptance probability, and this probability p is a function of the con-

tinuation payoff profile v whose evolution (i.e., v′) we know from ODE (1) is determined

in equilibrium by the acceptance probability p itself. This means that, in equilibrium, the

evolution of the acceptance probability (i.e., p′) depends on the acceptance probability

p—this led to the idea of using ODE (1) to derive an ODE with respect to p.

Theorem 4 immediately implies the following: If r > 0, the limit probability density

of agreement P ′(t;∞) exists and is strictly positive for all −t ∈ [−T, 0), and (a) if

0 < r < 1, P ′(t;∞) is strictly increasing in t and limt→0 P
′(t;∞) = 0, (b) if r = 1,

P ′(t;∞) = 1
T
for all −t ∈ [−T, 0), and (c) if r > 1, P ′(t;∞) is strictly decreasing in t

and limt→0 P
′(t;∞) = ∞.

An intuitive explanation of the duration formula.

In Examples 1 and 2 preceding Theorem 4, we argued that there are two channels

through which preference heterogeneity affects the limit expected duration. The first

channel (the probability of the extra region) corresponds to di(v
∗(t)) and the second

channel (the expected gain relative to the cutoff conditional on acceptance) corresponds

to bi(v
∗(t)). Formula (1) implies that the cutoff falls with the speed proportional to such

an expected gain. These facts imply that (3) can be expressed as follows:

r ∝ lim
t→∞

∑
i∈N

([
the probability

of the extra region

]
×

[
the speed of

cutoff decrease

])
. (5)

Now, the product of the marginal increase of the probability of the extra region (with

the unit of measurement (probability
distance

)) and the speed of cutoff decrease (with the unit of

measurement (distance
time

)) is equal to the speed with which the probability of acceptance

41The computation is given in Lemma 21 in Appendix D.1.
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Figure 9: Density term and barycenter term

increases (with the unit of measurement (probability
time

)). It is intuitive that this speed deter-

mines the search duration.

The graphical intuition for the formula in Theorem 4 is depicted in Figure 9. The first

term di(v
∗(t)), which we call the density term, is i’s marginal density at her continuation

payoff conditional on the distribution restricted to the acceptance set. The second term

bi(v
∗(t)), which we call the barycenter term, measures the distance between the barycenter

of the acceptance set and the cutoff. Recall that the speed with which the cutoff moves

towards the limit point is determined by this distance, by equation (1). Hence the formula

for r in equation (3) measures the speed with which the acceptance probability falls. This

is consistent with the fact that the duration formula in equation (3) is increasing in r > 0

because if the acceptance probability falls quickly for a given cutoff level, then players

reject with high probability for a long time, resulting in a long duration (as in Figure 8).

Theorem 4 also explains the reasoning behind the formula in footnote 34. Under

Assumption 3, r is well-defined in (3) in each of models (i) and (ii). Let rµ and rγ be

associated with models (i) and (ii), respectively. Then, since model (iii) considers the

product measure, rµγ in model (iii) exists and equals rµ + rγ. Hence the limit expected

duration in model (iii) exists and is 1
1+r−1

µγ
= 1

1+(rµ+rγ)−1 . Rearranging terms, we obtain the

formula in footnote 34, which leads to the conclusion of Theorem 3 under Assumption 3.

Now we use the formula given in Theorem 4 to analyze a specific class of games to

understand the preference heterogeneity effect further.

Example 3 (Applying the Duration Formula).

Here we impose assumptions employed often in the literature on multi-agent search

(Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2013)).

Assumption 4. (a) X is a convex and compact subset of Rn
+, and has a smooth Pareto

frontier.42

(b) The probability measure µ is absolutely continuous with respect to the Lebesgue

measure on Rn, and admits a probability density function f that is strictly positive

and continuous on X.
42We say that the Pareto frontier is smooth if it can be defined by an implicit function that is contin-

uously differentiable.
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Assumption 4 allows us to explicitly compute the limit expected duration as follows.

To make the dependence of the expected duration on n explicit, here we denote by

D(∞;n) the limit expected duration as λ→ ∞ given n:

Proposition 5. Under Assumptions 1 and 4, D(∞;n) =
n2

n2 + n+ 1
.

Corollary 6. Under Assumptions 1 and 4, D(∞;n) is increasing in n.

The solution of the limit expected duration provided in Proposition 5 implies that,

if only two players are involved in search, the limit expected duration is 4
7
T , and it

monotonically increases to approach T as n gets larger. The second row of Table 1 in the

Introduction shows the limit expected duration for several values of n when T = 1.

Let us give a proof idea.43 When the continuation payoff profile v is sufficiently close

to the Pareto frontier, the acceptance set can be approximated by an n-dimensional

pyramid by the assumption of the smooth Pareto frontier, and the distribution over this

acceptance set can be approximated by the uniform distribution due to the assumption

of the strictly positive and continuous density. Therefore, we can compute the limit

expected duration by computing that in the n-dimensional pyramid with the uniform

distribution. So for a fixed v ∈ X, assume for now that A(v) is the exact pyramid and

the conditional distribution over A(v) is uniform. Let v̂i = max{xi | (xi, v−i) ∈ X}. We

can compute bi(v) and di(v) as follows: Since b(v) is the vector from v to the barycenter

of the n-dimensional pyramid, bi(v) =
v̂i − vi
n+ 1

. By the definition of di,

di(v) = −∂µ(A(v))/∂vi
µ(A(v))

=
f(v)

∏
j ̸=i(v̂j − vj)

f(v) · 1
n

∏
j∈N(v̂j − vj)

=
n

v̂i − vi
.

Therefore, r =
∑

i∈N di(v)bi(v) =
n2

n+ 1
, so D(∞;n) =

1

1 +
(

n2

n+1

)−1 =
n2

n2 + n+ 1
.

Under Assumption 4, the ascending acceptability effect can be seen in Figure 9 by

noting that the area that corresponds to the density term has two segments (n segments

in the case of n players), each corresponding to each player. Thus, adding a player

results in an extra piece of payoff regions that will be accepted in the future. The

probability density in the extra region conditional on the acceptance set increases not only

because the number of segments increases, but also because the length of each segment

increases. This happens precisely because players’ preferences become heterogeneous so

the density of the marginal distribution is larger for low payoffs than for high ones in the

acceptance set. This means that the “extra region” that a player’s opponents accept in the

future contains relatively more favorable allocations for the player when there are more

opponents. Although the barycenter term decreases due to this preference heterogeneity

43In the proof in Appendix D.6, we show this result under more general assumptions (Assumptions 1
and 8).

30



as well, the overall effect is positive. We call this effect the preference heterogeneity effect.

Note that the role of the preference heterogeneity effect is to determine the magnitude

of the ascending acceptability effect. Mathematically, the preference heterogeneity effect

affects the values of summands in (5), while the ascending acceptability effect increases

the number of summands in (5).

The duration formula also applies to Examples 1 and 2. In Example 1, let v̂i =

max{xi | (xi, v−i) ∈ X}. Note that symmetry implies v∗1(t) = v∗2(t) for all t. Suppose

that v ∈ X satisfies v1 = v2. Then, a straightforward computation shows bi(v) =
2q+1
6

(v̂i − vi), and di(v) = 1
q(v̂i−vi)

. Since di(v)bi(v) = 2q+1
6q

and this is constant in v,

r = limv1=v2→q

∑
i∈N di(v)bi(v) =

∑
i∈N

2q+1
6q

= 2q+1
3q

, and D(∞) = 1
/(

1 +
(
2q+1
3q

)−1)
=

2q+1
5q+1

. In Example 2, again symmetry implies v∗1(t) = v∗2(t) for all t. As discussed in Ex-

ample 2, bi(v) is increasing in σ for each v = (v1, v2) with v1 = v2.
44 Since the conditional

distribution on A(v) (with a normalized origin at v) is independent of v with v1 = v2,

we have di(v) = di(0) = 1
Mσ

∫∞
0

1√
2πσ2

e−xie−
x2i
2σ2 dxi =

Mσ

Mσ
= 1 for all σ. Therefore r is

increasing in σ, giving us the comparative statics that we explained in Example 2.45

4.3 Step 3: Finite Arrival Rates

To evaluate the significance of the effects that we identify in the previous discussion, we

now consider cases with finite arrival rates. We will show that the expected duration con-

verges to its limit fast, providing evidence that our limit analysis contains economically-

meaningful content—so the effects in Steps 1 and 2 are the keys to understanding the

duration in reality.

First, we show that the convergence speed of the expected duration is high. Recall that

D(λ) and D(∞) are the expected durations under arrival rate λ and the limit expected

duration for T = 1, respectively.

Theorem 5. Under Assumptions 1 and 3, |D(λ)−D(∞)| = O( 1
λ
).

This is a fast rate of convergence. In particular, it means that, although the expected

number of offers until acceptance diverges to infinity as λ→ ∞, the expected number of

offers with arrival rate λ in the time interval between D(λ) and D(∞) is bounded above

by a finite number. When payoffs realize upon agreement and there is a positive discount

rate (with a finite horizon as in Appendix A.1 or with an infinite horizon), |D(λ)−D(∞)|
is of the same order as 1

λ
1

n+1
under Assumptions 1 and 4.

Moreover, as in Remark 2 (b) in Section 4.2.1, we can show a stronger conclusion

than in the theorem. Specifically, for any q ∈ [0, 100], the q-percentile of the duration

44A computation shows that bi(0) =

√
σ2

2e
σ2

2

∫∞
σ

e−
z2

2 dz
+

1− σ2

2
.

45The limit distribution as σ → 0 does not have a density function on Rn and violates Assumption 3 (b).
However, we provide a fully general formula in Appendix D.5 to cover such a case.
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Figure 10: A numerical example of the
cumulative probability of agreement in
Case 1 with n = 2.

time

density

−1 0

1
λ = 10

λ = 100
λ = 1000

Figure 11: The probability density of the
time of agreement in Case 1 with n = 2.

distribution with arrival rate λ is different from its limit by O( 1
λ
). That is, not only the

expected duration but also the duration distribution converges fast.

We further support our claim numerically through a number of examples. We find

that the limit expected duration of Theorem 4 is not far away from those with finite

λ in many cases. The differential equation (1) does not have a closed-form solution in

general, and even if it does, D(λ) may not have a closed-form solution as it involves

further integrations. For this reason, we solve the differential equation and integration

numerically to obtain the values of D(λ) for specific values of λ.46 We considered the

following distributions standard in the literature with T = 1.

Case 1: µ is the uniform distribution over X = {x ∈ Rn
+ |
∑

i∈N xi ≤ 1}.

Case 2: µ is the uniform distribution over X = {x ∈ Rn
+ |
∑

i∈N x
2
i ≤ 1}.

Case 3: µ is the product measure over X = Rn
+ where each marginal corresponds to an

exponential distribution with parameter ai > 0.

In the apartment search example in the Introduction, if the couple has ten weeks

before the deadline and a broker provides information of an apartment once per week on

average (a very infrequent case), the situation corresponds to λ = 10. Figure 10 shows

a graph of the cumulative probability of agreement for λ = 10 (i.e., 1 − P (t; 10)) and

for λ → ∞ (i.e., 1 − limλ→∞ P (t;λ)) of Case 1 with n = 2. Also, Figure 11 shows the

probability density function of the time of agreement in that case (i.e., P (t;λ) · p(t;λ)).
In Table 2, we provide the computed values for selected parameter values. We provide

the complete description of all the computed values in Appendix C.47

According to our calculation, D(λ) is within 10% difference from D(∞) except for a

single case where the difference is 19.4%, which happens in Cases 1 and 2 with n = 1.

Generally, the percentage falls as the number of agents becomes larger and the arrival

46Some cases can be computed analytically, e.g., Cases 1 and 3 below.
47In Appendix C, we also consider other cases: the uniform distribution over a cube and the log-normal

distribution.
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λ

10 20 30 100 1000 ∞

Case 1
n = 1

Expected duration 0.398 0.366 0.355 0.340 0.334 0.333
Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.608 0.591 0.585 0.576 0.572 0.571
Percentage (%) 6.48 3.44 2.35 0.731 0.0716 0

Case 2
n = 1

Expected duration 0.398 0.366 0.355 0.340 0.334 0.333
Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.582 0.568 0.565 0.562 0.567 0.571
Percentage (%) 1.90 −0.541 −1.21 −1.61 −0.798 0

Case 3
n = 1

Expected duration 0.545 0.524 0.516 0.505 0.500 0.5
Percentage (%) 9.09 4.76 3.23 0.990 0.0999 0

n = 2
Expected duration 0.693 0.681 0.676 0.670 0.667 0.667
Percentage (%) 3.91 2.11 1.45 0.465 0.0489 0

Table 2: Expected durations for finite arrival rates. “Percentage” is defined by 100×(the
duration difference)/(the limit expected duration).

rate goes up.48 For example, if we add another player in Case 1, the difference falls down

dramatically to 6.5%. If we increase the arrival rate to 20 (fixing the number of players

at n = 1), the difference becomes 9.9%. In all other cases the difference is much smaller

and often less than 5%. Notice that we predict “over-shooting” of the expected duration

in Case 2. This is because when the continuation value is far away from the boundary,

the shape of the acceptance set is close to a square with which we expect a shorter

duration, and gradually the shape approaches a triangle as t diverges from 0 (precisely,

the preference heterogeneity effect would be smaller than in the case of a triangle if the

limit shape of the acceptance set were proportional to that of X). This suggests that

convexity of the set of available allocations, which is often assumed in the literature,

facilitates a fast convergence. Case 3 considers distributions with an unbounded X. As

in Case 1, the distribution conditional on the acceptance set is a geometric translation of

the original distribution irrespective of the cutoff profile. In fact, Table 2 shows that the

computed values for Case 3 present the same trend as in Case 1.

5 Welfare Implications

In Section 3, we showed that the limit expected payoff profile must be weakly Pareto

efficient if the limit exists. In this section we seek further welfare implications. We will

48The monotonicity with respect to arrival rates can be analytically proven in many cases, e.g. Case 1
with n = 2. However, the monotonicity fails in general. To see this, consider the case in which D(∞) = 1.
By optimality it must be the case that D(λ) < 1 for any finite λ, so in this case the expected duration
cannot be decreasing in λ. Note also that in Case 2 with n = 2, after the “overshooting” that we will
explain shortly, the expected duration comes back to the limit. Thus D(λ) is nonmonotonic also in this
case.
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Figure 12: A path that converges to a weakly Pareto efficient allocation.

prove that the limit payoff profile is Pareto efficient in a wide class of payoff distribu-

tions, and argue that a further prediction is hard to obtain. Let us impose the following

assumption to rule out cases that are not interesting for welfare analysis:

Assumption 5. (a) X is a compact subset of Rn.

(b) The probability measure µ is absolutely continuous with respect to the Lebesgue

measure on Rn, and admits a probability density function f that is strictly positive

and continuous on X.

Condition (a) in Assumption 5 is a standard assumption when we consider welfare

implications. Note that we do not assume convexity here. Condition (b) rules out irreg-

ularity involving subsets with zero Lebesgue measure.

In general, v∗ is not necessarily Pareto efficient in X even if it exists. There is an

example of a distribution µ satisfying Assumptions 1 and 5 in which v∗(t) converges to

an allocation that is not Pareto efficient.

Example 4. Let n = 2, X =
(
[0, 1/2] × [3/4, 1]

)
∪
(
[3/4, 1] × [0, 1/2]

)
, and suppose f

is the uniform density function on X, which is shown in Figure 12. By the symmetry

with respect to the 45 degree line, we must have v∗1(t) = v∗2(t) for all t. Therefore

v∗ = (1/2, 1/2), which is not Pareto efficient in X.49

Note that v∗ is weakly Pareto efficient (as implied by Proposition 4), and that X is

a non-convex set in this example. In fact, we can show that v∗ is Pareto efficient if X is

convex.

49There are (non-trembling-hand) subgame perfect equilibria in which players obtain a more efficient
payoff profile than (1/2, 1/2). For example, consider a strategy profile in which players agree with
allocations close to (1, 1/2) or (1/2, 1), and if one of the players rejects such allocations, both players
reject all allocations after the deviation. This is a subgame perfect equilibrium and gives players expected
payoffs close to (3/4, 3/4) in the limit. Similar constructions show that any allocations in the convex hull
of general nonconvex X can be limit expected payoff profiles supported by subgame perfect equilibria.
However, we rule out such subgame perfect equilibria in a view that rejecting everything after a deviation
is not a credible threat if a player expects the others to accept with a small probability.
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Proposition 7. Suppose that X is convex. Under Assumptions 1 and 5, v∗ is Pareto

efficient in X.

For example, when n = 2 and X = [0, 1]2, this proposition says that v∗(t) cannot

converge to, e.g., (1/2, 1). This is because if v∗(t) is sufficiently close to (1/2, 1), the slope

of v∗′(t) ≤ fH(1−v∗2(t))

fL(1−v∗1(t))
is significantly smaller than the slope of the line connecting v∗(t)

and (1/2, 1) (=
1−v∗2(t)

1/2−v∗1(t)
), where fL := minx∈X f(x) and fH := maxx∈X f(x) satisfying

0 < fL ≤ fH < ∞ by Assumption 5. Such comparison of slopes generalizes to the case

with general distributions satisfying Assumptions 1 and 5 with convex X. Even when X

is not convex, we can show that the limit payoff profile is Pareto efficient for “generic”

distributions when n = 2. Appendix A.5 formalizes what we mean by genericity, and

explains the intuition for why such a result holds.

Pareto efficiency of the limit payoffs implies that players reach an agreement with

probability close to one if t is very large. To see this, let π(t) be the probability that

players reach an agreement in equilibrium before the deadline given that no agreement

has been reached until time −t. By definition, π(t) is nondecreasing and bounded in

λ, so limλ→∞ π(t) exists. The expected continuation payoff profile v∗(t) must fall in

the set {π(t)v | v ∈ co(X̂)} where co(X̂) is the convex hull of X̂. This implies that

(1/π(t))v∗(t) ∈ {x ∈ co(X̂) |x ≥ v∗(t)}. Since v∗ is Pareto efficient in X which is closed,

the set {x ∈ co(X̂) |x ≥ v∗(t)} shrinks to a singleton {v∗} as v∗(t) goes to v∗. Therefore

we have (1/π(t))v∗(t) → v∗ as λ→ ∞. This implies limλ→∞ π(t) = 1 for all t > 0 because

limλ→∞ v∗(t) = v∗ for all t > 0. That is, we have the following proposition:

Proposition 8. Suppose that Assumption 1 holds. If v∗ is Pareto efficient, then the

probability of agreement before the deadline converges to one as λ→ ∞.

We note that the conclusion of this proposition fails if v∗ is only weakly Pareto efficient.

In Example 4, players reach no agreement before the deadline with positive probability:

Since the limit expected payoff profile is (1/2, 1/2), for a fixed λ and any ε > 0, there

exists t̄ such that at any time −t ≤ −t̄, the cutoff of each agent is higher than 1/2 − ε.

Thus, a player’s expected payoff conditional on agreement at time −t ≤ −t̄ is larger

than
(
7/8 + (1/2− ε/2)

)
/2 = 11/16− ε/4. Suppose that limT→∞ π(T ) = 1 for λ. Since

π(t̄) < 1 for λ, the probability of agreement in subinterval [−T,−t̄] must converge to one

as T → ∞. Therefore each player’s limit unconditional expected payoff is larger than

11/16−ε/4 for any ε > 0. This contradicts the fact that the limit expected payoff is 1/2.

Hence we must have limT→∞ π(T ) < 1, implying that the limit probability of agreement

as λ→ ∞ does not converge to 1 either.

The reader may wonder which point on the Pareto frontier the continuation payoff

profile converges to. In fact, this question is difficult to answer: An example is shown in

Appendix A.5 in which player i’s marginal distribution of a probability measure µ is first-

order stochastically dominated by that of another probability measure γ, and i’s limit
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expected payoff under µ exceeds the one under γ. This happens because the limit payoff

profile is determined by the joint distribution over X, and player j’s marginal distribution

may have improved under γ compared to µ, to a larger degree than i’s improvement. This

suggests difficulty of characterizing a general property of limit payoff profiles. In fact, we

can show that most points on the Pareto frontier can be reached in the limit under some

probability measure. Formally, for any Pareto efficient payoff profile w in X which is not

at the edge of the Pareto frontier,50 we show that there exists a density f that satisfies

Assumptions 1 and 5 such that the limit of the solution v∗(t) of equation (1) is w.

Proposition 9. Suppose that X ⊆ Rn
+ satisfies Assumption 5 (a). Suppose that w ∈ Rn

++

is a Pareto efficient allocation in X, and is not located at the edge of the Pareto frontier

of X. Then, there exists a probability measure µ with support X such that Assumptions 1

and 5 hold, and limλ→∞ v∗(t) = w for all t ∈ (0, T ].

In the proof, we introduce a family of probability density functions {fy} having a large

weight near each Pareto efficient y ∈ X in the neighborhood of w ∈ X, and construct a

function that maps the difference between w and y to the difference between w and the

limit point given fy. We then use a fixed point theorem to show existence of y such that

the value of the constructed function is zero. Note that Proposition 9 is not so obvious

as it may appear because the result pertains to the limit payoff profile, so continuity of

the solution of an ODE in its parameter cannot be used for the proof. Indeed, we will see

in Appendix A.1 that the limit is independent of density f if there is a positive discount

rate ρ > 0, as long as certain assumptions hold.

The lesson here is that, if the payoffs realize at the deadline, then the limit allocations

depend on distributions so much so that any Pareto-efficient allocation is possible, under

the assumptions given. Despite such indeterminancy, this section has provided a general

prediction such as Pareto efficiency under a wide range of distributions.

6 Discussions

The analysis in the main sections illuminated key incentive issues in the presence of

multiple players and a finite horizon. Under the presence of these two features, there

are many ways to extend and/or modify the model. Appendix A discusses a number of

topics on such extensions/modifications. Here we preview the most interesting parts of

such discussions, by which we aim to invite the reader to the exploration that we pursue

in the Appendix.51 These discussions not only help understand the key assumptions and

techniques used in the main analysis, but also highlight the wideness of the variety of

questions we can ask in the context of multi-agent search with deadline.
50We formally define this property in Appendix D.10.
51Among others, Appendices A.1–A.4 present full versions of the discussions on the topics that we

consider in this section.
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The Payoffs Realizing upon Agreement

Economic search situations are nontrivial to analyze because agents face a tradeoff be-

tween deciding now and doing so later. The benefit of deferring the acceptance of an

offer lies in a prospect of getting a better payoff in the future, while the cost comes with

some form of penalty on an act of deferring. There are two types of such penalty that

economic agents face in reality: discounting (or time costs) and deadlines. The tradi-

tional infinite horizon models and our finite horizon model are at two extreme points: the

former assumes discounting or time costs without deadlines, while the latter (our main

sections) assumes the risk of reaching the deadline without assuming discounting or time

costs.52 We believe the reality is at somewhere in the middle of these two extreme cases,

and which model is a better approximation of the reality depends on the particular appli-

cations that the modeler is interested in.53 To understand these “middle” situations, we

think it a necessary step to analyze both of the two polar cases. We already know much

about one of these cases from the literature, and the other case is what we analyzed in

the main sections.

