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In this appendix, we consider the general case where there are two or more types
of base utility functions, which we call the multi-type case. Some lemmas in
the multi-type case are analogous to lemmas in the single-type case. We list the
correspondence between these lemmas in Table 1. With these lemmas in the multi-type
case, we generalize every two-type result in Section 5. Specifically, Propositions 2–6
and Theorem 4 are generalized to Propositions 11–15 and Theorem 5, respectively.
For each pair of correspondence, we later explain how the multi-type result generalizes
the two-type result. We have also provided the direct proofs to these two-type results
in the Supplementary Information on our personal webpages.

B The General Multi-Type Case
We first set up the multi-type case. Assume that each customer’s base utility function
comes from {ut}Tt=1, where t is the index for a utility type. For every t ∈ {1, . . . , T},
let N t be the number of customers with base utility function ut, and let N =

∑T
t=1N

t

be the total number of customers. Assume that for every t ∈ {1, . . . , T −1}, ut
n > ut+1

n

for every n ∈ {1, . . . , N} and ut
n−ut

n+1 > ut+1
n −ut+1

n+1 for every n ∈ {1, . . . , N −1}. In
addition, set ut

0 = 0 for all type t. Let G((N t)Tt=1, K, p, (ut)Tt=1) be the strategic-form
game defined analogously to that in the single-type case.

Given ((N t)Tt=1, K), a scheme q = (q10, . . . , q
T
0 , q

1
1, . . . , q

T
1 , . . . , q

1
K , . . . , q

T
K) ∈ (0 ∪

N)(K+1)×T such that
∑T

τ=1 q
τ
k > 0 for every k ∈ {1, . . . , K} and

∑K
j=0 q

t
j = N t for

every t ∈ {1, . . . , T} specifies the number of each type of customers in each priority
pass, where qtk denotes the number of type-t customers buying θk. The restriction
that

∑T
t=1 q

t
k > 0 for every k ∈ {1, . . . , K} ensures that every priority pass has at

least one customer, which is analogous to the definition in the single-type case. Fix(
(N t)Tt=1, K, (ut)Tt=1

)
. Fix a scheme q and a price vector p. For each t ∈ {1, . . . , T},

construct the type-specific pass-utility function vt from ut.1 Fix j ∈ {0, . . . , K}
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1Formally, the pass-utility function in the multi-type case, vt(·; ·; ·) is defined as follows. From a

given scheme q in the multi-type case, we construct a scheme q̃ in the single-type case by letting
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Description Single-type Multi-type

Properties of pass-utility function Claim 1 Claim 1′
IC Reduction Lemma 1(a) Lemma 5
IR Reduction Lemma 1(b) Lemma 6
Implementability-checking price vector Lemma 2 Lemma 7
Implication of concave base utility function Lemma 3 Lemma 3′

Table 1: Correspondence between lemmas in the single-type and multi-type cases.

and k ∈ {1, . . . , K} such that
∑T

t=1 q
t
j > 0. For every t ∈ {1, . . . , T} such that qtj > 0,

the type-specific IC constraint from θj to θk with respect to customer type
t (henceforth ICt

jk) is defined analogously to the single-type case with the pass-utility
function changed to vt. For every t ∈ {1, . . . , T} such that qtk > 0, the type-specific
IR constraint of θk with respect to customer type t (henceforth IRt

k) is also
defined analogously to the single-type case.

Define the set of IC constraints to be {ICt
jk : 0 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ t ≤

T, qtj > 0} and the set of IR constraints to be {IRt
k : 1 ≤ k ≤ K, 1 ≤ t ≤ T, qtk > 0}.

We say that p implements q if (p, q) satisfies every constraint in the set of IC and IR
constraints. The scheme q is said to be implementable if there exists a price vector
that implements q.

A multi-type case ((N t)Tt=1, K, (ut)Tt=1) is concave if each base utility function
is concave, strictly concave if it is strictly concave, and linear if it is linear. If
ut = βtu for some β1 > β2 · · · > βT = 1 and some base utility function u such that
uN > 0, then we call such a setup the multiplicative multi-type case.2

B.1 Lemmas for Multi-Type Case
The following two results are analogous to Claim 1 and Lemma 3 in the single-type
case. Their proofs are omitted as the proofs are perfectly analogous to those in the
single-type case.

Claim 1′. Fix ((N t)Tt=1, K, (ut)Tt=1) and a scheme q. Fix k ∈ {1, . . . , K} and t ∈
{1, . . . , T}. If j1, j2 ∈ {1, . . . , k − 1}, then

vt(θk; θj1) = vt(θk; θj2) > vt(θk).

q̃j =
∑T

t=1 q
t
j . Then, we let vt(θj , θk; q) take the same value as v(θj ; θk; q̃) where v is the pass-utility

function constructed from ut in the single-type case. Under this definition, vt(θj ; θk; q) is well-defined
even for the case when there is no type-t customer in pass k.

2Here, the superscript for each β is an index, not an exponent.
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Corollary 1
IC and IR
characterization

Lemma 4
Properties of type-
specific constraints

Lemma 5
IC reduction

Lemma 6
IR reduction

Lemma 7
Implementability-checking
price vector

Proposition 13
Two-pass implementation in strictly con-
cave multiplicative multi-type case

Theorem 5
Implementation in concave multiplicative
multi-type case

Proposition 12
Monotonicity in concave multi-type case

Proposition 14
Sufficiently many customers for implemen-
tation

Proposition 15
Not implementable when customer types
are too close

Proposition 16
Type-separating schemes

Figure 5: Roadmap of Appendix B.1.

If l1, l2 ∈ {0, k + 1, k + 2, . . . , K}, then

vt(θk) > vt(θk; θl1) = vt(θk; θl2).

