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Abstract

Many models of learning in games implicitly or explicitly assume

there are many agents in the role of each player. In principle this al-

lows different agents in the same player role to have different beliefs

and play differently, and this is known to occur in laboratory experi-

ments. To explore the impact of this heterogeneity, along with the idea

that subjects use their information about other players’ payoffs, we de-

fine rationalizable partition-confirmed equilibrium (RPCE). We provide

several examples to highlight the impact of heterogeneous beliefs, and

show how mixed strategies can correspond to heterogeneous play in a

large population. We also show that every heterogeneous-belief RPCE

can be approximated by a RPCE in a model where every agent in a

large pool is a separate player.
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1 Introduction

Fudenberg and Levine (1993b) and Fudenberg and Kreps (1995) showed how

learning from repeated observation of the realized terminal nodes in each play

of a game can allow the long run outcome to approximate a self-confirming

equilibrium (Fudenberg and Levine, 1993a), in which the strategies used are

best responses to possibly incorrect beliefs about play that are not disconfirmed

by the players’ observations. This paper defines and analyzes a solution con-

cept that makes three modifications to the self-confirming concept, inspired

by the following three considerations. First, the set of beliefs that is consistent

with the players’ observations depends on what they observe when the game

is played, and in some cases of interest players do not observe the exact ter-

minal node, but only a coarser terminal node partition, such as when bidders

in an auction do not observe the losing bids. Second, both in the lab and

in the field, there are often many agents in each player role, so that different

agents in a given player role can have different beliefs and play differently,

and experimental data frequently suggests that subjects’ beliefs and play are

indeed heterogeneous.1 Third, experimental data shows that subjects play dif-

ferently when they are informed of opponents’ payoff functions than when they

are not.2 To model these three facts, we develop and analyze heterogeneous

rationalizable partition-confirmed equilibrium (heterogeneous RPCE).

We do not develop an explicit learning theory here, but the model we

develop is motivated by the idea that there is a large number of ex-ante iden-

tical agents in each player role, who are rematched each period to play an

extensive form game and interact anonymously, so that they are strategically

myopic and do not try to influence play in future matches. Such random

matching is implicit in many learning models, and is explicitly modeled in the

Bayesian learning models of Fudenberg and Levine (1993b) and Fudenberg

and He (2016).

The long-run implications of learning with random matching depend on

1For example, Fudenberg and Levine (1997) relate heterogeneous beliefs to data from
experiments on the best-shot, centipede, and ultimatum games.

2See for example Prasnikar and Roth (1992).

2



what information is revealed at the end of each round of play. In the information-

sharing model, all agents in the same player role pool their information about

what they observe after each round of play, which leads to rationalizable

partition-confirmed equilibrium with unitary beliefs, which we studied in Fu-

denberg and Kamada (2015) (hereafter “FK”).3 In the personal-information

model, each agent observes and learns only the play in her own match, and no

information sharing takes place. This is the treatment most frequently used

in game theory experiments. It allows different agents in the same player role

to maintain different beliefs, even after many iterations of the game, and even

when the agents are identical ex ante.

The large-population learning models described above assume personal in-

formation, and so their steady states can have heterogeneous beliefs, which is

why Fudenberg and Levine (1993a) defined and analyzed heterogeneous self-

confirming equilibrium. Dekel et al. (2004) argue that in Bayesian games it

may be appropriate to allow different types of the same player to have dif-

ferent beliefs, and Battigalli et al. (2015) allow heterogeneous beliefs in their

extension of self-confirming equilibrium to cases of “model uncertainty.” Their

model also allows for players to observe a “message” that is generated by a

“feedback function” at the end of each play as opposed to the realized termi-

nal node. In Section 2 we say more about the relationship between feedback

functions and terminal node partitions.

1.1 Illustrative Examples

To motivate our extension of RPCE to heterogeneous beliefs, we will give

informal descriptions of RSCE and its extension to unitary RPCE, and then

discuss a few examples to show how allowing for heterogeneous beliefs can make

a difference. We will return to these examples later after we have introduced

our formal definitions.

3FK extends an earlier literature on equilibrium concepts that combine restrictions based
on the agents’ observations with restrictions based in their knowledge of opponents’ payoffs,
including (Rubinstein and Wolinsky (1994), Battigalli and Guaitoli (1997), Dekel et al.
(1999), and Esponda (2013)).
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Roughly speaking, RSCE (Dekel et al. 1999) combines the idea that there

is a commonly known equilibrium outcome with that of “rationalizability at

reachable nodes,” which means that any strategy of player i that some other

player j thinks i might be playing maximizes player i’s payoff at information

sets where player i has not yet been observed to deviate from the equilibrium

path, and that each player believes that other players believe this, and so on.

As Dekel et al. (1999) show, the combination of these two considerations leads

to stronger conclusions than the intersection of the implications of each alone.

Unitary RPCE relaxes RSCE by replacing the assumption of a commonly

known distribution on terminal nodes with the assumption of a commonly

known partition structure. Both of these concepts are “unitary” in the sense

that it is common knowledge that there is only a single strategy and belief

that is really held by any agent in the role of player i. However, both solution

concepts allow for “hypothetical versions” of each player’s strategy and belief,

which correspond not to what that player is doing but to things that other

players might reasonably think she is doing. The heterogeneous RPCE studied

in this paper allows for different agents in the role of a given player to have

different beliefs, and moreover for agents to believe that other agents in the

same player role have different beliefs than they do.

We now informally discuss some of the implications of heterogeneous be-

liefs. In those examples we claim that some outcome is inconsistent with

unitary beliefs but is consistent with heterogenous beliefs, given our back-

ground assumption that all players have a common belief in rationality and in

confirmed beliefs.

Perhaps the most immediate implication is that it allows the play of one

or more players to be strictly mixed in cases where unitary beliefs require the

outcome to be a single terminal node, as in the game in Figure 1.
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Figure 1: The broker, seller, and buyer are denoted players 1, 2,

and 3, respectively.

Here there are potential brokers who facilitate trades between sellers and

buyers. Each potential broker decides whether she enters the market or stays

out; if she stays out, the game ends with no trade. If the broker enters,

the involved seller and buyer play a coordination game, where the efficient

and inefficient outcomes correspond to the possible outcomes of an unmodeled

process of negotiation. The personal-information model has a steady state in

which some potential brokers stay out of the market and the others enter, while

all of sellers and buyers play efficient negotiations. Although staying out is not

a best response, the brokers can choose it if they believe the negotiations would

be inefficient, and this belief will not be falsified by their observations. This

is a heterogeneous self-confirming equilibrium, but it is not the outcome of a

self-confirming equilibrium with unitary beliefs. This is because the aggregate

play of the brokers corresponds to a mixed distribution, yet if the brokers

pooled their information they would not be indifferent between the actions in

the distribution’s support.
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Note that the distribution is a convex combination of the outcomes of

subgame perfect equilibria.4 The game in Figure 2 illustrates another way that

heterogeneous beliefs can matter. Consider the following situation: Investors

decide whether to attend a business event, and entrepreneurs simultaneously

decide whether to prepare materials to solicit investments. This preparation

must be done before the meeting, and any entrepreneur who does prepare will

then make a solicitation. Each investor derives a positive benefit from coming

to the event, but this is outweighed by the cost if she is approached by an

entrepreneur who solicits money, while entrepreneurs only want to solicit if it

is sufficiently likely they can talk with an investor. Specifically, entrepreneurs

who do not solicit get 0; those who do solicit get 1 if the investor attends, and

−1 if the investor stays Out. Similarly, entrepreneurs who don’t attend get 0;

those who attend get −1 if the entrepreneur solicits and 1 if it does not.

Figure 2: The investor and the entrepreneur are denoted players 1

and 2, respectively.

4We believe we could construct a more complicated game where this is not the case,
just as Fudenberg and Levine (1993a) give an example of a SCE with heterogeneous beliefs
whose outcome is not in the convex hull of the Nash equilibrium outcomes.
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Note that the unique Nash equilibrium here is for both players to randomize

(1/2, 1/2). The dotted line indicates a terminal node partition; it shows that

an investor who stays Out does not observe if the entrepreneur solicits, even

though the entrepreneur’s action is then on the path of play. Here, the profile

(Out,Don′t) cannot be supported with unitary beliefs. To see this, note that

for the investor to play Out, she has to expect a positive probability that the

entrepreneur solicits, but soliciting is not a best response for the entrepreneur

against Out. This contradicts the assumption that the investor knows the

entrepreneur is rational.

With heterogeneous beliefs, on the other hand, it is not obvious why the

outcome (Out, Don′t) should be rejected. To see why, note that if all agents in

the role of investors think that the overall distribution of play corresponds to

the Nash equilibrium of the game, these agents will be indifferent, and absent

any information to the contrary, all of the investors could stay home even

though none of the entrepreneurs solicit. In order to rationalize this belief,

the investors must conjecture that some other agents in the same player role

Attend because they believe some entrepreneurs Solicit, and Solicit is a best

response only if there are investors who Attend. To capture this in our formal

model, we will need to allow for “hypothetical versions” of the investors who

in fact do Attend, so that the investors who stay out can assign positive (and

sufficiently large) probability to these hypothetical versions.