Here we present a way to formally connect these two cases. Specifically, in Ap-

pendix A.1 we consider the case where the payoffs realize as soon as an agreement is

reached, as opposed to assuming that the payoffs realize only at the deadline. Before

considering “middle” cases, we first consider one of the polar cases in which we fix the

discount rate ρ > 0 and then take the limit as the arrival rate λ tends to infinity. We

show that the path of the continuation payoff profile is close to that in the case of our

main model when λ is sufficiently high and the deadline is relatively close, while it di-

verges from such a path when the deadline is far away. Under technical assumptions,

the limit payoff profile is shown to be an element of the “Nash set,” a generalization of

the Nash bargaining solution. This result shows a certain robustness of the limit payoffs

on distributional assumptions under discounting. At the first glance, this may look at

odds with our results for the case with no discounting where the limit equilibrium payoffs

are sensitive to the payoff distribution. However, when the Nash set consists of multiple

points, we argue that which point in the Nash set becomes the limit equilibrium payoff

profile depends on the distribution of offers. In determining a point in the Nash set, the

resemblance of the path under ρ > 0 with the one under ρ = 0 becomes useful. In con-

trast, in the infinite-horizon model, all points in the Nash set arise as limits of equilibrium

payoff profiles.54

We also show that the limit expected search duration is zero when we fix ρ > 0 and

52We will review the literature on the infinite horizon models in Appendix B.
53No discounting may be the best model when the payoffs realize at the deadline as in our motivating

example of apartment search, although one may still be able to imagine a possibility of small time costs.
54Although Wilson (2001) considers only convex feasible payoff sets, his argument can be generalized

to the non-convex cases. Cho and Matsui (2013, Proposition 4.3) prove a related result with non-convex
feasible payoff sets.
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then let λ→ ∞. One might present a critique attributing this to lack of robustness of our

result that the limit expected duration as λ → ∞ is strictly positive for fixed ρ = 0 and

T . Our reaction would be that the limit as λ→ ∞ with fixed ρ > 0 implies that there are

an increasingly large number of offers “before payoffs are substantially discounted” and

thus the deadline is not at the relevant future, so the situation is getting more and more

similar to the one represented by the infinite horizon model. However, if we consider a

situation where the payoffs are not so much discounted even at the deadline, i.e., ρ is

relatively small compared to λ, then the deadline is in the relevant future, so the result

of our finite horizon model is more relevant.

In order to understand what these “situations” would refer to, we consider the “mid-

dle” cases. Specifically, we consider a general model in which ρ depends on λ, and quantify

the speeds of simultaneous convergence as λ → ∞ and ρ → 0 such that our results are

relevant. We show that the limit payoffs and durations depend on the limit of λρn. Since

this is a continuous function in both λ and ρ, the result implies that the relevance of the

two extreme analyses—our main analysis and the analysis in which λ → ∞ with fixed

ρ > 0—depends on what situations we want to analyze. Specifically, if ρ is relatively

large compared to 1/λ1/n, then the deadline is not in the relevant future. On the other

hand, if ρ is relatively small compared to 1/λ1/n, it is in the relevant future so the analyst

may want to refer to the result of our main analysis.

A further critique to our reaction to distinguish between different situations would be

to say why our limit result is relevant when the justifying argument concerns finite λ.

This is where our step 3 kicks in, which states that the convergence speed of the expected

search duration is high with respect to λ.

All these results suggest a wide applicability of our results for the case in which payoffs

realize at the deadline, and we believe the analysis of the case in which payoffs realize

upon agreement complements our main analysis.

Market Designer’s Problem

In the main sections, we took a search environment as given and analyzed equilibrium

behaviors of the players. Let us now step back and consider problems faced by a market

designer who has a control over certain parameters of the model. In particular, we

consider two ways by which the designer can affect the search environment. The first is

an adjustment of the horizon length T . That is, the designer commits to a horizon length

T first, and then players start searching until the length T of time passes. The second

is the possibility in which the designer can instead affect the probability distribution

over potential payoff profiles, by “holding off” some offers. Formally, given µ, we let the

designer choose a measure µ′ such that µ′(Y ) ≤ µ(Y ) for all Borel subsets Y ⊆ X.55

In Appendix A.2, we argue that these two ways of designing the market create different

55Note that µ′ may not be a probability measure because it might be the case that µ′(X) < 1.
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effects on the equilibrium behaviors depending on the timing of the payoff realizations.

This implies that it would be of the designer’s interest to look at the specific application

at hand to see what options, if any, to adjust the environment should be utilized. The

discussion in Appendix A.2 gives a recipe for such an adjustment.

General Voting Rules

In the main sections, we considered the case when players use the unanimous rule for

their decision making. This is a reasonable assumption in many applications such as the

apartment search, but there are other applications in which different voting rules (e.g.,

majority rules) may fit the reality better.

In order to model general voting rules, we suppose that C ⊆ 2N is the set of winning

coalitions, and the object of search is accepted if and only if there is a winning coalition

C ∈ C in which every player says “accept” upon its arrival. A minimal winning coalition

is a coalition C ∈ C such that if C ′ ⊆ C and C ′ ∈ C, then C ′ = C. We assume that

any player can be pivotal, i.e., for all i ∈ N , there exists a minimal winning coalition

C ∈ C with i ∈ C. The voting rule naturally induces a coalitional-form game with non-

transferable utility, (N, V ), where the characteristic function V is defined as V (C) = X

if C ∈ C, otherwise V (C) = {0}. The core is defined in the standard manner, and in

particular it equals the weak Pareto frontier of X in the case of the unanimous rule

(C = {N}).
In this setting, we argue that the welfare implication and the search duration crit-

ically depend on the nature of the induced coalitional-form game. In particular, in

Appendix A.3, we show the following result: if X is compact and convex, the core is

nonempty if (and only if) there exists µ with support X satisfying Assumption 1 such

that the limit expected duration is positive and v∗ is weakly Pareto efficient. The in-

tuition is that if the limit payoff profile is not in the core, then some players forming

a winning coalition can expect better payoffs than the limit payoffs by accepting those

better payoff profiles. Since these “better payoff profiles” are agreed upon with positive

probability conditional on having an opportunity at any time, the limit expected duration

is zero, and the convexity of X implies Pareto inefficiency of the limit expected payoff

profile.

Intuition for Essential Uniqueness of Trembling-Hand Equilibrium

The (essential) uniqueness of trembling-hand equilibrium (Proposition 1) is important

as it facilitates unambiguous comparative statics. Its proof, however, is nontrivial as we

work with continuous time so the standard backward-induction argument does not apply.

In a single-player search model, if two strategies give rise to two different continuation

payoffs at some time −t then the strategy with the lower continuation payoff is obviously

suboptimal, and this trivially implies uniqueness. This proof cannot be used for the case

of two or more players. For example, it might be the case that in one equilibrium player 1
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is picky and player 2 is generous, while in another equilibrium the opposite happens, and

these two are both equilibria as both imply reasonable levels of acceptance probabilities

at each point in time.

The proof consists of two steps. In the first step, we bound the supremum difference

of continuation payoffs at time −t across all the trembling-hand equilibria using those

for time −τ ∈ (−t, 0]. Then we show in the second step that such bounds at all time −t
imply that such differences are zero at all time −t.

The key idea for why these differences are zero is as follows: In order to create a

difference in the current continuation payoff, one needs an enough variation in the future

continuation payoffs. But if the remaining time is short, the variation should be large in

absolute term, which is impossible because of our first step, that is, we do not have full

flexibility to vary their strategies due to the “trembling-hand” restriction.56 Appendix A.4

explains the idea in more detail.

It is an open question whether a similar method applies in the infinite-horizon problem

to rule out sequential equilibria that do not use cutoff strategies. The second step of the

proof would not immediately apply due to lack of a deadline, but still discounting or

time costs that would be present in infinite-horizon models might perform the role of a

deadline. Certainly, the contrived sequential equilibria constructed in Cho and Matsui

(2013, Section 4.7) would not constitute a trembling-hand equilibrium even under infinite-

horizon models.

7 Conclusion

This paper analyzed a modification of the standard search problem by introducing multi-

plicity of players and a finite horizon. Together, these extensions significantly complicate

the usual analysis. Our main results identified the determinants of the positive duration

that we observe in reality. We first showed that the (well-defined) expected search dura-

tion in the limit as the search friction vanishes is still positive, hence the mere existence

of some search friction has a nonvanishing impact on the search duration. Second, when

there are multiple agents, this limit expected duration increases as a result of two effects:

the ascending acceptability effect and the preference heterogeneity effect. In short, the

ascending acceptability effect states that a player has an extra incentive to wait as the

opponents accept more offers in the future, and the preference heterogeneity effect states

that such “extra offers” include increasingly favorable ones for the player due to hetero-

geneity of preferences. Third, we showed that the convergence speed of the expected

duration as the friction vanishes is high, and numerically demonstrated that expected

56In this sense, the proof idea is somewhat similar to that of Proposition 11 in Kamada and Kandori
(2011), in which they show that in revision games there is a unique equilibrium if the payoff function
satisfies a certain regularity condition. See footnote 72 in Appendix A.4 for more details on this issue.
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durations with positive frictions are reasonably close to the limit expected duration in

our examples. This provides evidence that our limit analysis contains economically-

meaningful content, and the mere existence of some friction is actually the main driving

force of the positive duration in reality—so the effects that we identify in Steps 1 and 2

are the keys to understanding the duration in reality.

We also conducted a welfare analysis, and showed that the limit expected payoff

profile is Pareto efficient under a wide class of payoff distributions, and depends on the

distribution of offers. Lastly, we provided a wealth of discussions both in the main text

and in Appendix A to examine the robustness of our main conclusions and to analyze a

variety of alternative specifications of the model.

The combination of multiple agents and a finite horizon introduced technical difficul-

ties that we needed to handle. In order to obtain a meaningful insight in such a challenging

environment, we took two approaches to the problem. To show that the positive duration

holds generally, we did not use Bellman equations but considered bounds of payoffs to

partially identify equilibrium behaviors. This approach enabled us to understand a wide

range of distributional environments in a single proof. We then closely examined the

differential equation that characterizes the equilibrium continuation payoffs to derive a

key measure of duration r. This measure r is easy enough to compute in many applica-

tions, and we used it to derive the duration formula. The use of differential equations

is inherent under the non-stationary environment with finite horizon. The comparative

statics based on these analyses has meaningful contents because we show that the equilib-

rium is unique—the uniqueness was obtained by using the “trembling-hand” refinement,

which is new to this sort of setting. The proof is nontrivial as there can be an indefinite

sequence of punishments in our continuous-time setting, and it is potentially applicable

to other settings involving indefinite sequences of punishments such as infinite-horizon

problems.57

Our paper raises many interesting questions for future research. First, it would be

interesting to consider the case where agents can search for another offer even after

they agree on an offer (i.e., search with recall). In this case, the search duration in

equilibrium must always be T , but the duration until the first agreement is not obvious.

This is because players’ preferences are heterogeneous: Player 1 may not want to agree

on the offer that gives player 2 a high payoff, expecting 2’s future reluctance to accept

further offers. In our continuation work, we analyze this case and find that under certain

assumptions, the expected duration until the first acceptance is positive even in the limit

as the friction vanishes. In that work, we also find that players may no longer use cutoff

strategies, and as a result the shape of the acceptance set is quite complicated.

Second, it would be interesting to consider a large market model where at each period

a fixed number of agents from a large population are randomly matched and some payoff

57Kamada and Sugaya (2014) use our technique to prove uniqueness of the equilibrium in their model.
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profile is realized. If all agents agree on the profile, they leave the market. There are at

least two possible specifications for such a model. First, we can consider an overlapping

generation model with a constant inflow of agents where different agents face different

deadlines. In our ongoing research, we solve for a steady-state equilibrium strategy and

characterize the search duration of each agent in the population under certain regular-

ity assumptions. On the other hand, if all agents share the same deadline, the arrival

rate must decrease or the distribution of payoffs must change over time to reflect the

change in the measure of agents who remain in the market, and it is not obvious whether

the positive-duration result carries over.58 Our result on time-varying distributions in

Appendix A.11 may be useful in such an analysis.

Finally, in order to isolate the effects of multiple agents and a finite horizon as cleanly

as possible, we attempted to minimize the departure from the standard model. Inevitably,

this entailed ruling out some properties that would be relevant in particular applications.

For example, in some cases there may be uncertainty (that perhaps resolves over time)

about the distribution over outcomes or the opponents’ preferences. We conjecture such

uncertainty would increase search durations because such uncertainty adds an option

value of waiting. Another example would be the possibility of agents using effort to

increase the arrival rate or perhaps sacrificing a monetary cost to postpone the deadline.

Again, this would increase the search duration, as players could make these decisions

conditional on the time left to the deadline. These extensions of our model are left for

future work. We hope the current paper serves as a basis for such future work and

provides useful insights and techniques for the analyses in such work.
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Bergemann, D. and J. Välimäki (2011): “Efficient Search by Committee,” Mimeo.

Calcagno, R., Y. Kamada, S. Lovo, and T. Sugaya (2014): “Asynchronicity

and coordination in common and opposing interest games,” Theoretical Economics, 9,

409–434.

Cho, I.-K. and A. Matsui (2013): “Search Theory, Competitive Equilibrium, and the

Nash Bargaining Solution,” Journal of Economic Theory, 148, 1659–1688.

Coddington, E. A. and N. Levinson (1955): Theory of Ordinary Differential Equa-

tions, McGraw-Hill.

Compte, O. and P. Jehiel (2004): “Bargaining over Randomly Generated Offers: A

new perspective on multi-party bargaining,” Mimeo.

——— (2010): “Bargaining and Majority Rules: A Collective Search Perspective,” Jour-

nal of Political Economy, 118, 189–221.

Ferguson, T. S. (1989): “Who solved the secretary problem?” Statistical Science, 4,

282–296.

——— (2005): “Selection by Committee,” in Advances in Dynamic Games, ed. by A. S.
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A Appendix: Additional Discussions

A.1 The Payoffs Realizing upon Agreement

Economic search situations are worthy of analysis because agents face a tradeoff between

deciding now and doing so later. The benefit of deferring the acceptance of an offer lies in

a prospect of getting a better payoff in the future, while the cost comes with some form of

penalty on an act of deferring. There are two types of such penalty that economic agents

face in reality: discounting (or time costs) and deadlines. The traditional infinite horizon

models and our finite horizon model are at two extreme points: the former assumes

discounting or time costs without deadlines, while the latter (our main sections) assumes

the risk of reaching the deadline without assuming discounting or time costs.59 We believe

the reality is at somewhere in the middle of these two extreme cases, and which model

is a better approximation of the reality depends on the particular applications that the

analyst is interested in.60 To understand these “middle” situations we think it a necessary

step to analyze both of the two polar cases. We already know much about one of these

cases from the literature, and the other case is what we analyzed in the main sections.

Here we present a way to formally connect these two cases. Specifically, we consider

the case where the payoffs realize as soon as an agreement is reached, as opposed to

assuming that the payoffs realize only at the deadline. Before considering “middle”

cases, we first consider one of the polar cases in which we fix the discount rate ρ > 0 and

then take the limit as the arrival rate λ tends to infinity. We show that the path of the

continuation payoffs is close to that in the case of our main model when the deadline is

relatively close and λ is sufficiently high for a fixed ρ > 0, while it diverges from such a

path when the deadline is far away. The limit payoff profile is shown to be an element of

the “Nash set,” a generalization of the Nash bargaining solution. We also show that the

limit expected search duration is zero.

After analyzing such an extreme case, we consider general convergence as λ → ∞
with ρ depending on λ. We show that the limit payoffs and durations depend on the

limit of λρn. Since this is a continuous function in both λ and ρ, the result implies that

the relevance of the two extreme analyses—our main analysis and the analysis in which

λ → ∞ with fixed ρ > 0—depends on what situations we want to analyze. The latter

analysis considers the case in which there are an increasingly large number of offers before

payoffs are substantially discounted and thus the deadline is not at the relevant future,

so the situation is getting more and more similar to the one described by the infinite

horizon model. However, if we consider a situation where the payoffs are not so much

discounted even at the deadline, i.e. ρ is relatively small compared to 1/λ1/n, then the

59We will review the literature on the infinite horizon models in Appendix B.
60No discounting may be the best model when the payoffs realize at the deadline as in our motivating

example of apartment search, although one may still be able to imagine a possibility of small time costs.
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deadline is in the relevant future, so the result of our main analysis is more relevant.

Formally, suppose that if a payoff profile x = (x1, . . . , xn) is accepted by all players

at time −t ∈ [−T, 0] then player i obtains a payoff xie
−ρ(T−t) where ρ ≥ 0 is a discount

rate. If no agreement has been reached until time 0, each player obtains the payoff

0.61 First, we note that if ρ = 0, exactly the same analyses as in the previous sections

apply. This is because with ρ = 0, player i’s payoff when an agreement occurs at time

−t is xie−ρ(T−t) = xie
−0·(T−t) = xi, which is independent of t. Thus in this section, we

focus on the case with ρ > 0. Under Assumption 1, essential uniqueness of trembling-

hand equilibrium is obtained by a proof analogous to the one for Proposition 1. A

straightforward computation shows that the following differential equation characterizes

the (unique) continuation payoff v(t) of the trembling-hand equilibrium:62

v′(t) = −ρv(t) + λ

∫
A(t)

(
x− v(t)

)
dµ (A.1)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn.63 The second term in the right hand

side is the same as the right hand side of (1). The new addition is the first term, which

corresponds to discounting (thus it is accompanied by a negative sign).

Suppose Assumptions 1 and 5 hold. Let v∗(t; ρ, λ) be the (unique) solution of ODE (A.1).

If λ is large, the right hand side of equation (A.1) can be approximated by the right hand

side of equation (1) when the value of the integral is not too small. Therefore, v∗(t; ρ, λ)

is close to the solution of equation (1) in the case of ρ = 0, for λ large relative to ρ. This

resemblance of trajectories holds until µ(A(t)) approaches 0, which is when the value of

the integral is small. In particular, we can show that for high enough λ, there exists t̄ > 0

such that the locus of v∗(t; ρ, λ) in time interval [−t̄, 0] approximates that of v∗(t; 0, λ) in

[−T, 0].

Proposition 10. For all ρ > 0 and ε > 0, there exists λ̄ > 0 such that for all λ ≥ λ̄,

there exists t̄ such that for all t,

∣∣v∗(t; 0, λ)− v∗
(
min{t, t̄}; ρ, λ

)∣∣ ≤ ε.

The proposition shows that, even when there is discounting, the equilibrium dynamics

represented by the trajectory of continuation payoffs (which are equal to the cutoffs) can

be analyzed by what we identified in our main sections. This is helpful because the

analysis of (1) is easier than that of (A.1): for example, the result implies that v∗(t; ρ, λ)

61This entails a loss of generality, but setting a nonzero threat-point payoff leads only to minor modi-
fications of the statements of our results.

62Note that an argument similar to that of Proposition 1 shows that there exists a trembling-hand
equilibrium consisting of cutoff strategies with cutoffs v(t).

63In footnote 11 in Section 2, we noted that it is without loss of generality to assume that the dis-
agreement payoff profile xd is 0 if ρ = 0. This is not the case when ρ > 0. However, even if xd ̸= 0, the
subsequent analyses go through with the initial condition for (A.1) being changed to v(0) = xd.
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Figure 13: Vectors when t→ ∞.

comes close to the weak Pareto frontier if λ is sufficiently large, and makes it easier to

apply local conditions of µ that we will assume later (Assumption 6). Moreover, even

though this result itself does not say anything about the locus of the continuation payoffs

when the deadline is far away, it will determine the limit expected payoffs under certain

circumstances. We will be clearer on this in Remark 4 (b) after presenting Lemma 11.

Remark 3 (Difference between λ→ ∞ and t→ ∞).

Before analyzing v∗ = limλ→∞ v∗(t; ρ, λ), let us consider another limit v∗(∞) :=

limt→∞ v∗(t; ρ, λ). Here we assume existence of these limits, which will be shown later in

the proof of Lemma 11.

Since the right hand side of equation (A.1) is not proportional to λ, these two limits

do not coincide for positive ρ > 0. If the limit v∗(∞) exists,64 by continuity of the right

hand side of (A.1) in v, we have limt→∞ v∗′(t) = 0, and v∗(∞) must satisfy

ρv∗(∞) = λ

∫
A(v∗(∞))

(
x− v∗(∞)

)
dµ. (A.2)

For ρ > 0, equality (A.2) shows µ(A(v∗(∞))) > 0, which implies that v∗(∞) is Pareto

inefficient in X. This contrasts with efficiency of v∗ = limλ→∞ v∗(t; ρ, λ) that we will

show in Lemma 11.

Equality (A.2) also implies that the vector v∗(∞) is parallel to the vector from v∗(∞)

to the barycenter of A(v∗(∞)), as shown in Figure 13 for the two-player case.

We impose the following assumption in addition to Assumptions 1 and 5. Except

for minor points, they are satisfied in the literature (Wilson (2001), Compte and Jehiel

(2010), Cho and Matsui (2013)).

64In the proof of Lemma 11, we show that v∗(∞) indeed exists.
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Assumption 6. (a) At any point on the weak Pareto frontier in X̂, the frontier is smooth

and every component of the normal vector is strictly positive.

(b) There exists ε > 0 such that X contains a set {x ∈ Rn
+ | x ≤ w, and |w − x| ≤

ε for some weakly Pareto efficient w ∈ X}.

In Condition (a), the smoothness ensures the existence of a normal vector at any

point on the weak Pareto frontier. The assumption that all the normal vectors are

strictly positive implies that any weak Pareto efficient payoff profile is Pareto efficient.

Condition (b) ensures existence of a “thick” Pareto frontier of X.

Now suppose that λ is very large. Then µ(A(v∗(∞))) must be very small, which means

that v∗(∞) is very close to the Pareto frontier ofX, where v∗(∞) is defined as in Remark 3.

Assumptions 5 and 6, respectively, ensure that the density f is approximately uniform in

A(v∗(∞)) if A(v∗(∞)) is a set with a very small volume and that A(v∗(∞)) approximates

a small n-dimensional pyramid. The vector in the right hand side of equality (A.2) is

parallel to the vector from v∗(∞) to the barycenter of A(v∗(∞)). We use this property

to show that, in the interior of the Pareto frontier of A(v∗(∞)), A(v∗(∞)) is tangent

to the hypersurface defined by
∏

i∈N xi = a for some constant a. We refer to such a

Pareto efficient allocation as a Nash point, and the set of all Nash points as the Nash

set (Maschler et al. (1988), Herrero (1989)). The Nash set contains all local maximizers

and all local minimizers of the Nash product. If X is convex, there exists a unique Nash

point, and this is the standard Nash bargaining solution.

The above observation can be formalized with additional technical conditions to show

the following lemma.

Lemma 11. Suppose that Assumptions 1, 5, and 6 hold, and that any Nash point is

isolated in X. Then the limit v∗ = limλ→∞ v∗(t; ρ, λ) exists and belongs to the Nash set

for all t > 0. If X is convex, this limit coincides with the Nash bargaining solution.

Therefore, the trajectory of v∗(t) for large λ starts at v∗(0) = 0, approaches v∗(T ; 0,∞),

and moves along the Pareto frontier until reaching a point close to a Nash point.

Remark 4. (a) It is possible that the limit payoff in the model with ρ = 0 is isolated

from a Nash set. In such a case, the lemma and Proposition 10 together imply that

the continuation payoff may not be monotone over time in general, and in particular

we expect to observe the rise of continuation payoffs over time when the deadline is

not very close. We will discuss this nonmonotonicity more in Appendix A.12.

