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1 Monotonicity of the set of pure-strategy equilibria

Here we formalize the statement that the set of equilibrium outcomes is monotonically decreasing in the bias
of any intermediator, as a corollary of Proposition 2.

Corollary 1: Let k ∈ {2, ..., n−1} and fix the preferences of all players other than k. Let uk be a payoff
function implying positive (respectively, negative) bias. If vk is more positively (resp. negatively) biased
than uk, then for every pure strategy PBNE of the indirect communication game in which player k’s payoff
function is vk, there is an outcome-equivalent pure-strategy PBNE of the indirect communication game in
which player k’s payoff function is uk.

Proof: We will provide a proof for the case of positive biases. The case of negative biases is perfectly
symmetric.

Let Gu and Gv stand for the games where the payoff function of player k is uk and vk, respectively. Let s∗

constitute a PBNE Gv. Then Proposition 1 implies that Θ(y) is an interval (possibly degenerate) for every
y ∈ Y , where Y is the set of actions induced by s∗. Proposition 2 implies that there is an outcome-equivalent
PBNE to s∗ in Gu iff ∫

θ∈Θ(y)

uk(y, θ)f(θ)dθ ≥
∫

θ∈Θ(y)

uk(y′, θ)f(θ)dθ (1)

for every y, y′ ∈ Y (recall our convention for the above inequality if Θ(y) is a singleton). Also by Proposition
2, since s∗ constitutes a PBNE Gv, we have:∫

θ∈Θ(y)

vk(y, θ)f(θ)dθ ≥
∫

θ∈Θ(y)

vk(y′, θ)f(θ)dθ (2)

for every y, y′ ∈ Y.
Fix now y, y′ ∈ Y. Since uk implies positive bias, (1) holds trivially if y′ < y. Suppose now that y′ > y.
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Since vk is more positively biased than uk, condition (1) in the main text, together with f(θ) > 0 for
every θ ∈ Θ, implies there exists affine transformations of vk and uk, vk∗ and uk∗ respectively, such that:

∂
∫

θ∈Θ(y)
vk∗(θ, ŷ)f(θ)dθ

∂ŷ
>

∂
∫

θ∈Θ(y)
uk∗(θ, ŷ)f(θ)dθ

∂ŷ
(3)

for all ŷ ∈ [y, y′]. This implies
∫

θ∈Θ(y)

vk∗(y, θ)f(θ)dθ −
∫

θ∈Θ(y)

vk∗(y′, θ)f(θ)dθ is strictly smaller than∫
θ∈Θ(y)

uk∗(y, θ)f(θ)dθ −
∫

θ∈Θ(y)

uk∗(y′, θ)f(θ)dθ. Then (2) implies (1). ¥

2 Complete characterization of 2-action and 3-action single-component
equilibria in the uniform-quadratic case

To simplify notation, we will label each message such that

mj
k = E(θ|mk = mj

k).

With this notation we have that player 3’s strategy is just y = m2, while the set of messages sent by player
1 correspond to the midpoints of the partition cells of the given equilibrium.

We let ∆ = b2 − b1.

2.1 2-action mixed equilibria

Without loss of generality, assume that b2 < 0 (the case of b2 > 0 is perfectly symmetric). It is convenient
to do an analysis with a fixed signed b2, because the sign of b2 determines after which message(s) player 2
mixes in a given type of equilibrium. Notice that the example in Figure 1 corresponds to the case of b2 > 0.
When we draw Figure 2, we obtained the region with b1 > 0 and b2 > 0 by rotating the region with b1 < 0
and b2 < 0 in a point-symmetric manner with respect to the origin.

By Bayes’ rule, m1 only depends on x1: we must have m1
1 = x1/2 and m2

1 = 1+x1
2 . Also by Bayes’ rule,

m2
2 = m2

1 = 1+x1
2 . Because player 2 must be indifferent between her messages after receiving m2

1, we must
also have m1

2 = m2
2 + 2b2 = 1+x1

2 + 2b2. Then, for player 1 to be indifferent between both messages in state
x1 we must have

x1 = 1 + 2∆.