The effect of heterogeneous beliefs is even starker in the game in Figure 3.

7



Figure 3: The tax attorney, IRS agent, and tax evader are denoted

players 1, 2, and 3, respectively.

Here, Nature first chooses Good or Bad. If it chooses Bad, then a tax

attorney (player 1) prepares a tax return, which can be either Safe or Risky.

Risky results in auditing by an IRS agent (player 2), and depending on the

agent’s effort level, the attorney is either rewarded by the tax evader (player

3) or punished. If the attorney chooses Safe, the return will not be audited,

and then the tax evader has a choice of staying with the attorney (Stay) or

firing him (Fire). Nature’s choice of Good represents the situation in which

the person who is audited has filed her tax return sincerely. The IRS agent,

who does not know if the return is good or bad, would like to exert effort (E)

in auditing if and only if it faces the evader, and otherwise prefers to not exert

effort (N). If the file is good, then the attorney does not observe what the

IRS agent has chosen, as irrespective of the agent’s effort, the auditing would

not result in punishment.

With unitary beliefs, it is not possible for the attorney to play Safe with

probability 1. To see this, note that the attorney knows that the IRS agent
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observes the exact terminal node reached. This implies that if the attorney

played Safe with probability 1, then she would know that whenever the IRS

agent moves the IRS agent would know that Nature gave him the move, which

would then imply that the attorney expects that the agent should play N .

Thus the attorney should expect the payoff of 2 from playing Risky, which

dominates Safe.

However, with heterogeneous beliefs the attorney can play Safe with prob-

ability 1. Roughly, if each attorney thinks that all other attorneys play Risky,

she has to infer each IRS agent assigns probability about .5 to each node, and

this implies that the IRS agent must play E. But then if the evaders Stay,

playing Safe is a best response. And an attorney can believe that other at-

torneys think Risky is a best response by supposing these other agents believe

all the evaders play Fire.

We first lay out our model, then use it to analyze these and other examples

with more rigor. We then show how heterogeneous play by a continuum of

agents permits the “purification” of mixed strategy equilibria. That is, any

outcome of a heterogeneous RPCE is the outcome of a heterogeneous RPCE

in which all agents use pure strategies and believe that all other agents use

pure strategies as well. Finally, we relate the heterogenous RPCE of a given

game to the unitary RPCE of a larger “anonymous-matching game” in which

each of the agents in a given player role is viewed as a distinct player. Because

we assume that this larger game has a finite number of agents in each role,

the result here is not quite an equivalence, but involves some approximations

which vanish as the number of agents grows large.

2 Model and Notation

The game tree consists of a finite set X, with terminal nodes denoted by

z ∈ Z ⊆ X. The initial node corresponds to Nature’s move, if any. The set

of Nature’s actions is AN . The set of players is I = {1, . . . , |I|}. Hi is the

collection of player i’s information sets, with H =
⋃
i∈I Hi and H−i = H \Hi.

Let A(h) be the set of available actions at h ∈ H.
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For each z ∈ Z, player i’s payoff is gi(z). The information each player

i observes at the end of each round of play is captured by a terminal node

partition Pi that is a partition of Z, where we require that gi(z) = gi(z
′) if

terminal nodes z and z′ are in the same cell of Pi. We let P = (Pi)i∈I denote

the collection of the partitions.5 The formal definitions and assumptions we

make below are motivated by the assumption that the structure of the game,

including the payoff functions, terminal node partitions, and distributions over

Nature’s move, are common knowledge in the informal sense.

Player i’s behavioral strategy πi is a map from Hi to probability distribu-

tions over actions, satisfying πi(h) ∈ ∆(A(h)) for each h ∈ Hi. The set of

all behavioral strategies for i is Πi, and the set of behavioral strategy profiles

is Π = ×i∈IΠi. Let Π−i = ×j 6=iΠj with typical element π−i. For π ∈ Π and

πi ∈ Πi, H(π) and H(πi) denote the information sets reached with positive

probability given π and (πi, π
′
−i), respectively, where π′−i is any completely

mixed behavioral strategy.

Let d(π)(z) be the probability of reaching z ∈ Z given π, and letDi(π)(P l
i ) =∑

z∈P l
i
d(π)(z) for each cell P l

i of player i’s partition. We assume that the ex-

tensive form has perfect recall in the usual sense, and extend perfect recall

to terminal node partitions by requiring that two terminal nodes must be in

different cells of Pi if they correspond to different actions by player i. If every

terminal node is in a different cell of Pi, the partition Pi is said to be discrete.

If Pi depends only on i’s actions, the partition is called trivial.

For most of the paper we restrict attention to “generalized one-move games,”

in which for any path of pure actions each player moves at most once, and for

each i, if there exist h ∈ Hi, aN , a
′
N ∈ AN with aN 6= a′N , and π̃−i ∈ Π−i such

that h is reached with positive probability under both (aN , π̃−i) and (a′N , π̃−i),

then there does not exist π̂−i ∈ Π−i such that, for all a′′N ∈ AN , h is reached

5Battigalli et al. (2015) model the information that players receive at the end of each
play of a dynamic game by assigning each player i a “feedback function” fi that maps from
the terminal nodes to a finite set of messages Mi. Feedback functions obviously include
our terminal node partitions as a special case. Conversely, our framework nests feedback
functions. To see this, given fi, construct a terminal node partition such that terminal
nodes z and z′ are in the same cell of the partition if and only if fi(z) = fi(z

′).
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with probability zero under (a′′N , π̂−i).
6 This restriction lets us neglect con-

ceptual complications that would arise in specifying assessments at off-path

information sets.7 We use a slightly more general class of games to relate the

heterogeneous and unitary solution concepts, as in those games Nature’s move

determines which agents are selected to play.

2.1 Heterogeneous Rationalizable Partition-Confirmed

Equilibrium

Player i’s belief is denoted γi ∈ [×h∈Hi
∆(h)] × Π, which includes her assess-

ment over nodes at her information sets as well as her belief about the overall

distribution of strategies. We denote the second element of γi by π(γi), and

let π−i(γi) denote the corresponding strategies of players other than i. Note

that we suppose that the belief about strategies is a point mass on a single be-

havior strategy profile, as opposed to a probability distribution over strategy

profiles.8

To model the idea that players are reasoning about the beliefs and play of

others, we follow Dekel et al. (1999) and FK and use versions of player i.9

We let Vi denote the set of versions of player i. For simplicity we assume that

each Vi is finite and index the elements of Vi with integers k. Each version

vki of player i consists of a strategy πki ∈ Πi and a conjecture qki ∈ ×j∈I∆(Vj)

about the distribution of versions in the population, where a conjecture qki is a

6This is a generalization of the “one-move games” defined in FK. It reduces to FK’s
definition of one-move games without a move by Nature.

7For example, suppose that Nature chooses L or R and then player 1 chooses between
U and D without knowing Nature’s action. U ends the game, and D leads to a single
information set h2 of player 2, so if 1 plays U , then Bayes rule does not pin down 2’s
assessment at h2. Note that this is not a generalized one-move game as h2 groups together
the two moves by Nature. One issue that could come up on in such general games is whether
to require that a player’s deviations cannot convey information about things they do not
know.

8We allowed for beliefs to be possibly correlated probability distributions on Π−i in FK.
Here we restrict to a single strategy profile to focus on some of the issues that arise with
heterogeneity. This also lets us avoid the need to impose an analog of FK’s “accordance”
condition.

9Note that versions are not used in the definition of self-confirming equilibrium, because
that concept does not model reasoning about the beliefs of other players.
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point belief over version distributions. To lighten notation, we will sometimes

suppress the indices of the versions and write πi(vi) for the strategy of type

vi, and π−i(v−i) for the strategies of the other types v−i.

These versions, and the players’ conjectures about them, serve a similar role

as the epistemic type structures used in e.g. Dekel and Siniscalchi (2014). We

use “version” instead both for ease of comparison with Dekel et al. (1999) and

because we feel this structure is easier for readers to understand. We believe

that we could map heterogeneous RPCE into the language of epistemic type

structures, and that no new insights would emerge, but as we have not done

so this is an open question that may be of interest to specialists in epistemic

game theory.

Not all of the versions need actually be present in the population. We track

the shares of the versions that are objectively present with the share function

φ = (φi)i∈I , where each φi ∈ ∆(Vi) specifies the fractions of the population of

player i that are each vki ; version vki is called an “actual version” if φi(v
k
i ) > 0,

and a “hypothetical version” otherwise. Hypothetical versions are the ones

that some players think might be present but are not. Let V := (V1, . . . , V|I|).

We call (V, φ) a belief model.

Next, we show how a belief model induces a behavior strategy profile π

that describes the aggregate play of the actual versions, and also induces, for

each version vki , the strategy profile that the version thinks describes actual

play.

For each player j, define ψj(φj) for each φj by ψj(φj)(π̂j) =
∑

k:πk
j =π̂j

φj(v
k
j )

for each π̂j; this is the share of agents who play π̂j under the belief model (V, φ).

Note that ψj(φj) has finite support.