Lemma 3′. Fix ((N t)Tt=1, K, (ut)Tt=1) such that K > 1. Fix a scheme q and t ∈
{1, . . . , T}. If ut is concave, then for any j, k ∈ {1, . . . , K} such that j < k,

vt(θj)− vt(θk; θj) ≤ vt(θj; θk)− vt(θk).

The inequality is strict if ut is strictly concave and either maxm∈{j,k}

(∑T
τ=1 q

τ
m

)
> 1

or j + 1 < k.

The rest of this subsection presents lemmas that are useful for implementation
results in the multi-type case that will appear in Appendix B.2. Most results about
implementation use Lemma 7 which we state later. A roadmap of how lemmas in this
subsection contribute to the implementation results in Appendix B.2 is illustrated in
Figure 5.

The following result characterizes the relations between type-specific constraints.

Lemma 4 (Properties of type-specific constraints). Fix ((N t)Tt=1, K, (ut)Tt=1). Fix
a scheme q and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k and
t1, t2 ∈ {1, . . . , T} such that t1 < t2.
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(a) If qt1j > 0 and qt2j > 0, then ICt2
jk implies ICt1

jk.

(b) If qt1k > 0 and qt2k > 0, then ICt1
kj implies ICt2

kj.

(c) If qt10 > 0 and qt20 > 0, then ICt1
0m implies ICt2

0m.

(d) If qt1m > 0 and qt2m > 0, then IRt2
m implies IRt1

m.

Proof.

Proof for (a) If qt1j > 0 and qt2j > 0, then both ICt1
jk and ICt2

jk are defined. Note
that (p, q) satisfies ICt2

jk if and only if

pj − pk ≤ vt2(θj)− vt2(θk; θj).

Since ut1
n − ut1

n+1 > ut2
n − ut2

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vt1(θj)− vt1(θk; θj) > vt2(θj)− vt2(θk; θj). Therefore, if (p, q)
satisfies ICt2

jk, then

pj − pk ≤ vt2(θj)− vt2(θk; θj) < vt1(θj)− vt1(θk; θj),

which means that (p, q) also satisfies ICt1
jk.

Proof for (b) If qt1k > 0 and qt2k > 0, then both ICt1
kj and ICt2

kj are defined. Note
that (p, q) satisfies ICt1

kj if and only if

pj − pk ≥ vt1(θj; θk)− vt1(θk).

Since ut1
n − ut1

n+1 > ut2
n − ut2

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vt1(θj; θk)− vt1(θk) > vt2(θj; θk)− vt2(θk). Therefore, if (p, q)
satisfies ICt1

kj, then

pj − pk ≥ vt1(θj; θk)− vt1(θk) > vt2(θj; θk)− vt2(θk),

which means that (p, q) also satisfies ICt2
kj.

Proof for (c) If qt10 > 0 and qt20 > 0, then both ICt1
0m and ICt2

0m are defined. Note
that (p, q) satisfies ICt1

0m if and only if

vt1(θm; θ0)− pm ≤ 0.
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Since ut1
n > ut2

n holds for every n ∈ {1, . . . , N} by the definition of customer types, we
have vt2(θm; θ0) < vt1(θm; θ0). Therefore, if (p, q) satisfies ICt1

0m, then

vt2(θm; θ0)− pm < vt1(θm; θ0)− pm ≤ 0,

which means (p, q) also satisfies ICt2
0m.

Proof for (d) If qt1m > 0 and qt2m > 0, then both IRt1
m and IRt2

m are defined. Note
that (p, q) satisfies IRt2

m if and only if

vt2(θm)− pm ≥ 0.

Since ut1
n > ut2

n holds for every n ∈ {1, . . . , N} by the definition of customer types, we
have vt1(θm) > vt2(θm). Therefore, if (p, q) satisfies IRt2

m, then

vt1(θm)− pm > vt2(θm)− pm ≥ 0,

which means that (p, q) also satisfies IRt1
m.

Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
, a scheme q, and a price vector p. Fix j ∈ {0, . . . , K} and

k ∈ {1, . . . , K} such that j 6= k and
∑T

t=1 q
t
j > 0.3 Define ICjk to be the type-specific

IC constraint from {ICt
jk : 1 ≤ t ≤ T, qtj > 0} that implies every constraint in the set.

Similarly, define IRk to be the type-specific IR constraint in {IRt
k : 1 ≤ t ≤ T, qtk > 0}

that implies every constraint in the set. Note that Lemma 4 ensures that ICjk and
IRk are well-defined.

Lemma 4 immediately implies the following characterization of IC and IR con-
straints without superscripts. We define the following new notations for ease of
characterization: For each j ∈ {0, . . . , K} such that

∑T
t=1 q

t
j > 0, define t̄j =

max{1 ≤ t ≤ T : qtj > 0}, which is the lowest customer type that chooses θj,
and tj = min{1 ≤ t ≤ T : qtj > 0}, which is the highest customer type that chooses θj .

Corollary 1 (IC and IR characterization). Fix ((N t)Tt=1, K, (ut)Tt=1). Fix a scheme q

and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k.

(a) ICjk is equivalent to ICt̄j
jk.

(b) ICkj is equivalent to ICtk
kj.

(c) If
∑T

t=1 q
t
0 > 0, then IC0m is equivalent to ICt0

0m.
3Analogous to footnote 16 in the main text, the condition that

∑T
t=1 q

t
j > 0 is restrictive only

when j = 0.
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(d) IRm is equivalent to IRt̄m
m .

Proof. The result is immediate from Lemma 4.

The following lemma is analogous to Lemma 1(a) in the single-type case.

Lemma 5 (IC reduction with multiple types). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
such that

K > 1. Fix a scheme q and a price vector p. Fix j, k ∈ {1, . . . , K} such that j < k.
Assume that t̄m ≤ t̄m+1 for every m ∈ {j, . . . , k − 1}. If (p, q) satisfies ICm,m+1 for
every m ∈ {j, . . . , k − 1}, then it satisfies ICjk.

