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Abstract

We consider a two-candidate election model with campaign contributions. In the first stage

of the game, each of the two candidates chooses a policy position. In the second stage, each

of n donors chooses the amount of contribution to each candidate. The winning probability of

each candidate depends on the total amount of contributions that she raises from the donors.

In any equilibrium of our model, only extreme donors contribute at any subgame, and the

policies converge on the unique equilibrium path. Our results suggest that extreme donors and

their contributions do not necessarily cause policies to diverge.
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1 Introduction

Electoral candidates run campaigns to influence the outcomes of the elections. One major deter-

minant of the campaigns’ success is contributions from interest groups. Contributions made to US

presidential campaigns are quite large, thus attracting the attention of many media outlets. In the

2012 presidential election, the winner, Barack Obama, raised more than 720 million US dollars and

even the loser, Mitt Romney, raised about 450 million dollars. Furthermore, the candidates’ policy

positions seem to affect the flow of political contributions. For example, unsurprisingly, the vast

majority of political contributions from gay and lesbian interest groups have gone to Democrats.

In the 2012 election cycle, only 7 percent of this money went to a Republican national candidate

or political committee.1 Thus, given the impact of contributions, it is important for candidates to

deliberate the way their policy positions affect the contributions, which in turn affects the outcome

of the election. This paper studies how the outcomes of elections are affected by policy choices

through contributions by interest groups.

To motivate our analysis, let us start by the observation that donors’ ideological positions are of-

ten said to be extreme and polarized. For example, Barber (2016), McElwee (2016), and McElwee

et al. (2016) report that such polarization occurs at various levels: presidential, senate, and may-

oral elections. The effect of such polarization on the manifesto choices, however, is ambiguous.

Some suggest that donors’ polarization causes manifestos’ polarization (e.g., Verba et al. (1995)

and Miller and Schofield (2003)), while others argue that there is no such causal relationship (e.g.,

La Raja and Wiltse (2011)). In our baseline model, extreme donors are the only ones who would

ever donate, and the policies converge rather than diverge. Thus, our analysis suggests that donors’

polarization does not necessarily cause manifestos’ polarization. However, our theory should be

interpreted with care, since it also implies that the equilibrium contribution amount must be zero,

which is obviously at odds with reality. We view the usefulness of our results as suggesting that the

1The numbers stated in this paragraph are cited from The Center for Responsible Politics (2018).
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key determinants of electoral campaign contributions in real-life elections might not be captured

by our baseline model. We also examine various possibilities for such missing elements of the

model and discuss how they may or may not change our prediction (Section 4).

In our baseline analysis, we characterize subgame perfect equilibria of a two-stage game in

which two office-seeking candidates set policies in the first stage and then contributions are made

by n interest groups in the second stage, taking into account the policy positions chosen in the first

stage.2 In order to focus on the effect of contributions on the election outcome, we postulate that

the amounts of contributions are the sufficient statistic of the election outcome, i.e., the voters only

respond to campaign contributions, and not to policy positions.3 Taking into account the effect

that the policy choices have on the amount of contributions, candidates strategically choose their

positions to maximize electability.

In our model, we show the extremist dominance result and the policy convergence result. The

extremist dominance result states that in each subgame (i.e., for each realized policy profile on and

off the equilibrium path), no interest groups except the two extreme groups (i.e., the leftmost and

the rightmost groups) contribute to any candidates. This result is consistent with the observation

that donors are polarized. However, polarization of active donors does not necessarily imply that

of policies: The policy convergence result states that the two candidates set the same policy in any

subgame perfect equilibrium of our model.

To see the intuition for extremist dominance, consider two left-wing donors where one is more

extreme than the other, as in Figure 1. First of all, neither donor has an incentive to contribute

to the right-wing candidate. To see who will contribute to the left-wing candidate, notice that the

2The assumption that the candidates’ policy positions affect the contributors’ (utilities and hence) decisions is
consistent with the empirical literature (see, e.g., Bonica (2014) and Barber et al. (2017)). We, however, note that this
is not a view for which there is a consensus: Hill and Huber (2016) suggest that ideology plays no role when individual
donors distinguish among same-party candidates.

3In Section 4, we explain a model with informed voters who respond to policy positions. Even in such a model,
policies are horizontally-differentiated platforms and we abstract away from their vertically-differentiated quality com-
ponents. Some papers show that the possibility for investments in quality can lead to horizontal policy divergence,
even in models where the policies converge without such possibilities (e.g., Ashworth and Bueno de Mesquita (2009),
Hirsch and Shotts (2015), and Hirsch (2019)).

3



Figure 1: Graphical intuition for extremist dominance: Green and blue curves correspond to the
two donors’ utility functions. The blue donor perceives a smaller utility difference than the green
donor, and hence does not contribute in equilibrium.

difference of payoffs that the extreme donor perceives from the two candidates is larger than that

of the moderate donor.4 Thus the extreme donor’s marginal benefit of contribution is always larger

than that of the moderate donor. Given that we measure the utilities in common monetary units,

this entails that the marginal cost of contribution cannot be equal to the marginal benefits for both

donors, implying that the moderate donor’s contribution must be zero.

Given extremist dominance, the heart of the intuition for policy convergence can be explained

as follows: When two policies differ, a candidate’s approach to the other policy has asymmetric

effects on the marginal benefits from contributions by the two extreme interest groups. Specifi-

cally, consider the situation where the left-wing candidate moves to the right by a small amount.

This movement decreases the amounts of contributions from both donors, but our assumption that

the utility functions are concave implies that, as Figure 2 illustrates, the left-wing interest group

perceives a small change in payoffs from such a movement, compared to the change that the right-

4Formally, this follows from the single-crossing condition that we will assume.
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Figure 2: Graphical intuition for policy convergence: Green and blue curves correspond to the
two donors’ utility functions (the utility functions are allowed to be asymmetric). When the left
candidate moves to the right, the green donor perceives a small change in utility while the blue
donor perceives a large difference. This, combined with our assumption on the winning probability
function, implies policy convergence.

wing interest group perceives. Thus, the amount that the right-wing donor would decrease the

contribution by is more significant than that of the left-wing donor. This implies, with some as-

sumptions on the winning probability function, an increase of the winning probability for the left

candidate.5

Examining this from another angle may help: What prevents a candidate from moving towards

her own donor? A usual argument would postulate that moving towards her own donor would

increase the contribution from that donor. This is true in our model. At the same time, however,

it also increases the contribution from the other donor to the opposition candidate. An example

of this is Meg Whitman’s contribution to Hilary Clinton, calling Donald Trump an “authoritarian

character” and a threat to democracy (Becker, 2016). Another example would be the £400,000

donation to Best for Britain for an anti-Brexit campaign by George Soros, who is accused of

5The actual proof has more subtlety, and we formalize it in the analysis that follows.
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“forcing his views on societies and even destroying them” (Henley, 2018). In our model, such a

countervailing effect prevents a candidate from catering to the extreme donor.

To understand the contribution of this study, it would be useful to compare it with the “collec-

tive policies” model of Baron (1994).6 He considers a two-candidate two-donor model with the

same timeline as ours and also obtains a policy-convergence result, but for a different reason. The

key assumptions behind his result are that (i) two types of voters cast votes, where “uninformed

voters" only respond to campaign funds and “informed voters" only respond to the policy posi-

tions, and that (ii) the utility functions of interest groups are linear.7 The linearity implies that the

ratio of utility differences that interest groups perceive between two candidates is independent of

the policies chosen by the candidates. With his modeling assumptions, this further implies that

the ratio of the campaign funds raised by the candidates is constant and, consequently, the voting

behavior of the uninformed voters is also independent of policy profile. Hence, candidates only

compete for votes from the informed voters. Therefore, the standard median voter theorem applies

and leads to policy convergence.

Put differently, in Baron’s (1994) model of collective policies, political contributions have no

effect at all in determining equilibrium policies due to the linearity of donor utilities. In contrast,

our model assumes concave donor utilities, and we show that in such a setting, different policy

profiles induce different winning probabilities through those contributions. Hence, in our model,

policy convergence arises from the competition for uninformed voters.

Persson and Tabellini (2000, Section 7.5.1) also offer a model of political contribution that

has the same timing structure as ours and predicts policy convergence. Their model has two key

6Baron (1994) studies the case of “collective policies” and that of “particularistic policies,” and his analysis of
the latter predicts policy divergence. The reason for the divergence is that in his model, given that interest group
k contributes to candidate i, the amount of such a contribution is independent of the other candidate −i’s position.
Grossman and Helpman (1996) also assume that the amount of contribution to candidate i depends only on i’s position
and is independent of −i’s position. In our model, contrastingly, k’s contribution to i increases when −i’s position
moves away from k’s ideal policy, and this diminishes −i’s incentive to diverge.

7Baron (1994) assumes that each candidate is associated with one interest group, and each interest group contributes
the amount that changes linearly with the policy position. One way to interpret this specification is to consider interest
groups situated at the extreme points of the policy space and to assume that they have a linear utility function.
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assumptions; namely, (i) each donor’s maximization problem is independent of other donors’ con-

tribution amount, and (ii) each candidate’s maximization problem is independent of other candi-

dates’ policy position. Property (i) implies that extremist dominance fails (all donors contribute

whenever two policies are different), while property (ii) implies that policy convergence holds. Al-

though policy convergence is common between the two models, their logic is different from ours

because, in our setting, each candidate’s best response is to position themselves as close as possible

to the opposing candidate’s policy, i.e., property (ii) fails in our model.