Definition H1 A belief model (V, φ) induces actual play π̂j if for all hj ∈ Hj

and aj ∈ A(hj),

π̂j(hj)(aj) =
∑

π′j∈supp(ψj(φj))

ψj(φj)(π
′
j) · π′j(hj)(aj).

We say that (V, φ) induces π̂j for version vki ∈ Vi if π̂j is constructed by
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replacing φj above by the j’th coordinate of qki .

Definition H2 Given a belief model (V, φ), we say vki is self-confirming

with respect to π∗ if there exists π̃−i ∈ Π−i such that (i) for each j 6= i,

(V, φ) induces π̃j for version vki and (ii) Di(π
k
i , π̃−i) = Di(π

k
i , π

∗
−i).

Note that πki can be different from π∗i . This is because an agent in player

role i does not get to observe what other agents in the same role play.

Definition H3 Given a belief model (V, φ), vki is observationally consis-

tent if (qki )j (ṽj) > 0 implies that there exists π̂−j ∈ Π−j such that (i) for each

l 6= j, (V, φ) induces π̂l for vki and (ii) ṽj is self-confirming with respect to

(πj(ṽj), π̂−j).

Intuitively, the self-confirming condition requires that the agent’s belief is

not rejected by her observations. Observational consistency requires that, if

agent A thinks agent B exists, then A should expect B’s belief not to be

rejected by B’s observations.

It is important here to note that the observational consistency condition

defined above restricts vki ’s belief about i’s strategies as well as her beliefs

about the strategies of the other players. This is needed because other agents

in the same player role may play differently from vki .

We say that πi ∈ Πi is a best response to γi at h ∈ Hi if the restriction

of πi to the subtree starting at h maximizes player i’s expected payoff given

the assessment at h given by γi and the continuation strategy of the opponents

given by π−i(γi) in that subtree.

Definition H4 π∗ is a heterogeneous rationalizable partition-confirmed

equilibrium, or a heterogeneous RPCE, if there exists a heterogeneous be-

lief model (V, φ) such that the following four conditions hold for each i:

1. (V, φ) induces actual play π∗i ;

2. For all vki , there exists γi such that (i) (V, φ) induces πj(γi) for vki for

each j 6= i and (ii) πki is a best response to γi at all h ∈ Hi;
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3. For all vki , φi(v
k
i ) > 0 implies vki is self-confirming with respect to π∗;

4. Each vki ∈ Vi is observationally consistent.

One significant change from the definition of unitary RPCE is in the self-

confirming condition: In the unitary case, the self-confirming condition is im-

posed for those versions who have share 1 according to φ. In our current

context, multiple versions may exist with strictly positive shares, and in such

a case we require that all such versions are self-confirming.

2.2 Brief Review of Unitary RPCE

Here we briefly review the definition of unitary RPCE. In this solution concept,

a belief is µi ∈ [×h∈Hi
∆(∆(h)×Π−i)]×∆(Π−i). The coordinate for information

set h is denoted (µi)h which is assumed to have finite support. The second

coordinate describes the strategy distribution of the opponents player i believes

she is facing and is denoted b(µi). Note that the belief µi in the unitary model

is in a different space than that for the belief γi for the heterogeneous model. In

particular, µi specifies an element in Π−i for each information set, which means

that what i thinks about the continuation play can vary with the information

set. Each µi is required to satisfy accordance, meaning the following:

Definition U0 A belief µi satisfies accordance if (i) (µi)h is derived by Bayes

rule if there exists π−i in the support of b(µi) such that h is reachable under

π−i and (ii) for all h ∈ Hi, if (µi)h assigns positive probability to π̂−i, then

there exists π̃−i ∈ supp(b(µi)) such that π̂−i(h
′) = π̃−i(h

′) for each h′ after h.

As Claim 1 of Appendix A explains, we do not need to assume accordance in

heterogenous RPCE because we have assumed each player’s belief about the

opponents’ continuation strategies is the same at every information set. We

say that πi ∈ Πi is a best response to µi at h ∈ Hi if the restriction of πi to

the subtree starting at h is optimal against the probability distribution over

assessments and continuation strategies given by µi.
10

10This is essentially the same definition as above, the only difference is that the domain
of the best responses has been changed.
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A belief model U := (Uj)j∈I is a profile of finite sets, where Uj = {u1
j , . . . , u

Kj

j }
with Kj being the number of elements in Uj. Each element in Uj is called a

version. For each j ∈ I and k ∈ {1, . . . , Kj} associate to ukj a pair (πkj , p
k
j ),

where πkj ∈ Πj and pkj ∈ ∆(×j′ 6=jUj′), and write ukj = (πkj , p
k
j ). When there is

no room for confusion, we omit superscripts that distinguish different versions

in the same player role.

There are two main differences in the definitions of versions in the unitary

and heterogeneous belief models. First, in unitary belief models, conjectures

do not specify a probability measure over the player’s own versions. Second,

in the unitary model players are sure that only one actual version exists for

each player role, but unsure which one is actual. In the heterogeneous model

they assign probability one to a single version distribution for each player role.

Thus, in the heterogenous model, a conjecture of (1
2
vk2 + 1

2
vl2,

1
2
vk3 + 1

2
vl3) means

that 1/2 of the player 2’s are vk2 and not that there is probability 1/2 that all

of them are vk2 , which is allowed in the unitary model.11

Definition U1 (a) Given a belief model U , π∗ is generated by a version

profile (πi, pi)i∈I ∈ ×i∈IUi if for each i, πi = π∗i .

(b) A belief µi is coherent with a conjecture pi if b(µi) assigns probability∑
u−i∈×j 6=iUj :π−i(u−i)=π̃−i

pi(u−i) to each π̃−i ∈ Π−i.

Definition U2 Given a belief model U , version ui = (πi, pi) is self-confirming

with respect to π∗ if Di(πi, π−i(u−i)) = Di(πi, π
∗
−i) for all u−i in the support

of pi.

Definition U3 Given a belief model U , version ui = (πi, pi) is observation-

ally consistent if pi(ũ−i) > 0 implies, for each j 6= i, ũj is self-confirming

with respect to π(ui, ũ−i).

Using these notions, we define unitary rationalizable partition-confirmed

equilibrium as follows:

11Similarly, 1/2 of the player 3’s are vk3 .
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Definition U4 π∗ is a unitary rationalizable partition-confirmed equi-

librium if there exist a belief model U and an actual version profile u∗ such

that the following conditions hold:

1. π∗ is generated by u∗.

2. For each i and ui = (πi, pi), there exists µi such that (i) µi is coherent

with pi and (ii) πi is a best response to µi at all h ∈ Hi.

3. For all i, u∗i is self-confirming with respect to π∗.

4. For all i and ui, ui is observationally consistent.

3 Examples

In this section we illustrate heterogeneous RPCE with several examples. We

first revisit Examples 1-3 to formalize the arguments provided there.

Example 1 (Mixed Equilibrium and Heterogeneous Beliefs)

We revisit the game of Figure 1 to explain why
(
(1

2
In1,

1
2
Out1), U2, U3

)
is

not a unitary RPCE but is a heterogeneous RPCE.

To see that it is not a unitary RPCE, note that if it were, then by the self-

confirming condition the actual version of player 1 must believe that player

2 and player 3 play (U2, U3) with probability one. But given this belief the

only best response is to play action In1 with probability one, so 1’s strategy

contradicts the best response condition.

However the profile is a heterogeneous RPCE. To see this, consider the

following belief model12:

V1 = {v1
1, v

2
1} with v1

1 = (Out1, (v
1
1, v

2
2, v

2
3)), v2

1 = (In1, (
1

2
v1

1 +
1

2
v2

1, v
1
2, v

1
3));

12As in Fudenberg and Kamada (2015), the notation that we use when presenting belief
models in examples involves a slight abuse of notation. In particular, when a player’s
conjecture is a point mass on a particular version profile v−i we write that profile in place
of the Dirac measure concentrated on v−i.
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V2 = {v1
2, v

2
2} with v1

2 = (U2, (
1

2
v1

1 +
1

2
v2

1, v
1
2, v

1
3)), v2

2 = (D2, (v
1
1, v

2
2, v

2
3));

V3 = {v1
3, v

2
3} with v1

3 = (U3, (
1

2
v1

1 +
1

2
v2

1, v
1
2, v

1
3)), v2

3 = (D3, (v
1
1, v

2
2, v

2
3));

φ1(v1
1) = φ1(v2

1) =
1

2
, φ2(v1

2) = 1, φ3(v1
3) = 1.

It is easy to check that the RPCE conditions hold (note that v2
2 and v2

3 must

believe that all player 1’s play Out1, because otherwise v1
1’s observational con-

sistency would be violated).

Example 2 (Investor-Entrepreneur)

Here we revisit the investor-entrepreneur game of Figure 2. We first show

that (Out, Don′t) cannot be a unitary RPCE. To see this, suppose the contrary.

Note that the best response condition implies that the actual version of player 1

has to assign a strictly positive probability to a version v′2 of player 2 that plays

Solicit with strictly positive probability. But then observational consistency

applied to the actual version of player 1 implies that the belief of v′2 assigns

probability 1 to Out, which would make Solicit strictly suboptimal.