Proof. Assume that (p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}. We have

pm − pm+1 ≤ vt̄m(θm)− vt̄m(θm+1; θm) (by ICt̄m
m,m+1)

≤ vt̄j(θm)− vt̄j(θm+1; θm). (by t̄j ≤ t̄m) (30)

Therefore, if (p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}, then

pj − pk =
k−1∑
m=j

(pm − pm+1)

≤
k−1∑
m=j

[
vt̄j(θm)− vt̄j(θm+1; θm)

]
(by (30))

= vt̄j(θj)− vt̄j(θk)−
k−1∑
m=j

[
vt̄j(θm+1; θm)− vt̄j(θm+1)

]
≤ vt̄j(θj)− vt̄j(θk)−

[
vt̄j(θk; θk−1)− vt̄j(θk)

]
(by Claim 1′)

= vt̄j(θj)− vt̄j(θk; θj). (by Claim 1′)

Thus, (p, q) satisfies ICjk.

The following lemma is analogous to Lemma 1(b) in the single-type case.

Lemma 6 (IR reduction with multiple types). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
such that

K > 1. Fix a scheme q and a price vector p. Assume that t̄j ≤ t̄k for some
j, k ∈ {1, . . . , K} such that j < k. If (p, q) satisfies ICjk and IRk, then it satisfies IRj.

Proof. Fix j, k ∈ {1, . . . , K} such that j < k and t̄j ≤ t̄k. Assume that (p, q) satisfies
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ICjk and IRk. We have

vt̄j(θj)− pj ≥ vt̄j(θk; θj)− pk (by ICt̄j
jk)

≥ vt̄k(θk; θj)− pk (by t̄j ≤ t̄k)
≥ vt̄k(θk)− pk (by Claim 1′)
≥ 0. (by IRt̄k

k )

Thus, (p, q) satisfies IRj.

The following result is analogous to Lemma 2 in the single-type case and provides
a price vector to check implementability.

Lemma 7 (Implementability conditions in multi-type case). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
.

Fix a scheme q such that vt̄K (θK) ≥ 0. Assume t̄j ≤ t̄j+1 for every j ∈ {1, . . . , K − 1}.
Let p∗ = (p∗1, . . . , p

∗
K) be such that p∗K = vt̄K (θK) and p∗j − p∗j+1 = vt̄j(θj)− vt̄j(θj+1; θj)

for every j ∈ {1, . . . , K − 1}.4 The following statements are equivalent:

(a) q is implementable.

(b) p∗ implements q.

(c) For any j, k ∈ {1, . . . , K} such that j < k, (p∗, q) satisfies ICkj. If
∑T

t=1 q
t
0 > 0,

then (p∗, q) satisfies IC0j for every j ∈ {1, . . . , K}.

Proof. The following result, which generalizes Claim 3 to the multi-type case, is useful
in showing that p∗ ∈ RK

+ . We omit its proof as it is analogous to the proof of Claim 3.

Claim 3′. Fix ((N t)Tt=1, K, (ut)Tt=1) and a scheme q. For any j, k ∈ {1, . . . , K} such
that j < k and every t ∈ {1, . . . , K}, we have vt(θj) > vt(θk; θj).

By Claim 3′, for every j ∈ {1, . . . , K−1}, we have p∗j−p∗j+1 = vt̄j(θj)−vt̄j(θj+1) > 0.
Moreover, p∗K = vt̄K (θK) ≥ 0 by assumption. Therefore, p∗ is a valid price vector.

It is clear that statement (b) implies statement (a). The proof is complete if we
can show that statement (a) implies statement (c) and that statement (c) implies
statement (b).

Proof for (a)=⇒(c) Assume that q is implementable and let p be a price vector
that implements q. Fix j, k ∈ {1, . . . , K} such that j < k. By part (b) of Corollary 1,

4This definition generalizes p∗ in the proof of Proposition 8.
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(p, q) satisfies ICkj if and only if pj − pk ≥ vtk(θj; θk)− vtk(θk). Note that

pj − pk =
k−1∑
m=j

pm − pm+1

≤
k−1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
(by ICt̄m

m,m+1)

=
k−1∑
m=j

p∗m − p∗m+1 (by the definition of p∗)

= p∗j − p∗k. (31)

Thus, we have p∗j − p∗k ≥ pj − pk ≥ vtk(θj; θk)− vtk(θk), that is, (p∗, q) satisfies ICkj.
Assume

∑T
t=1 q

t
0 > 0. We can pick some t ∈ {1, . . . , T} such that qt0 > 0. Fix

j ∈ {1, . . . , K}. As (p, q) satisfies IC0j, it satisfies ICt
0j, which is equivalent to

vt(θj; θ0)− pj ≤ 0. (32)

In (31), if we set k = K, we have pj − p∗j ≤ pK − p∗K . Moreover, as (p, q) satisfies IRK ,
by the definition of p∗, we have pK ≤ vt̄K (θK) = p∗K . Therefore, pj ≤ p∗j holds and by
(32), we have vt(θj; θ0) − p∗j ≤ 0, that is, (p∗, q) satisfies ICt

0j. As the choice of t is
arbitrary as long as qt0 > 0, we have shown that (p∗, q) satisfies IC0j.

We have shown that statement (a) implies statement (c).

Proof for (c)=⇒(b) Fix j, k ∈ {1, . . . , K} such that j < k. By the definition of p∗,
part (a) of Corollary 1 implies that (p∗, q) binds ICm,m+1 for every m ∈ {j, . . . , k− 1}.
As t̄m ≤ t̄m+1 for each m ∈ {j, . . . , k−1}, by Lemma 5, (p∗, q) satisfies ICjk. Therefore,
(p∗, q) satisfies every downward IC constraint.