In contrast, Glazer and Gradstein (2005), again with the same timing structure, argue that the

candidates cater to extreme donors. The key assumption behind their analysis is that the candidates

maximize the contribution they collect rather than the winning probabilities. This, in particular,

implies that the effect of a candidate’s policy change on the amount of the contribution the oppo-

sition collects is not taken into account. Consequently, the candidates cater to the extreme donors

because those donors are willing to contribute more than the moderates. In our model, collecting

more contributions is not necessarily good for a candidate to maximize his winning probability, as a

policy choice that increases the contribution to him also increases the contribution to his opponent.

Austen-Smith (1987) and Baron (1989) also consider models with the same timing as ours (i.e.,

policy choice first and then contributions). Austen-Smith (1987) does not predict the exact policy

positions, but only the relative change of the positions compared with the ones in the case with no

contribution. In Baron’s (1989) model, candidates do not choose policies but “service levels" to

donors.

Some other papers have considered different timing structures than ours. Grossman and Help-

man (1996) analyze a model of political contributions with the opposite timing of moves from ours.

That is, the donors first make offers that specify the amount of contribution for each policy position,

and then the politicians choose policies. In their model, two motives for donors making contribu-

tions coexist: what they call the electoral motive (contributions affect winning probabilities) and

the influence motive (contributions affect the policy positions). Since donors in our model make
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contributions only after policy positions are set, our model isolates the electoral motive. In our

model, although there is no explicit contract that specifies the amount of contributions contingent

on policy positions, the existence of contributions indirectly affects the choice of policy positions

because candidates are forward-looking in choosing their positions. In a citizen-candidate model,

Felli and Merlo (2006) also consider contracts between donors and politicians that specify, as in

Grossman and Helpman (1996) a policy-contingent transfer. Although the model is quite different,

their results share some similarity to ours in that they show lobbying induces some policy com-

promise. Zudenkova (2017) studies the same timing structure with the endogenous formation of

donor groups and also demonstrates that the competition among extreme lobbies moderates the

policy outcome.

A large strand of the literature specifies how candidates use campaign funds and thereby af-

fect voters’ behavior under various model specifications. For example, Coate (2004b) considers

a model in which political campaigns provide information about the policy positions of policy-

motivated candidates and shows that, even in equilibrium, voters are uncertain about the candi-

dates’ positions. Bailey (2002) assumes that one candidate chooses the policy position prior to the

other and that contributions can be used to target the campaign at selected people.8 Potters et al.

(1997) and Prat (2002a,b) consider the situations in which campaign contributions are used to sig-

nal the candidates’ valence. Morton and Myerson (2012) consider a model in which candidates use

the raised funds to provide a promised service to the voters. In contrast to the models considered

in the aforementioned papers, our model considers how interest groups adjust the amount of their

campaign contributions and how politicians react to such incentives while abstracting away from

the consideration regarding how funds are used.

Implications similar to our extremist dominance are obtained in different models. First, Hilman

and Riley (1989) model the lobbying process as an all-pay auction and show that only the two

highest-value lobbyists actively compete (see also Baye et al., 1993). The difference is that the

8Schultz (2007) also discusses such targeting.
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values from winning the auction are exogenously fixed in their model, whereas the donors’ benefits

from contribution are endogenously determined by the candidates’ policy choice in our model.

Second, Osborne et al. (2000) and Bulkey et al. (2001) consider a model where players decide

whether to pay a cost and attend a meeting whose outcome is a compromise (such as median or

mean) of the participants’ bliss points (so there are no players who correspond to our candidates).

In their model, only players with extreme preferences participate in equilibrium. Bergstrom et al.

(1986) also make similar points in the context of public good provision.

The paper proceeds as follows: Section 2 presents the basic model. Section 3 is devoted to the

analysis of the model. Section 3.1 analyzes the case with concave donor utilities and shows that

extremist dominance and policy convergence hold in any equilibrium. Section 3.2 proves equilib-

rium existence. Section 4 concludes and provides various discussions. Appendix A extends the

analysis to the case with mixed strategies, and Appendices B, C, and D analyze, respectively, the

models with informed voters, with policy-motivated candidates, and with convex donor utilities.

2 Model

Consider the following election game played by two candidates and n donors with n ≥ 2. Each

candidate, i ∈ {A,B}, is purely office-motivated. That is, the candidates want to maximize their

own winning probability, which is determined by their campaign expenditure. Electoral campaigns

need to be funded by the political contributions from the donors, and each candidate commits to

her policy so as to attract campaign funds. Each donor, k ∈ N := {1, . . . ,n}, is purely policy-

motivated in the sense that he cares only about the realized policy but not the identity of the

winning candidate.

More precise rules of the game are as follows. The game consists of two stages. In stage 1,

each candidate i simultaneously chooses her policy commitment xi ∈R. In stage 2, after observing

(xA,xB), each donor k simultaneously determines ck = (ckA,ckB), where cki ≥ 0 is k’s contribution
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to candidate i. The election campaign and the election take place after all those choices are made.

During the campaign, each candidate i spends ci = ∑k∈N cki. Candidate i’s probability of winning

in the election is given by Pi(cA,cB), where Pi : R2
+ → [0,1] is a partially differentiable function

that is nondecreasing in ci and satisfies Pi(cA,cB)≥ 0 and PA(cA,cB)+PB(cA,cB) = 1 for any pair

(cA,cB) ∈R2
+. Note that we assume the winning probabilities depend only on the sum of contribu-

tions for each candidate. In particular, it does not depend on the identities of the contributors.

Under the outcome ((xA,xB),(c1, . . . ,cn)), the payoffs of the players are specified as follows.

Candidate i’s payoff is 1 if elected and 0 otherwise. Donor k’s expected payoff is

Uk((xA,xB),(c1, . . . ,cn)) := (PA(cA,cB)uk(xA)+PB(cA,cB)uk(xB))− (ckA + ckB),

where uk(x) is k’s utility from policy x in monetary terms. We assume that the function uk : R→R

is strictly concave and differentiable, satisfying u′k(ak) = 0, where ak ∈ R is interpreted to be k’s

ideal policy (or, bliss point).9 Notice that argmaxx∈R uk(x) = {ak}. The donors are labeled so that

a1 < · · ·< an and we refer to donors 1 and n as extreme.10 We further assume that uk’s satisfy the

standard “single-crossing" property: ∂uk
∂x <

∂uk′
∂x if k < k′. A leading example is the case in which

uk is identical across k except for the bliss points, i.e., uk(x) = u(x−ak) for each k.

In this game, a pure strategy profile is given by ((xA,xB),(κ1(·), . . . ,κn(·))) where (i) xi ∈

R denotes candidate i’s policy choice, (ii) κk(x̃A, x̃B) for each (x̃A, x̃B) ∈ R2 denotes donor k’s

contribution amount contingent on policy profile (x̃A, x̃B). In the next section, we consider subgame

perfect equilibria (SPEs) in pure strategies of the above specified game. In Appendix A, we

9The concavity of uk(·) is critical for the results. It is technically challenging to analyze the case of convex uk(·)
in general, because an equilibrium may not exist in pure strategies. We, however, provide some results for a certain
special case in Appendix D. Differentiability of uk is, however, not crucial under the assumption of concavity. Without
differentiability, we would only need to redefine aM (defined before Proposition 2) and slightly modify related analyses
accordingly. We also note that the linearity of Uk with respect to the spending, although standard in the literature, is
important for extremist dominance. However, one can show that the most extreme donor contributes the most whenever
Uk is a weakly concave (and decreasing) function of the spending.

10Here we assume that no two donors have the same bliss point. This assumption is made only to simplify the
argument, and none of our results hinge on this assumption.
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formalize mixed-strategies and show that every mixed-strategy subgame perfect equilibrium is in

pure strategies under certain regularity conditions.

3 Analysis

3.1 Properties of Pure-Strategy Equilibrium

In this section, we investigate the properties of SPEs. We are going to establish the existence in

the next subsection with certain additional assumptions.

The first proposition shows that, in any subgame of any SPE, only the extreme donors make

positive amounts of contribution. The intuition for this result is as follows (refer back to Figure 1).

Fixing a subgame, the only donor who can possibly make a contribution to candidate i in any SPE

is the one who perceives the highest utility difference for i over −i. This is because the marginal

benefit of contributions is the highest for such a donor. The single-crossing condition implies that

it is either donor 1 or n who perceives the highest utility difference.

Proposition 1 (Extremist Dominance). For any subgame, if a donor donates a strictly positive

amount, then that donor must be extreme. Formally, fix a subgame after (xA,xB) with xA ≤ xB, and

suppose that (c∗k)k∈N is a (pure-strategy) Nash equilibrium in this subgame. Then, c∗ki = 0 for all

(k, i) 6∈ {(1,A),(n,B)}. Symmetrically, c∗ki = 0 for all (k, i) 6∈ {(1,B),(n,A)} in any (pure-strategy)

Nash equilibrium of any subgame after (xA,xB) with xA ≥ xB.

Proof. To begin, notice that the claim trivially holds if xA = xB, because if so, there is a unique

pure-strategy Nash equilibrium, in which all donors make zero contribution to each candidate. We

provide the proof only for the case of xA < xB, as the other case is perfectly symmetric.