(b) The proof of Lemma 11 in particular proves that when λ is large enough, the Nash

product is nondecreasing in t. To see the implication of this property, consider X in

which there are two isolated local maximizers ṽ and v̂ of the Nash product (which

are elements of the Nash set). Consider two distributions with support X, µ̃ and µ̂,
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such that in the model with ρ = 0 the continuation payoff of the former converges

to ṽ and that of the latter converges to v̂. Then, Proposition 10 implies that the

continuation payoff can approach arbitrarily close to ṽ under µ̃, and then Lemma 11

the nondecreasingness of the Nash product imply that the continuation payoff does

converge to ṽ after that. A parallel statement holds for v̂ under µ̂. That is, which point

in the Nash set becomes the limit equilibrium payoff profile depends on the distribution

of offers. Hence, the analysis of the case with ρ = 0 helps determine a rough position

of the limit payoff, while the exact point is determined by the properties of Nash

products on the boundary of X. In contrast, in the infinite-horizon model, all the

Nash points arise as limits of equilibrium payoff profiles.65

The key idea behind the proof is to first show that the probability of the acceptance

set A(v(t)) shrinks to zero as λ→ ∞, and then use this fact to approximate A(v(t)) by a

polyhedron (by the smoothness of the boundary assumed in Assumption 6 (a)). Once we

do this, we can compute the approximate direction of the continuation payoffs and use

that to show that the Nash product is nondecreasing in t when A(v(t)) is small enough.

This leads to the desired result.

The fact that A(v(t)) shrinks to zero as λ → ∞ is not trivial because the motion of

v(t) may not be monotone. Indeed, this was easy to show in the case without discounting

because v′(t) was nonnegative. Also, if we consider a stationary equilibrium in an infinite

horizon problem, we can simply set v′(t) = 0 and observe that the acceptance set needs

to be small enough when λ is high. In the current setting, v′(t) may be negative and it

is ex ante unclear if it goes to zero as λ → ∞. We overcome this problem by using the

fact that the negative term −ρx is bounded independently of λ, so the degree to which

nonmonotonicity kicks in is limited.

In showing that the Nash product is increasing in t, we construct a Lyapunov function

L(t) that is a logarithm of the Nash product. Then we note that when the payoff for a

player is higher, the discounting term in the ODE (A.1) makes the increase of the payoff

slower the speed of increase of the payoff more slowly. This relation enables us to apply

Chebyshev’s sum inequality to show that L′(t), defined by the sum of v′i(t)/vi(t) across

all i, is nonnegative.

In contrast to Theorems 1 and 2 in the case when payoffs realize at the deadline (or

ρ = 0), we show that an agreement is reached almost immediately if λ is very large.

Lemma 12. Suppose that Assumptions 1, 5, and 6 hold. If ρ > 0, then the limit expected

search duration is zero.

These lemmas, which concern the case with fixed ρ > 0, can be used to show the

general result when ρ depends on λ and λ diverges to infinity.
65Although Wilson (2001) considers only convex feasible payoff sets, his argument can be generalized

to the non-convex cases. Cho and Matsui (2013, Proposition 4.3) prove a related result with non-convex
feasible payoff sets.
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Proposition 13. Suppose that Assumptions 1, 5, and 6 hold, and the discounting rate ρλ

depends on λ and is bounded in λ. The limit payoff profile v∗ = limλ→∞ v∗(t; ρλ, λ) and

the limit expected duration as λ → ∞ satisfy the following claims: (i) If λρnλ → 0, then

v∗ = limλ→∞ v∗(t; 0, λ), and the limit expected duration is positive, which are the limits

analyzed in Sections 4 and 5. (ii) If λρnλ → ∞, then v∗ = limλ→∞ v∗(t; ρ̄, λ) for any

ρ̄ > 0, and the limit expected duration is zero, which are the limits shown in Lemmas 11

and 12.

The proof idea is as follows: The limit of the expected payoffs depends on whether

or not the first term in ODE (A.1) is negligible compared to the second term. Let

z(t; ρ, λ) be the Hausdorff distance from v∗(t; ρ, λ) to the Pareto frontier of X. Since ρλ is

bounded in λ, z(t; ρ, λ) is continuous in ρ and λ, and z(t; ρλ, λ) is close to zero whenever

λ is sufficiently large for each fixed ρ ≥ 0, we have that z(t; ρλ, λ) is close to zero for

sufficiently large λ. Then we can apply an analogous argument to the one provided in

the discussion in the proof sketch of Theorem 4 to show that the acceptance probability

is approximately proportional to λ−1, and since µ(A(t)) approximates z(t; ρλ, λ)
n times

some constant, z(t; ρλ, λ) is approximately proportional to λ−1/n. Since the length of the

vector from v∗(t; ρλ, λ) to the barycenter of A(t) is proportional to z(t; ρλ, λ), the second

term in ODE (A.1) is of order λ · λ−1/n · λ−1 = λ−1/n. Therefore if λρnλ → 0, then the

first term, which approximates −ρλv∗, is negligible because ρλ vanishes more rapidly than

λ−1/n. Thus the limit in this case is the same as in Sections 4 and 5. If λρnλ → ∞, the

first term is significant because ρλ does not vanish rapidly compared to λ−1/n. This leads

to the limit in Lemma 11. An analogous argument can be made for the limit expected

durations, which is given in Lemma 12.

Proposition 13 is used in Appendix A.7 to show that in the model of infinite horizon

with discounting, the limit expected duration is zero as arrival rate λ tends to infinity.

Combined with the “continuity at infinity” argument analogous to Fudenberg and Levine

(1983), our result makes it possible to understand under a unified framework the equilib-

rium and its properties such as the limit expected duration in the finite horizon model

and those of the infinite horizon model.

To sum up, the different timing of payoff realization can bring in a different set of

results. However, the extent to which such results are relevant depends on the situation

that we are interested in; here we identified the situation under which each analysis is more

relevant than the other. Moreover, even in the case in which discounting is prominent,

the equilibrium behavior is similar to the case with non-prominent discounting, when

the deadline is close. This in particular implied that the continuation payoff may not be

monotone over time, and the payoff distribution determines a rough position of the limit

payoff profile. All these results suggest a wide applicability of our results for the case in

which payoffs realize at the deadline, and we believe the analysis of the case in which

payoffs realize upon agreement compliments our main analysis.
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A.2 Market Designer’s Problem

In this section, we consider problems faced by a market designer who has a control over

certain parameters of the model.

First, consider the case in which the payoffs realize at the deadline, and the designer

can tune the horizon length T . In this case, if the designer is interested in efficiency

of allocations, there is no point in making the horizon shorter because the continuation

payoff profile v(t) is increasing in t.

Second, still in the case with payoffs realizing at the deadline, suppose that the de-

signer can instead affect the probability distribution over potential payoff profiles, by

“holding off” some offers. Formally, given µ, we let the designer choose a measure µ′

such that µ′(Y ) ≤ µ(Y ) for all Borel subsets Y ⊆ X.66 In this case, the designer faces a

tradeoff: On one hand, tuning the distribution can affect the path of continuation payoffs

and the ex ante expected payoff at time −T (an argument analogous to Proposition 9).

On the other hand, however, changing the distribution will decrease the expected num-

ber of offer arrivals in the finite horizon. Agents then face more risks of disagreement,

which detrimentally affect the payoffs v(T ). The explicit form of an optimal design would

depend on the specificalities of the problem at hand and the objective function of the

designer, but basically if the horizon length T is high then reducing probabilities would

not lead to too much loss, and thus the market designer has a high degree of freedom to

choose from nearly efficient outcomes. As Proposition 9 shows, the freedom in choosing

among the payoffs on the Pareto frontier is quite high.

Notice that proportional change in µ, i.e., µ′(Y ) = aµ(Y ) for some constant a ∈ (0, 1)

for all measurable Y ⊆ X, has the same effect as shortening the horizon length from T

to aT . This is because such a change in µ is equivalent to changing the arrival rate from

λ to aλ, which we know is equivalent to the change in T when the payoffs realize at the

deadline. However, there are at least two reasons that tuning of T is interesting. First,

in some circumstances the designer may be able to lengthen T (and it is beneficial when

the payoffs realize at the deadline, as discussed above). Since the probability cannot be

integrated up above 1, there is no corresponding change in µ. Second, the designer may

not have an access to all the possible tuning strategies of µ (or maybe one has no way to

change µ), and if some desirable way of tuning of µ is not available then one may want

to tune T instead when he or she has an easier access to tuning of T .

Next, we consider the case with payoffs realizing upon agreement as in Section A.1.

In such a case, the equivalence of the changes in λ and in T no longer holds, so the effect

of changes in µ and T are not equivalent, even when µ is changed proportionally.

Specifically, for a long enough horizon length, the tuning of T has little effect on

the welfare while tuning of µ can have a large effect.67 The reason is precisely that

66Note that µ′ may not be a probability measure because it might be the case that µ′(X) < 1.
67To see the difference clearly, suppose that n = 2 and µ is the uniform distribution over X = {x ∈
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tuning of µ corresponds to tuning of λ, which means that the amount of discounting

between opportunities is on average high. Below we consider tuning of T and then non-

proportional tuning of µ.

First, notice that there can be a benefit from reducing T . As in the case with payoffs

realizing at the deadline, lower T means that the expected payoff profile at time −T
is less close to the limit payoff profile as T → ∞ which is close to the Pareto frontier.

However, this does not necessarily imply that the resulting expected payoff profile is less

socially desirable. Let us assume convexity of X, and consider the solution for the case in

which payoffs realize at the deadline, v∗(T ; 0,∞). If it is more socially desirable than the

Nash bargaining solution, then by reducing T appropriately the expected payoff profile

will come closer to v∗(T ; 0,∞) (provided that the expected payoffs are in between these

two payoffs before shortening T ; recall that by Proposition 10 the expected payoffs for a

certain intermediate range of time −t is close to v∗(T ; 0,∞)).

On the other hand, non-proportional tuning of the distribution has a small effect in

contrast to the case with payoffs realizing at the deadline when X is convex, as we know

that the payoffs eventually converge to the Nash bargaining solution. However, since

v∗(T ; 0,∞) depends on the distribution, Proposition 10 implies that the direction from

which the payoff converges varies as the designer varies the distribution. Also, without

convexity, tuning of the distribution may have a large effect. This is because there may

exist multiple points in the Nash set, and different distributions may lead to different

points in the Nash set the continuation payoff profile converges to.

To wrap up, the market designer may have different ways to tune the parameters

of the model, and they create different effects depending on the timing of the payoff

realizations.

A.3 General Voting Rules

In the main sections we considered the case when players use the unanimous rule for

their decision making. This is a reasonable assumption in many applications such as the

apartment search, but there are other applications in which different voting rules (e.g.,

majority rules) may fit the reality better. This section is devoted to the analysis of such

cases.

Let us consider a general voting rule in which C ⊆ 2N is the set of winning coalitions;

The object of search is accepted if and only if there is a winning coalition C ∈ C in which

every player says “accept” upon its arrival. A minimal winning coalition is a coalition

C ∈ C such that if C ′ ⊆ C and C ′ ∈ C, then C ′ = C. We assume that any player can be

R2
+ |x1+x2 ≤ 1}. Fix ρ > 0. Let va(T ) for a ∈ (0, 1] be the payoff profile at time −T under the measure

µ′ such that µ′(Y ) = aµ(Y ) for all measurable Y ⊆ R2
+. Then, for any a ∈ (0, 1) and ε > 0, there exists λ̄

such that for all λ > λ̄, there exists T̄ such that for all T > T̄ , (i)
∣∣( 12 , 1

2 )−v1(aT )
∣∣ ≤ (1+ε)

∣∣( 12 , 1
2 )−v1(T )

∣∣;
and (ii)

∣∣( 12 , 1
2 )− va(T )

∣∣ ≥ (( 1a) 1
3 − ε

)∣∣( 12 , 1
2 )− v1(T )

∣∣.
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Figure 14: Equilibrium continuation payoffs under a majority rule: If the point v∗ were
the limit payoff profile, then the acceptance set should have contained the darker region,
and the barycenter of the darker region, ṽ, is in the interior of X as X is convex.

pivotal, i.e., for all i ∈ N , there exists a minimal winning coalition C ∈ C with i ∈ C. It is

straightforward to check that if µ satisfies Assumption 1, Propositions 1 and 2 (existence

of an essentially unique trembling-hand equilibrium and the use of cutoff strategies) carry

over to this case.

The voting rule naturally induces a coalitional-form game with non-transferable util-

ity, (N, V ), where the characteristic function V is defined as V (C) = X if C ∈ C,
otherwise V (C) = {0}. The core of (N, V ) is the set of all payoff profiles x ∈ X such

that there are no C ⊆ N and y ∈ V (C) with yi > xi for all i ∈ C. Note that in the case

of the unanimous rule (C = {N}), the core equals the weak Pareto frontier of X.

Suppose that X is compact and convex, and has a nonempty interior. First, suppose

that the limit expected payoff profile v∗ is not in the core. This occurs for example if the

core is empty. By convexity of X, v∗ ∈ X. If v∗ is not in the core, there exists C ∈ C
such that {x ∈ X |xi > v∗i for all i ∈ C} is nonempty. Since this set is an open subset

in X, the probability that the payoff profile realizes in the subset is positive. Therefore

the limit expected duration must be zero. Furthermore, we can show that v∗ cannot

be weakly Pareto efficient. To see this, suppose that v∗ is weakly Pareto efficient. An

intuitive explanation can be seen in Figure 14 which describes the case where any single

player out of two can decide the final outcome. One can find a region with a positive

measure such that the acceptance takes place. However the barycenter of these regions is

in the interior of X by convexity, and hence the limit payoff profile v∗ must be an interior

point as well. This contradicts the assumption that the limit payoff profile is weakly

Pareto efficient. Just as in the case when v∗ is not in the core, we can show that v∗ not

being weakly Pareto efficient implies that the limit expected duration is zero.68

Next, suppose that the core is nonempty. Then we can show that the limit expected

68This discussion is parallel to that of Compte and Jehiel (2010, Proposition 7) who consider majority
rules in a discrete-time infinite-horizon search model.
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duration is positive for some probability measure µ with sufficiently high density near

the core. We summarize our findings as follows:

Proposition 14. Suppose that X ⊆ Rn
+ is compact and convex, and has a nonempty

interior. Then, if a probability measure µ over X satisfies Assumption 1 and the limit

expected payoff profile v∗ under µ is not in the core, then v∗ is not weakly Pareto efficient

and the limit expected duration is zero. In addition, the core is nonempty if and only

if there exists µ with support X satisfying Assumption 1 such that the limit expected

duration is positive and v∗ is weakly Pareto efficient.

A.4 Intuition for Essential Uniqueness of Trembling-Hand Equi-

librium

The (essential) uniqueness of trembling-hand equilibrium (Proposition 1) is nontrivial as

we work with continuous time so the standard backward-induction argument does not

apply. Here we explain the key idea of the proof. In a single-player search model, if

two strategies give rise to two different continuation payoffs at some time −t then the

strategy with the lower continuation payoff is obviously suboptimal, and this trivially

implies uniqueness. This proof cannot be used for the case of two or more players. For

example, it might be the case that in one equilibrium player 1 is picky and player 2 is

generous, while in another equilibrium the opposite happens, and these two are both

equilibria as both imply reasonable levels of acceptance probabilities at each point in

time.

Here we present the proof idea for a two-player case to keep the notation simple. The

idea can be generalized to the cases with more than two players.

The proof consists of two steps. In the first step, we bound the supremum difference

of continuation payoffs at time −t across all the trembling-hand equilibria using those

for time −τ ∈ (−t, 0]. Then we show in the second step that such bounds at all time −t
imply that such differences are zero at all time −t.

So consider the problem with players 1 and 2. Let q̄i(t) and qi(t) be the supremum and

the infimum, respectively, of continuation payoffs for player i across all trembling-hand

equilibria.69 Let wi(t) = q̄i(t) − q
i
(t) be the difference. Our goal is to first bound wi(t)

using w1(τ) and w2(τ) for τ ∈ [0, t), and then to use such a bound to show that wi(t) = 0

for all t. For simplicity, assume that wi(t) is increasing in t for each i. This needs a proof,

but would be intuitive because as the remaining time shrinks there is less and less room

for equilibrium strategies to make a difference in terms of payoffs.

69Formally, let Qi(t;σ) be the set of continuation payoffs for player i at time −t at which no acceptance
has occurred in the time interval [−T,−t] (note that this interval includes time −t), under the strategy
profile σ. Let Σ∗ be the set of trembling-hand equilibria (which is non-empty due to Proposition 2). We
define q̄i(t) = supy∈Qi(t;σ),σ∈Σ∗ y and q

i
(t) = infy∈Qi(t;σ),σ∈Σ∗ y.
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The key of the first step is to observe that, given the “trembling-hand” restriction

at time −t, player i having an opportunity at time −τ accepts all the payoffs strictly

above q̄i(τ) and rejects all the payoffs strictly below q
i
(τ). This is true for every future

time −τ ∈ (−t, 0]. So if any two equilibria give rise to two different continuation payoffs

at time −t, the difference should be attributed to that of the agents’ behavior at some

future time −τ when the payoff realization is between q̄i(τ) and qi(τ).
70 The probability

with which the offer falls in this “ambiguous region” is at most L · (w1(τ)+w2(τ)) where

L is the maximum across players of the supremums of the marginal densities of payoffs,

which exist by Assumption 1 (b). When there is a payoff difference, the difference can

be in expectation at most the expected payoff from the distribution, which is finite by

Assumption 1 (a). Denote the maximum across players of these expected payoffs by x̄.

These facts imply, for each i ∈ I,

wi(t) ≤
∫ t

0




Probability of the

offer falling in the

“ambiguous region”

at time −τ

×

 The maximum

payoff change

on average


λe−λ(t−τ) dτ

≤
∫ t

0

(
L(w1(τ) + w2(τ))× x̄

)
λe−λ(t−τ) dτ .

Letting M = 2λLx̄ and summing across players implies that

w1(t) + w2(t) ≤
∫ t

0

M
(
w1(τ) + w2(τ)

)
dτ . (A.3)

The intuition for the derivation is the following: Under trembling-hand equilibria, the

actions taken when the payoffs are either very high or very low are uniquely determined,

and the only thing that could possibly depend on a particular choice of trembling-hand

equilibrium is the actions taken when receiving an offer in the ambiguous region. The

probability of receiving such an offer at time −τ is at most proportional to the difference

of payoffs w1(τ)+w2(τ), because (i) the density of payoffs is bounded and (ii) the expected

payoffs are finite.

The second step is to show that inequality (A.3) with the initial condition wi(0) = 0

has a unique solution wi(t) = 0 for all t. The actual proof for this is analogous to the

standard textbook-proof for uniqueness of the solution of a differential equation, but here

let us try to provide a detailed intuition referring to the structure of our game.

Recall that wi(t) is increasing in t. Inequality (A.3) implies

w1(t) + w2(t) ≤Mt
(
w1(t) + w2(t)

)
.

70For the sake of argument, we ignore the effect that future trembles contribute to the difference in
the current expected payoffs. The proof in Appendix D.3 does not ignore this effect.
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If t is small, the only way to satisfy this inequality is to have w1(t) + w2(t) = 0 which

implies wi(t) = 0.71 This is true for all t ≤ 1
M
. But given this, we can rewrite inequal-

ity (A.3) for t ≥ 1
M

as follows:

w1(t) + w2(t) ≤
∫ t

1
M

M
(
w1(τ) + w2(τ)

)
dτ .

Then we can iterate the same argument for all t ∈ [ 1
M
, 2
M
], and this goes on indefinitely.

Let us summarize: In order to create a difference in the current continuation payoff, it

needs an enough variation in the future continuation payoffs. But if the remaining time

is small, the variation should be large in absolute term, which is impossible because of

our first step, that is, we do not have full flexibility to vary their strategies due to the

“trembling-hand” restriction.72

The formal proof in Appendix D.3 considers the ε-constrained game explicitly, does

not hinge on the assumption that wi is increasing, and deals with the n-player case.

A.5 Additional Welfare Implications

Pareto Efficiency under Generic Distributions

In Proposition 7 in Section 5, we showed that the limit payoff profile v∗ is Pareto efficient

whenever X is convex. Even when X is not convex, we can argue that the limit payoff

profile v∗ is Pareto efficient under “generic” probability measures µ on X. To formalize

what “generic” means, let F be the set of density functions that satisfy Assumptions 1

and 5. We consider a topology on F defined by the pointwise convergence. To exclude

uniteresting cases, we focus on the two-agent case in which there exist single-variable

functions g, h : R+ → R+ such that X is expressed as X =
{
(x1, x2) ∈ R2

+ | x2 ∈
[0, g(x1)], x1 ∈ [0, h(x2)]

}
. This set consists of all the points x ∈ Rn

+ that lie below the

graph of g and on the left of the graph of h as illustrated in Figure 15. We say that a

function is piecewise continuous if it is continuous at all but a finite number of points.

Proposition 15. Consider a two-agent model with both g and h being piecewise continu-

ous and quasiconcave. Under Assumptions 1 and 5, the set {f ∈ F | v∗ is Pareto efficient in X}
is open and dense in F .

In the proof of openness, we use the fact that when the density changes continuously,

the limit point v∗ changes continuously if it is Pareto efficient. Given the general property

of v∗ identified in the proof of Proposition 7, the piecewise-continuity condition implies

that any Pareto efficient payoff profile x has a neighborhood Bε(x) such that each point

71This is because, by definition, wi(t) ≥ 0 for each t and i.
72The regularity condition imposed by Kamada and Kandori (2011), which we discussed in footnote 56

in Section 6, is analogous to having a term proportional to wi(τ) for each τ in the integrand of the right
hand side of inequality (A.3).
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X

Figure 15: An example of the domain X defined by functions g and h, both of which
satisfy piecewise continuity and quasiconcavity assumed in Proposition 15.

in Bε(x) is either (i) Pareto efficient, or (ii) not a limit of v∗(t) as t→ ∞ for any f ∈ F .

Therefore, if v∗ under f is Pareto efficient, any density sufficiently close to f leads to a

Pareto efficient limit point. This ensures openness.73

To show denseness, suppose that the limit payoff profile v∗ is not Pareto efficient, g

is discontinuous at v∗1, and limx1↗v∗1
g(x1) > v∗2 ≥ limx1↘v∗1

g(x1). Consider a modified

density function f̄ with the same support but a small amount of density added near a

Pareto efficient profile ȳ = (v∗1, limx1↗v∗1
g(x1)), and assume that the limit payoff profile

remains the same. Then the slope of the trajectory under f̄ must be steeper near v∗.

Since we assumed that the limit payoff profile is the same, the trajectory near the limit

point under f̄ comes below the one under f . However, since the slope under the modified

density is steeper at every point on the trajectory under f , the trajectory under f̄ comes

above the one under f .74 This is a contradiction, implying that the two limits are not

the same. By an argument similar to the proof of Proposition 7, we can show that these

two limit are distant from each other, which implies the denseness of the set of density

functions with which the limit point is Pareto efficient. We assumed quasiconcavity to

guarantee existence of the limit of the slope of the trajectories.75

Difficulty of Comparative Statics

Before Proposition 9, we argued that it is difficult to conduct comparative statics regard-

ing the limit payoff profile. To illustrate such difficulty, we present an example in which

player i’s marginal distribution of a probability measure µ is first-order stochastically

dominated by that of another probability measure γ, and i’s limit expected payoff under

µ exceeds the one under γ.

73In Appendix D.9, we will present a pathological counterexample in which the set is not open in F ,
and g or h violates piecewise continuity.

74Such an argument cannot be generalized to the case with n ≥ 3, in which a trajectory does not
divide X into two, and there is no clear way to define a region “above” or “below” a trajectory.

75In Appendix D.9, we will present a pathological counterexample in which the set is not dense in F ,
and g or h violates quasiconcavity.
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Figure 16: The support X = X0 ∪X1 ∪X2 of density functions f and g.

Example 5. Let n = 2, X0 = [0, 1/4]2, X1 = [1/4, 1/2] × [3/4, 1], X2 = [3/4, 1] ×
[1/4, 1/2], and X = X0 ∪ X1 ∪ X2 as presented in Figure 16. Let f0, f1, and f2 be the

uniform density function on X0, X1, and X2, respectively.