By the definition of p∗, part (d) of Corollary 1 implies that (p∗, q) binds IRK .
Fix k ∈ {1, . . . , K − 1}. Note that we have t̄k ≤ t̄K , and (p∗, q) satisfies both ICkK

and IRK . Thus, by Lemma 6, (p∗, q) satisfies IRk Therefore, (p∗, q) satisfies every IR
constraint.

Assume that (p∗, q) satisfies ICkj for any j, k ∈ {1, . . . , K} such that j < k. By
the definition of schemes,

∑T
t=1 q

t
0 ≥ 0 holds. If

∑T
t=1 q

t
0 = 0, then IC0j is undefined

for every j ∈ {1, . . . , K}. In this case, (p∗, q) satisfies every constraint in the set of
IC and IR constraints. For the case where

∑T
t=1 q

t
0 > 0, if additionally (p∗, q) satisfies

IC0j for every j ∈ {1, . . . , K}, then again (p∗, q) satisfies every constraint in the set of
IC and IR constraints. Overall, we have shown that p∗ implements q.

We have shown that statement (c) implies statement (b).
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B.2 Implementability in the Multi-Type Case
Now we consider implementability in the multi-type case. In the two-type case,
Proposition 2 shows that a scheme with exactly one customer in each priority pass
is not implementable if there are more than four priority passes. We generalize this
result to the multi-type case below.

Proposition 11 (One-customer passes in multi-type case). Fix ((N t)Tt=1, K, (ut)Tt=1)

and a scheme q where
∑T

t=1 q
t
k = 1 for every k ∈ {1, . . . , K}. If K > 2T , then q is

not implementable.

When T = 1 and T = 2, Proposition 11 is equivalent to Theorem 3 in the single-
type case and Proposition 2 in the two-type case, respectively. We omit the proof of
Proposition 11 since the result is straightforward given the proof of Theorem 3: when
there are more than 2T priority passes in a scheme and each pass has exactly one
customer, we can pick three customers from three different passes that have the same
customer type, which implies that the scheme is not implementable by the reasoning
similar to that in the proof of Theorem 3.

We next define the notion of monotonicity in Section B.2.1, which is needed for
later results. We then characterize the environment in which multi-pass schemes are
implementable in the multi-type case when the base utility function is concave in
Section B.2.2.

B.2.1 Monotonicity

Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
. Fix a scheme q and a price vector p. As in the two-type

case, we cannot reduce the set of downward IC and IR constraints to the set of local
downward IC constraints and IRK as we did in Lemma 1. By Lemmas 5 and 6, such
constraint reduction results can be obtained if we impose the additional condition
that t̄j ≤ t̄j+1 for every j ∈ {1, . . . , K − 1}. This restriction eliminates schemes where
a lower type customer buys a higher-priority pass than a higher-type customer. With
this restriction, by Lemma 7, we can similarly check the implementability of a scheme
by binding the lowest IR constraint and every local downward constraint. It turns out
that the restriction is necessary for implementability in the concave multi-type case.
To be precise, implementability in the concave multi-type case implies a condition
which we call monotonicity: We say that a scheme q is monotone if the following
two conditions hold:

(a) For any j, k ∈ {1, . . . , K} such that j < k, tj ≤ tk.

(b) For every t ∈ {1, . . . , t̄K−1} such that t < t̄K , qt0 = 0.
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Condition (a) says that if two customers of different types buy some priority passes,
then the higher-type customer has a weakly higher-priority pass than does the lower-
type customer; condition (b) states that if a customer type is weakly higher than
the lowest customer type in the second-lowest priority pass and strictly higher than
the lowest customer type in the lowest priority pass, then every customer of this
type has bought some priority pass in the scheme. Condition (b) is ambiguous about
customer types strictly between t̄K−1 and t̄K since the negative externality created
when a customer of these types joins a priority pass from outside the queue could be
a sufficient disincentive against joining the queue.

The following result shows that monotonicity is necessary for implementability in
the concave multi-type case:

Proposition 12 (Monotonicity in concave multi-type case). Fix the concave multi-type
case ((N t)Tt=1, K, (ut)Tt=1) such that K > 1. If a scheme q is implementable, then each
customer type is in at most two priority passes and q is monotone.

Proof. Assume that a scheme q is implementable and let p be a price vector that
implements q.

We first show that each customer type is in at most two priority passes. Towards
a contradiction, assume that there exists t ∈ {1, . . . , T} and j, k,m ∈ {1, . . . , K} such
that j < k < m, qtj > 0, qtk > 0, and qtm > 0. Note that (p, q) satisfies ICt

mj if and only
if

pj − pm ≥ vt(θj; θm)− vt(θm). (33)

However, as ut is concave, we have

pj − pm = pj − pk + pk − pm

≤ vt(θj)− vt(θk; θj) + vt(θk)− vt(θm; θk) (by ICt
jk and ICt

km)
< vt(θj)− vt(θm; θj) (by Claim 1′)
≤ vt(θj; θm)− vt(θm), (by Lemma 3′)

which contradicts (33). Therefore, each customer type is in at most two priority
passes.

We next show that q is monotone by starting with condition (a) of monotonicity.
Towards a contradiction, assume that t̄j > tk for some j, k ∈ {1, . . . , K} such that
j < k. With this assumption, we have

vt̄j(θj)− vt̄j(θk; θj) < vtk(θj)− vtk(θk; θj) (by t̄j > tk)
≤ vtk(θj; θk)− vtk(θk). (by Lemma 3′) (34)
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However, that (p, q) satisfies both ICjk and ICkj implies

vtk(θj; θk)− vtk(θk) ≤ pj − pk ≤ vt̄j(θj)− vt̄j(θk; θj),

which contradicts (34). Therefore, t̄j ≤ tk for any j, k ∈ {1, . . . , K} such that j < k,
which is condition (a) of monotonicity.