So it must be that − 1
2 ≤ ∆ ≤ 0. Substituting this value of x1 we can solve for the messages m1

1 = ∆+ 1
2 ,

m1
2 = 1 + ∆ + 2b2, and m2

1 = m2
2 = 1 + ∆. For the probability p(m1

2|m2
1), which we denote simply by p, by

Bayes’ rule we have

p =
1
8
· (1 + 4b2)(1 + 2∆)

b2∆
.

For this to be feasible, p ≥ 0, so − 1
4 ≤ b2 (as 1 + 2∆ = x1 has to be nonnegative). From p ≤ 1 we get

∆ ≤ −2b2 − 1
2 . It is trivial to check that these conditions together with the condition 0 ≤ x1 ≤ 1 are also

sufficient for equilibrium. In terms of b1 and b2 the constraints become max{− 1
4 , b1 − 1

2} ≤ b2 ≤ 1
3b1 − 1

6 .
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2.2 3-action mixed equilibria

Without loss of generality, assume that b2 > 0 (the case of b2 < 0 is perfectly symmetric). Notice that the
example in Figure 3 corresponds to the case of b2 < 0. Similarly to what we did in Figure 2, when we draw
Figure 4, we obtained the region with b1 > 0 and b2 < 0 by rotating the region with b1 < 0 and b2 > 0 in a
point-symmetric manner with respect to the origin.

As in the case of 2-action mixed PBNE, the messages sent in equilibrium by player 1 are determined
by x1 and x2: mj

1 = (xj−1 + xj)/2 for every j ∈ {1, 2, 3} where we let x0 = 0 and x3 = 1. By Bayes’
rule m1

1 = m1
2 = x1/2. Using player 2’s indifferences between messages in which she mixes, we get that

m2
2 = x1/2 + 2b2, m3

2 = x1/2 + x2.
Player 1’s indifference, when the state is x2, is equivalent to

x2 = x1 + 2∆.

Denote the probabilities p(mj+1
2 |mj

1) by pj . From Bayes’ rule applied to m3
2, we get

p2 =
(1 − x2) (1 − x2 − x1)

x2∆
.

And using Bayes’ rule for m2
2 we get

p1 =
1
4

(
x2 − 4b2

)
(2x2 − 1) (1 − x1)
x1x2b2

.

These equations determine the equilibrium in terms of x1. Now, to actually calculate x1, it is necessary
to work with player 1’s indifferences between two nontrivial lotteries.

Assuming that 0 ≤ x1 ≤ x2 we must have that

• p2 ≥ 0 iff (x1 + x2)/2 = x1 + ∆ ≤ 1/2.

• p2 ≤ 1 iff x2 = x1 + 2∆ ≥ 1/2.

Notice that (assuming x2 ≥ 1/2, which follows from p2 ≤ 1)

• p1 ≥ 0 iff x2 ≥ 4b2, or b2 ≤ x2/4 = x1/4 + ∆/2.

• p1 ≤ 1 iff

2x3
1 +

(
−3 + 4 b2 − 8 b1

)
x2

1 +
(
2 b2 + 1 + 10 b1 − 8 b1 b2 + 8 (b1)2

)
x1 (4)

+8 (b2)2 − 2 b2 − 2 b1 − 8 (b1)2 ≥ 0

These equations are complicated, but we will simplify them below.

The final equation we need is player 1’s indifference constraint when her type is x1. This reduces to

6 x3
1 +

(
12 b2 − 9 − 24 b1

)
x2

1 +
(
−24 b1 b2 + 3 + 18 b1 − 6 b2 + 24 (b1)2

)
x1 (5)

+8 (b2)2 − 8 (b1)2 − 2 b2 − 2 b1 = 0

Unfortunately, the closed form Cardano solution of this equation is very complicated and not very helpful.
But we may use it to simplify the condition that p1 ≤ 1 to

(3x1 + 4∆ − 1)Σ ≥ 0,

where Σ = b1 + b2. Assuming p2 ≤ 1, this reduces to
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• p2 ≤ 1 iff Σ ≥ 0.

Summing up, there is a solution iff we can find x1 solving equation (5) with:

• 1/2 − 2∆ ≤ x1 ≤ 1/2 − ∆ from 0 ≤ p2 ≤ 1.

• 0 ≤ 2Σ ≤ x1 from from p1 ≤ 1 and p1 ≥ 0.