Suppose that probability measure µ has a density function f defined by f(x) =

0.5f0(x) + 0.2f1(x) + 0.3f2(x). Since f has a larger density on X2 than on X1, the limit

payoff profile under µ as λ→ ∞ is (1, 1/2).

Consider another probability measure γ with a density function g defined by g(x) =

0.2f0(x) + 0.5f1(x) + 0.3f2(x). Since any point in the interior of X1 strictly Pareto

dominates any point in X0, for each i = 1, 2, i’s marginal distribution of µ is first-

order stochastically dominated by that of γ. The limit payoff profile is, however, (1/2, 1)

because g has a larger density on X1 than on X2. Hence, for large enough λ, player 1’s

expected payoff under µ is strictly larger than that under γ.

A.6 Non-Poisson Arrival Processes

In the main sections we considered Poisson processes to make the presentation of the

results easier. Poisson processes assume that the probability of an opportunity arrival is

zero at any moment, so in particular the probability of receiving one more opportunity

in the future shrinks continuously to zero as the deadline approaches. However, in some

circumstances, it would be more realistic to assume that there is a well-defined “final

period” that can be reached with positive probability. In this section we generalize our

model to encompass such cases and show that our results are unaffected.

Specifically, for each integer m ≥ 1, consider dividing the time horizon of length

T into small subintervals each with length ∆m (so there are T
∆m

periods in total) with

limm→∞ ∆m → 0. At the end of each subinterval, players obtain an opportunity with

probability λm∆m. Notice that Poisson processes correspond to the case when λm is
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constant with respect to m and we let ∆m → 0 as m → ∞. Here we allow for general

sequences (λm)m, such as λm = a/∆m or λm = a/
√
∆m for some constant a > 0. Under

Assumption 1, backwards induction implies that for every period, all trembling-hand

equilibria yield the same continuation payoff profile for almost all histories, and among

them, there exists a Markov perfect equilibrium. In the search problem with subintervals

with length ∆m, for each k = 0, 1, 2, . . . , T
∆m

, let vi(k;m) be the (unique) continuation

payoff for player i at time −k∆m after rejecting an offer if any. Then,

vi

( t

∆m

+ 1;m
)

=
(
1− λm∆m

)
vi

( t

∆m

;m
)
+ λm∆m

(∫
X\A(v( t

∆m
;m))

vi

( t

∆m

)
dµ+

∫
A(v( t

∆m
;m))

xi dµ

)
= vi

( t

∆m

;m
)
+ λm∆m

∫
A(v( t

∆m
;m))

(
xi − vi

( t

∆m

;m
))

dµ.

Hence,

vi

( t

∆m

+ 1;m
)
− vi

( t

∆m

;m
)
= λm∆m

∫
A(v( t

∆m
;m))

(
xi − vi

( t

∆m

;m
))

dµ. (A.4)

Notice that if we set λm = λ being constant and take the limit as m → ∞, the left

hand side divided by ∆m converges to v′i(t) in the Poisson model with arrival rate λ and

the right hand side divided by ∆m converges to λ
∫
A(v(t))

(xi − vi(t))dµ, consistent with

equation (1), and it turns out that the expected search duration as λm → ∞ and ∆m → 0

converges to the one that we derived in our model of continuous time. Thus, we can show

the following:

Proposition 16. Under Assumptions 1 and 4, limm→∞ λm = ∞ implies that the limit

expected duration as m→ ∞ is n2

n2+n+1
T .

Note that this result is consistent with Proposition 5 where we consider the Pois-

son process and take a limit as λ → ∞. This shows robustness of our result to move

structures.

A.7 Approximating an Equilibrium of an Infinite-Horizon Game

Although we consider a finite-horizon model, our convergence result in Lemma 11 is sug-

gestive of that in infinite-horizon models such as Wilson (2001), Compte and Jehiel (2010),

and Cho and Matsui (2013), all of whom consider the limit of stationary-equilibrium out-

comes as the discount factor goes to one in discrete-time infinite-horizon models. This is

because the threatening power of disagreement at the deadline is quite weak if the hori-

zon is very far away, and thus the infinite-horizon models are similar to a finite-horizon
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model with T → ∞ if ρ > 0.76 In fact, we can show that the iterated limit as T → ∞
and then ρ → 0 is the Nash bargaining solution in our model if X is convex and the

assumptions imposed in Proposition 13 hold. To see this, note that by Proposition 13,

limρ→0 v
∗(1; ρ1−a, ρ−aλ) is the Nash bargaining solution for all a ∈ (n/(n + 1), 1) and

all λ. Since enlarging T is equivalent to raising both λ and ρ in the same ratio by the

form of ODE (A.1), v∗(1; ρ1−a, ρ−aλ) = v∗(ρ−a; ρ, λ) holds for each ρ ∈ (0, 1). Thus, for

sufficiently small ρ > 0, there exists a large T such that v∗(T ; ρ, λ) is sufficiently close to

the Nash bargaining solution. For the same reason, the expected duration in the limit as

λ goes to ∞ in the infinite-horizon model is zero, which is analogous to our Lemma 12

in which we send λ to ∞ while ρ > 0 is fixed. Therefore, in the infinite-horizon search

model, the expected duration in a stationary equilibrium converges to zero as λ→ ∞.

A.8 Time Costs

In the model of the main sections, whether or not players discount the future does not

affect the outcome of the game, as payoffs are received at the deadline. However, there

may still be a time cost associated with search. In this subsection we analyze a model

with time costs, and show numerically that the expected search durations with reasonable

parameter values are close to the limit expected duration with zero time cost that we

solved for in the main sections.

Consider a model in which each player incurs a flow cost c > 0 until the search ends.

In this model, it is straightforward to see that the differential equation (1) is modified in

the following way:

v′i(t) = −c+ λ

∫
A(t)

(
xi − vi(t)

)
dµ (A.5)

for each i ∈ N , with an initial condition v(0) = (0, . . . , 0) ∈ Rn.

The analysis of this differential equation is similar to the one in Section A.1, with an

exception that under Assumptions 1, 4, and 6, the limit expected payoff profile as λ→ ∞
for a fixed cost c > 0 is now a point that maximizes the sum of the payoffs, denoted vS.

Let v∗(t; c, λ) be the expected payoff at time −t when parameters c and λ are given. Let

T = 1 and denote by D(λ; c) the expected duration when the arrival rate is λ and the

time cost is c ≥ 0. A proof similar to the one for Proposition 13 shows the following:

Proposition 17. Suppose that Assumptions 1, 4, and 6 hold, and cλ depends on λ,

and bounded in λ. Then, (i) If λcnλ → 0 as λ → ∞, then limλ→∞D(λ; cλ) > 0, and

limλ→∞ v∗(t; cλ, λ) = limλ→∞ v∗(t; 0, λ), which are the limits analyzed in Sections 4 and

76An analogous proof as in Fudenberg and Levine (1983) shows that the limit of any subgame perfect
equilibrium in our model is a subgame perfect equilibrium of the corresponding infinite-horizon game as
the horizon grows long because their “continuity at infinity” condition holds in our model.
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Figure 17: Time costs and arrival rates. The shaded region describes the set of pairs
(c, λ) with which the expected duration is within 5% difference from the limit expected
duration.

5. (ii) If λcnλ → ∞ as λ→ ∞, then limλ→∞D(λ; cλ) = 0 and limλ→∞ v∗(t; cλ, λ) = vS.

The proposition suggests that for a high arrival rate λ, the expected duration does

not change so much when we increase the cost from zero to a small but positive number.

Combined with our argument in Step 3, this suggests that whenever the cost is suffi-

ciently small, our limit arguments in Steps 1 and 2 are economically meaningful. We can

numerically show that the degree to which the cost should be small is not too extreme.

Specifically, we consider the case when n = 2 and µ is the uniform distribution over

X = {x ∈ R2
+ | x1 + x2 ≤ 1}, and solve for the range of pairs of costs and arrival rates

such that the expected search duration is within 5% difference from the limit expected

duration. As shown in Figure 17, such a range contains a wide variety of pairs of param-

eter values (note that the limit expected payoff is 0.5 in this game, so the cost of 0.05

corresponds to the setting with a fairly high cost). When n = 2 and µ is an independent

distribution such that each player’s marginal is an exponential distribution, whenever the

cost c is less than 10% of the expected payoff given with c = 0 and λ = 100, we find that

λ for which the expected duration is of 95% of the limit expected duration is more than

100, and that of 105% is less than 10.77 These results suggest that the limit argument

that we conducted in Steps 1 and 2 of the main sections is economically meaningful in a

wide range of problems.

A.9 Counterexamples of Positive Duration of Search

In Theorems 1 and 2, we showed that the limit expected duration of search is positive

if certain assumptions hold. In this section, we present examples of distributions under

77In our continuation work, we explore this case more and show that the expected duration is positive
even in the limit as λ → ∞, exhibiting a stark contrast to Lemma 12.
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which some of these assumptions are not satisfied and the expected duration converges

to zero as λ→ ∞ for a certain sequence of equilibria.

First, note that it is straightforward to see that if µ assigns a point mass to a point

that Pareto-dominates all other points in the support of µ, the limit expected duration

is zero. Less obvious is the situation where µ allows for point masses while no point

Pareto-dominates all the other points.78 Our Assumption 1 (b) requires a more stringent

condition that the marginal distribution must have a locally bounded density function,

and thus does not have a point mass. Here we present an example in which µ does not

have a point mass while its marginal does, there are multiple trembling-hand equilibria for

each λ under µ, and for some sequence of equilibria the limit expected duration vanishes

as λ→ ∞.

Example 6. Consider X =
(
{0, 1} × [1, 2]

)
∪
(
[1, 2] × {0, 1}

)
and let µ be a uniform

distribution over this X. First, consider a strategy profile in which an agent accepts

an offer until time −t∗ if and only if it gives her a payoff strictly above 1, and accepts

one after −t∗ if and only if it gives her a strictly positive payoff, where t∗ satisfies the

indifference condition at −t∗:

1 =
1− e−λt∗/2

2
(1 + 1.5) + e−λt∗/2 · 0,

or t∗ = 2
λ
ln(5). Since given this strategy profile the continuation payoff for both players is

1 if −t ≤ −t∗ and it is strictly less than 1 otherwise, this indeed constitutes a trembling-

hand equilibrium.79

However, there exist other equilibria. For example, consider a strategy profile which

is exactly the same as the above one except that both players accept offers with payoffs

larger than or equal to 1 whenever −t ∈ [−T,−t∗] and each player has accepted every

previous offer with a payoff larger than or equal to 1 for her. Since the continuation

payoff after a player rejects an offer with a positive payoff at −t ∈ [−T,−t∗] is 1 as we

have argued, this also constitutes a trembling-hand equilibrium. Thus there are multiple

trembling-hand equilibria. Moreover, the limit expected duration in the latter is zero

because the agreement probability on the equilibrium path at any time −t ∈ [−T,−t∗] is
1/2 independently of λ. This suggests the need for Assumption 1 (b) for Theorem 2 to

hold.

The key to multiplicity and zero duration is the fact that payoff profiles at which

players are indifferent arrive with positive probability due to the atom on marginals.

78In this case, Kamada and Sugaya (2010)’s “three-state example” can be interpreted as our model with
a probability measure µ that assigns equal probabilities to (2, 1) and (1, 2). They show that multiple
subgame perfect equilibria exist, and the limit expected duration can be zero in a subgame perfect
equilibrium.

79This is because the continuation payoff is 1 even with trembles since the unconditional expected
payoff of µ is 1.
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Assumption 1 (b) rules out such a situation.

Next, we show that even if µ’s marginal has no point masses, the limit expected

duration may be zero when µ violates Assumption 2 (and Assumption 7 in Appendix D.4).

Example 7. For n = 1, let F be a cumulative distribution function defined by F (x) =

1 +
1

ln(1− x)
for x ∈ [1− e−1, 1), and F (1) = 1. The density is f(x) = 1

(1−x)(ln(1−x))2
for

x ∈ [1− e−1, 1). Recalling formula (3), the density term is

d1(v) =
f(v)

1− F (v)
= − 1

(1− v) ln(1− v)
,

and the barycenter term b1(v) is clearly smaller than 1− v. Since limλ→∞ v∗(t) = 1,

r = lim
v→1

d1(v)b1(v)

≤ lim
v→1

−1

ln(1− v)
= 0.

By Theorem 4, the limit expected duration is zero.

In this example, it is easy to show that for all α > 0, there exists ε > 0 such that

1 − (1 − x)α ≥ F (x) for all x ∈ [1 − ε, 1]. That is, F (x) converges to 1 as x → 1

at a speed slower than any polynomial functions, so in a sense F is very close to a

discrete distribution. In such a case, the above computation shows that the limit expected

duration can be zero, which is the same as the case with discrete distributions.

A.10 The Effect of a Slight Change in the Distribution

The limit result in Proposition 5 depends crucially on the assumption of smooth Pareto

frontier and continuous positive density. Although this is the assumption that is often

invoked in the literature, it is desirable to know how robust this result is. To this end,

consider distributions over Rn
+ which may or may not have full support, and introduce a

notion of distance between two distributions, d(µ, γ) = supBorelA⊆Rn
+
|µ(A)− γ(A)|.

A standard argument on ordinary differential equations shows the following:

Proposition 18. Under Assumption 1, for any λ, the expected duration is continuous

with respect to the distribution of payoff profiles µ.

That is, for any finite arrival rate, the expected duration is not substantially affected

by a slight change in distribution. Combined with the result that our limit result ap-

proximates the situations with finite but high arrival rates, this suggests that our limit

expected duration is relevant even for the distributions that do not satisfy (but are not

too far from a distribution that satisfies) our assumptions (Assumptions 1 and 5).

64



A.11 Time Varying Distributions

In the main model we considered the case in which the distribution µ is time-independent.

This benchmark analysis is useful in understanding the basic incentive problems that

agents face, but in certain situations it might be more realistic that the distribution

changes over time. In this section, we examine whether the positive duration result

in Theorem 1 (the case with a single agent) is robust to this independence assump-

tion. An analogous argument can be made for the multiple-agent case. Let Ft be the

(history-independent) cumulative distribution function of the payoff at time −t satisfying
Assumptions 1 and 2.

First, consider the case in which the distribution becomes better over time in the

sense of first order stochastic dominance. In this case, it is easy to see that the expected

duration is still positive: For each t, consider the cutoff at each time −s ∈ (−t, 0] that
equates the acceptance probability with the one that the agent would get at −s if the

distribution in the future were fixed at Ft. This gives a higher continuation payoff at −t
as the distribution becomes better over time. Thus the cutoff at −t must be greater than

the continuation payoff at −t that the agent would obtain by fixing the distribution at

Ft ever after. This means that at any −t, the acceptance probability is smaller than the

one obtained by fixing the distribution at Ft ever after. Hence the acceptance probability

at −t is O( 1
λt
), so we have a positive duration.

Now consider the case when the distribution may become worse off. First, if the

support of the distribution becomes worse off, then there is no guarantee of positive

duration. For example, if the distribution shrinks proportionally with an exponential

speed as time passes, then the analysis of the duration becomes equivalent to that for

the case with discounting, in which Lemma 12 has already shown that the limit expected

duration is zero.

If the support does not change, then the positive duration result holds quite generally:

In the proof of Theorem 1 provided in Appendix D.4, we did not use the fact that F does

not depend on t. The following modification of Assumption 2 guarantees the positive

duration.

Assumption 2′′. There exists a concave function φ such that for all t, 1−φ(x) is of the

same order as 1− Ft(x) in {x ∈ R |Ft(x) < 1}.

Notice that we require the existence of φ that is applicable to all Ft.

Proposition 19. Suppose n = 1. Under Assumptions 1 and 2′′, lim infλ→∞D(λ) > 0.

When n ≥ 2, one can obtain the result of positive duration under an assumption

parallel to Assumption 2′.
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Figure 18: Paths of continuation payoffs. The probability density is low near (1, 0), and
high near (0, 1).

A.12 Dynamics of the Bargaining Powers

Consider the case where X = {x ∈ R2
+ | x1 + x2 ≤ 1} and a density f such that f(x) >

f(x′) if x2 − x1 > x′2 − x′1. Suppose that the payoff realizes upon agreement as in

Appendix A.1, and the discount rate ρ > 0 is very small. In this case, the limit of

the solution of ODE (1) with ρ = 0, denoted v∗(T ; 0,∞), locates at the boundary of

X by Proposition 7, and it is to the north-west of (1
2
, 1
2
), which is the Nash bargaining

solution and is the limit of the solution of ODE (A.1). Hence, by Proposition 10, the

continuation payoff when the players receive payoffs upon the agreement starts at a

point close to (1
2
, 1
2
), and goes up along the boundary of X and reaches a point close to

v∗(T ; 0,∞), and then goes down to (0, 0). On this path of play, player 1’s expected payoff

is monotonically decreasing over time. On the other hand, player 2’s expected payoff

changes non-monotonically. Specifically, it rises up until it reaches close to v∗2(T ; 0,∞),

and then decreases over time. Figure 18 illustrates this path.

Underlying this non-monotonicity is the change in the bargaining powers between the

players. When the deadline is far away, there will be a lot of opportunities left until the

deadline, so it is unlikely that players will accept allocations that are far from the Pareto

efficient allocations, so the probability distribution over such allocations matters less.

Since X is convex and symmetric, two players expect roughly the same payoffs. However,

as the time passes, the deadline comes closer, so players expect more possibility that

Pareto-inefficient allocations will be accepted. Since player 2 expects more realizations

favorable to her than player 1 does, player 2’s expected payoff rises while player 1’s goes

down. Finally, as the deadline comes even closer, player 2 starts fearing the possibility of

reaching no agreement, so she becomes less pickier and the cutoff goes down accordingly.
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A.13 Negotiation

Our model assumes that players cannot transfer utility after agreeing on an allocation.

We believe our model keeps the deviation from the standard single-agent infinite-horizon

search model minimal so that the analysis isolates the effect of modifying the number

of agents and the length of the horizon. Also, our primary interest is in the case where

such negotiation is impossible or the case where the stake of the object is high so even

if players could negotiate, the impact on the outcome is negligible. However, in some

cases negotiation may not be negligible. Here we discuss such cases. We will show that

the limit expected duration continuously changes with respect to the degree of impact of

negotiation, hence our results are robust with respect to the introduction of negotiation.

Our extension also lets us obtain intuitive comparative-statics results.

Suppose that players can negotiate after they observe a payoff profile x ∈ X at each

opportunity at time −t. Players can shift their payoff profile by making a transfer, and

may agree with the resulting allocation. We assume that the allocation they agree with

is the Nash bargaining solution where a disagreement point is the continuation payoff

profile at the time −t in the equilibrium defined for this modified game.80 When making

a transfer, we suppose that a linear cost is incurred: If player i gives player j a transfer

z, j obtains only az for a ∈ [0, 1). This cost may be interpreted as a misspecification

of resource allocation among agents, or a proportional tax assessed on the monetary

transfer. Note that a measures the degree of impact of negotiation. Our model in the

main sections corresponds to the case of a = 0.

To simplify our argument we restrict attention to a specific model with two players.81

Specifically, we consider the case with costly transferable utility: Suppose that X = {x ∈
R2

+ |x1 + x2 ≤ 1} with the uniform distribution µ on X. For each arrival of payoff profile

x, players can negotiate among the set of feasible allocations defined by

S(x) =

{
x′ ∈ X

∣∣∣∣∣ a(x1 − x′1) ≥ x′2 − x2 if x1 ≥ x′1,

x′1 − x1 ≥ a(x2 − x′2) if x1 < x′1

}
.

We suppose that each player says either “accept” or “reject” to the Nash bargaining

solution obtained from the feasible payoff set S(x) and the disagreement point given by

the continuation payoff profile v(t).

By examining the geometric properties of the Nash bargaining solution, we can com-

pute the limit expected duration in this environment. Let T = 1.

80This use of Nash bargaining solution is not critical to our result. Similar implications are obtained
from other bargaining solutions such as the one given by take-it-or-leave-it offers by a randomly selected
player.

81We expect that nothing substantial would change even if we extended the argument to the cases of
three or more players.
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Proposition 20. Under Assumptions 1, 5, and 8, the limit expected duration as λ→ ∞

in the game with negotiation is
4 + 4a2

7 + 6a+ 7a2
for a ∈ [0, 1).

Notice that the limit expected duration becomes shorter in the presence of negotiation

(it is decreasing in a). This is intuitive, as negotiation essentially precludes extreme

heterogeneity in the offer realization, thus the agreement can be reached soon. Notice

also that the proposition claims that the limit expected duration must be strictly positive

even with negotiation, and it converges to 4/7 as a → 0, which is the same duration as

we found in Proposition 5. That is, our main result is robust to the introduction of

negotiation.

Note that the proposition excludes the extreme case in which utilities are perfectly

transferable, i.e., a = 1. In this case, the acceptance probability is of the order of

1/|v∗ − v∗(t)|, and the limit expected duration is 1/3. Thus, the duration formula in

Proposition 20 is discontinuous at a = 1.

A.14 Preference Heterogeneity with Finite Arrival Rates

Here we present a further discussion that supports our argument that preference hetero-

geneity implies long search durations.

Example 8 (Change in the shape of X under Assumptions 1 and 4). Consider

n-player symmetric X and µ. Consider a transformation of this problem in the following

sense: let Xq and X̄a defined by

Xq = {x ∈ X | max
i∈N

xi −min
j∈N

xj ≤ q} and X̄a = {ya(x) |x ∈ X}

where ya(x) = ax + (1 − a)xe, a ∈ (0, 1], with xe =
(
x1+···+xn

n
, . . . , x1+···+xn

n

)
. Define µq

by µq(C) = 1
µ(Xq)

· µ(C ∩ Xq) and µ̄a by µ̄a
(
{ya(x) | x ∈ C}

)
= µ(C) for any Borel set

C ⊆ X.

Both µq and µ̄a shrink the distribution to the middle: µq takes out the offers that give

agents “too asymmetric” payoffs, while µ̄a moves each point by the amount proportional

to the original distance to the equi-payoff line. See Figure 19 for a graphical description in

the case of two players. Proposition 5 shows that as long as Assumptions 1 and 4 are met,

expected duration is unaffected by the specificality of distribution µ. This is because, in

both cases, the distribution is still uniform around the limit point and the Pareto frontier

is smooth even under µ̄a, so exactly the same calculation as in the case with µ suggests

that the limit expected duration is n2

n2+n+1
. In this case, however, durations with finite

arrival rates are affected by the change in preferences.

Table 3 shows the effect of preference heterogeneity. As preferences become less

heterogeneous (smaller q and smaller a), the expected duration becomes shorter.
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Figure 19: Transfer of allocations in the negotiation for µq (left) and µ̄a (right), where
the original distribution is uniform over {(x1, x2) ∈ R2

+ | x1 + x2 ≤ 1}.

µq λ

10 20 30 100 ∞

q = 1 0.608 0.591 0.585 0.576 0.571
q = 0.8 0.607 0.590 0.584 0.575 0.571
q = 0.6 0.600 0.586 0.581 0.575 0.571
q = 0.4 0.579 0.574 0.573 0.572 0.571
q = 0.2 0.515 0.534 0.544 0.562 0.571
q = 0 0.398 0.366 0.355 0.340 0.333

µ̄a λ

10 20 30 100 ∞

a = 1 0.608 0.591 0.585 0.576 0.571
a = 0.8 0.625 0.601 0.591 0.578 0.571
a = 0.6 0.604 0.588 0.583 0.575 0.571
a = 0.4 0.567 0.566 0.567 0.570 0.571
a = 0.2 0.489 0.512 0.528 0.557 0.571
a = 0 0.398 0.366 0.355 0.340 0.333

Table 3: Preference heterogeneity effect under Assumptions 1 and 4. q and a measure
heterogeneity of preferences.