We now show condition (b) of monotonicity. Towards a contradiction, assume
qt0 > 0 for some t ∈ {1, . . . , t̄K−1} such that t < t̄K . That (p, q) satisfies ICK−1,K

implies
vt̄K−1(θK−1)− pK−1 ≥ vt̄K−1(θK ; θK−1)− pK .

As ut is concave for each t ∈ {1, . . . , T}, by Lemma 3′,

vt̄K−1(θK−1; θK)− vt̄K−1(θK−1) ≥ vt̄K−1(θK)− vt̄K−1(θK ; θK−1).

Adding up the two inequalities above, we obtain

vt̄K−1(θK−1; θK)− pK−1 ≥ vt̄K−1(θK)− pK . (35)

Note that we have

vt(θK−1; θ0)− pK−1 = vt(θK−1; θK)− pK−1 (by Claim 1′)
≥ vt̄K−1(θK−1; θK)− pK−1 (by t ≤ t̄K−1)
≥ vt̄K−1(θK)− pK (by (35))
≥ vt̄K (θK)− pK (by t̄K−1 ≤ t̄K)
≥ 0. (by IRK) (36)

In (36), if t < t̄K−1, then vt(θK−1; θK)− pK−1 > vt̄K−1(θK−1; θK)− pK−1; if t = t̄K−1,
then t̄K−1 < t̄K and therefore vt̄K−1(θK)− pK > vt̄K (θK)− pK . Thus, at least one of
the inequalities in (36) must be strict, which means that if qt0 > 0, then (p, q) would
not satisfy ICt

0,K−1, a contradiction. Therefore, if t ∈ {1, . . . , t̄K−1} and t < t̄K , then
qt0 = 0, which is condition (b) of monotonicity.

We have shown that q is monotone.
The proof is complete.

We observe that when T = 2, the monotonicity in the multi-type case is equiv-
alent to the monotonicity in the two-type case. Hence, Proposition 12 generalizes
Proposition 3 in the two-type case.

The intuition for the necessity of condition (a) of multi-type monotonicity is
very similar to that of condition (a) of two-type monotonicity in our discussion after
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Proposition 3. For the necessity of condition (b) of multi-type monotonicity, the proof
shows that a customer with a type weakly higher than the lowest customer type in
the second-lowest priority pass has at least a weak incentive to purchase a priority
pass, with the incentive further made strict if the customer type is also strictly higher
than the lowest customer type in the lowest priority pass.

B.2.2 Concave Case

When there are multiple customer types, implementing a multi-pass scheme is possible
if different types of customers have utility functions that are sufficiently different from
each other. The following result for the multiplicative multi-type case characterizes
the implementability conditions with respect to customer types in the concave case,
which in particular covers both linear and strictly concave cases.

Theorem 5 (Implementation in concave multiplicative multi-type case). Fix the
concave multiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1) where K > 1. Fix a scheme
q such that vtK (θK) ≥ 0,

∑T
t=1 q

t
0 = 0, and t̄m ≤ t̄m+1 for m ∈ {1, . . . , K − 1}. There

exists a profile (bkj)j,k∈{1,...,K},j<k where bkj ≤ β t̄j for each pair (j, k) with the inequality
being strict if j < k − 1 such that the following holds: The scheme q is implementable
if and only if βtk ≤ bkj for any j, k ∈ {1, . . . , K} such that j < k.

Proof. Define p∗ as in Lemma 7. As
∑T

t=1 q
t
0 = 0, ICt

0k is undefined for every k ∈
{1, . . . , K} and t ∈ {1, . . . , T}. Since t̄m ≤ t̄m+1 for m ∈ {1, . . . , K−1}, the conditions
of Lemma 7 hold, and hence q is implementable if and only if p∗ implements q. Fix
j, k ∈ {1, . . . , K} such that j < k. The definition of p∗ implies that

p∗j − p∗k =
k−1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
=

k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] .

Thus, (p∗, q) satisfies ICkj if and only if

p∗j − p∗k =
k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] ≥ βtk [v(θj; θj+1)− v(θk)] .

This is equivalent to

βtk ≤
k−1∑
m=j

v(θm)− v(θm+1; θm)

v(θj; θj+1)− v(θk)
β t̄m . (37)

Letting bkj be the right-hand side of (37), Lemma 7 and (37) together imply that q

is implementable if and only if βtk ≤ bkj for any j, k ∈ {1, . . . , K} such that j < k.

12



Lastly, to see that bkj ≤ β t̄j , note that

k−1∑
m=j

v(θm)− v(θm+1; θm) = v(θj)− v(θk)−
k−1∑
m=j

[v(θm+1; θm)− v(θm+1)]

≤ v(θj)− v(θk)− [v(θk; θk−1)− v(θk)] (by Claim 1′)
(38)

≤ v(θj; θj+1)− v(θk), (by Lemma 3′)

which implies that bkj is a convex combination of 0, β t̄j , β t̄j+1 , . . . , and β t̄k−1 , hence
bkj ≤ maxj≤m≤k−1 β

t̄m = β t̄j . Moreover, the inequality in (38) is strict when j < k− 1.
In this case, the weight on 0 in the convex combination for bkj is strictly positive.
That is, the sum of coefficients of the β’s on the right-hand side of (37) is strictly less
than 1. Thus, bkj < β t̄k holds when j < k − 1.