Note that these imply 0 ≤ x1 ≤ x1 + 2∆ = x2 ≤ 1.
Now we have to consider two cases.

Case 1: b2 ≤ 1/8

In this case, the binding constraints are:

• 1/2 − 2∆ ≤ x1 ≤ 1/2 − ∆ from 0 ≤ p2 ≤ 1.

• 0 ≤ Σ from from p1 ≤ 1.

Notice that we must have ∆ ≤ 1/4.
Let f(x1) be the function defined by the left-hand side of (5). We have

f(1/2 − 2∆) = (1 − 4∆)(2∆ − b2)

f ′(1/2 − 2∆) = (6 + 24b2)∆ − 3/2 ≤ 0

and
f(1/2 − ∆) = −1

2
(1 + 2∆)(1 − 6∆)Σ

f ′(1/2 − ∆) = −3
2
(1 − 2∆)2 ≤ 0.

First notice that the leading coefficient of the cubic f(x) is positive. Because f ′ is negative in both
endpoints of the interval, there is no solution in the interval if f has the same sign in the extremes. So there
are two possible cases:

(i) 2∆ − b2 ≤ 0 and 1 − 6∆ ≤ 0. This leads to a contradiction, as 1/6 ≤ ∆ ≤ b2/2 ≤ 1/16.
(ii) The other case is 2∆ − b2 ≥ 0 and 1 − 6∆ ≥ 0. There are equilibria in this case iff:

• 0 ≤ ∆ ≤ 1/6

• b2 ≤ 1/8

• Σ ≥ 0

• 2∆ ≥ b2 or b1 ≤ b2/2 (notice that this implies 0 ≤ ∆).

Case 2: b2 ≥ 1/8

In this case, the binding constraints are:

• 0 ≤ 2Σ ≤ x1 ≤ 1/2 − ∆.
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Note that the binding ones are b2 ≥ 1/8, b1 + b2 ≥ 0 and 3b2 + b1 ≤ 1/2. And this implies that b2 ≤ 1/4
and −1/4 ≤ b1 ≤ 1/8. Also, ∆ ≤ 1/2 and Σ ≤ 1/4. We have

f(2(b1 + b2)) = 4(1 + 24(b2)2 − 10b2 − 2b1)Σ

f ′(2Σ) = 3(1 − 4b2)(1 − 10b2 − 6b1) < 0.

If ∆ ≤ 1/6, then the right endpoint is negative, as we have seen in the analysis of Case 1. So there will
be solutions in the area that satisfies the additional constraints

• ∆ ≤ 1/6

• 1 + 24(b2)2 − 10b2 − 2b1 ≥ 0

If ∆ ≥ 1/6, f is positive on the right endpoint. It can be shown that the left endpoint has positive f , so
that there can be no solutions.

Summarizing, there are two regions where the equilibria under consideration exist. These are:

• The region corresponding to Case 1:

1. b2 ≤ b1 + 1/6.

2. b2 ≤ 1/8.

3. b2 ≥ −b1.

4. b2 ≥ 2b1.

• The region corresponding to Case 2:

1. ∆ ≤ 1/6.

2. 1 + 24(b2)2 − 10b2 − 2b1 ≥ 0.

3. b2 ≥ 1/8.

These regions are depicted in Figure 4, with the point symmetric rotation discussed at the beginning of
this subsection.

3 Additional formal results to Section 4

We state the result below for a positively-biased sender. An analogous result holds for negatively-biased
senders.

Proposition 4’: If n = 3, then for every PBNE there is an outcome-equivalent PBNE, such that Θ can
be partitioned into a finite number of intervals B1, ..., BK , referred below as components, such that for any
component Bk the following hold: (i) The interior of Bk can be partitioned into a finite number of intervals
Ik
1 ≤ ... ≤ Ik

jk
such that, for every j ∈ {1, . . . , jk}, player 1 sends message mj,k

1 with probability 1 at any
θ ∈ int(Ik

j ) and message mj,k
1 is not sent from any state θ /∈ cl(Ik

j ); (ii) If the intermediator is positively
biased, then for j ∈ {2, ..., jk − 1} after message mj,k

1 he mixes between messages mj,k
2 and mj+1,k

2 , after
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message m1,k
1 he sends message m2,k

2 with probability 1 or mixes between messages m2,k
2 and m1,k

2 , and after
message mjk,k

1 he sends message mjk,k
2 with probability 1; (iii) If the intermediator is negatively biased, then

for j ∈ {2, ..., jk − 1} after message mj,k
1 he mixes between messages mj,k

2 and mj−1,k
2 , after message m1,k

1 he
sends message m1,k

2 with probability 1, and after message mjk,k
1 he sends message mjk−1,k

2 with probability
1 or mixes between messages mjk,k

2 and mjk−1,k
2 ; (iv) The receiver chooses a different action after every

message sent in equilibrium.