A.15 Decomposition

The duration formula in Theorem 4 gives a way for a market designer to examine the

effect of alternative policies, such as an increase of the number of players, or a change of

distribution. To give a concrete measure of what policy influences the duration in what

way, decomposing the effects that determine the search duration can be helpful. There

would be many methods to do so; here we provide one of them.

For example, consider the expected duration in the 2-player model with the uniform

distribution over X = {x ∈ R2
+ |x1 + x2 ≤ 1} and λ = 10, which is 0.608. The limit

expected duration as λ→ ∞ in this case is 4
7
, so the difference is 0.037. These durations

are illustrated in Figure 20. The limit expected duration in general is computed from

a key variable r determined by the details of the model (X,µ). The larger the r is,

the longer the expected duration is. In this example, the limit expected duration 4
7
is

calculated from r that we denote by r2 := 4
3
. When there is only one player and the

distribution is uniform over [0, 1], the limit expected duration is 1
3
, and the number r is
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Limit expected

duration with

one player: 0.333 Search friction effect: 0.0370

Duration with λ = 10: 0.608

Limit expected duration

with two players: 0.571

r2

r2+1

1

r2+1

r1

r1+1

1

r1+1

Figure 20: Decomposition of expected search durations: The case with uniform distribution

over the space depicted in Figure 1 and the horizon length of 1. The one-player duration is

computed by assuming uniform distribution over the unit interval. r1 and r2 are illustrated in

Figure 21.

r1 = 1/2

Ascending

acceptability

effect = 1/2

Preference

heterogeneity

effect = 1/3

r2 = 4/3

Figure 21: Decomposition of r2 − r1.

r1 := 1
3
. The difference between r2 and r1—the difference caused by adding one more

player—is determined by two effects, the ascending acceptability effect and the preference

heterogeneity effect. To calculate the ascending acceptability effect, we compute r that

we would obtain if this additional agent’s distribution over feasible payoffs is independent

of the original player’s, and the distribution corresponds to the uniform distribution over

[0, 1]. The limit expected duration and r in this case are 1
2
and raa := 1, respectively,

and the difference in terms of r is given by raa − r1 = 1 − 1
2
= 1

2
. Now the preference

heterogeneity effect is the change in r caused by the change in the distribution from this

product measure to X. This is given by r2− raa = 4
3
−1 = 1

3
. In this example, the former

effect is larger than the latter. Figure 21 illustrates these values.

In general, fixing an n-player model (X,µ) and an (n + m)-player model (Y, γ), we

can solve for the ascending acceptability effect by computing the difference between the

r in the model (X,µ) and the r in the model (X × [0, 1]m, µ × (U [0, 1])m). In fact, this
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difference is m
2
by Theorem 4. Then the preference heterogeneity effect can be computed

by solving for the difference in the latter r and the r in the model (Y, γ).82 Since r is

additive by the definition of r in (3), this decomposition is well-defined in the sense that

the ascending acceptability effect (resp. preference heterogeneity effect) of changing the

models from an n-player model (X,µ) to an (n+m)-player model (Y, γ) is identical to the

sum of ascending acceptability effect (resp. preference heterogeneity effect) of changing

the models from an n-player model (X,µ) to an (n + l)-player model (Z, δ) and the

ascending acceptability effect (resp. preference heterogeneity effect) of changing models

from an (n+ l)-player model (Z, δ) to an (n+m)-player model (Y, γ) where l < m.

B Appendix: Comprehensive Literature Review

Finite vs. infinite horizon with multiple agents.

First, although there is a large body of literature on search problems with a single agent

and an infinite horizon, there are only few papers that diverge from these two assump-

tions.83 Some recent papers in game theory discuss infinite-horizon search models in

which a group of decision-makers determine when to stop. The key distinction is that

discounting is assumed and payoffs realize upon agreement in these papers, while in our

model payoffs realize at the deadline, the assumption that fits to our motivating example

of apartment search.

Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2013) consider search

models in which a unanimous agreement is required to accept an alternative, and show

that the equilibrium payoff profile is close to the Nash bargaining solution when players

are patient. Despite the absence of a deadline, these convergence results to the Nash

bargaining solution have a similar flavor to our result in Appendix A.1 where payoffs

realize as soon as an agreement is reached and there is discounting. In Appendix A.7,

we will discuss a common logic behind these convergence results. Wilson (2001) and

Cho and Matsui (2013) show that an agreement is reached immediately in the limit as

the frequency of offers goes to infinity. Compte and Jehiel (2010) also analyze general

majority rules to discuss the power of each individual to affect outcomes of search, and

the size of the set of limit equilibrium payoff profiles. Albrecht et al. (2010) consider

general majority rules, and show that the decision-makers are less picky than the agent

in the corresponding single-person search model, and the expected duration of search is

shorter if they are sufficiently patient. The most related to ours is their result on the

unanimity case, in which they show that the expected search duration increases in the

number of agents. The logic is that the cutoff decreases in the number of agents while

82The uniform distribution over [0, 1] can be replaced with any distribution with a positive continuous
density over a compact interval without changing the computation.

83See Rogerson et al. (2005) for a survey.
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the expected gain conditional on future acceptance does not change so much due to their

distributional assumption, and hence the equilibrium condition implies that the expected

wait time until the acceptance has to increase. We show the same comparative statics

with respect to the number of agents. However, as we explain in Section 4.2.1, our logic

does not rely on any distributional assumptions but relies on nonmonotonicity of cutoffs

which is not present in their analysis where stationary equilibrium is assumed.

Alpern and Gal (2009), and Alpern et al. (2010) analyze a search model in which a

realized object is chosen when one of two decision-makers accepts it, unless one of them

casts a veto which can be exercised only a finite number of times in the entire search pro-

cess. Moldovanu and Shi (2013) analyze an infinite-horizon multi-agent search problem

with interdependent preferences with respect to private signals of the payoffs indepen-

dently realized in every period. They also show that the expected duration becomes

longer if the number of decision-makers increases from one to two while retaining the

information structure.84 Bergemann and Välimäki (2011) provide an efficient dynamic

mechanism with a presence of monetary transfer in an n-agent model with private signals

of agents’ private values. Herings and Predtetchinski (2014) analyze an infinite-horizon

search model with or without discounting in which alternatives are chosen according to

general voting rules. They show that for each alternative in the core, there exists a sta-

tionary subgame perfect equilibrium implementing that alternative, and even if the core

may be empty, there exists a subgame perfect equilibrium that sustains a stationary play

on the path. Importantly, in the equilibria that all of these papers consider, the expected

search durations converge to zero as the frequency of offer arrivals tends to infinity.

Multi-agent search with finite horizon.

A few papers consider multi-person search problems with finite horizon (See Ferguson

(2005) and Abdelaziz and Krichen (2007) for surveys), but none has looked at the search

duration. Sakaguchi (1973) was the first to study a multi-agent search model with finite

horizon. Sakaguchi (1978) proposed a two-agent continuous-time finite-horizon stopping

game in which opportunities arrive according to a Poisson process as in our model. He

derived the same ordinary differential equations (ODE) as ours and provided several char-

acterizations,85 and then computed equilibrium strategies in several specific examples.86

84Moldovanu and Shi (2013) show that agents are pickier when there is a larger conflict in preferences,
whereas if the signals are public, they are less picky and the expected duration is shorter with a larger
conflict.

85Specifically, he showed that (a) the cutoffs are nondecreasing and concave in the time variable, and
(b) in the independent environment, players are less picky than in the single player case.

86Examples he examined are (1) the Bernoulli distribution on a binary domain, (2) h(x, y) =
f(x)g(y)(1+γ(1−2F (x))(1−2G(x))) for f, g being arbitrary density functions, and γ being a parameter
that measures correlation, (3) an exponential distribution, and (4) a direct product of exponential and
uniform distributions. Apart from case (1) in which the limit expected search duration is trivially zero,
our results imply that all cases have positive limit expected durations. In all of these examples, the
feasible payoff set is unbounded or the Pareto frontier is a singleton, so an analysis of the limit expected
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However, no analysis on duration appeared in his papers. Note that obtaining the ODE

constitutes only a preliminary part of our contribution; our focus is on the search duration

partly implied by this equation.

Ferguson (2005)’s main interest is in existence and uniqueness of the subgame perfect

equilibrium sustained by Markov cutoff strategies in models with discrete time, general

voting rules, varying distributions over time, and presence of fixed costs of search.87,88

The sufficient condition for uniqueness that he obtains is different from ours.89

Single-agent search with finite horizon.

Search with finite horizon is a special class of a problem with search under nonstationarity.

In the literature on job search theory, van den Berg (1990), Smith (1999), and others

consider a single-agent search problem under nonstationary environments. These two

papers analyze comparative statics with respect to changes in the primitives over time in

a single-agent setting. In contrast, we consider a specific nonstationary environment, i.e.,

finite horizon, and analyze how the limit expected duration is affected by the number of

agents or the payoff distributions.

A single-agent search problem with deadline is explored in much detail in the opera-

tions research literature on the so-called “secretary problem.” There is an important dif-

ference between this problem and our model. In secretary problems, there are n potential

candidates (secretaries) who arrive each date, and the decision maker makes acceptance

decisions. The key difference from our analysis is that in secretary problems the decision

maker does not have cardinal preferences but ordinal preferences, and attempts to max-

imize the probability that the best candidate is chosen. Since the number of candidates

is finite, this is technically a search problem with finite horizon. The optimal policy as

the number of candidates grows to infinity is to disregard all candidates for some time

before choosing, so this model also has a positive limit expected search duration. The

reason for the positive duration is, however, different from ours. In secretary problems,

the decision maker must gather information about available alternatives to make sure

what she chooses is reasonably well-ranked. The tradeoff behind the positive duration

is that the agent wants to wait until she gathers enough information, while she wants

to have enough candidates in the future in order to decrease the probability of reaching

the deadline without a good candidate. In our setting the first part of this tradeoff is

absent, and instead the gain from waiting is only attributed to the future opportunities,

payoff profile was not an issue. In our general setup, such an analysis is meaningful because our model
subsumes the case of bounded feasible payoff sets with non-singleton Pareto frontiers.

87He mentions the idea of trembling-hand equilibrium only verbally, and does not introduce it in his
model.

88He also analyzes an exponential case and conducts a comparative statics in terms of individual search
costs.

89The condition states that the distribution of offers is independent across agents and the distance to
the conditional expectation above value vi is decreasing in vi for all player i.
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at which she may get a very good draw. See Ferguson (1989) for an extensive survey of

the literature.

Single-agent search with infinite horizon.

The so-called “search theory” literature has focused mainly on a single-agent search prob-

lem with infinite horizon and extended such a model to the context of large population.

Seminal papers by McCall (1970) and Mortensen (1970) explore models in which a single

agent faces an i.i.d. draw of payoffs over an infinite horizon. These models are extended

in many directions.90 A common feature in these papers is that the model has some form

of “waiting costs” either as a discounting or as a search cost, irrespective of the length of

the horizon (finite or infinite). This assumption would be a reasonable one in their con-

text as their main application was job search, where the overall horizon length (in finite

horizon models) is several decades, and one period corresponds to a year or a month. On

the other hand, our interest is in the case where the horizon length is rather short, as in

the apartment search example that we provided in the introduction. This naturally gives

rise to the assumption that payoffs realize at the deadline—which would not have made

sense in the job search application. Because of this difference, the limit expected search

duration as the friction goes away in models of this line of the literature is zero. Later

work extended the model to a large population model in which the search friction is given

endogenously through a “matching function.” Again, in a nutshell, these analyses are

more or less extensions of the single-agent search model with infinite horizon, and thus

there has been no question on the “limit expected duration” as the friction vanishes.

Multi-agent search vs. bargaining.

The multi-agent search problems are similar to bargaining problems in that both predict

what outcome in a prespecified domain is chosen as a consequence of strategic interaction

between agents. However, as discussed by Compte and Jehiel (2004, 2010), the search

models are different from bargaining models in that in the former, players just make an

acceptance decision on what is exogenously provided to them, while in the latter, players

have full control over what to propose. Our model is a search model, and thus players

are “passively” assess exogenous opportunities. This assumption captures the feature

of situations that we would like to analyze. For example, many potential tenants do

not design their houses for themselves, but they simply wait for a broker to pass them

information regarding new apartments. The distinction between these “passive” and

“active” players is important when we consider the difference between our work and the

standard bargaining literature.91

90An extensive survey of the literature can be found in Lippman and McCall (1976).
91Cho and Matsui (2013) present another view: A drawn payoff profile in the search process can

be considered as an outcome of a (unique) equilibrium in a bargaining game which is not explicitly
described in the model and does not depend on the future equilibrium strategy profile. According to this
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Another important issue in relation with the bargaining literature is the distinction

between positive search duration and so-called “bargaining delay.” Bargaining delay is

particularly important because it is often associated with inefficiency caused by discount-

ing. In our model payoffs realize at the deadline (so in essence agents do not discount the

future), so the positive-duration result does not necessary imply inefficiency. Actually,

we prove that the expected payoff profile cannot be weakly Pareto inefficient in the limit

as the search friction vanishes.

Multi-agent search vs. bargaining with finite horizon.

Ambrus and Lu (2014), Gomes et al. (1999) and Imai and Salonen (2012) consider a

bargaining model with finite horizon, in which players obtain an opportunity to propose a

share distribution of the surplus at asynchronous times, having full control over proposals,

and analyze the equilibrium payoffs.92 The important distinction from our search model

is that without any further assumptions such as private information that can be resolved

over time or an “option to wait” as assumed in Ma and Manove (1993), the first player who

obtains the opportunity makes an offer that all players would accept in equilibrium. This

is in line with the intuition of Rubinstein (1982)’s canonical model of alternating-offer

bargaining, and implies that as the timing of proposals becomes frequent the expected

duration until the agreement can become arbitrarily small.93 In our model, however,

there is a trade-off as the search friction decreases between more arrivals today and more

arrivals in the future. Our main objective of this paper is to discuss the effects driven

(at least in part) by this trade-off, while bargaining models do not have such a trade-off

(thus a question on duration is trivial).

A part of results by Gomes et al. (1999) and Imai and Salonen (2012) shows that in

some cases the limit equilibrium is the Nash bargaining solution. Although our result in

Appendix A.1 about equilibrium payoff profiles is reminiscent of these results, the results

are different. Since the proposer has full control over what to propose in their models,

an agreement is reached at the first opportunity. On the other hand, in our model the

average number of opportunities necessary to reach an agreement tends to infinity in the

limit they consider. This causes the difference in the conditions under which the limit

payoff profile is the Nash bargaining solution.94

interpretation, every player is “active” although the “activeness” is embedded in the model.
92See Ambrus and Lu (2010) for an application of their model to legislative processes.
93A finite-horizon version of Rubinstein (1982)’s model with Poisson opportunities is a special case of

Ambrus and Lu (2014)’s model, so the limit expected duration is zero in such a model.
94See Remark 2 in the previous version of this paper (Kamada and Muto (2011)) for a more compre-

hensive comparison between our work and these papers. There we argue that under different conditions
the limit equilibrium payoff profile is the Nash bargaining solution in each model when the discount rate
and the frequency of opportunities converge simultaneously.
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Revision games.

Broadly, this paper is part of a rapidly growing literature on “revision games,” which ex-

plores implications of adding a revision phase before a predetermined deadline at which

actions are implemented and players receive payoffs. The first papers on revision games

by Kamada and Kandori (2009, 2011) show the possibility of cooperation in such a set-

ting,95 and Calcagno et al. (2014) and Ishii and Kamada (2011) examine the effect of

asynchronous timing of revisions on the equilibrium outcome in revision games. Kamada

and Sugaya (2014) apply the revision games setting to election campaigns. Romm (2013)

analyzes the implication of introducing a “reputational type” in the model of Calcagno

et al. (2014). General insights from these works are that when the action space is finite

(as in our case) the set of equilibria is typically small and the solution can be obtained

by (appropriately implemented) backwards induction, and that a differential equation

is useful when characterizing the equilibrium. In our paper we follow and extend these

methods to characterize equilibria and apply the framework to the context of search situ-

ations that often arise in reality. Some examples we provide in this paper are reminiscent

of those provided in Kamada and Sugaya (2010).96

C Appendix: Numerical Results for Finite Arrival

Rates

We present five cases below, among which Cases 1–3 are the examples we discussed in

Section 4.3.

Case 1: µ is the uniform distribution over X = {x ∈ Rn
+ |
∑

i∈N xi ≤ 1} for n = 1, 2, 3

and λ = 10, 20, 30, 100.

Case 2: µ is the uniform distribution over X = {x ∈ Rn
+ |
∑

i∈N x
2
i ≤ 1} for n = 1, 2 and

λ = 10, 20, 30, 100, 1000.

Case 3: µ is the product measure over X = Rn
+ where each marginal corresponds to

an exponential distribution with parameter ai > 0 for n = 1, 2, 3, 10 and λ =

10, 20, 30, 100.

Case 4: µ is the uniform distribution over X = {x ∈ Rn
+ | maxi∈N xi ≤ 1} for n = 1, 2, 3

and λ = 10, 20, 30, 100.

Case 5: µ is the product measure over X = Rn
+ where each marginal corresponds to a

log-normal distribution with mean 0 and standard deviation σ = 1
4
, 1, 4 for n = 1

and λ = 10, 20, 30, 100.
95See Ambrus et al. (2014) for a related work on an analysis of eBay-like auctions.
96For example, Example 4 in this paper is reminiscent of the “three state example” in Kamada and

Sugaya (2010).
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C.1 Uniform Distribution over Multi-Dimensional Triangle (Case 1)

Consider the distribution given by the uniform distribution over {x ∈ Rn
+ |
∑

i∈N xi ≤ 1}.

λ

10 20 30 100 1000 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.334 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.608 0.591 0.585 0.576 0.572 0.57143

Percentage (%) 6.48 3.44 2.35 0.731 0.0716 0

n = 3
Expected duration 0.716 0.705 0.701 0.695 0.693 0.692

Percentage (%) 3.35 1.82 1.26 0.404 0.0430 0

C.2 Uniform Distribution over a Sphere (Case 2)

Consider the uniform distribution over {x ∈ Rn
+ |
∑

i∈N x
2
i ≤ 1}. We get the following.

Note that the limit duration for n = 1 is the same as in the case of uniform distribution

over {x ∈ Rn
+ |
∑

i∈N xi ≤ 1}.

λ

10 20 30 100 1000 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.334 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.582 0.568 0.565 0.562 0.567 0.571

Percentage (%) 1.90 −0.541 −1.21 −1.61 −0.798 0

C.3 Exponential Distribution (Case 3)

Consider the exponential distribution with parameter ai for each player i.

λ

10 20 30 100 1000 ∞

n = 1
Expected duration 0.545 0.524 0.516 0.505 0.500 0.5

Percentage (%) 9.09 4.76 3.23 0.990 0.0999 0

n = 2
Expected duration 0.693 0.681 0.676 0.670 0.667 0.667

Percentage (%) 3.91 2.11 1.45 0.465 0.0489 0

n = 3
Expected duration 0.767 0.759 0.756 0.752 0.750 0.75

Percentage (%) 2.27 1.24 0.864 0.284 0.0310 0

n = 10
Expected duration 0.912 0.911 0.910 0.910 0.909 0.909

Percentage (%) 0.370 0.206 0.145 0.0499 0.00602 0
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C.4 Uniform Distribution over a Cube (Case 4)

Consider the distribution given by the uniform distribution over {x ∈ Rn
+ | maxi∈N xi ≤

1}.

λ

10 20 30 100 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0

n = 2
Expected duration 0.545 0.524 0.516 0.505 0.5

Percentage (%) 9.09 4.76 3.23 0.990 0

n = 3
Expected duration 0.634 0.618 0.612 0.604 0.6

Percentage (%) 5.62 3.00 2.05 0.643 0

C.5 Log-Normal Distribution (Case 5)

Consider the log-normal distribution with the following pdf:

f(x) =
1

xσ
√
2π
e−

(ln x−µ)2

2σ2 .

Assume µ = 0. The expected durations can be calculated as follows:

λ

10 20 30 100

σ = 1
4

0.449 0.462 0.469 0.484

n = 1 σ = 1 0.612 0.595 0.588 0.575

σ = 4 0.961 0.952 0.946 0.926

D Appendix: Proofs of the Results

D.1 Computation of the Limit Expected Durations

We first present a method to compute the expected duration. Recall that P (t;λ) is the

probability that there is no agreement until time −t:

P (t;λ) = e−
∫ T
t λp(s;λ) ds. (D.1)
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The expected duration D(λT )T is computed from p(t;λ) and P (t;λ) by integration by

parts:

D(λT )T = T · P (0;λ)︸ ︷︷ ︸
The probability of no agreement

until time 0

+

∫ T

0

(T − t)︸ ︷︷ ︸
The duration when the search

ends at time −t

· P (t;λ)︸ ︷︷ ︸
The probability that

the search does not end until −t

· λp(t;λ)︸ ︷︷ ︸
The probability density of

agreement at time −t

dt

= T · P (0;λ) + [(T − t)P (t;λ)]T0 +

∫ T

0

P (t;λ) dt

=

∫ T

0

P (t;λ) dt. (D.2)

The integral (D.2) has a direct interpretation: Since P (t) is the probability that the

duration is greater than T − t, we can compute the integral by integrating T − t times

dP (t), which amounts to the area below the graph of P (t). This is why the expression

in (D.2) measures the expected duration.

Now we prove a lemma that computes the limit cumulative disagreement probability

and the limit expected duration when the agreement probability p(t) at time −t is of the
same order as 1

λt
.

Lemma 21. The following three statements hold:

(i) If for all ε > 0, there exist C > 0 and λ̄ such that p(t) ≤ C
λt

for all t ≥ ε and all

λ ≥ λ̄, then lim infλ→∞ P (t;λ) ≥
(

t
T

)C
for all t ≥ 0, and lim infλ→∞D(λ) ≥ 1

1+C
.

(ii) If for all ε > 0, there exist c > 0 and λ̄ such that p(t) ≥ c
λt

for all t ≥ ε and all

λ ≥ λ̄, then lim supλ→∞ P (t;λ) ≤
(

t
T

)c
for all t ≥ 0, and lim supλ→∞D(λ) ≤ 1

1+c
.

(iii) If limλ→∞ p(t)λt = a > 0 for all t > 0, then P (t;∞) =
(

t
T

)a
for all t ≥ 0, and

D(∞) = 1
1+a

.

Proof. First we prove (i). Let us fix 0 < ε < T . By formula (D.1), for all λ ≥ λ̄ and all

t ≥ ε,

e−
∫ T
t (C/s)ds ≤ P (t;λ)( t
T

)C
≤ P (t;λ).

Since the above inequality is satisfied for all ε > 0 and sufficiently large λ, we have

lim infλ→∞ P (t;λ) ≥
(

t
T

)C
for all t ≥ 0. By formula (D.2), D(λT )T =

∫ T

0
P (t;λ)dt is
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bounded as follows: ∫ T

ε

( t
T

)C
dt ≤ D(λT )T

T 1+C − ε1+C

(1 + C)TC
≤ D(λT )T .

Since the above inequality is satisfied for all ε > 0 and sufficiently large λ, we have

lim infλ→∞D(λT ) ≥ T 1+C

(1+C)TC ·T = 1
1+C

.

Next, a parallel argument shows (ii). Finally, (i) and (ii) together imply (iii).