We show how Theorem 5 implies Theorem 4 in the two-type case. Consider the
setup and the scheme q in Theorem 4. As q is regular, we have qhk > 0 only if k ∈ {1, 2}.
Moreover, if qh2 > 0, then β t̄1 = β. When qh2 > 0, with the assumption that uh is linear,
we can calculate b21 as in the right-hand side of (37) to get b21 = β. Thus, if we use
Theorem 5, it is sufficient to focus on bkj for any j, k ∈ {2, . . . , K} such that qhk = 0

and j < k. Denote the set of such bkj by B. By Theorem 5, q is implementable if and
only if bkj ≥ 1 for every bkj ∈ B. Note that qhK = 0 and qlK−2 = 0 by the regularity
of q. Thus, β t̄K−2 = β and bK,K−2 ∈ B. Let β be the smallest value for β such that
if β = β, then bkj ≥ 1 for every bkj ∈ B. Since bK,K−2 < β t̄K−2 = β by Theorem 5,
we have β > 1. Moreover, β is well-defined since every bkj ∈ B is continuous in β. If
β < β, we have bkj < 1 for some bkj ∈ B. That is, q is not implementable if β < β. If
β ≥ β, then bkj ≥ 1 for every bkj ∈ B since bkj is weakly increasing in β. That is, q is
implementable if β ≥ β. We have shown that q is implementable if and only if β ≥ β.
Thus, Theorem 4 is true.

The intuition of Theorem 5 is similar to that of Theorem 4 in the two-type case:
Customer types in different priority passes need to be sufficiently different for the
scheme to be implementable. Towards a straightforward intuition, consider a special
case of Theorem 5 where u is linear, K = 3, and the scheme in consideration has m

customers in each priority pass. Given p∗ as defined in Lemma 7, by the proof of
Theorem 2, (p∗, q) satisfies IC31 if and only if

β t̄1

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p1−p2

+
β t̄2

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p2−p3

≥ βt3

2
(4m− 1)︸ ︷︷ ︸

Lower bound of
p1−p3

. (39)
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Note that (39) does not hold if both β t̄1 and β t̄2 are too close to βt3 ; but if β t̄1 is
sufficiently larger than βt3 , then IC31 holds. Intuitively, a larger difference in different
types allows for a greater price difference between two priority passes, giving customers
in the lower-priority less incentive to upgrade.

In the above argument, β t̄2 could even be the same as βt3 for IC31 to hold, as long
as β t̄1 is taken to be sufficiently high. This, however, is a consequence of the linearity
assumption. We emphasize that, in general, for a scheme to be implementable in the
concave multiplicative multi-type case, Theorem 5 implies that customer types in
different priority passes, including those in passes whose priorities are close, need to
be sufficiently different. For example, in the strictly concave multiplicative multi-type
case, the existence of an implementable scheme where every customer buys some
priority pass implies the existence of a large enough “gap” between two adjacent
customer types in the queue, as illustrated below by the following result.

Proposition 13 (Two-pass implementation in strictly concave multiplicative multi-
type case). Fix the strictly concave multiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1)

such that K = 2 and N > 2. Fix a scheme q such that vT (θ2) ≥ 0 and every customer
buys some priority pass. The scheme q is implementable if and only if t2 = t̄1 + 1 and

β t̄1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
. (40)

Moreover, the right-hand side of (40) is strictly larger than 1.

Proof. Assume that q is implementable. Fix t ∈ {1, . . . , T}. Because N > 2 and every
customer buys some priority pass, by Theorem 1, qt1 > 0 implies qt2 = 0, which implies
t̄1 6= t2. Moreover, Proposition 12 implies t̄1 ≤ t2. Lastly, since every customer buys
some priority pass, we have t̄1 = t2 − 1.

Define p∗ as in Lemma 7. Since K = 2 and every customer buys some priority pass,
if t̄1 = t2 − 1, then the conditions of Lemma 7 hold. Therefore, by the same lemma, q
is implementable if and only if (p∗, q) satisfies IC21. By part (b) of Corollary 1, IC21

is equivalent to ICt2
21. Thus, given the multiplicative setup, that (p∗, q) satisfies IC21 is

equivalent to
β t̄1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
.

Therefore, q is implementable if and only if t2 = t̄1 +1 and (40) holds. Lastly, because
every customer buys some priority pass and N > 2, by Lemma 3′, the right-hand side
of (40) is strictly larger than 1.

We show how Proposition 13 generalizes Proposition 4 in the two-type case. To
see this, consider the setup and the scheme q in Proposition 4. The condition K = 2
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is necessary for q to be implementable since the proof of Theorem 1 implies that when
every base utility function is strictly concave, no customer type can be in multiple
priority passes. Assume K = 2. Note that t2 = t̄1 + 1 is equivalent to qh1 = Nh

and ql2 = N l. Thus, when t2 = t̄1 + 1 holds, we have β t̄1 = β and βt2 = 1. Define
β = v(θ1;θ2)−v(θ2)

v(θ1)−v(θ2;θ1)
as in Proposition 4. By Proposition 13, q is implementable if and only

if qh1 = Nh, ql2 = N l, and β ≥ β. Moreover, β > 1. Thus, Proposition 13 generalizes
Proposition 4.

Proposition 13 implies that a multi-pass scheme may not be implementable when
adjacent customer types are very close to each other even if the range of customer
types (i.e., β1 − βT ) is very large.

In Theorem 5 and Proposition 13, we have shown that customer types in different
priorities, including those priorities that are close to each other, need to be sufficiently
different in an implementable scheme. However, when the adjacent customer types
are all close to each other, one may wonder whether “gaps” between customer types
in different passes can be created when some types do not buy any pass. For example,
suppose there are five customer types in the strictly concave multi-type case, with
each customer type being very close to the nearest customer types. Consider the
three-pass scheme where the first, the third, and the fifth types respectively buy
the three passes, and the second and the fourth types do not buy any pass. In this
scheme, there is enough difference between the customer types remaining in the queue.
Proposition 12, however, implies that this particular “gap” creation is not possible
in an implementable scheme, and there are restrictions to customer exclusions. We
characterize some of these restrictions in the result below, which is an immediate
implication of Proposition 12.