To show that (Out,Don′t) is a heterogeneous RPCE, consider the following

belief model:

V1 = {v1
1, v

2
1} with v1

1 = (Out, (
1

2
v1

1 +
1

2
v2

1,
1

2
v2

2 +
1

2
v3

2)),

v2
1 = (Attend, (

1

2
v1

1 +
1

2
v2

1,
1

2
v2

2 +
1

2
v3

2));

V2 = {v1
2, v

2
2, v

3
2} with v1

2 = (Don′t, (v1
1, v

1
2))

v2
2 = (Don′t, (

1

2
v1

1 +
1

2
v2

1,
1

2
v2

2 +
1

2
v3

2)), v3
2 = (Solicit, (

1

2
v1

1 +
1

2
v2

1,
1

2
v2

2 +
1

2
v3

2));

φ1(v1
1) = 1, φ2(v1

2) = 1.

Fudenberg and Levine (1993a) show by example that there are heteroge-

neous self-confirming equilibria that are not unitary self-confirming equilib-

rium. The profile they construct uses mixed strategies, and the mixing is
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necessary: If a strategy profile is a heterogeneous self-confirming equilibrium

but is not a unitary self-confirming equilibrium, then it uses mixed strategies.

In contrast, in this example there is a heterogeneous RPCE in which the

distribution of strategies generated by φ is pure, yet the observed play cannot

be the outcome of a unitary RPCE.13

Example 3 (Heterogeneous RPCE with Pure Strategies)

Here we revisit the tax evasion example of Figure 3. To see that the profile

(Safe,N, Stay) cannot be a unitary RPCE, suppose the contrary. Then the

actual version of the attorney (player 1) must play Safe, so by observational

consistency her conjecture assigns probability 1 to versions of the IRS agent

(player 2) whose assessment assigns probability 1 to the left node in 2’s in-

formation set. By the best response condition these versions must play N .

Then the coherent belief condition implies that the actual version of player 1

believes that 2 plays N , and by the best response condition she has to play

Risky instead of Safe irrespective of her belief about the play by the tax

evader (player 3).

To see that the profile is a heterogeneous RPCE, consider the following

belief model:

V1 = {v1
1, v

2
1} with v1

1 = (Safe, (v2
1, v

2
2, v

2
3)), v2

1 = (Risky, (v2
1, v

2
2, v

3
3));

V2 = {v1
2, v

2
2} with v1

2 = (N, (v1
1, v

1
2, v

1
3)), v2

2 = (E, (v2
1, v

2
2, v

3
3));

V3 = {v1
3, v

2
3, v

3
3} with v1

3 = (Stay, (v1
1, v

1
2, v

1
3)),

v2
3 = (Stay, (v2

1, v
2
2, v

2
3)), v3

3 = (Fire, (v2
1, v

2
2, v

3
3));

φ1(v1
1) = 1, φ2(v1

2) = 1, φ3(v1
3) = 1.

Notice that in this belief model, version v2
1 has share 0, but each agent of

13Note that in a simultaneous-move game with a discrete terminal node partition, each
agent’s belief must be correct, so every heterogeneous RPCE is a Nash equilibrium.
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version v1
1 thinks that all other agents in his player role are version v2

1.14 This

is possible, because if version v2
1 was an actual version, he could not observe

3’s play, so his belief about 3’s play can be arbitrary. Given that all other

agents are playing Risky, v1
1 infers 2 should be playing E, and such a belief is

“self-confirming” because v1
1 does not observe 2’s choice due to the terminal

node partition.15

Note that players 1 and 2 have strict incentives to play the equilibrium ac-

tions, unlike in the heterogeneous RPCE in Example 2. Player 3 is indifferent,

but one can replace his move with a simultaneous-move game by two players

to avoid ties.

Note also that the construction here is different from that of Example 1,

where each agent thinks that all other agents in the same role are playing in

the same way as she does, while here each agent thinks that other agents in

the same player role behave differently than herself. Example 7 in the On-

line Supplementary Appendix extends this idea to show that a heterogeneous

RPCE can be different from a unitary RPCE because an actual version of one

player role can conjecture that different versions in another player role play

differently.

Example 4 (Inferring the Play of Other Agents in the Same Role)

14Hence each agent in v11 thinks that he has measure zero. This is not necessary here: the
same conclusion applies if v11 believes the share of v11 ’s is strictly less than 1/2. In Example
5, which has a weakly dominated strategy, it does matter that a version can think it has
share 0.

15Player 3 has three versions although she has two actions because we need two versions
who play Stay: the actual version who observes Safe, and a hypothetical version who
observes Risky, which is needed so that v11 is observationally consistent.
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Figure 4

Here we show how knowledge of the payoff functions and the observation struc-

ture can rule out heterogeneous beliefs when neither of these forces would do

so on its own, as agents in a given player role may be able to use their obser-

vations to make inferences about the play of other agents in their own role.

In the game in Figure 4, the terminal node partitions are discrete. One might

conjecture that some player 2’s can play Out2 while some play In2 and some

player 1’s play In1, as Out2 prevents player 2 from observing 3 and 4’s play.

However, we claim that whenever a heterogeneous RPCE assigns strictly pos-

itive probability to In1, player 2 plays In2 with probability 1.

To see this, consider a heterogeneous RPCE such that 1 plays In1 with a

strictly positive probability. Fix a belief model that rationalizes this hetero-

20



geneous RPCE and fix an actual version v2 of player 2. We show that v2 must

play In2 with probability 1 in this heterogenous RPCE.

First, by the self-confirming condition, v2’s conjecture assigns positive prob-

ability to a version v̄1 of player 1 that plays In1 with positive probability.

Suppose that v2’s conjecture assigns probability zero to versions of player 2

that play In2 with positive probability. Then, by observational consistency

applied to v2, v̄1 believes 2 plays Out2 with probability 1. But this contradicts

the best response condition for v̄1. Hence v2’s conjecture must assign positive

probability to versions who play In2 with positive probability. Pick one such

version who plays In2, and call it v̄2.

Since v̄2 must satisfy the best response condition, she must assign proba-

bility at least 5
6

to (L3, L4). This in particular implies that v̄2’s belief must

assign probability at least 5
6

to L3. But L4 is the unique best response to a

strategy that plays L3 with probability at least 5
6

(given that player 4 is on

the path), so observational consistency applied to v̄2 and the best response

condition for player 4 imply that v̄2’s belief must assign probability 1 to L4,

and by a symmetric argument it must assign 1 to L3. But since v̄2 observes

play by players 3 and 4, observational consistency applied to v2 implies that

v2 assigns probability 1 to (L3, L4), and so the best response condition for v2

implies that she must play In2 with probability 1.

Note that extensive-form rationalizability alone does not preclude hetero-

geneity, as all actions of all players are extensive-form rationalizable. Now we

show that common knowledge of the observation structure alone does not rule

out heterogeneity either.

Consider requiring conditions 1 and 3 in the definition of heterogeneous

RPCE and a weaker version of condition 2 where we require optimality only

at the on-path information sets (all h ∈ H(πki , π−i) for all π−i is in the support

of γki ). This concept would correspond to relaxing the unitary assumption of

partition-confirmed equilibrium defined in FK. With this definition, player 2

is not assumed to know the payoff function of player 1, so he can believe that

3 and 4 play (R3, R4). Specifically, it is easy to check by inspection that all
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the above conditions are satisfied in the following belief model:

V1 = {v1
1} with v1

1 = (In1, (v
1
1,

1

2
v1

2 +
1

2
v2

2, v
1
3, v

1
4));

V2 = {v1
2, v

2
2} with v1

2 = (In2, (v
1
1,

1

2
v1

2+
1

2
v2

2, v
1
3, v

1
4)), v2

2 = (Out2, (v
1
1,

1

2
v1

2+
1

2
v2

2, v
1
3, v

1
4);

V3 = {v1
3} with v1

3 = (L3, (v
1
1,

1

2
v1

2 +
1

2
v2

2, v
1
3, v

1
4)),

V4 = {v1
4} with v1

4 = (L4, (v
1
1,

1

2
v1

2 +
1

2
v2

2, v
1
3, v

1
4)),

φ1(v1
1) = 1, φ2(v1

2) = φ2(v2
2) =

1

2
, φ3(v1

3) = 1, φ4(v1
4) = 1.

4 A “Purification” Result

In the heterogeneous model, the aggregate play of agents in each player role

can correspond to a mixed (behavior) strategy. One standard interpretation

of mixed strategies in equilibrium is that the mixing describes the aggregate

play of a large population, with different agents in the same player role using

different pure strategies. Here we show that this interpretation of mixed-

strategy equilibrium also applies to heterogeneous RPCE with a continuum

of agents in each player role, so that there exists a belief model with the

share functions φi that describe the mass of each population i whose play and

conjectures are generated by various versions that use pure strategies. The

continuum of agents allows φi to take on any value between 0 and 1. In the

next section we relate this continuum model to one with a large but finite

population.

We say that a belief model (V, φ) rationalizes a heterogenous RPCE π∗ if,

given π∗, the four conditions in Definition H4 hold for (V, φ) for each i.