D.2 Proof of Proposition 1

Suppose that there exists at least one trembling-hand equilibrium. We show that the

continuation payoffs of player i at time −t are the same as each other for almost all

histories in any trembling-hand equilibrium.

By Assumption 1 (a), the set of player i’s expected payoffs given by any play of the

game within [−T, 0] is bounded by a value xi for each i ∈ N . By Assumption 1 (b), if

there are two or more players, we can find a Lipschitz constant Li for i ∈ N such that

µ({x ∈ X |xi ∈ [x′i, x
′′
i ]}) ≤ Li|x′i − x′′i | for all x′i, x′′i in the above domain of payoffs. Let

L−i = maxj ̸=i Lj.

Fix ε ∈ (0, 1
2
). For each i ∈ N and each −t ∈ [−T, 0], let vεi (t) and vεi (t) be the

supremum and the infimum, respectively, of player i’s expected payoff across every Nash

equilibrium in every subgame starting at time −t in the ε-constrained game Σε. (Note

that Assumption 1 (a) ensures boundedness of the continuation payoffs for finite t.) Since

all subgames after time −t are the same in our model, for all δ ∈ (0, T − t] and all η > 0,

there exists a Nash equilibrium in which every player i obtains a continuation payoff

larger than vεi (t)− η (or smaller than vεi (t)+ η) in each subgame after no players have an

opportunity to play actions in time interval [−(t+δ),−t]. Since the probability of arrival

of an offer in [−(t + δ),−t] uniformly vanishes as δ → 0, vεi (t) and v
ε
i (t) are continuous

in t. Let wε
i (t) = vεi (t)− vεi (t), and w

ε(t) = maxi∈N w
ε
i (t). Note that wε(0) = 0 for all ε.

For each i ∈ N and each Nash equilibrium σ in the ε-constrained game Σε, let

v
ε
i (t, σ) and vε

i
(t, σ) be the essential supremum and the essential infimum, respectively,

of continuation payoffs ui(σ|h) across histories h ∈ H̃t \ Ht at time −t.97 Let v
ε
i (t) =

supσ: Nash eq. in Σε v
ε
i (t, σ) and v

ε
i
(t) = infσ: Nash eq. in Σε vε

i
(t, σ). We would like to show that

for all i ∈ N and all −t ∈ [−T, 0], vεi (t) = vε
i
(t). Since by the definitions, vεi (t) ≥ v

ε
i (t) ≥

vε
i
(t) ≥ vεi (t), it suffices to show that wε(t) = 0 for all −t ∈ [−T, 0].
Let us consider strategies in the ε-constrained game. Suppose that a payoff profile

97Suppose that f is a real-valued function on a measure set (Y,Y, γ) which is measurable and bounded.
The essential supremum of f is inf{a ∈ R | γ(f−1((a,∞))) = 0}, and the essential infimum of f is
sup{a ∈ R | γ(f−1((−∞, a))) = 0}.
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x ∈ X is realized at time −t. If player i accepts x, she will obtain xi with probability at

least εn−1. Accepting x is a dominant action of player i if the following inequality holds:

εn−1xi + (1− εn−1)vεi (t) > vεi (t).

Rearranging this, we have

xi > vεi (t) +
1− εn−1

εn−1
wε

i (t).

Let ṽεi (t) = vεi (t)+
1−εn−1

εn−1 wε
i (t), the right hand side of the above inequality. Then ṽεi (t)−

vεi (t) =
1

εn−1w
ε
i (t) by the definition of wε

i (t).

Let X1
i (t) = {x ∈ X |xi > ṽεi (t)}, Xm

i (t) = {x ∈ X | vεi (t) ≤ xi ≤ ṽεi (t)}, and

X0
i (t) = {x ∈ X | xi < vεi (t)}. Then µ(Xm

i ) ≤ Li

εn−1w
ε
i (t) if n ≥ 2. Any player i accepts

x ∈ X1
i (t) and rejects x ∈ X0

i (t) with probability 1− ε after almost all histories at time

−t. Note that X =
(∪

j∈N X
m
j (t)

)
∪
(∪

(s1,...,sn)∈{0,1}n
∩

j∈N X
sj
j (t)

)
(where Xm

j (t)’s have

a nonempty intersection). Then

vεi (t) ≤
∫ t

0

(∫
Xm

i (τ)

ṽεi (t) dµ+
∑
j ̸=i

∫
Xm

j (τ)

xi dµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−λ(t−τ)dτ ,

and

vεi (t) ≥
∫ t

0

(∫
Xm

i (τ)

vεi (t) dµ+
∑
j ̸=i

∫
Xm

j (τ)

0 dµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−λ(t−τ)dτ .
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Therefore wε
i (t) = vi(t)− vi(t) is bounded as follows:

wε
i (t) ≤

∫ t

0

(∫
Xm

i (τ)

1

εn−1
wε

i (t) dµ+
∑
j ̸=i

∫
Xm

j (τ)

xi dµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wε

i (τ)dµ
)
λe−λ(t−τ)dτ

≤
∫ t

0

( 1

εn−1
wε

i (t) +
∑
j ̸=i

xi
L−i

εn−1
wε

j(τ)

+
∑

(s1,...,sn)∈{0,1}n

∫
X

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wε

i (τ)dµ
)
λe−λ(t−τ)dτ

≤
∫ t

0

( 1

εn−1
+
∑
j ̸=i

max
k∈N

{xk}
L−i

εn−1

+
∑

(s1,...,sn)∈{0,1}n

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

))
wε(τ)λe−λ(t−τ)dτ .

Since the above inequality holds for all i ∈ N , there exists a constant M > 0 such that

the following inequality holds:98

wε(t) ≤
∫ t

0

Mwε(τ)e−λ(t−τ)dτ .

Let W ε(t) =
∫ t

0
wε(τ)eλτdτ . Then

W ε′(t) = wε(t)eλt

≤MW ε(t).

Therefore we have d
dt

(
W ε(t)e−Mt

)
=
(
W ε′(t) −MW ε(t)

)
e−Mt ≤ 0 for all t ≥ 0. Since

W ε(0) = 0 by the definition of W ε(t), W ε(t)e−Mt ≤ 0 for all t ≥ 0. This implies that

wε(t) ≤ MW ε(t)e−λt ≤ 0 for all t ≥ 0. Since wε(t) ≥ 0 for all t ≥ 0 by definition,

wε(t) = 0 for all t ≥ 0. Since ε ∈ (0, 1/2) was arbitrary, any trembling-hand equilibria

yield the same continuation payoff profile after almost all histories at time −t ∈ [−T, 0].

D.3 Proof of Proposition 2

We show that a solution v∗(t) of ODE (1) characterizes a trembling-hand equilibrium.

For si ∈ {+,−} and vi ∈ [0,∞), let

Isii (vi) =

[vi,∞) if si = +,

[0, vi) if si = −,

98We note that M does not depend on Li in the single-player case.

82



p+ = 1 − ε and p− = ε. For ε > 0, let us write down a Bellman equation similar to (2)

with respect to a continuation payoff profile vε(t) in the ε-constrained game:

vεi (t) =

∫ t

0

( ∑
s∈{+,−}n

∫
(I

s1
1 (vεi (τ))×···×Isnn (vεi (τ)))∩X

(
ps1 . . . psn · xi + (1− ps1 . . . psn)vεi (τ)

)
dµ
)

· λe−λ(t−τ) dτ .

Since the right hand side is continuous in t, vεi is continuous in t and thus bounded within

[0, T ]. By Assumption 1 (a), the summands in the right hand side are all bounded, and

thus the right hand side is Lipschitz continuous in t. Therefore vεi is differentiable in t

almost everywhere.

Multiplying both sides of the above equality by eλt and differentiating yield

vε′i (t) = λ
∑

s∈{+,−}n
ps1 . . . psn

∫
(I

s1
1 (vε1(t))×···×Isnn (vεn(t)))∩X

(
xi − vεi (t)

)
dµ

almost everywhere. This ODE has a unique solution because the right hand side is

Lipschitz continuous in vεi by Assumption 1 (b). (We show this Lipschitz continuity at

the end of this proof. Note that an analogous argument shows that the Bellman equation

(2) implies differentiability of vi(t).) Let vε(t) be this solution, which is a cutoff profile

of a Nash equilibrium in the ε-constrained game by construction. Since the acceptance

set at −t in the ε-constrained game is (I+1 (v
ε
1(t))× · · · × I+n (v

ε
n(t)))∩X for all ε > 0, and

p+ → 1 and p− → 0 as ε → 0, ODE (1) is obtained at almost all t by letting ε → 0.

Therefore vε(t) converges to v∗(t) at almost all t as ε → 0 because the above ODE is

continuous in ε.99 Hence the cutoff strategy profile with cutoffs v∗(t) is a trembling-hand

equilibrium.

Finally, we prove that
∫
(I

s1
1 (v1)×···×Isnn (vn))∩X(x−v) dµ is Lipschitz continuous in v under

Assumption 1. If n ≥ 2, this is obvious because of Assumption 1 (b). Suppose n = 1.

Then if s1 = +, the change of the integral when v1 varies is bounded as follows:∣∣∣∣∣
∫
I
s1
1 (v1+∆v1)∩X

(
x1 − (v1 +∆v1)

)
dµ−

∫
I
s1
1 (v1)∩X

(x1 − v1) dµ

∣∣∣∣∣
=

∣∣∣∣∫
[v1+∆v1,∞)

(
x1 − (v1 +∆v1)

)
dµ−

∫
[v1,∞)

(x1 − v1) dµ

∣∣∣∣
=

∣∣∣∣−∫
[v1+∆v1,∞)

∆v1 dµ−
∫
[v1,v1+∆v1)

(x1 − v1) dµ

∣∣∣∣
≤
∣∣∣∣∫

[v1+∆v1,∞)

∆v1 dµ

∣∣∣∣+ ∣∣∣∣∫
[v1,v1+∆v1)

∆v1 dµ

∣∣∣∣
= |∆v1|

(
µ([v1 +∆v1,∞)) + µ([v1, v1 +∆v1))

)
≤ 2|∆v1|.

99See, e.g., Coddington and Levinson (1955, Theorem 7.4 in Chapter 1).
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A similar computation shows that the same bound applies when s1 = −. Therefore the

integral is Lipschitz continuous with a Lipschitz constant 2.

D.4 Proof of Theorem 1

We prove the theorem under a weaker assumption than Assumption 2:

Assumption 7. There exist a concave function φ, constants κ ≥ 1 and α > 0, and

x̃ < supX such that for all x ∈ X with x ≥ x̃,

(
1− φ(x)

)α ≤ 1− F (x) ≤ κ
(
1− φ(x)

)α
.

We note that Assumption 2 is equivalent to Assumption 7 with α = 1.

Proof of Theorem 1. Suppose that φ, κ, α, and x̃ are given in Assumption 7. We can

assume that φ(x) is increasing in [0, supX) without loss of generality. Let β =
1 + α

α
(> 1). Let us consider a cutoff strategy with the cutoff w(t) satisfying

F
(
w(t)

)
= 1− β

λt+ β
,

namely, the strategy with acceptance probability β
λt+β

at each time −t. Let t̃ be such

that w(t̃) = x̃. By Assumption 7, we have w(t) ≥ φ−1
(
1 − ( β

λt+β
)β−1

)
for all t ≥ t̃. Let

P (t) be the probability that the search does not stop before time −t when w(t) is played.
Then for all t ≥ t̃,

P (t) = exp
(
−
∫ T

t

β

λτ + β
· λdτ

)
=
( λt+ β

λT + β

)β
.

For all t ≥ t̃, the continuation payoff obtained from this strategy is larger than∫ t̃

t

w(τ)d
(1− P (τ)

P (t)

)
≥
∫ t

t̃

φ−1

(
1−

( β

λτ + β

)β−1
)
dP (τ)

P (t)
.

Let W (t) be the payoff on the right hand side. By concavity of φ, φ(W (τ)) is bounded
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as follows: For all t ≥ t̃,

φ(W (t)) = φ

(∫ t

t̃

φ−1
(
1−

( β

λτ + β

)β−1)dP (τ)
P (t)

)
≥
∫ t

t̃

φ

(
φ−1

(
1−

( β

λτ + β

)β−1)) dP (τ)

P (t)

=

∫ t

t̃

(
1−

( β

λτ + β

)β−1
)
d
((λτ + β

λt+ β

)β)
= 1− λββ(t− t̃) + (λt̃+ β)β

(λt+ β)β

≥ 1− (λt+ β)ββ + (λt̃+ β)β

(λt+ β)β
.

Let t̄ ≥ t̃ be sufficiently large so that (λt + β)ββ ≥ (λt̃ + β)β for all t ≥ t̄. Then for all

t ≥ t̄,

φ(W (t)) ≥ 1− 2ββ

(λt+ β)β−1
.

Let Q(t) be the probability that the search does not stop before time −t when the

player plays a cutoff strategy with cutoff W (t). Then for all t ≥ t̄,

Q(t) = exp

(
−
∫ T

t

(
1− F (W (τ))

)
λdτ

)
≥ exp

(
−
∫ T

t

κ
(
1− φ(W (τ))

)α
λdτ

)
(by Assumption 7)

≥ exp

(
−
∫ T

t

κ
( 2ββ

(λt+ β)β−1

)α
λdτ

)
= exp

(
−
∫ T

t

2κβα
( β

λt+ β

)
λdτ

)
=

(
λt+ β

λT + β

)2κβα+1

which is bounded away from zero irrespective of λ for all −t ∈ [−T, 0) whenever T ≥ t̄.

Since W (t) is the continuation payoff calculated from a strategy that is not necessarily

optimal, an optimal strategy gives the player continuation payoffs larger than or equal

to W (t). Therefore an optimal strategy must possess a cutoff higher than or equal to

W (t). Hence, for all −t ∈ [−T, 0), the probability that the search does not stop before

time −t when the player plays an optimal strategy is smaller than or equal to Q(t). Since

infλ>0Q(t) > 0 for all −t ∈ [−T, 0), the search stops with probability strictly lower than

1 before time −t ∈ [−T, 0) even in the limit as λ→ ∞. This proves Theorem 1.
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D.5 A Generalized Version of Theorem 4 and Its Proof

Here we state a generalized version of Theorem 4 and provide its proof. We first define

a few pieces of notation to deal with the case when the limits that are assumed to exist

in Theorem 4 in the main text does not necessarily exist.

Let us define values r, r as follows:

r = lim inf
t→∞

∑
i∈N

di(v
∗(t)) · bi(v∗(t)), r = lim sup

t→∞

∑
i∈N

di(v
∗(t)) · bi(v∗(t))

where

bi(v) = gi(A(v))− vi, b(v) = (b1(v), . . . , bn(v)),

di(v) =
1

µ(A(v))
lim inf
ε→0

µ(A((vj + εbj(v))j<i, (vj)j≥i))− µ(A((vj + εbj(v))j≤i, (vj)j>i)))

εbi(v)
,

di(v) =
1

µ(A(v))
lim sup

ε→0

µ(A((vj + εbj(v))j<i, (vj)j≥i))− µ(A((vj + εbj(v))j≤i, (vj)j>i)))

εbi(v)
,

and g(Y ) = (g1(Y ), . . . , gn(Y )) denotes a barycenter of the set Y ⊆ Rn with respect to

µ. We note that if n = 1, di(v) and di(v) can be infinity.

Recall that P (t;λ) is the probability of no agreement until time −t, and D(λ) is the

expected duration when T = 1. Now we can show that P (t;∞) = limλ→∞ P (t;λ) and

the limit expected duration D(∞) = limλ→∞D(λ) can be written in the following way:

For each r > 0, let P r(t) =
(

t
T

)1/r
, and let P 0(t) = 0 if −t ∈ (−T, 0] and P 0(T ) = 1.

Theorem 4′. Under Assumption 1, for all −t ∈ [−T, 0]

P r(t) ≤ lim inf
λ→∞

P (t;λ) and lim sup
λ→∞

P (t;λ) ≤ P r(t), and

r

1 + r
≤ lim inf

λ→∞
D(λ) and lim sup

λ→∞
D(λ) ≤ r

1 + r
.

Thus, if r = r =: r, then for all −t ∈ [−T, 0]

P (t;∞) = P r(t) and D(∞) =
r

1 + r
.

Proof. First, suppose that r > 0. By ODE (1), v∗′i (t) = λbi(v
∗(t)) · p(t) for each i ∈ N .

Since µ(A(v)) is continuous in v by Assumption 1 (b) if n ≥ 2, we have

lim inf
ε→0

p(t)− p(t+ ε)

ε
= lim inf

ε→0

µ(A(v∗(t)))− µ(A(v∗(t) + εv∗′(t)))

ε

for all t. Note that this holds even when n = 1. Let ε′ =
v∗′1 (t)

b1(v∗(t))
ε (=

v∗′i (t)

bi(v∗(t))
ε for all
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i ∈ N because v∗′(t) is parallel to b(v∗(t))). Then, for all t,

lim inf
ε→0

µ(A(v∗(t)))− µ(A(v∗(t) + εv∗′(t)))

ε

= lim inf
ε→0

∑
i∈N

µ(A((v∗j (t) + εv∗′j (t))j<i, (v
∗
j (t))j≥i))− µ(A((v∗j (t) + εv∗′j (t))j≤i, (v

∗
j (t))j>i)))

ε

= lim inf
ε′→0

∑
i∈N

µ(A((v∗j (t) + ε′bj(v
∗(t)))j<i, (v

∗
j (t))j≥i))− µ(A((v∗j (t) + ε′bj(v

∗(t)))j≤i, (v
∗
j (t))j>i)))

bi(v∗(t))
v∗′i (t)

ε′

≥
∑
i∈N

lim inf
ε′→0

µ(A((v∗j (t) + ε′bj(v
∗(t)))j<i, (v

∗
j (t))j≥i))− µ(A((v∗j (t) + ε′bj(v

∗(t)))j≤i, (v
∗
j (t))j>i)))

bi(v∗(t))
v∗′i (t)

ε′

=
∑
i∈N

(
di(v

∗(t))p(t) · v∗′i (t)
)

=
∑
i∈N

(
di(v

∗(t))p(t) · λbi(v∗(t))p(t)
)
.

By the definition of r, for all η > 0, there exists t̄ such that for all t ≥ t̄,

lim inf∆t→0
p(t)−p(t+∆t)

∆t

λp(t)2
≥ r − η.

Integrating the both sides from 0 to t, we have

p(t)

1− p(t)
· λt ≤ (r − η)−1

and letting λ→ ∞ and η → 0, we have

lim sup
λ→∞

p(t) · λt ≤ r−1.

By Lemma 21, we obtain( t
T

)1/r
≤ lim inf

λ→∞
P (t;λ) and

r

1 + r
≤ lim inf

λ→∞
D(λ).

If r = 0, we obviously have lim infλ→∞ P (t;λ) ≥ P 0(t).

Next, suppose that r > 0. An analogous argument shows that

lim inf
λ→∞

p(t) · λt ≥ r−1.

By Lemma 21, we obtain

lim sup
λ→∞

P (t;λ) ≤
( t
T

)1/r
and lim sup

λ→∞
D(λ) ≤ r

1 + r
.
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Finally, suppose that r = r = 0. Then an analogous argument shows that

lim
λ→∞

p(t) · λt = ∞.

By Lemma 21, this implies that P (t;∞) ≥
(

t
T

)a
for all a > 0. Thus, P (t;∞) = P 0(t).

In such a case, D(∞) = 0.

D.6 Proof of Proposition 5

We prove Proposition 5 in an environment more general than Assumption 4.

Assumption 8. (a) The limit v∗ = limλ→∞ v∗(t) exists and is Pareto efficient in X.

(b) The Pareto frontier of X is smooth in a neighborhood of v∗.

(c) For the unit normal vector α ∈ Rn
+ at v∗, αi > 0 for all i ∈ N .100

(d) For all η > 0, there exists ε > 0 such that {x ∈ Rn
+ | |v∗ − x| ≤ ε, α · (x− v∗) ≤ −η}

is contained in X, where “ · ” denotes the inner product in Rn.

(e) The probability measure µ is absolutely continuous with respect to the Lebesgue

measure on Rn, and admits a continuous and strictly positive density function f .

Proposition 5′. Under Assumptions 1 and 8, limλ→∞D(λ) =
n2

n2 + n+ 1
.

Proof. Let fH(t) = supx∈A(t) f(x), and fL(t) = infx∈A(t) f(x). Since f is continuous and

strictly positive, both fH(t) and fL(t) are continuous and converge to f(v∗) (> 0) as

t→ ∞. For each η > 0 and each t, let

A(t) = {x ∈ Rn
+ |x ≥ v∗(t), α · (x− v∗) ≤ −η},

A(t) = {x ∈ Rn
+ |x ≥ v∗(t), α · (x− v∗) ≤ η}.

The volume of A(t) (with respect to the Lebesgue measure on Rn) is

V (A(t)) =
1

n!

∏
j∈N

(α · (v∗ − v∗(t))− η

αj

)
,

and the volume of A(t) is

V (A(t)) =
1

n!

∏
j∈N

(α · (v∗ − v∗(t)) + η

αj

)
.

100If X is convex as assumed in Assumption 4, the normal vector at v∗ must satisfy this property. This
can be shown by a similar technique to the one in the proof of Proposition 7.
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By Assumption 8 (b), (c), and (d), for each η > 0, there exist ε > 0 and t̄ such that for

all t ≥ t̄, |v∗ − v∗(t)| ≤ ε and A(t) ⊆ A(t) ⊆ A(t).

For all t ≥ t̄, the barycenter term is bounded as

fL(t̄)
∫
A(t)

(
xi − v∗i (t)

)
dx

fH(t̄)V (A(t))
≤ bi(t) ≤

fH(t̄)
∫
A(t)

(
xi − v∗i (t)

)
dx

fL(t̄)V (A(t))
,

fL(t̄)V (A(t))
(α·(v∗−v∗(t))−η

(n+1)αi

)
fH(t̄)V (A(t))

≤ bi(t) ≤
fH(t̄)V (A(t))

(α·(v∗−v∗(t))+η
(n+1)αi

)
fL(t̄)V (A(t))

.

For all t ≥ t̄, µ(A(v∗(t))) is differentiable in vi by Assumption 8 (e), and the density term

is bounded as

fL(t̄)nV (A(t))
(
α·(v∗−v∗(t))−η

αi

)−1

fH(t̄)V (A(t))
≤ di(t) ≤

fL(t̄)nV (A(t))
(
α·(v∗−v∗(t))+η

αi

)−1

fH(t̄)V (A(t))
.

Then r(t) :=
∑

i∈N bi(t)di(t) is bounded as

∑
i∈N

nfL(t̄)
2V (A(t))2

(n+ 1)fH(t̄)2V (A(t))2
≤ r(t) ≤

∑
i∈N

nfH(t̄)
2V (A(t))2

(n+ 1)fL(t̄)2V (A(t))2

for all t ≥ t̄. By Assumption 8 (b), V (A(t))/V (A(t)) converges to 1 as η → 0 and t→ ∞.

Letting η → 0 and t→ ∞, therefore, we have

r = lim
t→∞

r(t) =
∑
i∈N

n

n+ 1
=

n2

n+ 1
.

Finally, Theorem 4 implies that

D(∞) = lim
λ→∞

D(λ) =
1

1 +
(

n2

n+1

)−1 =
n2

n2 + n+ 1
.

D.7 Proof of Theorem 5

We can follow the discussion in the proof sketch of Theorem 4, and obtain inequality (4).

Since this inequality holds for any λ, for all ε > 0, there is a large t̄ such that for all t ≥ t̄

−(r + ε)p(t; 1)2 ≤ ∂p

∂t
(t; 1) ≤ −(r − ε)p(t; 1)2.