Proof: Given a PBNE, construct an outcome-equivalent PBNE as we did in the proof of Proposition
4. This allows us to have a partition of Θ, P = (P1, . . . , PJ). Parts (i) and (iv) are immediate from the
proof of Proposition 4 and from Proposition 3, respectively. For now, set m1 = j if θ ∈ Pj , and m2 = y if
p3(y|m2) > 0 (so y is given probability 1), without loss of generality.

Let partition B be such that each cell Bk is minimal with the property that, if Pj ⊆ Bk and p2(y|j) > 0
where y is a PBNE action taken by player 3, then Pj′ ⊆ Bk for all j′ with p2(y|j′) > 0. Fixing k, consider
Bk and the partition of Bk, Ik = (Ik

1 , . . . , Ik
jk

), whose cells are also the cells of the original partition,
P = (P1, . . . , PJ).

Now we prove part (iii). The proof for (ii) is perfectly symmetric, so we provide a proof only for part
(iii). Let player 1 send a message mj

1 conditional on the state lying in Ik
j (for natational simplicity, in this

proof, we suppress the superscripts k on messages). Also, let y1, . . . , yjk−1(, yjk , yjk+1) be the PBNE actions
induced by states in Bk (We already know that the number of induced actions is jk − 1, jk, or jk + 1.), with
yj < yj′ if j < j′. Set mj

2 = yj .
Now suppose the contrary, i.e. that after message m1

1 player 2 sends two messages, m1
2 and m2

2 with
positive probabilities. (We know from the proof of Proposition 4 that player 2 mixes over at most two
messages, that there is no message induced in equilibrium between these two messages, and that m1

2 must have
positive probability after m1

1 by the construction of B; hence it suffices to rule out the case in consideration.)
For this to be an equilibrium, conditional on m1

1, player 2 has to be indifferent between m1
2 and m2

2:∫
Ik
1

u2(θ,m1
2)f(θ)dθ =

∫
Ik
1

u2(θ,m2
2)f(θ)dθ. (6)

Next, note that player 3 is maximizing his payoff at m1
2, which is induced only by m1

1, so we have:

m1
2 = arg max

y

∫
Ik
1

u3(θ, y)f(θ)dθ.

Since player 2 is negatively biased, this implies:

m1
2 > arg max

y

∫
Ik
1

u2(θ, y)f(θ)dθ.

Hence, the first-order condition, the strict positiveness of f , and the strict concavity of u2 implies:∫
Ik
1

∂u2(θ,m1
2)

∂y
f(θ)dθ < 0.

Now, recall again that u2 is strictly concave. This implies:∫
Ik
1

∂u2(θ, ȳ)
∂y

f(θ)dθ < 0 for all ȳ ∈ [m1
2, m

2
2],
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which implies: ∫
Ik
1

u2(θ,m1
2)f(θ)dθ >

∫
Ik
1

u2(θ,m2
2)f(θ)dθ.

This contradicts Equation (6), which completes the proof. ¥

This result does not pin down the number of actions induced in each cell Bk. It can be either jk (equal to
the number of messages that the sender sends) or jk−1. If the sender and the intermediator is unambiguously
ordered with respect to the “more biased” criterion provided in the main paper (cf. equation (1)), then the
latter case becomes impossible:

Proposition 4”: Under the environment provided in Proposition 4’, suppose further that it is either that
the sender is more positively biased than the intermediator, or that the intermediator is more positively biased
than the sender. Then, the following additional results hold: if the intermediator is positively biased, after
message m1,k

1 the intermediator mixes between messages m2,k
2 and m1,k

2 ; if the intermediator is negatively
biased, after message mjk,k

1 the intermediator mixes between messages mjk,k
2 and mjk−1,k

2 .