Remark 1 Any heterogeneous RPCE can be rationalized with a belief model

in which all versions use pure strategies.

The proof of this remark is provided in the appendix.
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5 Anonymous-Matching Games in Large Fi-

nite Populations

The interpretation of heterogeneous beliefs and play is that there are many

agents in each player role. An alternative way of thinking of such situations is

that every agent is a “player,” but each period only a subset of the agents get

to actually play; the agents who are not playing do not receive any feedback

on what happened that period. In this way, we can identify an anonymous-

matching game with any given extensive form. To do this, we view each of

the agent k’s in the role of player i as distinct players, so the anonymous-

matching game has as many players as the original model has agents. Each

period Nature picks |I| players to anonymously participate in the game, where

|I| is the number of player roles in the original extensive form, and only one

player is picked from each of the respective groups.

We will show that each heterogeneous RPCE of a given extensive-form

game is an “approximate” unitary RPCE in the corresponding anonymous-

matching game, where the approximation becomes arbitrarily close as the

population of the anonymous-matching game becomes large.

5.1 Anonymous-Matching Games

Formally, given an extensive-form game Γ with a set of players I = {1, ..., |I|}
and the terminal node partitions P = (P1, . . . ,P|I|), we define an anonymous-

matching game of Γ parameterized by a positive integer T defined below,

denoted Y (Γ, T ), as follows16:

1. The set of players is J :=
⋃
i∈I Ji, with Ji := {(i, 1), . . . , (i, T )}, where T

is a positive integer.

2. Nature N moves at the initial node, choosing |I| players who will move

at subsequent nodes. For each i ∈ I, a unique player is chosen from Ji

16We assume there is the same number of players in each player role; none of our results
hinges on this assumption.
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independently, according to the uniform distribution over Ji. Let the

chosen player for each i ∈ I be (i, ri).

3. The chosen players, ((1, r1), (2, r2), . . . , (n, rn)), play Γ, without knowing

the identity of the opponents. Unchosen players receive the constant

payoffs of 0. Formally,

(a) Each node of Y (Γ, T ) is denoted (x, (i, wi)i∈I), where x is an element

of X of Γ and wi is the index of the agent in player role i who “plays”

in the game that contains the node.17

(b) For each player (i, wi) ∈ Ji, nodes (x, (j, wj)j∈I) and (x′, ((i, wi), (j, w
′
j)j 6=i))

are in the same information set if and only if x and x′ are in the

same information set of player i in Γ (This formalizes the idea that

the identity of the matched agents cannot be observed).

(c) For any (i, wi)i∈I , actions available at an information set that in-

cludes (x, (i, wi)i∈I) are the same as the actions available at an

information set that includes x in Γ.

(d) The payoff function is such that if a player in Ji is chosen and an

action profile a of the chosen players (which lies in A) is realized,

she receives a payoff identical to gi(z) where the action profile a

leads to the terminal node z in Γ. If a player is not chosen, she

receives the payoff of 0.

(e) The terminal node partition is such that if a player is not cho-

sen then she does not observe anything (except the fact that she

was not chosen). If a player (i, ri) ∈ Ji is chosen and a termi-

nal node (z, (j, rj)j∈I) is reached, all she knows is that some node

(z′, ((i, ri), (j, w
′
j)j 6=i)) for some z′ and w′−i ∈ ×j 6=iJj is reached,

where z′ and z are in the same partition cell of Pi in Γ (In partic-

ular, she does not know the identity of the opponents).

17In this section, we use (i, wi) to denote a generic agent in the role of player i.
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5.2 Motivating ε-Unitary RPCE

Here we use two examples to motivate our use of an approximate version of

unitary RPCE in the equivalence result.

Example 5 (Heterogeneous RPCE with Dominated Strategies)

Figure 5

Our definition allows each version to believe that the aggregate play of her

player role does not assign positive mass to her own strategy. For example,

even if vki plays Li, her belief may assign probability 1 to Ri. This reflects the

premise that there is a continuum of agents in each player role and no one agent

can change the aggregate distribution of play. This continuum model is meant

to be an approximation of a large but finite population model. In Section

5, we formalize this idea of approximation by using ε-self-confirming and ε-

observational consistency conditions, as opposed to the exact self-confirming

and the observational consistency conditions. This example shows why some

sort of approximate equilibrium notion is needed.
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The game in Figure 5 has the same extensive form as in the game in

Example 3, with a different payoff function for player 2. Notice that R2 is

weakly dominated.

We first show that 1 can play R1 in a heterogeneous RPCE. To see this,

consider the following belief model:

V1 = {v1
1, v

2
1} with v1

1 = (R1, (v
2
1, v

2
2, v

2
3)), v2

1 = (L1, (v
2
1, v

2
2, v

3
3));

V2 = {v1
2, v

2
2} with v1

2 = (L2, (v
1
1, v

1
2, v

1
3)), v2

2 = (R2, (v
2
1, v

2
2, v

2
3));

V3 = {v1
3, v

2
3} with v1

3 = (L3, (v
1
1, v

1
2, v

1
3)),

v2
3 = (L3, (v

2
1, v

2
2, v

2
3)), v3

3 = (R3, (v
2
1, v

2
2, v

3
3));

φ1(v1
1) = 1, φ2(v1

2) = 1, φ3(v1
3) = 1.

Notice that in this belief model, the actual version v1
1 of player 1 conjectures

that version v2
1 has share 1, which justifies his belief that player 2 is indifferent

between two actions so can play a weakly dominated action R2. One can check

by inspection that all conditions in the definition of heterogeneous RPCE are

met.

However, player 1 cannot play R1 if we require that each version’s belief

has to assign a positive weight to her own strategy. To see this, notice that if

this condition were imposed, observational consistency and Bayes rule would

imply that each version vk1 of player 1 assigns probability 1 to versions of player

2 whose assessments assign probability strictly less than 1
2

to the node that

follows L1. By the best response condition, these versions must play L2. But

then from condition 2(i) of Definition H4 vk1 would need to believe that 2 will

play L2 with probability 1, so that R1 would give her a strictly smaller payoff

than the maximal possible payoff from L1, which contradicts the best response

condition.

The point is that in a finite population model an agent’s own actions can

give her information about an opponent’s belief and hence about their strategy,

but such an inference is not captured by heterogeneous RPCE.
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Example 6 (Heterogeneous RPCE with Irrational-Valued Beliefs)

Figure 6: Terminal node partitions are not depicted in the figure but are

described in the text.

Another reason that approximation is needed is that the number of agents in

our anonymous-matching games are integers, so all agents have rational prob-

abilities of being chosen to play, but payoffs and the probability distribution

over Nature’s move need not take only rational values.18 In the extensive-

form game in Figure 6, each player only observes their own payoffs, except

that player 1 observes the exact terminal node reached. One can check by in-

spection that
(
M1,

1√
2
L2 +

(
1− 1√

2

)
R2, L3, L4

)
is a heterogenous RPCE by

verifying that the following belief model meets the necessary conditions:

V1 = {v1
1, v

2
1, v

3
1} with v1

1 =
(
L1,
(
v1

1, v
1
2, v

1
3, v

1
4

))
, v2

1 =
(
R1, (v

2
1, v

2
2, v

2
3, v

2
4)
)
,

v3
1 =

(
M1,

(
v3

1,
1√
2
v1

2 +

(
1− 1√

2

)
v2

2, v
1
3, v

1
4

))
;

V2 = {v1
2, v

2
2} with v1

2 = (L2, (v
1
1, v

1
2, v

1
3, v

1
4)), v2

2 = (R2, (v
2
1, v

2
2, v

2
3, v

2
4));

V3 = {v1
3, v

2
3} with v1

3 = (L3, (v
1
1, v

1
2, v

1
3, v

1
4)), v2

3 = (R3, (v
2
1, v

2
2, v

2
3, v

2
4));

V4 = {v1
4, v

2
4} with v1

4 = (L4, (v
1
1, v

1
2, v

1
3, v

1
4)), v2

4 = (R4, (v
2
1, v

2
2, v

2
3, v

2
4));

18The point we make here would disappear if payoffs and the probabilities of Nature’s
moves are restricted to rational numbers.

27



φ1(v3
1) = 1, φ2(v1

2) =
1√
2
, φ3(v1

3) = 1, φ4(v1
4) = 1.

In this belief model, all (actual and hypothetical) versions of players 2, 3, and

4 think that either it is common knowledge that everyone plays left, or it is

common knowledge that everyone plays right.

Now consider generating this outcome using an anonymous-matching game.

First, notice that M1 is a best response for player 1 only if she believes L2 is

chosen with probability 1√
2
. Second, if an agent represented by version u2

of player 2 is indifferent between L2 and R2, then his belief has to assign

probability 1
2

to the profile (L3, L4). At the same time, since players 3 and 4

play a symmetric coordination game, u2’s belief can assign probability either

0, 1
4
, or 1 to (L3, L4).19 None of these probabilities are even close to 1

2
, which

is a contradiction. Hence, u2 cannot be indifferent between L2 and R2. Since

the agent we chose in player role 2 was arbitrary, we conclude that no agent

of player 2, whether actual or hypothetical, is indifferent between L2 and R2.