Fix (xA,xB) with xA < xB and a Nash equilibrium after (xA,xB), denoted by (c∗k)k∈N . First,

we establish that donor k contributes a positive amount to candidate i only when k has the largest
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utility gain from i winning over j; i.e.,

c∗ki > 0 =⇒ k ∈ argmax
`∈N

[
u`(xi)−u`(x j)

]
, for each k ∈ N and i ∈ {A,B}, (1)

where j ∈ {A,B}−{i}. To see this, suppose that c∗ki > 0. Then, by the first-order condition,

∂Uk((xA,xB),(c∗`)`∈N)

∂cki
= (uk(xi)−uk(x j)) ·

∂Pi(c∗A,c
∗
B)

∂ci
−1 = 0.

Since ∂Pi(c∗A,c
∗
B)

∂ci
≥ 0 by assumption, uk(xi)−uk(x j)> 0 and ∂Pi(c∗A,c

∗
B)

∂ci
> 0 must hold. Hence, if there

exists k′ ∈ N such that uk′(xi)−uk′(x j)> uk(xi)−uk(x j), then we have

∂Uk′((xA,xB),(c∗`)`∈N)

∂ck′i
= (uk′(xi)−uk′(x j)) ·

∂Pi(c∗A,c
∗
B)

∂ci
−1 > 0.

Therefore, by the definition of partial derivatives, there exists ε > 0 such that

Uk′((xA,xB),(c∗k′+ ε,(c∗`) 6̀=k′))>Uk′((xA,xB),(c∗`)`∈N),

which is a contradiction to the supposition that (c∗`)`∈N is a Nash equilibrium.

Now, it suffices to establish that argmax`∈N
[
u`(xi)−u`(x j)

]
is equal to {1} for i = A and to

{n} for i = B. To show this, fix two donors k̂ and k̃ such that k̂ < k̃. Then, the single-crossing

property of u`’s implies

[uk̂(xB)−uk̂(xA)]− [uk̃(xB)−uk̃(xA)]< 0,

which leads to

uk̂(xA)−uk̂(xB)> uk̃(xA)−uk̃(xB).

This implies argmax`∈N [u`(xA)−u`(xB)] is equal to {1}. A symmetric argument shows that
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argmax`∈N [u`(xB)−u`(xA)] is equal to {n}, and thus the proof is complete. �

The second proposition shows that policies converge on the path of play of any pure-strategy

SPE. In order to rule out some uninteresting indeterminacy, we hereafter assume that if xi < x j < a1

or an < x j < xi with i 6= j, then the contribution amount from any donor is zero for both candidates

and candidate j wins with probability 1. Let us further impose the following assumptions on

(PA,PB).

Assumption 1. For any c≥ 0, PA(c,c) = PB(c,c).11

Assumption 2. If ci ≥ c j, then ∂Pi/∂ci ≤ ∂Pj/∂c j.

Assumption 3. ∂Pi/∂ci = ∞ at c = (0,0).12

Assumption 1 is the symmetry between the candidates. Assumption 2 states that an additional

unit of campaign spending is weakly less effective for a candidate who spends more than the other.

Assumption 3 rules out corner solutions. Notice that the commonly-used Tullock function, Pi(c) =

cr
i/(c

r
A + cr

B) if c 6= (0,0) and Pi(0,0) = 1/2, satisfies all these assumptions. The assumptions are

also satisfied by Hirshleifer’s (1989) “difference form" of contest success functions that depends

only on the difference of contributions, so there exists a function Q :R→ [0,1] such that Pi(ci,c j)=

Q(ci− c j), provided that Q′(0) = ∞.

Let aM ∈ (a1,an) be the unique solution of the equation u′1(a
M) =−u′n(a

M). That is, aM is the

policy position such that the two extreme donors perceive the same magnitude of utility difference

for a marginal change in policy. Note that aM exists because differentiability and concavity of u1

and un implies that these functions are also continuously differentiable.

11In fact, it suffices to assume Pi(c,c) = Pi(c′,c′) for any c,c′ ≥ 0 for each i = A,B (not necessarily requiring sym-
metry across candidates) to prove the results in this paper. For simplicity, however, we stick to the current Assumption
1.

12The infinite partial derivative is defined in the standard manner: ∂Pi/∂ci = ∞ at (ci,c−i) if limε→0
Pi(ci+ε,c−i)

ε
= ∞.
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Proposition 2 (Policy Convergence). Suppose that Assumptions 1–3 hold. Then, policies converge

in any SPE. Formally, if ((x∗A,x
∗
B),(κ

∗
1 (·), . . . ,κ∗n (·))) is a pure-strategy SPE, then x∗A = x∗B = aM

holds.

Proof. Fix (xA,xB) such that xi = aM 6= x j and a Nash equilibrium (c∗k)k∈N in the subgame after

(xA,xB). It suffices to show that i’s winning probability is strictly higher than 1/2. Without loss of

generality, suppose xA = aM < xB. Towards a contradiction, suppose that c∗A ≤ c∗B. By Proposition

1 we have c∗A = c∗1A and c∗B = c∗nB. Further, c∗B > 0 must hold since c∗A + c∗B > 0 by Assumption 3.

Therefore, the first-order condition for the optimality of c∗nB can be written as

∂Un((aM,xB),(c∗k)k∈N)

∂cnB
= [un(xB)−un(aM)] ·

∂PB(c∗A,c
∗
B)

∂cB
−1 = 0.

Since ∂PB(c∗A,c
∗
B)

∂cB
≥ 0 by assumption, un(xB)−un(aM)> 0 and ∂PB(c∗A,c

∗
B)

∂cB
> 0 must hold. This implies,

however,

∂U1((aM,xB),(c∗k)k∈N)

∂c1A
= [u1(aM)−u1(xB)] ·

∂PA(c∗A,c
∗
B)

∂cA
−1 > 0, (2)

because (i) the strict concavity of uk(·)’s and the definition of aM imply

u1(aM)−u1(xB)> u′1(a
M)(aM− xB)

= u′n(a
M)(xB−aM)> un(xB)−u(aM)> 0,

and (ii) Assumption 2 and the supposition of c∗A≤ c∗B entail ∂PA(c∗A,c
∗
B)

∂cA
≥ ∂PB(c∗A,c

∗
B)

∂cB
> 0. Equation (2)

means that donor 1 has an incentive to marginally increase his contribution to candidate A, which

is a contradiction to the assumption that (c∗k)k∈N is a Nash equilibrium. Therefore, we must have

c∗A > c∗B and hence PA(c∗)> PB(c∗) because of Assumption 1 and ∂PB(c∗A,c
∗
B)

∂cB
> 0. This implies that

PA(c∗)> 1
2 and the proof is complete. �
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Note that the equilibrium policy, x∗A = x∗B = aM, depends only on the preferences of the extrem-

ists but not of the other donors. This is because, given extremist dominance, candidates only care

about the potential contributions from donors 1 and n. Given that only donors 1 and n are relevant

for the policy choices, let us now explain why it is at aM that the equilibrium policies converge.

If aM = xA < xB, the definition of aM and the strict concavity of donor utility functions imply that

donor 1 experiences a larger utility difference between the two candidates than donor n does. With

our assumptions, this leads candidate A to receive more contributions and to have a greater chance

to win. In other words, aM is a Condorcet winner and thus, in equilibrium, both candidates take

that policy.

Taking the two propositions together, we obtain the following result. We will comment on this

property of the SPE in Section 4.13

Corollary 1. On the equilibrium path of play of any pure-strategy SPE, no donor contributes to

any candidate.

3.2 Equilibrium Existence

In this section, we establish the existence of a pure-strategy SPE under mild technical conditions.

First, given the proof of Proposition 2, it suffices to establish the existence in the second-stage

subgames.

Lemma 1. If Assumptions 1–3 hold and a pure-strategy Nash equilibrium exists for each second-

stage subgame, then a pure-strategy SPE exists.

Proof. By supposition, there exists (κ1(·), . . . ,κn(·)) that induces a pure-strategy Nash equilibrium

in each second stage subgame. Given any such (κ1(·), . . . ,κn(·)), the proof of Proposition 2 shows

that i’s winning probability is strictly lower than 1/2 whenever xi 6= aM = x j. Therefore, taking the

13This result parallels that of Ledyard’s (1984) although he studies a quite different context. In his model, candidates
choose their policy positions, and then voters make abstention decisions. In the “strong rational election equilibrium"
that he defines, policies converge and, as a consequence, no one votes.
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donors’ strategies (κ1(·), . . . ,κn(·)) and the other candidate j’s position x j = aM as given, choosing

xi = aM is a best response for candidate i. That is,
(
(aM,aM),(κ1(·), . . . ,κn(·))

)
is a pure-strategy

SPE and hence, a pure-strategy SPE exists. �

Second, the following regularity assumptions are sufficient for the existence of a Nash equilib-

rium in each subgame.

Assumption 4. Each Pi(·, ·) is (jointly) continuous.

Assumption 5. Each Pi is weakly concave in ci.

Proposition 3. All second-stage subgames have a Nash equilibrium in pure strategies if Assump-

tions 4– 5 hold. If Assumptions 1–5 hold , hence, an SPE exists in pure strategies.