Corollary 2 (Limits to “gap” creation). Fix the concave multi-type case ((N t)Tt=1, K, (ut)Tt=1).
Let q be an implementable scheme. The following hold.

(a) t1 = 1.

(b) For every j ∈ {1, . . . , K − 2}, we have t̄j = tj+1 or t̄j + 1 = tj+1.

(c) For every j ∈ {1, . . . , K − 1} and t ∈ {tj + 1, . . . , t̄j − 1}, we have qtj = N t.

Part (a) shows that some customer of the highest customer type 1 must buy the
first priority pass. Part (b) means that, for every j ∈ {1, . . . , K − 1}, there is no gap
between t̄j and tj+1. Part (c) implies that, within a pass except for the lowest-priority
pass, customer types in a pass must be “connected”: If a customer’s type is strictly
between the highest and the lowest customer type in a pass whose priority is not the
lowest, then this customer must be in that priority pass. Therefore, Corollary 2 shows
that, if there is any “gap” created such that some customers do not buy any priority
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pass, then their types must be between those in the last two priority passes or lower
than the lowest type in the last priority pass.

B.3 Queue Size and Implementability
The reader may again notice that, with the customer types fixed, (39) also holds
if m is sufficiently large. In the linear multiplicative two-type case, Proposition 5
shows that a scheme is implementable if there are sufficiently many customers in each
priority pass, and Proposition 6 shows that a scheme is not implementable if there are
too few customers in each priority pass. The two results have generalizations to the
general multi-type case. Before we introduce them, we make a definition that will be
useful in the generalized results. Given a scheme q in the multiplicative multi-type
case where K > 2, define R(q) = min1≤j≤K−2

βt̄j

βtj+2
, which gives the minimum relative

difference of customer types in passes that are two priorities apart.
Given the necessary conditions for implementability in the concave case, we make

the following assumption about schemes in some of the results that follow.

Definition 4 (Regular scheme). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
. A scheme q is called

regular if the following conditions hold:

(a) Every customer buys some priority pass and vT (θK) ≥ 0.

(b) The scheme q is monotone.

(c) Every customer type is in at most two priority passes.

Condition (a) is assumed so that there exists a price that makes IRK hold and that
we do not need to consider IRk or IC0k for k ∈ {1, . . . , K}; thus, we could focus on the
switching incentives between different priority passes. By Proposition 12, conditions
(b) and (c) are necessary for implementability in the concave multi-type case. Note
that when K > 2, R(q) > 1 holds for every regular scheme.

The following result formalizes the conjecture that sufficiently many customers
lead to implementability.

Proposition 14 (Sufficiently many customers for implementation). Fix the lin-
ear multiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1). Fix a regular scheme q. If∑T

t=1 q
t
k ≥

R(q)
2(R(q)−1)

for every k ∈ {1, . . . , K}, then q is implementable.

Proof. If K = 1, q is the unique regular scheme, and it is implemented by p = vT (θ1) ≥
0.
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Assume K > 1. By the regularity of q and Lemma 7, q is implementable if and
only if p∗ as defined in the lemma implements q. By the definition of p∗, for every
j ∈ {1, . . . , K − 1},

p∗j − p∗j+1 = β t̄j [v(θj)− v(θj+1; θj)] .

Thus, (p∗, q) satisfies ICj+1,j if and only if

β t̄j [v(θj)− v(θj+1; θj)] ≥ βtj+1 [v(θj; θj+1)− v(θj+1)] .

Because each base utility function is linear, by (16) and (17), v(θj) − v(θj+1; θj) =

v(θj; θj+1) − v(θj+1). Moreover, as β t̄j ≥ βtj+1 by the definition of regular schemes,
(p∗, q) satisfies ICj+1,j. Thus, q is implementable if K = 2.

Assume K > 2. Fix k ∈ {1, . . . , K − 2} and j ∈ {1, . . . , k}. It remains to show
that (p∗, q) satisfies ICk+2,j . Towards this end, note that (p∗, q) satisfies ICk+2,j if and
only if p∗j − p∗k+2 ≥ vtk+2(θj; θk+2)− vtk+2(θk+2). The definition of p∗ implies that this
condition is equivalent to

k+1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
−
[
vtk+2(θj; θk+2)− vtk+2(θk+2)

]
≥ 0. (41)

Because each base utility function is linear, we have

vt̄m(θm)− vt̄m(θm+1; θm) =
β t̄m

2
(uQm−1(q)+1 + uQm(q))−

β t̄m

2
(uQm(q) + uQm+1(q))

=
β t̄m

2
(qm + qm+1 − 1)

for each m ∈ {j, . . . , k + 1}, and

vtk+2(θj; θk+2)− vtk+2(θk+2) =
βtk+2

2
(uQj−1(q)+1 + uQj(q)+1)−

βtk+2

2
(uQk+1(q)+1 + uQk+2(q))

=
βtk+2

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
.

Therefore, (41) is equivalent to

k+1∑
m=j

β t̄m

2
(qm + qm+1 − 1)− βtk+2

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
≥ 0. (42)

As the scheme q in consideration is fixed, denote R(q) by R. By the definition of
R and the regularity of q, β t̄j ≥ · · · ≥ β t̄k ≥ Rβtk+2 > 1 and β t̄k+1 ≥ βtk+2 ≥ 1,
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which together imply that the left-hand side of (42) is increasing in qm for each
m ∈ {j, . . . , k + 2}. Thus, (42) is implied by the following inequality:

Rβtk+2

2
(k + 1− j)(2m− 1) +

βtk+2

2
(2m− 1)− βtk+2

2
[2m(k + 2− j)− 1] ≥ 0,

where m = min1≤k≤K

∑T
t=1 q

t
k. This inequality is equivalent to

R(k + 1− j)(2m− 1) + (2m− 1)− [2m(k + 2− j)− 1] ≥ 0. (43)