This has two implications.

First, if an agent of player 1 plays M1, then she cannot assign probability

1 to a single realization of the version profiles of the agents. To see this, note

that every agent of player 1 can only assign positive probability to agents

playing a pure strategy. Hence, if an agent of player 1 assigns probability 1

to a single realization of the version profiles of agents, conjectures that each

agent of player 2 is chosen with equal probability, and the number of agents is

finite, then coherency implies that it is impossible for the agent of player 1 to

believe that the probability of L2 is 1√
2
.

The second implication is again about the need for an approximation. To

see this, consider the agents corresponding to actual versions of player 1. These

agents observe the true distribution of the play by the agents of player 2, which

must take rational values since all agents of player 2 play pure strategies. The

self-confirming condition then implies that it is impossible for the actual agents

in player role 1 to believe that the probability of L2 is 1√
2
. However, the belief

19In this game, observation of their own payoff is sufficient for players 3 and 4 to coordinate
on a Nash equilibrium in any RPCE.

28



can become arbitrarily close to 1√
2

when the number of agents becomes large.

5.3 Unitary ε-RPCE

Before Section 5, we have restricted attention to generalized one-move games.

Anonymous-matching games do not fall into this class, because they allow two

different actions of nature to lead to the same information set under some

strategy profiles but not under others. For this reason, we will now need to

impose a more general form of accordance.

Hereafter, we assume that any belief µi ∈ [×h∈Hi
∆(∆(h)× Π−i)]× Π−i in

the unitary belief model satisfies the following condition:

Definition U5 A belief µi satisfies convex structurally-consistent accor-

dance if it satisfies the following two conditions:

1. µi satisfies accordance.

2. For each h ∈ Hi and each (αi, π−i) ∈ supp((µi)h), there exists a proba-

bility distribution γ ∈ ∆(Π−i) such that (i) there exists π̂−i ∈ supp(γ)

such that h is reachable under π̂−i, and (ii) αi at h is derived by Bayes

rule under γ.

In anonymous-matching games, Nature’s move determines which agents

get to play. The second condition in the definition imposes a restriction on

the assessment regarding the probability distribution over the agents chosen

by Nature at each off-path information set h: we require that this probability

distribution does not change even after a deviation that leads to h (note that

the deviator does not move at h because we still assume that each player

moves only once at each path of the extensive form). The reason we allow

for a distribution γ of strategies here is analogous to the argument for convex

structural consistency in Kreps and Ramey (1987): the stronger condition that

one single profile generates the beliefs is not compatible with Kreps-Wilson’s

(1982) consistency. Note that the second condition is moot in the generalized

one-move games we have considered before Section 5.
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To allow an approximation motivated by Examples 5 and 6 in a model

with a finite number of agents, we relax the definitions of “self-confirming”

and “observationally consistent.”

Let ||·|| denote the supremum norm. We say that πi represents (π(i,1), . . . , π(i,T ))

if, for each hi ∈ Hi and a ∈ A(hi), π(hi)(ai) = 1
T

∑T
j=1 π(i,j)(hi)(ai). We say

that πi ε-represents (π(i,1), . . . , π(i,T )) if there is π′i such that π′i represents

(π(i,1), . . . , π(i,T )) and ||πi − π′i|| < ε.20

Definition U2(ε) Given a belief model U , version ui = (πi, pi) is ε-self-

confirming with respect to π∗ if ||Di(πi, π−i(u−i)) − Di(πi, π
∗
−i)|| < ε for all

u−i in the support of pi.

Definition U3(ε) Given a belief model U , version ui = (πi, pi) is ε-observationally

consistent if pi(ũ−i) > 0 implies, for each j 6= i, ũj is ε-self-confirming with

respect to π(ui, ũ−i).

Using these notions, we define unitary ε-rationalizable partition-confirmed

equilibrium.

Definition U4(ε) π∗ is a unitary ε-rationalizable partition-confirmed

equilibrium (unitary ε-RPCE) if there exist a belief model U and an actual

version profile u∗ such that the following conditions hold:

1. π∗ is generated by u∗.

2. For each i and ui = (πi, pi), there exists µi such that (i) µi is coherent

with pi and (ii) πi is a best response to µi at all h ∈ Hi.

3. For all i, u∗i is ε-self-confirming with respect to π∗.

4. For all i and ui, ui is ε-observationally consistent.

20When || · || applies to the distance between two behavioral strategies πi and π′i, it is
given by ||πi − π′i|| = maxh∈Hi,a∈A(h) |πi(h)(a)− π′i(h)(a)|.
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5.4 The Equivalence Theorem

Theorem 1 For any ε > 0, Γ, and a heterogeneous RPCE π∗ of Γ, there

exist T and a pure unitary ε-RPCE π∗∗ of Y (Γ, T ) such that for each i ∈ I,

π∗i ε-represents (π∗∗(i,1), . . . , π
∗∗
(i,T )).

The proof is provided in the appendix. In outline, the way the proof

handles heterogeneous RPCE with irrational probabilities is as follows. Let

ũ3
(1,j) be the version in the constructed unitary belief model who corresponds

to v3
1 in the heterogeneous belief model in Example 6. We have to construct a

conjecture and an associated belief so that coherency holds and the strategy

of ũ3
(1,j) is an exact best response. To do so, we suppose that ũ3

(1,j) is not

certain about what the share functions are. For example, if T = 100 then

we let the conjecture of ũ3
(1,j) assign probability 1 to the event that 70 agents

are the versions who play L2 and 29 agents are the versions who play R2,

assign probability 1√
2
− 70

100
to the event that the remaining one agent is the

version who plays L2, and assign the remaining probability to the event that

the remaining one agent is the version who plays R2.21 With this construction

any point in the support of the belief of ũ3
(1,j) is close to the corresponding

point in the support of v3
1 (because 99 agents play deterministically) and the

belief is essentially unchanged so playing M1 is still a best response (because

we allow the remaining one agent to be either one of the two possible versions

with the probability computed from the original mixing probability of player

2). There is more subtlety in making sure the best-response condition holds

also at zero-probability information sets, which we will detail in the proof.

Theorem 1 relaxes the self-confirming and observational consistency con-

ditions to approximate heterogeneous RPCE with unitary RPCE played by a

finite number of agents. The conclusion of the theorem holds with the exact

(e.g. ε = 0) versions of self-confirming and observational consistency if instead

we specify that the probability distribution over agents in the anonymous-

21If ũ3(1,j) conjectures that each agent of player 2 plays either L2 or R2 with probabilities
1√
2

and 1− 1√
2
, respectively, then the ε-self-confirming condition would be violated because

this conjecture would assign strictly positive probability to the event that no agent of player
2 plays L2.
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matching game depends on the unitary RPCE that is being replicated. We do

not state this version of the result formally, as we do not find it satisfactory to

vary the probability distribution over agents to match the target equilibrium.

In the Online Appendix, we discuss our choice of approximation criterion

used in defining ε-observational consistency, and explain the implications of

an alternative.

6 Conclusion

This paper has developed an extension of RPCE to allow for heterogeneous

beliefs, both on the part of the agents who are objectively present, and also in

the “versions” that represent mental states agents think other agents can have.

This extension allows the model to fit the heterogeneity that naturally arises

when there are many agents in the role of each player, as implicitly assumed

by most learning theories and implemented in the random-matching protocols

of most game theory experiments. It also permits RPCE to be restricted to

pure strategies without loss of generality. The paper explored the impact of

heterogeneous beliefs in various examples. It also showed how heterogeneous

RPCE relates to the unitary RPCE of a larger anonymous-matching game

with many agents in each player role.

This paper is only the first look at the new issues posed by heterogeneous

beliefs. It would be interesting to explore some of the complications that

we have avoided here, such as the possibility of a player’s beliefs being a

correlated distribution over the opponents’ strategies, defining heterogeneous

RPCE for a class of games larger than generalized one-move games, and a full

dynamic model of learning. It would also be interesting to know more about

the relationship between unitary and heterogeneous RPCE. The examples that

we provided in this paper are only a first step in this direction.
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A Independence and Accordance

Recall that unitary RPCE is only defined for 1-move games. In that solution

concept, a belief µi belongs to the space [×h∈Hi
∆(∆(h)×Π−i)]×∆(Π−i). We

denote (µi)h the coordinate of µi that corresponds to h, and b(µi) the last

coordinate that does not correspond to any particular information sets.

Although we do not use it in the next claim, keep in mind that the space

of the beliefs in the heterogeneous model is [×h∈Hi
∆(h)]×∆(Π).

Claim 1 Suppose that under a belief µi, b(µi) assigns probability one to a

single strategy profile for i’s opponents, π∗−i. Suppose also that for every h ∈
Hi, (µi)h assigns probability one to a single assessment-strategy profile pair

such that the strategy profile to which probability one is assigned is π∗−i. Then,

accordance holds.
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Proof. Accordance requires two conditions. We check them one by one.

The first condition of accordance requires that (µi)h is derived by Bayes

rule if there exists π−i in the support of b(µi) such that h is reachable under

π−i. Since b(µi) and (µi)h for each h assigns probability 1 to the same strategy

profile for −i, this part holds.