Proof. Given Lemma 1, it suffices to show the first part of the claim. To do so, fix an arbitrary

(xA,xB). First notice that for donor k, if uk(xi) ≥ uk(x j) with i 6= j, then any contribution amount

ck j > 0 is strictly dominated by the contribution amount ck j = 0. Hence, each donor k contributes

a positive amount to at most one candidate in any Nash equilibrium of the subgame after (xA,xB),

and the identity of the candidate to whom donor k contributes a positive amount does not depend on

other donors’ strategies. For each donor k, let ι(k) be the candidate i satisfying uk(xi) > uk(x j) if

such i exists and let ι(k) = A if uk(xA) = uk(xB). The preceding argument implies that it is without

loss of generality to regard each donor’s action to be a nonnegative scalar, i.e., ckι(k) ∈ R+. Now,

define Ū := maxk∈N |uk(xA)−uk(xB)|< ∞. Since no donor has an incentive to make a contribution

greater than Ū , it is without loss of generality to restrict the action space for each donor to [0,Ū ]

in this subgame. With these transformations, each Uk is continuous in ckι(k) by Assumption 4 and

is quasi-concave in ckι(k) by Assumption 5. Hence, the theorems by Debreu (1952), Glicksberg

(1952), and Fan (1952) guarantee the existence of an equilibrium.14 �

14Debreu (1952), Glicksberg (1952), and Fan (1952) show that any normal-form game whose action spaces are
nonempty compact convex subsets of a Euclidian space with payoff functions that are quasi-concave on each player’s
action space and are jointly continuous on the space of action profiles has a pure-strategy Nash equilibrium.
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Notice that the Tullock function violates Assumption 4, for it is discontinuous at the origin.

However, like in the standard Tullock models, a pure-strategy equilibrium can be shown to exist in

each subgame with the Tullock Pi function as long as r≤ 2 holds. Thus, even for such Pi functions,

the results in Propositions 1 and 2 are relevant.

4 Discussions

We considered a two-candidate election model in which candidates set their policies first and then

donors contribute, which in turn determines the winning probabilities. Under the assumption of

concave donor utility functions, only extreme donors can contribute in any Nash equilibrium of the

subgame after any policy profile on and off the equilibrium path of play, and the policies converge.

As a consequence, no donors contribute to any candidate on the equilibrium path.

Let us conclude by commenting on the interpretation of our contribution. The SPE outcome of

our model that no donors contribute apparently contradicts the reality in which campaign contri-

butions do exist. We would not necessarily interpret such discrepancy between the outcome of the

model and reality as a weakness of the model, but as a benchmark for understanding the drivers

of campaign contributions.15 Specifically, we interpret this discrepancy as suggesting that perhaps

some other components that we do not model are the key drivers of campaign contributions. Let

us consider four possibilities of such missing drivers and discuss whether and how they change the

insights from our baseline model.

Informed voters: First, one may wonder whether our conclusions depend on our assumption

that the winning probabilities depend only on campaign contributions, and in particular how they

would change if we introduce informed voters who respond to the implemented policy as in Baron

(1994). In Appendix B, we discuss a model in which the winning probability depends not only on

15This is in the same spirit as how one would interpret Hotelling’s convergence result: it is a useful benchmark even
though it does not necessarily fit the reality.
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the contribution profile but also on the policy profile. We impose certain natural assumptions on

how the policy profile affects the winning probability (which are satisfied in the standard Hotelling

model) as well as a continuity property and show that policy convergence holds, although the

convergent point may be different from the one in our baseline model.

Restricted policy space: Second, there may be various constraints on part of candidates that

prevent them from freely choosing their policy positions. For instance, a Republican candidate

may be constrained not to announce a radically liberal policy. In such a situation, policy divergence

may occur in the policy-setting stage and, if that happens, then the campaign contributions would

take place in our model. More specifically, we can show that even if the candidates’ choice sets

are exogenously restricted while being convex and disjoint, each candidate would try to move

as close as possible to the other candidate, which is analogous to our policy convergence result.16

Furthermore, our extremist dominance result would be helpful in identifying who would be making

contributions when policies diverge.17 The proof of extremist dominance also suggests that, with

additional technical assumptions on the Pi function, we would obtain positive correlations between

the contribution amounts and the degree of policy divergence.

Policy motivated candidates: Third, candidates may receive utility from the policy implemented

by the winning candidate. In Appendix C, we present a model where each candidate gains some

utility from the implemented policy, in addition to the utility from being elected. There, we show

that a unique policy profile emerging from any pure-strategy SPE exhibits divergence if and only if

the weight on the policy preferences (relative to the weight on the utility from winning the election)

16The proof is analogous to the one for Proposition 2. To gain some intuition, refer back to Figure 2.
17One may criticize extremist dominance on the basis of multiple interest groups contributing to a single party in

real-life elections. This is again a discrepancy that future research could address. One possibility for avoiding such
an outcome would be to assume that each donor is budget-constrained. In such a model, multiple extreme donors
from each side would make a positive amount of contributions, and policy would still converge. Another possibility
would be that the policy space is multi-dimensional, and each policy issue (corresponding to each dimension of the
policy space) is associated with multiple donors. In such a case, only two donors from each dimension would make a
contribution in any subgame, but the overall number of donors making positive contributions would be greater.
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is above some cutoff level.18 Moreover, when the weight is above the cutoff, the divergence and the

total amount of contributions are increasing in that weight, as well as in the degree of divergence

of the extreme donors’ bliss points and that of the candidates’ bliss points.

Furthermore, we extend the model to allow for caps on contribution amounts and find an in-

teresting role that contribution caps can play. Specifically, we show that once a sufficiently tight

cap is imposed, there is no pure-strategy SPE in which the contribution amount is zero no matter

how small the weight on the policy preferences is. This is in stark contrast with our result that,

when there is no cap, the contribution amount is zero in the unique pure-strategy SPE if the weight

on the policy preferences is small enough. Moreover, when sufficiently tight caps are imposed,

we show that there is a mixed-strategy SPE in which the contribution amount is strictly positive

with a strictly positive probability.19 These results shed new light on the discussion on the role of

contribution caps, which have been long argued in the literature (see, e.g., Levitt (1994) and Coate

(2004a)).

Convex donor utility: Fourth, our analysis depends on the shape of the utility function of the

interest groups, and it is not our purpose to argue that concave utility functions are more plausible

than others. Rather, by examining various preferences, we would like to offer an understanding of

the role of contributions in determining electoral outcomes. In Appendix D, we supplement our

analysis by examining how our result changes when we consider other sorts of utility functions.

Specifically, we consider the case where the utilities are single-peaked and are convex with respect

to the distance between the bliss point and the implemented policy.20 In such a context, we still

obtain policy convergence (albeit to a different position) and no contributions unless a certain

18Relatedly, Calvert (1985) shows in the classic Downsian model that policy divergence can emerge if both (i) the
candidates are policy-motivated and (ii) they are uncertain about voter preferences.

19There may not exist any pure-strategy SPE when the weight on the policy preferences is small.
20Such preferences may seem unusual at first glance, but in certain contexts they may even be more natural than other

specifications. Again, we do not intend to justify any particular types of preferences. We refer interested readers to
Osborne (1995) and Kamada and Kojima (2014) for extensive discussion on the contexts in which convexity naturally
arises.
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strong symmetry condition on the donor utility function holds. This suggests that changing the

shape of utility functions would not be very helpful in avoiding the non-contribution result.

As we have discussed above, there are many ways to modify the baseline model to examine

various forces in elections and their implications. Although the no-contribution result is not ob-

tained in some of those variants, the economic force that generates the extremist dominance and

policy convergence in the baseline model continues to play a key role: Each donor, when solving

their maximization problem, takes into account the fact that other donors are facing similar prob-

lems. A candidate’s move to an extreme donor not only increases contributions from that donor

but also increases contributions from the opposing donor to the opposing candidate. This force

prevents the candidates from diverging to the opposing extremes.
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APPENDICES

A Mixed Strategies

In this section, we introduce mixed strategies and show that every SPE is in pure strategies once

we slightly strengthen Assumption 5 to the following:

Assumption 6. Each Pi is strictly concave in ci.

That is, it is almost without any loss of generality that we restrict our attention to pure-strategy

SPEs in the main body of the paper.

Let ξi denote candidate i’s mixed strategy, specifying a Borel measure over the policy positions

in R. Also, let γk(xA,xB) denote donor k’s mixed strategy contingent on policy profile (xA,xB),

specifying a Borel measure over the contribution amounts in R2
+. A mixed strategy profile is given

by ((ξA,ξB),(γ1(·), . . . ,γn(·))). With the specifications so far, the expected payoff to each player

at each subgame of the entire game is well-defined, and thus a mixed-strategy subgame perfect

equilibrium (SPE) is defined in the standard manner.

The next proposition shows that, under Assumption 6 along with Assumptions 1–4, any SPE in

mixed strategies should be indeed in pure strategies. In other words, the policy convergence result

in Proposition 2 extends to mixed strategies. The proof first shows that in any SPE, the second-

stage strategies have to be pure. To show this, we observe that every donor contributes to at most

one candidate, and the strict concavity of Pi ensures that the contribution amount is deterministic.

To further show that the first-stage strategies are pure, we show that aM is the Condorcet winner.

Proposition 4. Suppose that Assumptions 1–4 and Assumption 6 hold. Then any SPE must be

in pure strategies. Hence, if ((ξA,ξB),(γ1(·), . . . ,γn(·))) is a mixed-strategy SPE, then ξA(aM) =

ξB(aM) = 1 and, for each k∈N and (xA,xB)∈R2, there exists ck ∈R2
+ such that γk(xA,xB)(ck) = 1.
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Proof. Fix any donor k. We check that under Assumption 6, k’s best reply must be a pure strategy

for any (xA,xB) and any profile of mixed strategies played by donors ` 6= k. First, if uk(xA)= uk(xB),

(ckA,ckB) = 0 is a strictly dominant strategy for k and hence, k’s best reply must be a pure strategy.