For any λ > 0, let η = t̄/λ. Since p(t;λ) = p(t/λ; 1) for all t and λ, we have

−(r + ε)p(t;λ)2 ≤ ∂p

∂t
(t;λ) ≤ −(r − ε)p(t;λ)2
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for all t ≥ η. We now simplify the notation as p(t) = p(t;λ). Solving this with an initial

condition at η, for all λ > 0 and t ≥ η,

1

(r − ε)λ(t− η) + p(η)−1
≤ p(t) ≤ 1

(r + ε)λ(t− η) + p(η)−1
.

By formula (D.1), for all λ > 0 and t ≥ η, we have

e
−

∫ T
t

1
(r+ε)(s−η)+p(η)−1/λ

ds ≤ P (t) ≤ e
−

∫ T
t

1
(r−ε)(s−η)+p(η)−1/λ

ds( rλ(t− η) + p(η)−1

rλ(T − η) + p(η)−1

)(r−ε)−1

≤ P (t) ≤
( rλ(t− η) + p(η)−1

rλ(T − η) + p(η)−1

)(r+ε)−1

.

By formula (D.2), for all λ > 0 and t ≥ η, we have∫ T

η

( rλ(t− η) + p(η)−1

rλ(T − η) + p(η)−1

)(r−ε)−1

dt ≤ D(λT )T ≤ η +

∫ T

η

( rλ(t− η) + p(η)−1

rλ(T − η) + p(η)−1

)(r+ε)−1

dt

1

1 + (r − ε)−1

(
T − η +

1

rλp(η)
− 1

rλp(η)(T − η) + 1

)
≤ D(λT )T ≤ η +

1

1 + (r + ε)−1

(
T − η +

1

rλp(η)
− 1

rλp(η)(T − η) + 1

)
.

Since the above inequalities are satisfied for all ε > 0, all λ > 0, and η = t̄/λ, and

D(∞) = 1
1+r−1 , by letting ε→ 0, we have

− t̄

1 + r−1
+

1

1 + r−1

( 1

rp(η)
− 1

rp(η)(T − η) + 1

)
≤ λ

(
D(λT )T −D(∞)T

)
≤ t̄

1 + r
+

1

1 + r−1

( 1

rp(η)
− 1

rp(η)(T − η) + 1

)
.

Since we showed limλ→∞ p(t)·λt = 1/r in the proof sketch of Theorem 4, p(η) = p(t̄/λ) →
1/(rt̄) as λ → ∞. Hence, λ

(
D(λT )T −D(∞)T

)
is bounded for all λ. When T = 1, we

obtain |D(λ)−D(∞)| = O( 1
λ
).

D.8 Proof of Proposition 7

Let fL = infx∈X f(x) > 0, fH = supx∈X f(x), and xi = max{xi |x ∈ X} for i ∈ N .

Assumption 5 ensures existence of these values.

We first prove a lemma under Assumptions 1 and 5, together with a couple of condi-

tions: Given a fixed payoff profile w ∈ X̂ that is weakly Pareto efficient but not Pareto

efficient, let I = {i ∈ N | ∃y ∈ X such that yi > wi, yj ≥ wj
∀j ∈ N} and J = N \ I.

Since w is not Pareto efficient, I is nonempty. For such I and J , and v ∈ X̂, let

fJ(v) =
∫
{xI≥vI}

f(xI , vJ) dxI be the marginal density of J in A(v). For ε ≥ 0 and v ∈ X̂,

let Y ε
J (v) = {xJ ∈ R|J |

+ |xJ ≥ vJ , fJ(vI , xJ) > ε}. For a bounded set YJ ⊆ R|J | with a
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positive Lebesgue measure, let b(YJ) =
∫
YJ
xJ dxJ/

∫
YJ
dxJ be the barycenter of YJ with

respect to the Lebesgue measure.

Lemma 22. Suppose that Assumptions 1 and 5 hold. For each w ∈ X̂ that is weakly

Pareto efficient but not Pareto efficient, if (i) A(w) is convex, (ii) fJ(w) > 0, and

(iii) there exist α ∈ Rn
+ \ {0}, δ̃ > 0, and M > 0 such that αi = 0 for all i ∈ I, and

α·
((
vI , b(Y

0
J (v))

)
−v
)
≤M

(
α·(w−v)

)
for all δ ∈ (0, δ̃] and all v ∈ X̂ with wi−vi ∈ (0, δ]

for all i ∈ N , then w cannot be the limit v∗ of the solution v∗(t).

Proof of Lemma 22. By condition (i), there exists y ∈ X such that yi > wi for all i ∈ I.

Since w is weakly Pareto efficient, I ̸= N , namely, J ̸= ∅.
Assume on the contrary that v∗ = w, which is assumed to be not Pareto efficient.

Since I ̸= ∅, we can fix ī ∈ I arbitrarily. Let z(t) = α ·
(
v∗ − v∗(t)

)
. We will show that

there exists t̄ such that for all t ≥ t̄,

−z′(t) ≤ z(t̄)

2
(
v∗
ī
− v∗

ī
(t̄)
)v∗′ī (t).

If this inequality is shown, integrating both sides yields

−z(t) + z(t̄) ≤ z(t̄)

2
(
v∗
ī
− v∗

ī
(t̄)
)(v∗ī (t)− v∗ī (t̄)

)
for all t ≥ t̄. By letting t→ ∞, we have 0 < z(t̄) ≤ z(t̄)/2, and a contradiction follows.

Let ε = fJ(v
∗)/4, which is positive by condition (ii). By Assumption 5, there exists

δ ∈ (0, δ̃] such that Y 2ε
J (v∗I , v

∗
J − (δ, . . . , δ)) = Y 0

J (v
∗
I , v

∗
J − (δ, . . . , δ)). Let δ be sufficiently

small so that δ|I|fL ≤ ε/2. Then Y ε
J (v

∗
I , v

∗
J − (δ, . . . , δ)) ⊇ Y 2ε

J (v∗ − (δ, . . . , δ)). Let

δ̄ ∈ (0, δ] be sufficiently small so that δ̄ ≤ ε2

4(fH)2M
∏

i∈I xi
.

Since v∗(t) converges to v∗ as t→ ∞, there exists t̄ such that maxi∈N(v
∗
i − v∗i (t)) ≤ δ̄.

By equation (1), for all t ≥ t̄,

−z′(t) = λ
∑
j∈J

αj

∫
A(t)

(
xj − v∗j (t)

)
dµ

≤ λ
∑
j∈J

αj

∫
Y 0
J (v∗(t))

(
xj − v∗j (t)

) ∫∏
i∈I [0,xi]

fH dxI dxJ

= λfH

(∏
i∈I

xi

)∑
j∈J

αj

∫
Y 0
J (v∗(t))

(
xj − v∗j (t)

)
dxJ

≤ λfH

(∏
i∈I

xi

)
Mz(t)

∫
Y 0
J (v∗(t))

dxJ (by condition (iii))

≤ λfH

(∏
i∈I

xi

)
Mz(t̄)

∫
Y 0
J (v∗(t))

dxJ .
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By equation (1) again, for all t ≥ t̄,

v∗′ī (t) = λ

∫
A(t)

(
xī − v∗ī (t)

)
dµ

≥ λ

∫
{(xI ,xJ ) |xI≥v∗I ,xJ∈Y ε

J (v∗I ,v
∗
J (t))}

(xī − v∗ī ) dµ

≥ λ

∫
Y ε
J (v∗I ,v

∗
J (t))

ε

2fH
· ε dxJ

≥ λε2

2fH

∫
Y 0
J (v∗(t))

dxJ .

Then for all t ≥ t̄,

− z′(t)

v∗′
ī
(t)

·
v∗ī − v∗ī (t̄)

z(t̄)
≤

2(fH)
2M
(∏

i∈I xi
)(
v∗ī − v∗ī (t̄)

)
ε2

≤
v∗ī − v∗ī (t̄)

2δ̄
≤ 1

2
.

This proves the lemma.

Proposition 7 is now easily shown.

Proof of Proposition 7. Suppose that X is convex, and w ∈ X̂ is weakly Pareto efficient

but not Pareto efficient. It suffices to show that w satisfies three conditions (i)–(iii) in

Lemma 22. Condition (i) is obvious. To show Condition (ii), observe that the definition

of I and convexity of X imply existence of y ∈ X such that yi > wi for all i ∈ I and

yj ≥ wj for all j ∈ J . By concavity of X, fJ(w) ≥ fL
|I|!
∏

i∈I(yi − wi), which is strictly

positive.

We show condition (iii). Since X is convex, X̂ is also convex. Then there exists

α ∈ Rn
+ \ {(0, . . . , 0)} such that αi = 0 for all i ∈ I, and α · (w − v) ≤ 0 for all v ∈ X̂.

Since xJ ∈ Y 0
J (v) implies that α ·

(
w − (xI , xJ)

)
≤ 0 for all xI ∈ R|I|, condition (iii) is

satisfied for this α, any δ̄ > 0, and M = 1.

D.9 Examples of Pareto Inefficiency and Proof of Proposition 15

Before proving the proposition, we present two counterexamples in which the condition

assumed in the statement of Proposition 15 fails. First, in the following example, X is

written by functions which are not piecewise continuous, and openness fails.

Example 9. Let n = 2 and Y = {x ∈ R2
+ | x1+x2 ≤ 1}. Let (ak)k=1,2,... be a sequence in

the interior of Y such that ak1 is decreasing in k, ak2 is increasing in k, and limk→∞ ak =

(1/2, 1/2). We consider X = Y \
∪∞

k=1{x ∈ Y |xi > aki for i = 1, 2}. Then X ={
(x1, x2) ∈ R2

+ | x2 ∈ [0, g(x1)], x1 ∈ [0, h(x2)]
}
where g and h have countably infinite

discontinuous points.
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For each k = 1, 2, . . . , one can construct a density fk ∈ F such that v∗(t) converges

to ak as in Example 4. Then, for f = limk→∞ fk ∈ F , v∗(t) converges to limk→∞ ak =

(1/2, 1/2), which is Pareto efficient inX. Therefore {f ∈ F | limt→∞ v∗(t) is Pareto efficient}
is not open.

Second, in the next example, if X is written by the form X =
{
(x1, x2) ∈ R2

+ |x2 ∈
[0, g(x1)], x1 ∈ [0, h(x2)]

}
, then h cannot be quasiconcave, and denseness fails.

Example 10. Let n = 2 and µ be the uniform distribution on X = X1 ∪ X2 ∪ X3

where X1 = [0, 1]2, X2 =
{
(x1, x2) ∈ R2

+ |x1 ∈ [0, 1], x2 ∈ [2 − (1 − x1)
3, 2]

}
, and

X3 =
{
(x1, x2) ∈ R2

+ |x2 ∈ [0, 1], x1 ∈ [2 − (1 − x2)
3, 2]

}
. By symmetry with respect to

the 45 degree line, we have limt→∞ v∗(t) = (1, 1), which is not Pareto efficient in X.

Let us consider a probability measure µ̃ with the same support X which assigns

slightly higher probability than µ near (1, 2) ∈ X2. Since µ
(
X2∩A(1−ε, 1−ε)

)
= O(ε4),

and
∫
X1∩A(1−ε,1−ε)

(
v2 − (1 − ε)

)
dµ is of order ε3, the slight change of probability near

(1, 2) ∈ X2 does not affect the limit outcome. A similar argument shows that the slight

change of probability near (2, 1) ∈ X1 does not affect the limit outcome. Therefore,

the density function f ∈ F of the uniform distribution belongs to the interior of the

complement of {f ∈ F | limt→∞ v∗(t) is Pareto efficient}. This implies that this set is not

dense.

Proof of Proposition 15. In the proof, we denote by v∗(t; f) the solution of ODE (1) for

density function f ∈ F , and v∗(f) = limλ→∞ v∗(t; f) = limt→∞ v∗(t; f). We want to show

that F e := {f ∈ F | v∗(f) is Pareto efficient in X} is open and dense in F .

Proof of openness: Before proving openness, we show that the mapping v∗(∞; ·) :

F → Rn is continuous at all f ∈ F e, i.e., for all f ∈ F e, all η > 0, and any sequence

fk ∈ F (k = 1, 2, . . . ) with fk → f (k → ∞), there exists k̄ such that

|v∗(fk)− v∗(f)| ≤ η

for all k ≥ k̄.

Since limt→∞ v∗(t; f) = v∗(f), for all δ > 0 there exists t̄ > 0 such that |v∗(f) −
v∗(t; f)| ≤ δ for all t ≥ t̄. By Pareto efficiency of v∗(f), let δ > 0 be sufficiently small

so that A
(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
is contained in the η-ball centered at v∗(f). Since

the right hand side of ODE (1) is continuous in v by Assumption 1 (b), the unique

solution of (1) is continuous with respect to parameters in (1). Therefore, for a finite

time interval [0, T ] including t̄, there exists k̄ such that |v∗(t; fk) − v∗(t; f)| ≤ δ for all

t ∈ [0, T ] and all k ≥ k̄. This implies that v∗(t̄; fk) ∈ A
(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
, thereby

v∗(fk) ∈ A
(
v∗(t̄; f)− (δ, δ, . . . , δ)

)
. Therefore we have |v∗(fk)− v∗(f)| ≤ η. Hence v∗(f)

is continuous at all f ∈ F e.
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Now we prove openness. By the assumption on X, a weakly Pareto efficient payoff

profile w ∈ X̂ violates the assumptions in Lemma 22 only if g is discontinuous at w1 and

there exists ε > 0 such that h(y2) = h(w2) for all y2 ∈ [w2 − ε, w2], or h is continuous

at w2 and there exists ε > 0 such that g(y1) = g(w1) for all y1 ∈ [w1 − ε, w1]. Since g

and h are piecewise continuous, the cardinality of the set of weakly Pareto efficient payoff

profiles w satisfying the above property is finite. Therefore, there exists η > 0 such that

if w is Pareto efficient in X, w′ is weakly Pareto efficient, g is discontinuous at w′
1, and

h is discontinuous at w′
2, then |w − w′| > η. Since v∗ is continuous at all f such that

v∗(f) is Pareto efficient, v∗(f̃) must be Pareto efficient whenever f̃ is sufficiently close to

f . Hence F e is open in F .

Proof of denseness: By the definition of X, and Lemma 22, if w := v∗(f) is not

Pareto efficient, then g is discontinuous at w1 or h is discontinuous at w2 (or both). Since

g and h are piecewise continuous, there exists t̄ such that for all t ≥ t̄, A(v∗(t; f)) \ {w}
contains no point at which g and h are discontinuous. Thus we can assume without loss of

generality that g is continuous on [0, w1)∪(w1, x1] and h is continuous on [0, w2)∪(w2, x2].

Under this assumption, for any f̄ ∈ F , the limit payoff profile v∗(f̄) is Pareto efficient,

or v∗(f̄) = w.

Suppose that w is not Pareto efficient, and assume without loss of generality that

h is discontinuous at w2. For each f̄ ∈ F , each v ∈ X̂, and i ∈ N , let bi(v; f̄) be

the barycenter term with respect to f̄ . By quasiconcavity of g and h, and continuity

of g on [0, w1) and of h on [0, w2), the limit limv↗w bi(v; f̄) exists for each i ∈ N . Let

β(t, f̄) :=
b2(v

∗(t; f̄); f̄)

b1(v∗(t; f̄); f̄)
. We note that for all t,

v∗′2 (t
′; f̄)

v∗′1 (t; f̄)
= β(t, f̄) by ODE (1).

Let ȳ ∈ X be the Pareto efficient payoff profile such that ȳ1 > w1 and ȳ2 = w2,

and let y =
(
limv↗w b1(v; f), w2

)
. Let y = (ȳ + y)/2. By quasiconcavity of h, and the

definition of X, we have [w1, ȳ1] × {w2} ⊂ X, and by continuity of h on [0, w2), there

exists ε ∈ (0, y1 − w1] such that [y1 − ε/2, y1 + ε/2]× [y2 − ε, y2] ⊂ X.

Since v′∗i (t; f) > 0 for all i = 1, 2 and all t, v′∗2 (0; f)/v
′∗
1 (0; f) > 0. This together with

the definition of X imply that for each t, there exists z(t) in the interior of X such that

zi(t) > v∗i (t; f) for all t and i = 1, 2,

(
z2(t)− v∗2(t; f)

)(
z1(t)− v∗1(t; f)

) < β(t, f) for all t, and z(t) → y

as t → ∞. For small ε > 0, the ε-neighborhood Z of the trajectory of z(t) is contained

in X. Let f̃ be a continuous density function on Z that is positive in the interior of Z,

assigns zero on the boundary of Z, and satisfies
b2
(
v∗(t; f); f̃

)
b1
(
v∗(t; f); f̃

) < β(t, f) for all t. We

note that this inequality holds if the density function is constructed by taking densities

decreasing exponentially as v∗(t; f) diverges from the origin. We define fk ∈ F by

fk(x) =
k

k + 1
f(x) +

1

k + 1
f̃(x)
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for each x ∈ X and k ≥ 1. Note that this fk satisfies Assumption 4 for all k ≥ 1. Since

we assumed that
b2
(
v∗(t; f); f̃

)
b1
(
v∗(t; f); f̃

) < β(t, f) for all t, we have
b2
(
v∗(t; f); fk

)
b1
(
v∗(t; f); fk

) < β(t, f) for

all t and all k ≥ 1.

We assume that there exists k̄ such that limt→∞ v∗(t; fk) = w for all k ≥ k̄, and derive

a contradiction. Since limt→∞ β(t, fk) ≤ limt→∞ β(t, f), and
b2(v; fk)

b1(v; fk)
<
b2(v; f)

b1(v; f)
for all v

such that v is close to w, and v1 < w1 and v2 < w2, there exists tk such that v∗(tk; fk)

comes above the trajectory of v∗(t; f). By continuity of the trajectory, there exist t and

t′ such that v∗(t; fk) = v∗(t′; f) and
v∗′2 (t; fk)

v∗′1 (t; fk)
>
v∗′2 (t

′; f)

v∗′1 (t
′; f)

. However, by ODE (1), this

inequality never holds because we have β(t, fk) < β(t′, f), implying
v∗′2 (t; fk)

v∗′1 (t; fk)
<
v∗′2 (t

′; f)

v∗′1 (t
′; f)

.

This is a contradiction.

Therefore for all k̄, there exists k ≥ k̄ such that v∗(fk) ̸= w. Hence F e is dense in F .

D.10 Proof of Proposition 9

First, we define the notion of the edge of the Pareto frontier. Suppose that w is Pareto

efficient in X, and wi > 0 for all i ∈ X. Let us denote an (n − 1)-dimensional subspace

orthogonal to w by D = {z ∈ Rn |w · z = 0}. For ξ > 0, let Dξ be an (n− 1)-dimensional

disk defined by

Dξ = {z ∈ D | |z| ≤ ξ}.

We say that a Pareto efficient allocation w in X is not located at the edge of the Pareto

frontier of X if there is ξ > 0 such that for all vector z ∈ Dξ there is a scalar α > 0

such that α(w+ z) is Pareto efficient in X. We denote this Pareto efficient allocation by

wz ∈ X.

Proof of Proposition 9. Let Bε(y) = {x ∈ X | |y − x| ≤ ε} for y ∈ X and ε > 0. Let gε

be an arbitrary continuous function on Rn such that gε(x) > 0 if x is in the interior of

the n-dimensional ball centered at 0 ∈ Rn with radius ε, and gε(x) = 0 otherwise. Let

f̃ be the uniform density function on X. For a Pareto efficient payoff profile y ∈ X, we

define a probability density function fy on X by

fy(x) = ηf̃(x) + (1− η)
gε(y − x)∫

x′∈Bε(y)
gε(y − x′) dx′

where η > 0 is small. Note that fy(x) is uniformly bounded above and away from zero

in x and y.

For z ∈ Dξ, let φ̃(z) be the limit of the solution of ODE (1) with density fwz , and

define a function φ from Dξ to D by φ(z) = φ̃(z) − δw ∈ D where δ ∈ R is chosen to
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satisfy φ̃(z) − δw ∈ D depending on z. Thus, φ measures the projection to D of the

vector from w to the limit payoff profile under fw. By the form of ODE (1), the solution

of (1) with density fwz changes continuously if z moves continuously. Since w is not

located at the edge of the Pareto frontier, φ̃(z) is also Pareto efficient in X and comes

close to w if ξ, ε, and η are small. Therefore φ(z) is a continuous function. The rest of

the proof consists of two steps. In the first step, we will show that there exists ξ > 0 such

that ψ(Dξ) ⊆ Dξ where ψ(z) := z − φ(z). In the second step, we will use the first step

to apply the fixed point theorem to ψ and show that there exists z such that φ(z) = z.

Step 1: We show that there exist ξ > 0, ε > 0 and η > 0 such that |φ(z)− z| ≤ ξ for

all z ∈ Dξ. Take any ξ > 0 such that φ is continuous in Dξ. If a density function has a

positive value only in Bε(y) for some y in the Pareto frontier of X, then the barycenter of

A(t) is always contained in Bε(y). In such a case, the limit payoff profile under density fy

belongs to Bε(y). As η → 0, fy approaches the above situation. Therefore, for sufficiently

small η > 0, the distance between the limit payoff profile and y is smaller than 2ε. For

y = wz and letting ε very small, we have |φ(z) − z| ≤ ξ. Since Dξ is compact, we can

take such small ε > 0 and η > 0 independent of z.

Step 2: We show that there is z ∈ Dξ such that φ(z) = 0. Let ψ(z) = z − φ(z). By

Step 1, ψ(z) belongs to Dξ for all z ∈ Dξ. By Brouwer’s fixed point theorem, there exists

z ∈ Dξ such that ψ(z) = z. Therefore there exists z ∈ Dξ such that φ(z) = 0.

Hence for z ∈ Dξ such that φ(z) = 0, the limit allocation with density fwz coincides

with w.

D.11 Proof of Proposition 10

Fix any ε > 0. Since limt→∞ v∗(t; 0, λ) exists for all λ, there exists t̄ > 0 such that for all

t ≥ t̄,

|v∗(t; 0, 1)− v∗(t̄; 0, 1)| ≤ ε/2. (D.3)

Since the right hand side of ODE (A.1) is continuous in ρ and λ, and uniformly Lipschitz

continuous in v, the unique solution v∗(t; ρ, λ) is continuous in ρ and λ for all t ∈ [0, t̄].

Therefore by continuity in ρ, there exists λ̄ > 0 such that for all λ ≥ λ̄ and all t ∈ [0, t̄],

|v∗(t; 0, 1)− v∗(t; ρ/λ, 1)| ≤ ε/2. (D.4)

By (D.3) and (D.4), for all λ′ ≥ λ̄ and all t ≥ 0

|v∗(t; 0, 1)− v∗(min{t, t̄}; ρ/λ′, 1)| ≤ ε.
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Recalling that v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) for all α > 0, we have

|v∗(t/λ; 0, λ)− v∗(min{t, t̄}/λ′; ρ, λ′)| ≤ ε

for all λ, λ′ ≥ λ̄ and all t ≥ 0. Let t̃ = t/λ and t′ = min{t, t̄}/λ′. Then for all λ, λ′ ≥ λ̄

and all t̃ ≥ 0, there exists t′ such that

∣∣v∗(t̃; 0, λ)− v∗(t′; ρ, λ′)
∣∣ ≤ ε.

If λ = λ′, we have t′ = min{t/λ, t̄/λ} = min{t̃, t̄/λ}. By replacing t̄/λ by t̄, we have

shown that for all ε > 0, there exists λ̄ such that for all λ, λ′ ≥ λ̄, there exists t̄ > 0 such

that for all t̃, ∣∣v∗(t̃; 0, λ)− v∗(min{t̃, t̄}; ρ, λ′)
∣∣ ≤ ε.