The second condition requires that for each h ∈ Hi, if (µi)h assigns positive

probability to π̂−i, then there exists π̃−i ∈ supp(b(µi)) such that π̂−i(h
′) =

π̃−i(h
′) for all h′ after h.

Now, (µi)h assigns positive probability only to π∗−i. Also, π∗−i is in the

support of b(µi). Thus we can always take π̃−i = π∗−i to satisfy the equality.

B Proof of Remark 1

Proof.

Fix a heterogeneous RPCE π∗ and a belief model (V, φ) that rationalizes

it. Pick any version vki = (πki , q
k
i ) in V, let σki be a mixed strategy that

induces πki ,22 and suppose that σi assigns positive probability to K distinct

pure strategies. We construct copies of version vki , each playing a distinct pure

strategy in the support of σki . The copy corresponding to pure strategy si,

denoted vki (si), plays si and has the same belief as vki .

To construct the conjectures in the new belief model from the conjectures

in the old one, we suppose that all of the copies corresponding to vki have the

same conjecture q̄ki , where q̄ki (vlj(sj)) = (qki )j(v
l
j) · σlj(sj) for all vlj ∈ Vj and all

sj ∈ supp(σlj).
23 Finally, denoting the share function in the new belief model

by φ̄, we let φ̄i(v
k
i (si)) = φi(v

k
i ) · σki (si) for each si ∈ supp(σki ).

It is straightforward to check that with this construction the new belief

model rationalizes the original heterogeneous RPCE.

22This mixed strategy exists from Kuhn’s theorem; see for example the proof of Theorem
4 in Fudenberg and Levine (1993a).

23With a slight abuse of notation, we denote by qki (vlj) the weight on vlj of the j’th

coordinate of qki .
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C Proof of Theorem 1

Proof.

Fix ε > 0 and a heterogeneous RPCE of Γ, π∗. By Remark 1 there exists

a belief model (V, φ) that rationalizes π∗ such that all versions in the belief

model use pure strategies. Fix one such belief model. For each i and k, let

γki = (α
[i,k]
i , π[i,k]) be the belief of vki used in condition 2 of the definition of het-

erogeneous RPCE. Pick an integer T such that T > max{2(maxi∈I |Vi|)(#A)2

ε
, 1
G
},

where

G = min
i∈I

(
min

k∈{1,...,|Vi|}

(
max
πi∈Πi

min
z∈Z(πi,π

[i,k]
−i )

p(πi, π
[i,k]
−i )(z)

))
,

p(π)(z) is the probability that z ∈ Z is reached under π, and Z(π) is the

set of terminal nodes z such that p(π)(z) > 0. To prove the claim we need

to construct a belief model U and an actual version profile u∗ for the game

Y (Γ, T ) such that there is a pure unitary ε-RPCE π∗∗ of Y (Γ, T ) where for

each i ∈ I, π∗i ε-represents (π∗∗(i,1), . . . , π
∗∗
(i,T )).

a) Constructing the belief model

For each i ∈ I and each (i, j) ∈ Ji, define U(i,j) = {ũ(i,j)(v
k
i )|vki ∈ Vi},

where ũ(i,j)(v
k
i ) = (π̃k(i,j), p̃

k
(i,j)) and we define π̃k(i,j) and p̃k(i,j) in what follows.

Below we simply denote ũ(i,j)(v
k
i ) by uk(i,j).

First, π̃k(i,j) = πki ;24 note this is a pure strategy.

Second, we let p̃k(i,j) be independent, and abuse notation to denote by

p̃k(i,j)(u(n,m)) the probability assigned to u(n,m) by the conjecture of vk(i,j). That

is, p̃k(i,j)((ū(n,m))(n,m)6=(i,j)) =
∏

(n,m)6=(i,j) p̃
k
(i,j)(ū(n,m)) for each (ū(n,m))(n,m)6=(i,j) ∈

U−(i,j). Similarly, we abuse notation to write qki (vmn ) (recall that qki is neces-

sarily independent by definition).

Below we specify p̃k(i,j) in the way we described in the example of 100 agents

before this proof. In that method, there are 70 agents for whom p̃3
(i,j) assigns

24Recall that each player ji in Y (Γ, T ) has the same number of information sets as player
i in Γ; here we abuse notation to use the same notation for an information set h in Γ and the
information set in Y (Γ, T ) of player ji that includes the nodes corresponding to the nodes
included in h.
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probability one to a version who plays action L2, 29 agents for whom it assigns

probability zero to such a version, and 1 agent for whom the probability is in

(0, 1). The cases (i), (ii), and (iii) below correspond to these three cases,

respectively. The way we specify probabilities for case (iii) is clarified in (iii)-

(a), (iii)-(b), and (iii)-(c).

For all (n,m) ∈
(⋃

n′∈I Jn′
)
\ {(i, j)} and all l ∈ {1, . . . , |Vn|}, we set

(i) p̃k(i,j)(u
l
(n,m)) = 1 if

∑
l′<l

⌊
T · qki (vl

′

n)
⌋
< m ≤

∑
l′≤l

⌊
T · qki (vl

′

n)
⌋
,

(ii) p̃k(i,j)(u
l
(n,m)) = 0 if m ≤

∑
l′<l

⌊
T · qki (vl

′

n)
⌋

or
∑
l′≤l

⌊
T · qki (vl

′

n)
⌋
< m ≤

∑
l′≤|Vn|

⌊
T · qki (vl

′

n)
⌋
,

(iii) p̃k(i,j)(u
l
(n,m)) ∈ [0, 1] if

∑
l′≤|Vn|

⌊
T · qki (vl

′

n)
⌋
< m ≤ T.

To define p̃k(i,j) for case (iii) concretely, for each n ∈ I and l′ ∈ {1, . . . , |Vn|},
let

f(l′;n, qki ) = T · qki (vl
′

n)−
⌊
T · qki (vl

′

n)
⌋
.

That is, f(l′;n, qki ) is the error that the approximation in (i) and (ii) above

miss out. More specifically, (i) and (ii) assign too small a weight for each

possible version in the support of the conjecture, and f(l′;n, qki ) is the prob-

ability that needs to be added to make the conjecture exactly in line with

the original conjecture qki . Now we allocate these probabilities to remaining

agents considered in (iii). To do this, we define l(w;n, qki ) for each w ∈ N with

w ≤
∑

l′≤|Vn| f(l′;n, qki ) as follows:

∑
l′<l(w;n,qki )

f(l′;n, qki ) < w ≤
∑

l′≤l(w;n,qki )

f(l′;n, qki ).

That is, l(w;n, qki ) is the maximum number of versions such that the sum of

the error probabilities can be no more than w, when we add these errors in

the order of the indices of the versions.
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Then we define

(iii)-(a) p̃k(i,j)(u
l
(n,m)) =

(∑
l′≤l

f(l′;n, qki )

)
− (w − 1)

if m =
∑
l′≤|Vn|

⌊
T · qki (vl

′

n)
⌋

+ w and l = l(w − 1;n, qki ),

(iii)-(b) p̃k(i,j)(u
l
(n,m)) = f(l;n, qki )

if m =
∑
l′≤|Vn|

⌊
T · qki (vl

′

n)
⌋

+ w and l(w − 1;n, qki ) < l < l(w;n, qki ),

(iii)-(c) p̃k(i,j)(u
l
(n,m)) = w −

(∑
l′<l

f(l′;n, qki )

)
if m =

∑
l′≤|Vn|

⌊
T · qki (vl

′

n)
⌋

+ w and l = l(w;n, qki ).

Note that (i, j) has only T − 1 opponents in player role i, so the above

specification of the belief may not give rise to the conjecture that exactly

corresponds to the one in the heterogenous model. However it will not lead to

violation of best response condition, as beliefs about the strategy of agents of

player i do not affect the expected payoff of an agent in player role i.

Last, we construct a belief of uk(i,j), denoted µ̃k(i,j), that is used to satisfy

the best response condition. We let µ̃k(i,j) to be defined by the following rule.

First,

b(i,j)(µ̃
k
(i,j))(π−(i,j)) =

∑
u−(i.j)∈×(n,m)6=(i,j)U(n,m):

π−(i,j)=π−(i,j)(u−(i,j))

p̃k(i,j)(u−(i,j)).

Second,
(
µ̃k(i,j)

)
h

is computed by Bayes rule under b(i,j)(µ̃
k
(i,j)) if h ∈ H(π̂−i)

(note that Bayes rule induces a well-defined probability distribution at such h

under b(i,j) because T > 1
G

). For h 6∈ H(π̂−i), we set

(
µ̃k(i,j)

)
h

(
ˆ̂αi(h), (ˆ̂π(n,m))(n,m)∈

⋃
w 6=i Jw

)
= 1
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where ˆ̂π(n,m)(h
′) = π̂n(h′) holds for all h′ ∈ Hn for all n ∈ I and

ˆ̂αi(h)(x, ((i, j), (n, rn)n6=i)) =
1

T |I|−1
α̂i(h)(x)

for each (n, rn)n6=i ∈ ×n6=iJn and (x, ((i, j), (n, rn)n6=i)) ∈ h.

b) Constructing the actual versions

We specify the actual versions u∗ as follows: For each i ∈ I and each (i, j),

we set

u∗(i,j) = uk(i,j) if
∑
k′<k

⌊
T · φi(vk

′

i )
⌋
< m ≤

∑
k′≤k

⌊
T · φi(vk

′

i )
⌋
,

u∗(i,j) = ul(i,j) if
∑
k′≤|Vi|

⌊
T · φi(vk

′

i )
⌋
< m ≤ T, φi(v

l
i) > 0 and φi(v

l′

i ) = 0 for all l′ < l.