Proof: Suppose to the contrary that after each of m1
1 and mjk

1 , the intermediator sends a pure message.
Let the two highest actions induced in Bk be y and y′ where y < y′ (if the intermediator is positively

biased then these are yjk−1 and yjk
; if he is negatively biased then these are yjk−2 and yj1).

Letting θ̄ be the unique element of cl(Ik
jk−1) ∩ cl(Ik

jk
), the sender’s indifference condition implies

u1(θ̄, y) = u1(θ̄, y′). (7)

Since the intermediator must be indifferent between y and y′ conditional on receiving mjk−1
1 , we have∫

Ik
jk−1

u2(θ, y)f(θ)dθ =
∫

Ik
jk−1

u2(θ, y′)f(θ)dθ.

Since the single-crossing condition implies that for any θ < θ̄ we have

u2(θ̄, y) − u2(θ, y) < u2(θ̄, y′) − u2(θ, y′),

we then have
u2(θ̄, y) < u2(θ̄, y′). (8)

(In)equalities (7) and (8) imply that, for any affine transformations of u1 and u2, u1∗ and u2∗ respectively,

0 =
∫ y′

y

∂u1∗(θ̄, ȳ)
∂ȳ

dȳ <

∫ y′

y

∂u2∗(θ̄, ȳ)
∂ȳ

dȳ. (9)

Since by assumption for some affine transformations u1∗ and u2∗ it is either ∂u1∗(θ̄,ȳ)
∂ȳ < ∂u2∗(θ̄,ȳ)

∂ȳ for all ȳ

or ∂u1∗(θ̄,ȳ)
∂ȳ > ∂u2∗(θ̄,ȳ)

∂ȳ for all ȳ, the inequality (9) implies that we must have ∂u1∗(θ̄,ȳ)
∂ȳ < ∂u2∗(θ̄,ȳ)

∂ȳ for all

ȳ, which is equivalent to ∂u1(θ̄,ȳ)
∂ȳ < ∂u2(θ̄,ȳ)

∂ȳ for all ȳ. That is, the intermediator is more positively biased
than the sender. However, an analogous argument that uses the sender’s indifference condition at the unique
state in cl(Ik

1 ) ∩ cl(Ik
2 ) and the intermediator’s indifference condition after m1

2 implies that the sender must
be more positively biased than the intermediator. Contradiction. ¥
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4 An additional example to Section 3

This example shows that in general networks a pure strategy PBNE outcome of the direct communication
game can be an equilibrium outcome in an indirect communication game even if the condition in Proposition
2 is violated for all intermediators.

Consider the uniform-quadratic specification of the model with 4 players, such that the biases for players 1-
3 are: b1 = 0.1, b2 = 0.8, and b3 = 0.8. The direct communication game has a 2-cell partition equilibrium with
cutoff point 0.3, implying equilibrium actions 0.15 and 0.65. The resulting outcome cannot be supported in
the indirect communication games we consider, namely when communication happens along a line sequence.
In fact, it could not be supported even if only one of the above intermediators were in the chain, as the
bias of both of them are large enough so that they would prefer to induce action 0.65 instead of action 0.15
when the expectation of the state is 0.15. However, suppose now that instead of communicating only to one
intermediator, player 1 can send a message, simultaneously, to both players 2 and 3. After observing these
messages, both players 2 and 3 can send a message to player 4, who then takes an action. In short, the
sender communicates to the intermediator through two parallel channels. In this game there is an outcome-
equivalent PBNE to the two-cell partition equilibrium above. The reason is that when the receiver receives
inconsistent messages from the two intermediators talking to him, his (out-of-equilibrium) beliefs can be
specified in a way that hurts both of the intermediators, for example by specifying a point belief at state 0,
leading to action 0.

5 A note on purification

This note addresses two concerns about our model. The first is that the mixed equilibria we describe may
sound unappealing, or too complicated to be actually played. In principle it is not clear why the interme-
diators mix with the exact probablity specified by the equilibrium strategy profile, as they are indifferent
between both messages. So it is important to provide a better motivation for why these equilibria would be
played.

The second, related concern is that our assumption of perfect information about other player’s preferences
may not be realistic. While the model assumes that the biases of each player are perfectly known in advance,
this need not be so in practice. It would be much more reasonable to assume that there is at least some
degree of uncertainty over the biases of other players.