Letting λ′ = λ, we obtain the desired inequality.

D.12 Proof of Lemma 11

For each i ∈ N , let xi = max{xi | (xi, x−i) ∈ X}, which exists by Assumption 5 (a).

To simplify notations, let v(t) be the solution of ODE (A.1) for given ρ and λ. Fix

t̄ > 0 arbitrarily. The proof consists of five steps. In the first step, we show that the

acceptance probability becomes small as λ gets large. This enables approximation of the

distribution conditional on the acceptance set for large λ. This approximation is used

in the second step to identify the approximate direction of the vector from v(t) to the

barycenter. Applying this approximation, we show that the Nash product is increasing

in t in the third and fourth steps. Finally, in the fifth step, we show that v(t) converges

to a Nash point independent of t.

Step 1: We show that µ(A(t̄)) → 0 as λ → ∞. If not, there exist a positive value

ε > 0 and an increasing sequence (λ̄k)k=1,2,... such that µ(A(t̄)) ≥ ε for all λ̄k. Since

v′i(t
′) ≥ −ρxi for each i ∈ N and all t′ by equation (A.1), vi(t̃) ≤ vi(t̄) + ρxi(t̄− t̃) for all

i ∈ N and all t̃ < t̄. Then for all t̃ < t̄,

µ
(
A(v(t̄)) \ A(v(t̃))

)
≤

∑
i∈{i |vi(t̃)>vi(t̄)}

µ
(
[vi(t̄), vi(t̃)]×

∏
j ̸=i

[0, xj]
)

≤ fH
∑
i∈N

ρxi(t̄− t̃)
∏
j ̸=i

xj

= (t̄− t̃)fHρn
∏
j∈N

xj.

Let t̃ = t̄ − ε/2

fHρn
∏

j∈N xj
. Then we have µ(A(t)) ≥ ε/2 for all t ∈ [t̃, t̄]. Since for all
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t ∈ [t̃, t̄] and all η > 0,

µ
(
A(v(t)) \ A(v(t) + (η, . . . , η))

)
≤
∑
i∈N

µ
(
[vi(t), vi(t) + η]×

∏
j ̸=i

[0, xj]
)

≤
∑
i∈N

(
fHη

∏
j ̸=i

xj

)
,

we have µ
(
A(v(t) + (η, . . . , η))

)
≥ ε/4 by letting η =

ε/4

fH
∑

i∈N
∏

j ̸=i xj
. For this η, the

integral in ODE (A.1) is bounded from below as∫
A(t)

(
xi − vi(t)

)
dµ ≥

∫
A(v(t)+(η,...,η))

(
xi − vi(t)

)
dµ

≥
∫
A(v(t)+(η,...,η))

ηdµ

≥ ηε/4

for all t ∈ [t̃, t̄]. By ODE (A.1), for all t ∈ [t̃, t̄] and all k ≥ 1,

v′i(t) ≥ −ρxi + λ̄kηε/4.

Therefore, vi(t̄) − vi(t̃) ≥ (−ρxi + λ̄kηε/4)(t̄ − t̃) > xi for sufficiently large λ̄k. This

contradicts the definition of xi because vi(t̃) ≥ 0.

Step 2: We will consider approximation of v(t) by approximating the shape of A(v(t))

when t is in a small time interval including t̄. We note that this approximation is valid

in a time interval that is independent of λ. This is because v′i(t) ≥ −ρxi for all i ∈ N

and all t by equation (A.1), so even when v(t) moves away from the Pareto frontier, its

speed is bounded independent of λ. We will compute the direction of
∫
A(t)

(
x − v(t)

)
dµ

in the limit as λ→ ∞ based on this approximation.

By Step 1, the boundary of X contains all accumulation points of {v(t̄) |λ > 0}. Fix
an accumulation point v∗(t̄), and take an increasing sequence (λk)k=1,2,... with v∗(t̄) =

limk→∞ v(t̄). By Assumption 6, there exists a unit normal vector of X at v∗(t̄), which we

denote by α ∈ R++.

Step 1 implies that v(t̄) is very close to the boundary of X when λk is very large.

By Assumption 6 (a), when t is close to t̄, A(t) is approximated by a polyhedron de-

fined by convex hull of {v(t), v(t) + (z1(t), 0, . . . , 0), v(t) + (0, z2(t), 0, . . . , 0), . . . , v(t) +

(0, . . . , 0, zn(t))} where for each i ∈ N , zi(t) > 0 is chosen such that v(t)+(0, . . . , 0, zi(t), 0, . . . , 0)

is on the boundary of X̂. This vector z(t) is approximately parallel to (1/α1, . . . , 1/αn).

Let ζ(t) be the ratio between the length of z(t) and (1/α1, . . . , 1/αn), i.e., ζ(t) = z1(t)α1 =

· · · = zn(t)αn.

Since density f is continuous by Assumption 5 (b), probability measure µ conditional
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on A(t) is approximated by the uniform distribution on A(t) if λk is large. Then the

integral
∫
A(t)

(
x − v(t)

)
dµ is approximated by µ

(
A(t)

)
times the vector from v(t) to the

barycenter of the polyhedron, namely, µ
(
A(t)

)
z(t)/(n + 1). Therefore

∫
A(t)

(
x − v(t)

)
dµ

is approximately parallel to (1/α1, . . . , 1/αn) when λk is large.

Step 3: We show that
∑

i∈N αiv
′
i(t̄) ≥ 0 for large λ. Let (λk)k=1,2,... be the sequence

defined in Step 2. For large λk and t close to t̄, A(t) is again approximated by a poly-

hedron, and µ conditional on A(t) is approximated by the uniform distribution on A(t).

By Step 2, for each i ∈ N , the ODE near vi(t̄) is approximated by

v′i(t) = −ρvi(t) + λk
zi(t)

n+ 1
· µ(A(t)). (D.5)

Note that vi(t) is close to v∗i (t̄) because t is close to t̄, and µ(A(t)) is of order n of the

length of z(t). By replacing the above equation by ζ(t), ODE (D.5) approximates

ζ ′(t) = ρa− λkbζ(t)
n+1 (D.6)

for some constants a, b > 0.

Suppose that µ(A(t)) is not decreasing in t at t̄. Then ζ ′(t̄) ≥ 0. By (D.6), this implies

that there exists τ > 0 such that v(t) is closer or equally close to the Pareto frontier for

any t ∈ [t̄ − τ, t̄]. Since the approximation explained in Step 2 is valid as long as v(t) is

close the Pareto frontier, τ can be taken arbitrarily large. Therefore, the approximation

of (D.6) holds for all t ∈ [0, t̄], and thus v(t) must be closer or equally close to the Pareto

frontier to any t ∈ [0, t̄]. This contradicts the fact that v(0) = 0. Therefore µ(A(t)) is

decreasing in t near t̄. For large λk, this implies that the distance from v(t) to the Pareto

frontier, which is proportional to α ·
(
v∗(t̄)− v(t)

)
, is decreasing, and thus

α · v′(t̄) =
∑
i∈N

αiv
′
i(t̄) ≥ 0.

Step 4: We show that the Nash product is nondecreasing in t at t̄ if λ is large. By

ODE (D.5), we have

αiv
′
i(t̄) = −ραivi(t̄) + β (D.7)

where β = λkµ(A(t̄))/(n+ 1) independent of i. Let us assume without loss of generality

that α1v
′
1(t̄) ≥ · · · ≥ αnv

′
n(t̄). Then we must have 1/(α1v1(t̄)) ≥ · · · ≥ 1/(αnvn(t̄)).

Let L(t) =
∑

i∈N ln vi(t) be a logarithm of the Nash product. By Chebyshev’s sum

inequality,

L′(t̄) =
∑
i∈N

v′i(t̄)

vi(t̄)
=
∑
i∈N

αiv
′
i(t̄)

αivi(t̄)
≥ 1

n

(∑
i∈N

αiv
′
i(t̄)
)(∑

i∈N

1

αivi(t̄)

)
≥ 0.
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Therefore, the Nash product is nondecreasing in t at t̄ if λk is large. Moreover, the

derivative is zero if and only if α1v
′
1(t̄) = · · · = αnv

′
n(t̄) or α1v1(t̄) = · · · = αnvn(t̄).

Step 5: We show that t̄, v(t̄) converges to a point in the Nash set as λ → ∞, and

the limit is irrelevant to the choice of t̄. Since Step 1 implies that L′(t̄) converges to

zero as λk → ∞, we have α1v
′
1(t̄) = · · · = αnv

′
n(t̄) or α1v1(t̄) = · · · = αnvn(t̄) in the

limit as λk → ∞. If the former case holds, then ODE (D.7) implies that the latter

case also holds. Therefore the latter case always holds in the limit as λk → ∞, i.e.,

α1v1(t̄) = · · · = αnvn(t̄). This implies that the boundary of X at v(t̄) is tangent to the

hypersurface
{
y ∈ Rn

+

∣∣∏
i∈N yi =

∏
i∈N vi(t̄)

}
. Hence any accumulation point v∗(t̄) at

every t̄ belongs to the Nash set.

Since we assumed that the Nash set consists of isolated points, the accumulation point

v∗(t̄) is isolated in the Nash set. Suppose that v(t̄) does not converge to v∗(t̄) as λ→ ∞.

Then for any δ > 0 and any λ̄, there exists λ ≥ λ̄ such that |v(t̄)−v∗(t̄)| ≥ δ/2. Let δ > 0

be small such that {x ∈ X | |v∗(t̄)−x| ≤ δ}\{v∗(t̄)} has no intersection with the Nash set.

Since v(t̄) is continuous with respect to λ and v∗(t̄) is an accumulation point, for any λ̄,

there exists λ > λ̄ such that δ/2 ≤ |v(t̄)−v∗(t̄)| ≤ δ. Since {x ∈ X | δ/2 ≤ |v∗(t̄)−x| ≤ δ}
is compact, v(t̄) must have an accumulation point in this set. This contradicts the fact

that any accumulation point is contained in the Nash set. Since the choice of t̄ was

arbitrary, we have shown that for all t, v∗(t) = limλ→∞ v(t) exists and belongs to the

Nash set.

Finally, we show that v∗(t) is independent of t. Suppose not. Then there exist t1 and

t2 such that v∗(t1) ̸= v∗(t2). Since v(t) converges to v
∗(t) as λ → ∞ for each t ∈ [t1, t2],

for any δ > 0, there exists λ̄ > 0 such that |v∗(t) − v(t)| ≤ δ/3 for all λ ≥ λ̄ and all

t ∈ [t1, t2]. Since v(t) is continuous with respect to t, for any δ > 0 and λ = λ̄, there

exists ε > 0 such that if t, t′ ∈ [t1, t2] and |t− t′| ≤ ε, then |v(t)− v(t′)| ≤ δ/3. Let λ = λ̄.

These imply that for all δ > 0, there exists ε > 0 such that if t, t′ ∈ [t1, t2] and |t− t′| ≤ ε,

then |v∗(t)− v∗(t′)| ≤ δ. If δ > 0 is such that {x ∈ X | |v∗(t1)− x| ≤ δ} \ {v∗(t1)} has no

intersection with the Nash set, this implies that there exists ε > 0 such that if t, t′ ∈ [t1, t2]

and |t− t′| ≤ ε, then v∗(t) = v∗(t′). Thus v∗(t1) = v∗(t2), which is a contradiction. Hence

v∗(t) is constant with respect to t.

D.13 Proof of Lemma 12

The ODE (D.6) is rewritten as

ζ ′(t) = −λb
(
ζ(t)−

(ρa
λb

) 1
n+1

)( n∑
k=0

ζ(t)n−k
(ρa
λb

) k
n+1

)

where λk is simply written as λ which is sufficiently large. Since ζ ′(t) < 0 by Step 3 in the

proof of Lemma 11 and ζ ′′(t) > 0 by ODE (D.6), we have ζ(t− ε)− ζ(t) > −εζ ′(t) (> 0)

100



for any small ε > 0. This implies limλ→∞ ζ ′(t) = 0 for all t > 0 because limλ→∞ ζ(t) = 0

for all t > 0 by Lemma 11. Thus, given t > 0, ζ ′(t) must be close to zero for sufficiently

large λ.

Therefore for sufficiently large λ, ζ(t) is approximated by ζ(t) =
(ρa
λb

) 1
n+1

because

the term in the second parentheses is greater than
(ρa
λb

) n
n+1

> 0. Since µ(A(t)) is

approximated by a function proportional to ζ(t)n, µ(A(t)) = cρ
n

n+1λ−
n

n+1 where c > 0 is

a constant. The probability that an agreement is reached before time −(T − s) is

1− e−
∫ T
T−s µ(A(t))λ dt = 1− e−scρ

n
n+1 λ

1
n+1

,

which converges to one as λ→ ∞.

D.14 Proof of Proposition 13

The approximated ODE (D.6) for large λ in the proof of Proposition 11 can be rearranged

as follows:

λ
1
n ζ ′(t) = λ

1
nρλa− b ·

(
λ

1
n ζ(t)

)n+1
.

If λ
1
nρλ → 0, this ODE is approximated as

λ
1
n ζ ′(t) ≈ −b

(
λ

1
n ζ(t)

)n+1

ζ ′(t) ≈ −λbζ(t)n+1. (D.8)

An argument similar to the proof of Theorem 4 shows that the above approximation (D.8)

is applied also to ODE (1) whenever µ(A(t)) is close to zero. If µ(A(t)) is far away

from zero, since ρλ is bounded, Proposition 10 shows that the solution of ODE (A.1) is

approximated by that of ODE (1). Therefore, in both cases, the solution of ODE (A.1)

is approximated by that of ODE (1), and thus v∗ = limλ→∞ v∗(t; 0, λ). Since (D.8) yields

ζ(t) = O
(

1

(λt)
1
n

)
, an argument similar to Theorem 4 shows the result of positive duration.

On the other hand, if λ
1
nρλ → ∞, the ODE is approximated as

λ
1
n ζ ′(t) =

(
(λ

1
nρλa)

1
n+1 − b

1
n+1 (λ

1
n ζ(t))

)
·
(
(λ

1
nρλa)

n
n+1 + (λ

1
nρλa)

n−1
n+1 · b

1
n+1 (λ

1
n ζ(t)) + · · ·+ b

n
n+1 (λ

1
n ζ(t))n

)
≈ (λ

1
nρλa)− (λ

1
nρλa)

n
n+1 · b

1
n+1 (λ

1
n ζ(t)).

Since ζ ′(t) → 0 as λ→ ∞ for all t > 0 by the argument in the proof of Lemma 12, ζ(t) is

approximated by ζ(t) =
(ρλa
λb

) 1
n+1

. Thus, by the proof of Lemma 12, the limit expected

duration is zero.
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D.15 Proof of Proposition 14

In the main text, we have already shown the first statement, which immediately implies

the “if” part in the second statement. Thus, we only prove the “only-if” part in the second

statement, i.e., that if the core is non-empty, then there exists a probability measure µ

with support X satisfying Assumption 1 such that the limit expected duration is positive

under µ. Let Bε = {x ∈ X | |c − x| ≤ ε for some c in the core}. By the assumptions,

there exist a Pareto efficient core allocation c ∈ X and δ ∈ (0, 1) such that Y (δ)∩Bε ̸= ∅
for all ε > 0, where Y (δ) = {x ∈ X | ci − xi ≥ δ(cj − xj) > 0 for all i, j ∈ N}. For such c
and δ ∈ (0, 1), let f be a density function on X such that

f(x) ∝

|c− x|−α if x ∈ Y (δ),

fL otherwise.

where α > 0 and fL > 0 are positive constants. Let A(v) = {x ∈ X | there is C ∈
C such that xi ≥ vi for all i ∈ C} be the acceptance set in this voting rule. Since f

represents a pointwise distribution at c in the limit as α → ∞ and fL → 0, the ex-

pected payoff profile conditional on agreement
∫
A(v)

xf(x)dx
/∫

A(v)
f(x)dx continuously

approaches c as α becomes large and fL vanishes. Thus one can easily show that there is

large α > 0 such that
∫
A(v)

(xi − vi)f(x)dx > 0 for all v ∈ Y (δ) and i ∈ N . This implies

that for such α, v∗′i (t) > 0 for all t and all i ∈ N if v∗(t) ∈ Y (δ). Since v∗(t) ∈ Y (δ) for

sufficiently large t and sufficiently small fL, we have that for all ε > 0, there exist α, fL,

t̄ such that v∗(t) ∈ Y (δ) ∩Bε for all t ≥ t̄.

Then the limit expected duration can be computed with an approximated density

function f̃ with support Y (δ) defined as f̃(x) ∝ f(x) in Y (δ), and f̃(x) = 0 otherwise.

Let µ̃ be the probability measure corresponding to f̃ . For v ∈ Y (δ), let

bi(v) = g̃i(A(v))− vi, di(v) = −∂µ̃(A(v))/∂vi
µ̃(A(v))

,

where g̃(Y ) = (g̃1(Y ), . . . , g̃n(Y )) denotes a barycenter of the set Y ⊆ Rn with respect to

µ̃.

A similar argument to the proof of Theorem 4 shows that the limit expected duration

is limt→∞
r(t)

1 + r(t)
where

r(t) =
∑
i∈N

di(v
∗(t))bi(v

∗(t)).

Since it is straightforward to show that limt→∞ r(t) > 0, the limit expected duration must

be strictly positive.
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D.16 Proof of Proposition 16

By equation (A.4), v∗i (
t
∆t
) is a nondecreasing sequence. Since X is bounded and convex,

v∗( t
∆t
) converges to a Pareto efficient payoff profile as ∆t→ 0. Let v∗( t

∆t
) be the solution

of equation (A.4), and v∗ = lim∆t→0 v
∗( t

∆t
) for t > 0.

We borrow ideas from the proof of Proposition 5. Let fH(
t
∆t
;m) = supx∈A(v∗( t

∆m
;m)) f(x),

and fL(
t

∆m
;m) = infx∈A(v∗( t

∆m
;m)) f(x). With the same notations as in the proof of Propo-

sition 5, for all i ∈ N , all η > 0, all t ≥ t̄, and all m,

λm∆mfL

( t̄

∆m

;m
)∫

A
(
v∗( t

∆m
;m)
)(xi − v∗i

( t

∆m

;m
))

dµ

≤ v∗i

( t

∆m

+ 1;m
)
− v∗i

( t

∆m

;m
)
≤ λm∆mfH

( t̄

∆m

;m
)∫

A
(
v∗( t

∆m
;m)
)(xi − v∗i

( t

∆m

;m
))

dµ,

λm∆mfL

( t̄

∆m

;m
)
V
(
A
(
v∗
( t

∆m

;m
)))(α · (v∗ − v∗( t

∆m
;m))− η

(n+ 1)αi

)
dµ

≤ v∗i

( t

∆m

+ 1;m
)
− v∗i

( t

∆m

;m
)

≤ λm∆mfH

( t̄

∆m

;m
)
V
(
A
(
v∗
( t

∆m

;m
)))(α · (v∗ − v∗( t

∆m
;m)) + η

(n+ 1)αi

)
dµ.

Therefore we have limm→∞
v∗j (

t
∆m

+ 1;m)− v∗j (
t

∆m
;m)

v∗i (
t

∆m
+ 1;m)− v∗i (

t
∆m

;m)
=
αi

αj

. For large m and t ≥ t̄, we

have an approximation(
v∗i − v∗i

( t

∆m

+ 1;m
))

−
(
v∗i − v∗i

( t

∆m

;m
))

≈ −λm∆mf
( t̄

∆m

;m
)
V
(
A
(
v∗
( t

∆m

;m
)))(α · (v∗ − v∗( t

∆m
;m))

(n+ 1)αi

)
dµ

≈ −
λm∆mf(

t̄
∆m

;m)

n(n+ 1)

(∏
j ̸=i

αi

αj

)(
v∗i − v∗i

( t

∆t
;m
))n+1

.

Then we can show that for all i ∈ N and all t ≥ t̄,

lim
m→∞

αi

(
v∗i − v∗i

( t

∆t
;m
))

· (λmt)
1
n =

( n+ 1

f(v∗)nn+1

∏
j∈N

αj

) 1
n
.

Here we used the fact that λm is large if m is large, to ignore the constant derived from

an initial condition. Since by the above equality,

p(t) ≈ f(v∗)V
(
A
(
v∗
( t

∆m

;m
)))

≈ f(v∗)

nλmt

∏
i∈N

(
n

αi

( n+ 1

f(v∗)nn+1

∏
j∈N

αj

) 1
n

)
=

n+ 1

n2(λmt)
,
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Figure 22: The set of realized allocations that the
players accept

S(x)

v
∗(t)

NBS

x

Figure 23: The set of feasible alloca-
tions when x ∈ T1 is realized

we have

lim
m→∞

p(t) · (λmt) =
n+ 1

n2
.

By Lemma 21, the limit expected duration is
n2

n2 + n+ 1
.

D.17 Proof of Proposition 20

By symmetry, v∗1(t) = v∗2(t) and v
∗ = (1/2, 1/2). Let z(t) = v∗i − v∗i (t). Suppose that t is

large and z(t) is small, so that z(t) ≤ 1−a
2(1+a)

. It is straightforward to see that an agreement

is reached after negotiation with a costly transfer if and only if realized allocation x ∈ X

is in the triangle T1 ∪ T2 ∪ T3 shown in Figure 22, where the slopes of four line segments

starting from v∗(t) are −a, a, 1/a and −1/a, respectively, from southeast to northwest.

Suppose that allocation x belongs to the triangle T1 in Figure 22. Then the set S(x)

of feasible allocations is described in Figure 23. Since the disagreement point is at v∗(t),

the Nash bargaining solution (NBS) is located on the borderline between T1 and T3.

Therefore the ex post distribution of payoff profiles on agreement has a mass on the line

segment between T1 and T3, and the barycenter b1 of the mass is the intersection point

between the line segment and the line drawn through the barycenter of T1 with slope −a.
A symmetric argument applies to the case of x ∈ T2, and the barycenter b2 of the mass

on the borderline between T2 and T3 is computed accordingly.

If x belongs to T3, the Nash bargaining solution is x itself. The the barycenter b3 of

the set of ex post payoff profiles conditional on the realized allocation x being contained
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in T3 is exactly the barycenter of T3. A computation shows that

b1 = v∗(t) +
( 2

3(1 + a)
,

2a

3(1 + a)

)
z(t), b2 = v∗(t) +

( 2a

3(1 + a)
,

2

3(1 + a)

)
z(t),

b3 = v∗(t) +
(2
3
,
2

3

)
z(t),

µ(T1) = µ(T2) =
8a

1− a2
z(t)2, µ(T3) =

2(1− a)

1 + a
z(t)2.

Therefore the barycenter of the entire set of ex post payoff profiles is computed as a

convex combination of b1, b2 and b3. By ODE (1),

z′(t) = −v∗′1 (t)

= −λ
(
(b1 − v(t))µ(T1) + (b2 − v∗(t))µ(T2) + (b3 − v(t))µ(T3)

)
= −λ · 8(1 + a2)

3(1− a2)
z(t)3.

Since p(t) = µ(T1) + µ(T2) + µ(T3) =
4(1 + a)

1− a
z(t)2,

p′(t) =
8(1 + a)

1− a
z(t)z′(t) = λ · 4(1 + a2)

3(1 + a)2
p(t)2.

Therefore the constant r defined in Section 4.2.2 is 4(1+a2)
3(1+a)2

. By Theorem 4, the limit

expected duration is

1

1 +
(

4(1+a2)
3(1+a)2

)−1 =
4 + 4a2

7 + 6a+ 7a2
.
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