Let π∗∗ = π(u∗).

c) Checking that the conditions of unitary ε-RPCE hold

Since
T−

∑
k′∈N,k′≤|Vi|

⌊
T ·φi(vk

′
i )

⌋
T

≤ |Vi|
T

< ε, it is straightforward that π∗i
1
T

-

represents (π∗∗(i,1), . . . , π
∗∗
(i,T )) for each i. Also, by definition π∗∗ is generated by

u∗. Coherency holds for each i ∈ I, each (i, j) ∈ Ji and each k ∈ {1, . . . , |Vi|}
by the construction of µ̃k(i,j). Accordance holds by construction. Moreover,

the best response condition holds by construction (recall that randomization

is conducted independently across players in the construction of p̃k(i,j)). Thus

it remains to check the self-confirming condition and the observational consis-

tency condition. To this end, we first note that, for any Γ and T , D(i,j) in the

model Y (Γ, T ) can be seen as an element in the same space as Di in the model

Γ by the construction of the terminal node partitions in Y (Γ, T ). Henceforth,

we abuse notation to write Di = D(i,j).

The self-confirming condition is satisfied in the original heterogeneous RPCE,

so for each vki in the support of φi, there exists π̃−i ∈ Π−i such that (i) (V, φ)
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induces π̃j for version vki for each j 6= i and (ii) Di(π
k
i , π̃−i) = Di(π

k
i , π

∗
−i).

First, by the construction of π̃k(i,j) and p̃k(i,j) and Claim 2 that we present

below (i) implies:

||Di(π̃
k
(i,j), π−(i,j)(u−(i,j)))−Di(π

k
i , π̃−i)|| ≤ (#A)2||(π̃k(i,j), π̂−i)−(πki , π̃−i)|| ≤ (#A)2 maxn6=i |Vn|

T
<
ε

2

for each u−(i,j) in the support of p̃k(i,j), where π̂n represents (π−(i,j)(u−(i,j)))(n,m)∈Jn

for each n 6= i, where A = ×i∈I
⋃
h∈Hi

A(h).

Second, by the construction of the actual versions u∗ and Claim 2, we have

that

||Di(π
k
i , π

∗
−i)−Di(π

k
(i,j), π

∗∗
−(i,j))|| ≤ (#A)2||(πki , π∗−i)−(πk(i,j),

ˆ̂π−i)|| ≤ (#A)2 maxn6=i |Vn|
T

<
ε

2
,

where ˆ̂πn represents (π∗−(i,j))(n,m)∈Jn for each n 6= i.

Thus, by the triangle inequality,

||Di(π
k
(i,j), π−(i,j)(u−(i,j)))−Di(π

k
(i,j), π

∗∗
−(i,j))|| ≤

||Di(π
k
(i,j), π−(i,j)(u−(i,j)))−Di(π

k
i , π̃−i)||+ ||Di(π

k
i , π̃−i)−Di(π

k
i , π

∗
−i)||

+||Di(π
k
i , π

∗
−i)−Di(π

k
(i,j), π

∗∗
−(i,j))|| <

ε

2
+ 0 +

ε

2
= ε

for each u−(i,j) in the support of p̃k(i,j).

Thus, vi = (πi, pi) is ε-self-confirming with respect to π∗.

The observational consistency condition is satisfied in the original hetero-

geneous RPCE, so for each vki , qki
(
vln
)
> 0 implies that there exists π̂−n ∈ Π−n

such that (i’) (V, φ) induces π̂w for vki for each w 6= n and (ii’) there exists

π̌−n ∈ Π−n such that (ii’)-(i) (V, φ) induces π̌w for version vln for each w 6= n

and (ii)-(ii) Dn(πn(vln), π̌−n) = Dn(πn(vln), π̂−n).

First, by the construction of π̃l(n,m) and p̃l(n,m) and Claim 2, we have that

(ii’)-(i) implies:

||Dn(π(n,m)(u
l
(n,m)), π−(n,m)(u−(n,m)))−Dn(πn(vln), π̌−n)|| ≤
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(#A)2||(π(n,m)(u
l
(n,m)), π̇−n)− (πn(vln), π̌−n)|| ≤ (#A)2 maxw 6=n |Vw|

T
<
ε

2

for each u−(n,m) in the support of p̃l(n,m), where π̇w represents (π−(n,m)(u−(n,m)))(w,r)∈Jw

for each w 6= n.

Second, by the construction of p̃kji and Claim 2, we have that (i’) implies:

||Dn(πn(vln), π̂−n)−Dn(π(n,m)(u
l
(n,m)),

(
π(v(i,j), ṽ−(i,j))

)
−(n,m)

)|| ≤

(#A)2||(πn(vln), π̂−n)− (π(n,m)(u
l
(n,m)), π̈−n)|| ≤ (#A)2 maxw 6=n |Vw|

T
<
ε

2

where π̈w represents (π(u(i,j), ũ−(i,j)))(w,r)∈Jw for each w 6= n.

Thus, by the triangle inequality, for all ũ(n,m) in the support of p̃k(i,j), it

must be the case that for all u−(n,m) in the support of the conjecture of ũ(n,m),

||Dn(π(n,m)(ũ(n,m)), π−(n,m)(u−(n,m)))−Dn(π(n,m)(ũ(n,m)),
(
π(u(i,j), ũ−(i,j))

)
−(n,m)

)|| ≤

||Dn(π(n,m)(ũ(n,m)), π−(n,m)(u−(n,m)))−Dn(πn(vln), π̌−n)||+‖|Dn(πn(vln), π̌−n)−Dn(πn(vln), π̂−n)||

+||Dn(πn(vln), π̂−n)−Dn(π(n,m)(ũ(n,m)),
(
π(u(i,j), ũ−(i,j))

)
−(n,m)

)||

<
ε

2
+ 0 +

ε

2
= ε.

Thus, uji is ε-observationally consistent.

Finally, we provide the statement and the proof of the claim in the above

proof.

Claim 2 For all π, π′ ∈ Π and i ∈ I, ||Di(π) − Di(π
′)|| ≤ (#A)2 · ||π − π′||

holds.

Proof. First we show that ||d(π)−d(π′)|| ≤ |A|·||π−π′|| for any π, π′ ∈ Π.

To see this, fix π and π′, and let ||π − π′|| = ε. Let Ã(z) be the set of actions

that are taken to reach z ∈ Z, h(aj) be the information set such that action

aj can be taken, and j(aj) be the player such that h(aj) ∈ Hj(aj). Note that
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Ã(z) is finite for each z ∈ Z. For any z ∈ Z,

|d(π)(z)− d(π′)(z)| =

∣∣∣∣∣∣
∏

aj∈Ã(z)

πj(aj)(h(aj))(aj)−
∏

aj∈Ã(z)

π′j(aj)(h(aj))(aj)

∣∣∣∣∣∣
≤

∣∣∣∣∣ ∏
aj∈Ã(z)

max{πj(aj)(h(aj))(aj), π
′
j(aj)(h(aj))(aj)}

−
∏

aj∈Ã(z)

min{πj(aj)(h(aj))(aj), π
′
j(aj)(h(aj))(aj)}

∣∣∣∣∣
≤

∣∣∣∣∣ ∏
aj∈Ã(z)

max{πj(aj)(h(aj))(aj), π
′
j(aj)(h(aj))(aj)}

−
∏

aj∈Ã(z)

(max{πj(aj)(h(aj))(aj), π
′
j(aj)(h(aj))(aj)} − ε)

∣∣∣∣∣
≤ 1− (1− ε)#A ≤ #A · ε = #A ‖π − π′‖ .

Hence,

||d(π)− d(π′)|| ≤ #A · ||π − π′||. (1)

Next, for any i ∈ I,

||Di(π)−Di(π
′)|| = max

P l
i∈Pi

|Di(π)(P l
i )−Di(π

′)(P l
i )| = max

P l
i∈Pi

∣∣∣∣∣∣
∑
z∈P l

i

(d(π)(z)− d(π′)(z))

∣∣∣∣∣∣
≤ max

P l
i∈Pi

∑
z∈P l

i

|d(π)(z)− d(π′)(z)| ≤
∑
z∈Z

|d(π)(z)− d(π′)(z)|

≤ #Z ·max
z∈Z
|d(π)(z)− d(π′)(z)| ≤ #A · ||d(π)− d(π′)||. (2)

Combining equations (1) and (2), we have that ||Di(π) − Di(π
′)|| ≤ (#A)2 ·

||π − π′||.
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