Second, suppose that uk(xA)> uk(xB). Then, it is apparent that k has no incentive to make a positive

contribution to B and hence, k’s best reply must choose ckB = 0 with probability one. In addition,

given ckB = 0 and the mixed strategies played by the other donors, k’s optimization problem is

given by

max
ckA∈[0,Ū ]

{
E

[
PA

(
ckA + ∑

6̀=k
c`A, ∑

6̀=k
c`B

)]
uk(xA)+E

[
PB

(
ckA + ∑

6̀=k
c`A, ∑

6̀=k
c`B

)]
uk(xB)− ckA

}
,

where Ū := maxk∈N |uk(xA)−uk(xB)|< ∞ and the expectations are taken with respect to the mixed

strategies of ` 6= k. By Assumption 6, the objective function is strictly concave with respect to ckA ∈

[0,Ū ] and hence, the problem has a unique maximizer c∗kA and k’s best reply must be (ckA,ckB) =

(c∗kA,0). The case of uk(xA) < uk(xB) is perfectly symmetric. In summary, any best reply of any

donor must be a pure strategy and hence, any mixed-strategy equilibrium of any second stage

subgame must be in pure strategies.21

Now we show that first-stage actions in any SPE are also pure. Towards a contradiction, fixing

a (pure-strategy) Nash equilibrium of each of the second-stage subgames, suppose that candidate i

chooses xi = aM with a probability strictly smaller than one. Then, by the arguments in the proof

of Proposition 2, the other candidate j can guarantee a winning probability strictly greater than

1/2 by taking x j = aM with probability one. Therefore, if i’s strategy is a part of an equilibrium,

then i’s winning probability should be strictly smaller than 1/2. However, i can also guarantee a

winning probability weakly greater than 1/2 by picking xi = aM with probability one, which is a

21This follows because there does not exist a mixed-strategy equilibrium that assigns strictly positive probabil-
ity to contribution amounts in (Ū ,∞). To see this, suppose that in a Nash equilibrium in the subgame after some
(xA,xB), donor k uses a mixed strategy µ such that µ([0,Ū ]2) < 1. Then, given any strategies of other donors, it is
straightforward to see that deviating to another mixed strategy µ ′ strictly improves k’s payoff in this subgame, where
µ ′(Q) = µ(Q) for any measurable Q⊆ [0,Ū ]2 \{(0,0)} and µ ′({0,0}) = 1−µ([0,Ū ]2 \{(0,0)}).
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contradiction. �

B Model with Informed Voters

In this section, we consider a model in which the winning probability is determined not only by the

contributions by donors but also by how voters respond to the policy positions. Specifically, sup-

pose that when the contribution profile is (cA,cB) and the policy profile is (xA,xB), each candidate

i’s winning probability is given by

Ri(cA,cB,xA,xB) = (1−θ)Pi(cA,cB)+θQi(xA,xB),

where θ ∈ [0,1), the function Pi is defined as in our main model, and Qi is a continuous function

satisfying the following properties.

1. There exists a unique aV ∈ (a1,an) such that the following hold: If xA ≤ aV ≤ xB (resp.

if xA ≥ aV ≥ xB), then there exists x′A ∈ [aV ,xB] and x′B ∈ [xA,aV ] (resp. x′A ∈ [xB,aV ] and

x′B ∈ [aV ,xA]) such that QA(x′A,xB)≥ QA(xA,xB) and QB(xA,x′B)≥ QB(xA,xB).

2. For each i, j ∈ {A,B} with i 6= j, Qi(xA,xB) is nonincreasing in xi over (x j,∞) if aV ≤ x j, and

Qi(xA,xB) is nondecreasing in xi over (−∞,x j) if x j ≤ aV .

3. QA(xA,xB)+QB(xA,xB) = 1 for any (xA,xB) ∈ R2.

A possible interpretation of the above Ri functions is as follows: With probability 1− θ the

voters are not well informed about the manifestos and respond only to the campaign expenditure

(e.g., the amount of advertisements), which is financed by the contributions from the donors. Thus,

the winning probability only depends on the contribution profile (cA,cB) in this case. With prob-

ability θ , the voters are well informed, respond to the policy profile, and the winning probability
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only depends on the policy profile (xA,xB).22

To introduce examples of Qi satisfying the above conditions, let f be a function such that

f (x)> 0 over some nonempty interval V in R and
∫

x∈V f (x)dx = 1. In any of these examples, aV

is given by the unique solution to
∫ aV

−∞
f (x)dx = 1/2.

1. A mass of voters are distributed over V according to density f and each voter votes for the

closer candidate, while an indifferent voter votes for each candidate with probability 1/2.

For any given policy profile (xA,xB), let Qi(xA,xB) = 1 if i attracts strictly more than 1/2

of the voters, Qi(xA,xB) = 1/2 if i attracts exactly 1/2 of the voters, and Qi(xA,xB) = 0 if i

attracts strictly less than 1/2 of the voters.

2. The median voter is distributed over V according to the probability density f (x) and the

candidate closer to the median voter wins while if the two candidates have the same distance

then each wins with probability 1/2. The function Qi denotes the winning probability con-

ditional on voters being informed. Specifically, if xA < xB, QA(xA,xB) =
∫ xA+xB

2
−∞ f (x)dx =

1−QB(xA,xB). If xA = xB, then QA(xA,xB) = QB(xA,xB) = 1/2. The case with xB < xA is

symmetric.

3. The above two examples involve discontinuity of Q at xA = xB. To define an example of

continuous Q, let Q̄ be the function defined to be Q in the second example. Then, de-

fine QA(xA,xB) = (1− e−
1

|xA−xB| )1
2 + e−

1
|xA−xB| Q̄A(xA,xB) = 1−QB(xA,xB) if xA 6= xB and

QA(xA,xB) = QB(xA,xB) = 1/2 if xA = xB.

For the sake of simplicity, we further assume that Pi(cA,cB) = ci/(cA+cB) for each i ∈ {A,B},

with a convention of 0
0+0 = 1

2 . Note that with this Tullock from, Assumptions 1–3 are met and

hence Proposition 1 holds. When a1 < xA < xB < an (i.e., when donors 1 and n donate to candidates

22Another possible interpretation is that Ri describes the expected vote share. Under this interpretation, voters have
common and idiosyncratic preference shocks which we summarize in a single random variable ξ distributed uniformly
over [−1,1], and candidate i wins if RA−RB > ξ and loses if RA−RB < ξ . With this specification, the probability of
candidate i’s winning can be shown to be equal to Ri.
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A and B, respectively), the first-order conditions for the donors imply that

c∗A
c∗A + c∗B

=
u1(xA)−u1(xB)

[u1(xA)−u1(xB)]+ [un(xB)−un(xA)]
, (3)

where (c∗A,c
∗
B) = (c∗1A,c

∗
nB) is the (unique) profile of equilibrium funds raised by the candidates.

This explicit solution makes it easy to examine the changes in Pi when we analyze the SPE below.

Call the model we have specified above the model with informed voters. The following result

shows that the introduction of informed voters (as is done in this section) does not lead to policy

divergence.

Proposition 5. In the model with informed voters, if ((x∗A,x
∗
B),(κ

∗
1 (·), . . . ,κ∗n (·))) is a pure-strategy

SPE, then x∗A = x∗B holds.23

Proof. Fix a pure-strategy SPE and let P̃i(xA,xB) denote candidate i’s winning probability in the

subgame after (xA,xB). Let (x∗A,x
∗
B) be an SPE outcome and assume without loss that aV < aM.

Suppose for contradiction that x∗A 6= x∗B. Without loss, we further assume x∗A < x∗B.

First, u1(x∗A) > u1(x∗B) and un(x∗A) < un(x∗B) must hold for the following reason. Suppose to-

wards a contradiction that u1(x∗A)≤ u1(x∗B). Then, no donor donates to A and hence, P̃A(x∗A,x
∗
B) = 0.

If aV ≤ x∗B, there exists by assumption xA ∈ [aV ,x∗B] such that QA(xA,x∗B)≥QA(x∗A,x
∗
B). Further, we

must also have P̃A(xA,x∗B)> 0, as u1(xA)> u1(x∗B) if xA ∈ [aV ,x∗B) and P̃A(xA,x∗B) = 1/2 if xA = x∗B.

That is, A has an incentive to deviate to such xA if aV ≤ x∗B. If x∗B < aV , by the second assumption

on Qi and continuity, QA(x∗B,x
∗
B)≥ QA(x∗A,x

∗
B). Since we also have P̃A(x∗B,x

∗
B) = 1/2 > P̃A(x∗A,x

∗
B),

A has an incentive to deviate to xA = x∗B if x∗B < aV . Therefore, we must have u1(x∗A) > u1(x∗B). A

symmetric argument implies that un(x∗A)< un(x∗B) holds as well. Note that these inequalities imply

that P̃A is given by equation (3). Further, this entails that P̃A(xA,x∗B) is increasing in xA over [x∗A,x
∗
B).