Here, we argue that mixed equilibria can be motivated as equilibria of a game with small amounts of
uncertainty over preferences, in the spirit of Harsanyi’s purification result. That is, the mixed equilibria of
our game are close to pure strategy equilibria of a large class of perturbed games with a small amount of
uncertainty over the biases of other players.

Because the action spaces in our model are not finite, the classic theorem in Harsányi (1973) cannot be
applied directly. But notice that the intermediators in our model receive and send messages in a finite set.
So tediously following the reasoning in Harsányi (1973), it can be seen that mixed equilibria in our game are
approximated by pure strategy equilibria of games in which there is a small amount of uncertainty over the
intermediators biases.

Instead of pursuing the general case of this result, we give an example to illustrate the idea. The example
makes it clear how a general result would work, and also makes it intuitive how very general specifications
of uncertainty over the intermediator’s bias can generate the mixed equilibria.

Consider again the case of a 2 message mixed equilibria, characterized in section 4.1.1. Assume that b2 >
0, and that the biases are in the range where a 2 message mixed equilium exists, in which the intermediator
mixes with some probability 0 < p < 1 when receiving the low message m1

1.
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Assume now that there is a small, but arbitrary amount of uncertainty over the intermediator’s bias.
That is, ex-ante all that the sender and the receiver knows is that the intermediator’s bias is b̃2 = b2 + εν,
where ε > 0 is a small real number and ν has an arbitrary distribution F with a continuous density on
[−1, 1].

We now argue that, in the spirit of the purification theorem, as ε → 0, the perturbed game has a pure
strategy equilibrium that is very close to the 2 message mixed equilbria.

This is easy to see if we use the characterization obtained in section 4.1.1. Consider a candidate equilib-
rium in which the intermediator always sends m2

2 when he receives m2
1, but what he sends when he receives

the low message m1
1 depends on his type. That is, there is some value b∗2 = b2 + εν∗ such that he sends

the low message m1
1 if his type is lower than this threshold and send the high message m2

2 if his type is
higher. We will show that for small ε it is always possible to find b∗2 that is ε close to b2 and such that this
constitutes an equilibrium. So from now on assume that ε is small enough such that there are still 2 message
mixing equilibria for intermediator’s biases in the range [b2 − ε, b2 + ε].

In this equilibrium, after receiving message m1
1, type b∗2 must be indifferent between both messages

(assume that this type is close to b2). But then, following the argument in section 4.1.1, this completely
pins down what the equilibrium messages are. They are the same as those calculated in section 4.1.1 for
biases b1 and b∗2. And the reasoning in that section pins down not just the equilibrium messages, but also
the mixing probability, which we denote p∗. We must have that

p∗ =
1
8

(
1 − 4b∗2

)
(1 − 2∆∗)

∆∗b∗2
,

where ∆∗ = b∗2 − b1. But for this to be an equilibrium, we must also have that p∗ is the probability that
the intermediator’s type exceeds b∗2. That is

p∗ = 1 − F (
b∗2 − b2

ε
).

Moreover, because all other incentive constraints are satisfied if the messages are given as in section 4.1.1,
we have that this is an equilibrium iff this consistency requirement for p∗ is satisfied, that is

1
8

(
1 − 4b∗2

)
(1 − 2∆∗)

∆∗b∗2
= 1 − F (

b∗2 − b2

ε
).

Now, note that the left side is always between 0 and 1 for b∗2 in the interval [b2 − ε, b2 + ε], for small ε.
But the right side equals 1 for b∗2 = b2− ε and 0 for b∗2 = b2 + ε. So by the intermediate value theorem there
is b∗2 in [b2 − ε, b2 + ε] that satisfies this equation, and for which our construction is indeed an equilibrium.

Moreover, by the characterization in section 4.1.1, we know that equilibrium messages and the mixing
probability depend continuously on the intermediator’s bias. So for small ε this equilibrium is close to the
mixed equilibrium described in section 4.1.1. This example illustrates that a way to interpret and motivate
the mixed equilibria is that they correspond to pure strategy equilibria of the game perturbed with a small
amount of uncertainty over the intermediator’s bias.
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