Now, we consider the following three (exhaustive) cases: Suppose first that x∗A < x∗B≤ aV . Then

A has an incentive to deviate to any xA ∈ (x∗A,x∗B) because P̃A(xA,x∗B)> P̃A(x∗A,x
∗
B) and QA(xA,x∗B)≥

23Existence of the SPE would follow if we impose further assumptions on the Qi functions as for the Pi functions.
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QA(x∗A,x
∗
B). Note that the second inequality follows from the second assumption on the function

Qi. Suppose second that x∗A < aV < x∗B. Then, the first assumption on Qi guarantees the existence

of x′A ∈ [aV ,x∗B] with QA(xA,x∗B) ≥ QA(x∗A,x
∗
B). If x′A < x∗B, A has an incentive to deviate to x′A

because P̃A(x′A,x
∗
B)> P̃A(x∗A,x

∗
B) as argued above. If x′A = x∗B, then there exists ε > 0 small enough

such that A has an incentive to deviate to x′A− ε , because QA is assumed to be continuous and

P̃A(xA,x∗B) is increasing in xA over [x∗A,x
∗
B) as argued above. Suppose third that aV ≤ x∗A < x∗B. Then

B has an incentive to deviate to any xB ∈ (x∗A,x∗B) because P̃B(x∗A,xB)> P̃B(x∗A,x
∗
B) and QB(x∗A,xB)≥

QB(x∗A,x
∗
B). Again, the second inequality follows from the second assumption on the function Qi.

Overall, it cannot be the case that x∗A < x∗B. In a symmetric manner, x∗B < x∗A cannot hold. Hence,

x∗A = x∗B. �

C Model with Policy-Motivated Candidates

Here we consider a model with policy preferences. The model differs from the one in the baseline

model in three ways: donors’ utility functions are assumed to be quadratic, the candidates’ payoffs

vary with the implemented policy, and the winning probabilities are determined by the Tullock

function. Specifically, first, we assume donor k’s utility function is given by uk = −m(x− ak)
2

where x is the implemented policy (i.e., the policy committed by the winner of the election) and

m > 0 is a parameter. As in the main model, one can show extremist dominance holds, and thus

we will not discuss contributions from donors 2, . . . ,n− 1 hereafter. For simplicity, we assume

that there exists a ∈ R++ such that a1 =−a and an = a. Second, candidate A has a bliss point −b

and candidate B has a bliss point b > 0. We assume that candidates are less extreme than the most

extreme donors, i.e., b < a. Candidate A receives utility 1 upon winning an election, and loses

k(x− (−b))2 where x is the implemented policy and k > 0 is a parameter. Similarly, candidate B

receives utility 1 upon winning an election, and loses k(x−b)2. Third, if candidates A and B collect

contributions cA and cB, respectively, then A’s winning probability is cA
cA+cB

, with a convention of
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0
0+0 = 1

2 . Call this model the model with policy-motivated candidates.

Proposition 6. In the model with policy-motivated candidates, there exists a unique pure-strategy

SPE. Moreover, in the unique pure-strategy SPE ((x∗A,x
∗
B),(κ

∗
1 (·), . . . ,κ∗n (·))), the following holds:

−x∗A = x∗B = max

{
0,

ab− 1
4k

a+b

}
.

Proof. Suppose that (x∗A,x
∗
B) is the first-stage outcome of a pure-strategy equilibrium. First, we

show x∗A ≤ x∗B. Suppose the contrary, i.e., that x∗B < x∗A. Without loss of generality, suppose also

that x∗A + x∗B ≤ 0, which further implies that B’s winning probability is no more than 1/2.24 We

consider the following three (exhaustive) cases:

1. Suppose x∗A ≤−a. Then, B’s winning probability is zero and A’s policy is implemented with

probability 1. Thus, B can strictly increase his payoff by deviating to xB = x∗A, a contradiction.

2. Suppose −a < x∗A ≤ b. Then, B can strictly increase his payoff by deviating to xB = x∗A as it

will weakly increase the winning probability and strictly increase the expected payoff from

the policy.

3. Suppose x∗A > b. In this case x∗B ≤−b must also hold because we have assumed x∗A+x∗B ≤ 0.

Then, B can strictly increase his payoff by deviating to xB = b as it will strictly increase the

winning probability and strictly increase the expected payoff from the policy.

Second, we show that x∗A≤ b and−b≤ x∗B. To show x∗A≤ b, suppose to the contrary that x∗A > b.

Then, since x∗A ≤ x∗B, candidate B’s winning probability is weakly less than 1
2 . By symmetry of the

utility function for policies, if candidate B deviates to xB = (x∗A + b)/2, her winning probability

strictly increases to a number above 1
2 and the expected utility from the implemented policy strictly

increases. Hence, we have x∗A ≤ b. In the symmetric manner, we can show that −b≤ x∗B.

24By the symmetry of the model, if (x∗A,x
∗
B) is an equilibrium outcome, (xA,xB) = (−x∗B,−x∗A) is also an equilibrium

outcome. Therefore it is without loss to assume x∗A + x∗B ≤ 0. This inequality, together with xB < xA entails that
|u1(xA)−u1(xB)| ≤ |un(xA)−un(xB)| and hence, B’s winning probability is no more than 1/2.
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Third, we show−b≤ x∗A and x∗B ≤ b. To see this, suppose to the contrary that x∗A <−b. Recall-

ing we have established that −b≤ x∗B, we have x∗A < x∗B. If −b < x∗B, A’s winning probability given

B’s policy x∗B is weakly increasing in xA over [x∗A,x
∗
B) 3 −b. If x∗B = −b, A’s winning probability

is less than 1/2 if she chooses xA = x∗A, while it is 1/2 if xA = −b. In either case, by deviating

to xA = −b, A can weakly increase her winning probability as well as strictly increase the payoff

upon winning. This is a contradiction. The symmetric argument can show x∗B ≤ b.

The arguments so far imply that we must have−b≤ x∗A≤ x∗B≤ b. From here on, we first restrict

our attention to (xA,xB) ∈ [−b,b]2 with xA ≤ xB to pin down a unique candidate for (x∗A,x
∗
B), and

then confirm that it is actually an equilibrium. To do so, we now analyze the second-stage and

compute the winning probability for each candidate, taking (xA,xB) ∈ [−b,b]2 as given. When the

candidates commit to (xA,xB) ∈ [−b,b]2 such that xA < xB (we will consider the case with xA = xB

later), donor 1’s utility is

− cA

cA + cB
m(xA +a)2− cB

cA + cB
m(xB +a)2− cA.

The first-order condition with respect to cA is

cB

(cA + cB)2

(
m(xB +a)2−m(xA +a)2)−1 = 0. (4)

Similarly, the first-order condition for donor n is

cA

(cA + cB)2

(
m(xA−a)2−m(xB−a)2)−1 = 0.

These two equations imply that in the equilibrium of the subgame,

cA

cA + cB
=

(xB +a)2− (xA +a)2

[(xB +a)2− (xA +a)2]+ [(xA−a)2− (xB−a)2]
=

1
2
+

xB + xA

4a
.
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Given the above winning probability, we now investigate the equilibria of the first stage. Given

a policy profile (xA,xB) ∈ [−b,b]2 such that xA < xB, candidate B’s payoff is

UB(xA,xB) =

(
1
2
− xA + xB

4a

)
(1− k(b− xB)

2)−
(

1
2
+

xA + xB

4a

)
k(b− xA)

2. (5)

This implies that

∂UB(xA,xB)

∂xB
=− 1

4a
(1− k(b− xB)

2)+

(
1
2
− xA + xB

4a

)
2k(b− xB)−

1
4a

k(b− xA)
2. (6)

Substituting xB = b, the left-hand side of (6) becomes − 1
4a −

1
4ak(b− xA)

2 < 0. Since UB(xA,xB)

is cubic in xB and the coefficient of xB is strictly positive by (5), either (i) UB(x∗A,xB) is strictly

decreasing in xB over (x∗A,b], or (ii) there exists a unique x0
B ∈ (x∗A,b) such that the right hand side

of (6) is 0 and UB(x∗A,xB) is strictly increasing in xB over (x∗A,x
0
B] and strictly decreasing in xB over

[x0
B,b]. In case (i), there is no best response to xA = x∗A for candidate B in (x∗A,b], a contradiction.

Hence, the only possibility is case (ii), which implies that we must have x∗B = x0
B. The symmetric

argument can be made for x∗A. Hence, if x∗A < x∗B, both the values of (6) and

∂UA(xA,xB)

∂xA
=

1
4a

(1− k(b+ xA)
2)−

(
1
2
+

xA + xB

4a

)
2k(xA +b)+

1
4a

k(b+ xB)
2 (7)

must be equal to 0 at (xA,xB) = (x∗A,x
∗
B).

Adding the right-hand sides of (6) and (7) and rearranging, we have:

k
a
(xA + xB)(xB− xA−a−b).

Substituting x∗A and x∗B into xA and xB, respectively, and equating the expression to zero, we get x∗B =

x∗A+a+b or x∗B =−x∗A. However, if x∗B = x∗A+a+b, then−b≤ x∗A implies x∗B≥−b+a+b= a> b,

which contradicts our earlier conclusion that x∗B ≤ b. Hence x∗B =−x∗A holds. Substituting this back
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into (6), we obtain

x∗B =
ab− 1

4k
a+b

≤ b. (8)

For this to satisfy x∗A < x∗B, it is necessary and sufficient that this is strictly positive, and for that,

k > 1/(4ab) is necessary and sufficient. That is, an SPE such that x∗A < x∗B can exist only if

k > 1/(4ab) holds, and the only candidate for such an equilibrium outcome is given by x∗A =−x∗B

and (8).

Next, consider the case where x∗A = x∗B. Suppose that x∗A = x∗B > 0. This is not an equilibrium

because candidate A can deviate to −x∗A to win with the same probability of 1
2 and to strictly

increase her expected payoff from the policy because x∗A ≤ b. Since the symmetric argument can

be made for x∗A = x∗B < 0, we have that x∗A = x∗B implies x∗A = x∗B = 0. For (x∗A,x
∗
B) = (0,0) to be an

equilibrium, the value of (6) must be nonpositive because otherwise B has an incentive to deviate

and marginally increase xB. Substituting (x∗A,x
∗
B) = (0,0) into (6), we obtain

∂UB(0,0)
∂xB

=− 1
4a

+ kb≤ 0,

which is equivalent to k≤ 1/(4ab). That is, an SPE such that x∗A = x∗B can exist only if k≤ 1/(4ab)

holds, and the only candidate for such an equilibrium outcome is x∗A = x∗B = 0.

Combining the conclusions in the previous two paragraphs, we have thus obtained a unique

candidate for a symmetric equilibrium,

−x∗A = x∗B = max

{
0,

ab− 1
4k

a+b

}
.

Now we show that this unique candidate is actually an equilibrium.

If k > 1/(4ab), then we know that {x∗B} = argmaxxB∈(x∗A,b]UB(x∗A,xB). Hence, to prove that

x∗B is a best response to x∗A, it suffices to check that candidate B has no incentive to deviate to
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xB ≤ x∗A or to b < xB. First, for any xB < x∗A, since x∗A < 0, B’s winning probability under (x∗A,xB) is

strictly less than 1/2. Since the utility from the policy conditional on winning is strictly less under

(x∗A,xB) than under (x∗A,x
∗
A), we have that UB(x∗A,xB) <UB(x∗A,x

∗
A) for any xB < x∗A. Since (x∗A,x

∗
A)

and (x∗A,x
∗
B) yield the same winning probability (i.e., 1/2) for candidate B while the latter gives a

strictly higher payoff from the expected policy, we have UB(x∗A,x
∗
A) < UB(x∗A,x

∗
B). Combining the

two inequalities, we conclude that UB(x∗A,xB)<UB(x∗A,x
∗
B) for any xB≤ x∗A. Second, for any xB > b,

UB(x∗A,xB) < UB(x∗A,b) holds because the winning probability is strictly higher under (x∗A,b) than

under (x∗A,xB), and the utility from the policy conditional on winning is also strictly higher under

(x∗A,b) than under (x∗A,xB). That is, UB(x∗A,xB) < UB(x∗A,x
∗
B) for any xB > b. Overall, x∗B is a best

response to x∗A. By symmetry, we also have that x∗A is a best response to x∗B. Hence, (x∗A,x
∗
B) is an

equilibrium outcome of the first stage.

If k≤ 1/(4ab), then, given (x∗A,x
∗
B) = (0,0), equation (6) and the argument that follows it imply

that UB(x∗A,xB) is strictly decreasing in xB over (x∗A,b]. Moreover, since the winning probability

under policy profile (0,xB) is continuous at xB = 0, UB(0,xB) is continuous in xB at xB = 0, which

in turn implies that UB(x∗A,xB) is strictly decreasing in xB over [x∗A,b]. Hence, any deviation of

candidate B to xB ∈ (0,b] results in the decrease of the payoff. Also, as before, any deviation to

xB > b is strictly less profitable than the deviation to xB = b. Finally, any deviation to xB < 0

gives the same winning probability as and a strictly lower expected utility from the policy than the

deviation to x′B =−xB. Hence, (x∗A,x
∗
B) = (0,0) is an equilibrium outcome of the first stage. �

The above analysis has three implications. First, a sufficiently large weight on the policy pref-

erences (i.e., k > 1/(4ab)) is necessary for policy divergence in the unique symmetric equilibrium.

In other words, our prediction of policy convergence in the main model is robust for a small weight

on the policy preferences. Second, in equilibrium, the total amount of contribution positively cor-

relates with the degree of policy divergence. To see this, let c∗ = c∗A = c∗B and D∗ = x∗B−x∗A = 2x∗B,
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where the latter represents the degree of policy divergence. Then equation (4) reduces to

1
4c∗

(
m
(

D∗

2
+a
)2

−m
(
−D∗

2
+a
)2
)
−1 = 0⇐⇒ c∗ =

am
2

D∗.

Since am > 0, the contribution to each candidate (c∗) is strictly increasing in the degree of the

policy divergence (D∗) fixing a and m.25 Third, when k is sufficiently large, x∗B = ab−(1/4k)
a+b is

strictly increasing in k, a, and b. Hence, the degree of policy divergence (D∗) is also increasing

in the weight on the candidates’ policy preferences (k), divergence of donors’ bliss points (a), and

divergence of candidates’ bliss points (b). We summarize the finding in the following corollary.

Corollary 2. In the model with policy-motivated candidates, let ((x∗A,x
∗
B),(κ

∗
1 (·), . . . ,κ∗n (·))) be the

unique pure-strategy SPE and define D∗ = x∗B− x∗A and c∗ = c∗A = c∗B, where κ1(x∗A,x
∗
B) = (c∗A,0)

andκn(x∗A,x
∗
B) = (0,c∗B). Then we have the following:

1. D∗ = c∗ = 0 if k ≤ 1
4ab ,

2. c∗ = am
2 D∗ for any parameter values, and

3. both D∗ and c∗ are strictly increasing in k, a, and b if k > 1
4ab .

Now we consider the possibility that there is an exogenously given contribution cap on the

amount that each donor can spend. Let W ≥ 0 denote the cap. We assume that this cap applies to

both donors, that is, cki ≤W must hold for any donor k and candidate i.26 We show that once a

sufficiently tight cap is imposed, there is no pure-strategy SPE in which the contribution amount

is zero, no matter how small the weight on the policy preferences is. This is in stark contrast with

our result that, when there is no cap, the contribution amount is zero in the unique pure-strategy

SPE if the weight on the policy preferences is small enough. Moreover, we show the existence of

a mixed-strategy SPE. Combining these results, we have that in any SPE of the model with policy
25Note that the relationship c∗ = am

2 D∗ holds in the case k ≤ 1/(4ab) as well because c∗ = D∗ = 0.
26Since each donor has an incentive to contribute to at most one candidate, the analysis will remain exactly the same

if we instead assume a cap in the form of ckA + ckB ≤W .
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motivated candidates and a sufficiently tight contribution cap, the contribution amount is strictly

positive with strictly positive probability.

The reason why the cap helps to increase the contribution amount can be best understood by

considering the candidates’ incentive to deviate from the convergent policy profile at policy 0. At

this policy profile, the contribution amounts are zero, and thus the winning probability is 1
2 for each

candidate. If, however, candidate A deviates to her bliss point −b, under a tight contribution cap,

both lobbyists would donate up to the cap, and hence the contribution amounts are again equal,

which implies the winning probability does not change after the deviation. Since the deviation

strictly improves A’s payoff from her policy motivation, the deviation is profitable. Note that this

argument does not hold in the case without a contribution cap, as the deviation would always

strictly decrease A’s winning probability.27

Proposition 7. In the model with policy-motivated candidates and contributions caps, a mixed-

strategy SPE exists. There is W ∗ > 0 such that for all W ∈ (0,W ∗), in any SPE ((ξA,ξB),(γ1,γn))

with W, the probability that both donors pay a strictly positive contribution amount is strictly

positive.

Proof. First of all, it is without loss to assume that candidates assign probability zero to positions

outside [−a,a] because of our assumption for the cases of xi < x j < −a or xi > x j > a.28 Then,

taking the contribution cap W as given, each subgame after (xA,xB) is a special case of the model

of Grossmann and Dietl (2012). For (xA,xB) ∈ [−a,a]2 such that xA ≤ xB and |xA| ≤ |xB|, the

27We note that this argument is different from that of Che and Gale (1998) who also show that caps increase
the contribution amounts in their all-pay auction model. In their model, caps lead to a closer competition between
lobbyists, which is why the lobbyists donate more.

28Under our assumption, for any any xi 6∈ [−a,a] and x j ∈ R, there is x′i ∈ [−a,a] that gives candidate i a strictly
higher payoff than xi against candidate j’s x j.
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equilibrium levels of contributions are given by

(
c∗1,A,c

∗
n,B
)
=



(
R1(xA,xB)

2Rn(xA,xB)
(R1(xA,xB)+Rn(xA,xB))2 ,

R1(xA,xB)Rn(xA,xB)
2

(R1(xA,xB)+Rn(xA,xB))2

)
if W ≥ R1(xA,xB)

2Rn(xA,xB)
(R1(xA,xB)+Rn(xA,xB))2 ,(

W,
√

WRn(xA,xB)−W
)

if R1(xA,xB)
2Rn(xA,xB)

(R1(xA,xB)+Rn(xA,xB))2 >W ≥ Rn(xA,xB)
4 , and

(W,W ) otherwise,

and consequently, the winning probabilities for the candidates are

(PA,PB) =



(
R1(xA,xB)

R1(xA,xB)+Rn(xA,xB)
, Rn(xA,xB)
(R1(xA,xB)+Rn(xA,xB))

)
if W ≥ R1(xA,xB)Rn(xA,xB)

2

(R1(xA,xB)+Rn(xA,xB))2 ,(√
W/Rn(xA,xB), 1−

√
W/Rn(xA,xB)

)
if R1(xA,xB)

2Rn(xA,xB)
(R1(xA,xB)+Rn(xA,xB))2 >W ≥ Rn(xA,xB)

4 , and

(1/2,1/2) otherwise,

where R1(xA,xB) = u1(xA)−u1(xB) and Rn(xA,xB) = un(xB)−un(xA).29 Note that R1 ≤ Rn under

the assumptions on (xA,xB). All the other cases of (xA,xB) are symmetric.

We first show that an SPE exists in mixed strategies, and then show that the probability that both

donors pay a strictly positive contribution amount is strictly positive in any SPE. To show that an

SPE exists in mixed strategies, note that there exists a unique Nash equilibrium in each subgame

played by the donors, just as in the main text. Let Vi(xA,xB) be candidate i’s payoff function

given the policy profile (xA,xB), provided that the donors play the unique Nash equilibrium in the

subgame after (xA,xB). First recall that we are considering a game in which each candidate chooses

a policy from [−a,a]. Second, note that each Vi is bounded and continuous except on the subset

{(xA,xB)|xA = xB}. Finally, note that for x≥ 0,

lim
xA↑x,xB↓x

VA(xA,xB)≥VA(x,x)≥ lim
xA↓x,xB↑x

VA(xA,xB) (9)

29Note that R1(xA,xB)
2Rn(xA,xB)

(R1(xA,xB)+Rn(xA,xB))2 ≥
Rn(xA,xB)

4 holds whenever R1(xA,xB)≤ Rn(xA,xB).
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and

lim
xA↑x,xB↓x

VB(xA,xB)≤VB(x,x)≤ lim
xA↓x,xB↑x

VB(xA,xB) (10)

hold, where the left inequality in (9) is strict if and only if the left inequality in (10) is strict, and

the right inequality in (9) is strict if and only if the right inequality in (10) is strict. Also, for x < 0,

lim
xA↑x,xB↓x

VB(xA,xB)≥VB(x,x)≥ lim
xA↓x,xB↑x

VB(xA,xB) (11)

and

lim
xA↑x,xB↓x

VA(xA,xB)≤VA(x,x)≤ lim
xA↓x,xB↑x

VA(xA,xB) (12)

hold, where the left inequality in (11) is strict if and only if the left inequality in (12) is strict, and

the right inequality in (11) is strict if and only if the right inequality in (12) is strict. All in all,

the conditions for the existence of a mixed-strategy equilibrium in Dasgupta and Maskin (1986,

Theorem 5b) are satisfied. Hence, a mixed-strategy equilibrium exists in the game with payoff

functions (VA,VB). Therefore, an SPE exists in mixed strategies.

To show that the probability that both donors pay a strictly positive contribution amount is

strictly positive in any SPE, it is sufficient to show that there is W ∗ > 0 such that for all W ∈

(0,W ∗), there is no pure-strategy SPE in which both candidates choose the same policy. Towards

a contradiction, suppose that W < mb2

4 , that such an SPE exists, and that the candidates choose

xA = xB = x with probability one on the equilibrium path of play. Suppose x≤ 0 so that R1(x,b)≥

u1(0)− u1(b) > mb2 and Rn(x,b) ≥ un(b)− un(0) = mb2. Then, since min
{

R1(x,b)
4 , Rn(x,b)

4

}
>

mb2

4 , candidate B’s winning probability is 1
2 if she deviates to policy b. Hence, the deviation to b

does not change the winning probability while strictly increasing the payoff upon winning. This

contradicts the assumption that both candidates choosing x with probability 1 is part of an SPE

strategy profile. Since the symmetric argument applies to the case when x≥ 0, we have proven the

desired result. �
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D Convex Donor Utility

As we saw in the main text, the concavity of donors’ utility functions is key to the policy con-

vergence result. Moreover, extremist dominance arises because the extremists perceive the largest

utility gaps between two policies, and this is because we assume the single crossing property of the

donors’ utility functions. Note that, in the simple setting with uk(x) = u(x− ak) for each k, strict

concavity of u implies the single-crossing property. In order to better understand the implication of

concavity assumption on donor preferences, here we examine convex utility functions. The point

of this exercise is not to argue for a particular assumption about donor preferences, but to better

understand the roles of different assumptions about preferences of the donors.

Specifically, consider the “convex utility model" that is exactly the same as the one with mixed

strategies presented in Appendix A, except for the following three features. First, there exists

u : R→R such that, for each k ∈ N, uk(x) = u(x−ak). Second, u is decreasing and strictly convex

in the following sense: For any x,y ∈ R such that x · y > 0 and x > y,

(u(x)−u(y)) · x < 0 and u(αx+(1−α)y)< αu(x)+(1−α)u(y) for all α ∈ (0,1). (13)

That is, u is strictly convex in the standard sense on R+ and R− separately, although not on R as a

whole. Third, u is assumed to be skewed: for any x > 0, u(−x)< u(x).30 Under these assumptions,

we can characterize SPEs as follows.

Proposition 8. Suppose that Assumptions 1-4 and Assumption 6 hold. In the convex utility model,

an SPE exists, and any SPE ((ξA,ξB),(γ1(·), . . . ,γn(·))) is pure and satisfies the following:

1. (Policy Convergence) ξA(an) = ξB(an) = 1.

2. (At Most Two Donors Contribute) For any profile (xA,xB) ∈R2 and any i = A,B, if there are

k,k′ ∈N such that k 6= k′ and cki,ck′i ∈R++ with γk(xA,xB)(cki)> 0 and γk′(xA,xB)(ck′i)> 0,

30We will make a note on different assumptions for u at the end of this section.
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then for all k′′ ∈ N \{k,k′}, γk′′(xA,xB)(0,0) = 1.

3. (No Contribution on Path) γk(an,an)(0,0) = 1 for all k ∈ N.

Proof. First, note that the part of the proof of Proposition 4 showing that the second-stage strategies

in any SPE are in pure strategies does not use the assumption that u is strictly concave, and they

go through even if it is convex. Hence, an SPE exists, and any SPE ((ξA,ξB),(γ1(·), . . . ,γn(·))) is

such that γk is pure for each k ∈ N.

It is straightforward to see that part 2 holds by noting that the proof for the claim (1) in the proof

of Proposition 1 does not use any assumption about the functional form of u. It is also immediate

that part 3 is implied by part 1. Therefore, we only need to show part 1. To do so, take any x 6= an,

let k ∈ argmax`∈N [u`(x)−u`(an)], and fix a Nash equilibrium (c∗`A,c
∗
`B)`∈N , which must be in pure

strategies as argued in the previous paragraph, of the subgame after policy profile (xA,xB) = (x,an).

First, suppose that uk(x)−uk(an)≤ 0. Then, c∗`A = 0 must hold for any ` ∈ N. Moreover, since

min`∈N [u`(x)−u`(an)]≤ un(x)−un(an)< 0, Assumption 3 implies that c1B = · · ·= cnB = 0 cannot

hold. That is, we must have c∗A = ∑`∈N c∗`A = 0 < ∑`∈N c∗`B = c∗B, and hence, PB(c∗A,c
∗
B)> 1/2.

Second, suppose that uk(x)− uk(an) > 0. Note that this implies x < an. If x ≥ ak, then the

strict convexity of u implies u(x− ak)− u(an− ak) ≤ u(0)− u(an− x). If x < ak, then the same

inequality holds because u(0)> u(x−ak) and u(an−ak)> u(an−x). In either case, thus, we have

uk(x)−uk(an) = u(x−ak)−u(an−ak)≤ u(0)− (an− x)

< u(an−an)−u(x−an) = un(an)−un(x),

where the second inequality holds by the assumption that u is skewed. Then, as in the proof of

Proposition 2, we can conclude that PB(c∗A,c
∗
B)> 1/2.

In summary, we have shown that PB(c∗A,c
∗
B) > 1/2 in any Nash equilibrium of the subgame

after (xA,xB) = (x,an) with x 6= an. Given this, we can establish that ξA(an) = ξB(an) = 1 must

hold in any SPE, exactly in the same way as in the proof of Proposition 2. �
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There are two differences from the conclusion of our analysis with concave utility functions.

First, although the policies converge again, they converge to the position of one of the extreme

donors, not to the middle. Second, the proof shows that the contribution pattern differs in sub-

games where the policies diverge. More specifically, it is possible that a single candidate attracts

contributions from two donors. Moreover, the donors who contribute are not the extreme donors,

but those who are the closest to the candidate. These are in contrast with the case of concave utili-

ties, where each candidate raises a positive amount of contribution from one of the extreme donors

whenever the policies diverge and polices converge to aM in equilibrium.

Two further remarks are in order. First, although a symmetric argument can be made if we as-

sume u is skewed in the other direction, i.e., u(−x)> u(x) for all x> 0, a different conclusion holds

in the knife-edge case of symmetric donor utilities, i.e., u(−x) = u(x) for all x > 0. In such a case,

(ξA,ξB) is the profile of candidates’ strategies in an SPE if and only if ξA,ξB ∈ ∆({a1, . . . ,an}).

Thus, in particular, multiple equilibria exist. Second, one can extend our model to the case of

multiple policy dimensions, where there are n(d) donors in dimension d and all donors in the same

dimension share the same shape of the utility function, as in Kamada and Kojima (2014). Then,

one can show that in the dimension for which donors’ utilities are concave, policies converge to

the middle of the two extreme donors in that dimension, and in the dimension for which donors’

utilities are convex, policies converge to the position of one of the two extreme donors in that

dimension.
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