Now assume
∑T

t=1 q
t
k ≥ R

2(R−1)
for every k ∈ {1, . . . , K}, which is equivalent to

m ≥ R
2(R−1)

. We will show that q is implementable. Since m ≥ R
2(R−1)

, the left-hand
side of (43) is weakly decreasing in j. Therefore, the left-hand side of (43) weakly
decreases if we set j to k since j ≤ k by definition. Thus, in this case, (43) is implied
by

R(2m− 1) + (2m− 1)− (4m− 1) ≥ 0,

which holds for m ≥ R
2(R−1)

. We have shown that (p∗, q) satisfies ICk+2,j for any
j, k ∈ {1, . . . , K − 2} such that j ≤ k. Therefore, (p∗, q) satisfies ICkj for any
j, k ∈ {1, . . . , K} such that j < k. Thus, by Lemma 7, q is implementable.

Overall, for every K ≥ 1, q is implementable. This completes the proof.

We show how Proposition 14 generalizes Proposition 5 in the two-type case.
Consider the setup and the scheme q in Proposition 5. When K = 2, the same
reasoning as in the proof of Proposition 14 for this case shows that q is implementable.
When K > 2, we have R(q) = β, and Proposition 5 immediately follows from
Proposition 14.

As in Proposition 5, the proposition implies that any regular scheme is imple-
mentable if R(q) ≥ 2. Similar to Proposition 5, the lower bound of the number of
customers in each priority pass in Proposition 14 tends to infinity as R(q) approaches
1, and this bound is not stated as a tight bound. This observation motivates the
following proposition, which is analogous to Proposition 6.

Proposition 15 (Not implementable when customer types are too close). Fix the
linear multiplicative multi-type case

(
(N t)Tt=1, K, (ut)Tt=1

)
such that K > 2. Fix a

regular scheme q. If
∑T

t=1 q
t
k <

R(q)− 1
2

2(R(q)−1)
for every k ∈ {1, . . . , K}, then q is not

implementable.

Proof. Since the scheme in consideration is fixed, denote R(q) by R instead. Pick
k ∈ {1, . . . , K − 2} such that βt̄k

βtk+2
= R. By Lemma 7, q is implementable if and only

if p∗ as defined in the lemma implements q. By the definition of p∗, (p∗, q) does not
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satisfy ICk+2,k if and only if

vt̄k(θk)− vt̄k(θk+1; θk)︸ ︷︷ ︸
p∗k−p∗k+1

+ vt̄k+1(θk+1)− vt̄k+1(θk+2; θk+1)︸ ︷︷ ︸
p∗k+1−p∗k+2

−
[
vtk+2(θk; θk+2)− vtk+2(θk+2)

]
< 0.

By the linear multiplicative setup, the above inequality is equivalent to

β t̄k

2
(qk + qk+1 − 1) +

β t̄k+1

2
(qk+1 + qk+2 − 1)− βtk+2

2
(qk + 2qk+1 + qk+2 − 1) < 0. (44)

In the left-hand side of (44), the coefficient of β t̄k+1 is qk+1 + qk+2 − 1, which is
strictly positive; the coefficients of qk, qk+1 and qk+2 are βtk

2
− βtk+2

2
, βt̄k

2
+ βt̄k+1

2
−βtk+2 ,

and βt̄k+1

2
− βtk+2

2
, all of which are strictly positive by the regularity of q. Thus, if

we set qk, qk+1, and qk+2 to M̄ := max1≤k≤K

∑T
t=1 q

t
k and β t̄k+1 to β t̄k = Rβtk+2 , the

left-hand side of (44) weakly increases. Therefore, (44) is implied by

Rβtk+2

2
(2M̄ − 1) +

Rβtk+2

2
(2M̄ − 1)− βtk+2

2
(4M̄ − 1) < 0. (45)

Now assume that
∑T

t=1 q
t
k <

R− 1
2

2(R−1)
for every k ∈ {1, . . . , K}, which is equivalent to

M̄ <
R− 1

2

2(R−1)
. Note that (45) is equivalent to M̄ <

R− 1
2

2(R−1)
. Thus, (p∗, q) does not satisfy

ICk+2,k. Therefore, by Lemma 7, q is not implementable.

With the setup and the scheme q in Proposition 6, we have R(q) = β. Hence,
Proposition 15 generalizes Proposition 6 in the two-type case.

Now, we wish to explicitly analyze how the number of customers in each priority
pass required for implementability would vary when the number of customer types
and passes grow at the same rate, with adjacent customer types getting closer and
closer. For a clear picture of this relationship and tractability, the following result
considers the customer types that are equally distanced and the schemes in which
each priority pass has the same number of customers, and it shows that the required
number of customers grows towards infinity.

Proposition 16 (Type-separating schemes). Fix the linear multiplicative multi-type
case ((N t)Tt=1, K, (ut)Tt=1) such that K = T , N1 = N2 = · · · = NT = m for some m,
and there exists c > 1 such that βt = c− t−1

T−1
(c− 1) for t ∈ {1, . . . , T}. Consider the

scheme q such that qtt = m for every t ∈ {1, . . . , T}, i.e., every t-th type customer
is in the t-th priority pass. Assume vT (θK) ≥ 0. Let M(T ) = 1 if T = 1, 2 and
M(T ) = c

6(c−1)
(T − 1) + 1

6
if T ≥ 3. The scheme q is implementable if and only if

m ≥ M(T ).

19



Proof. As vT (θK) ≥ 0, q is implementable if T = 1. Assume T ≥ 2. Define p∗ as in
Lemma 7. Fix j, k ∈ {1, . . . , K} such that j < k. Note that by the definition of p∗,
(p∗, q) satisfies ICkj if and only if(

k−1∑
n=j

[
vt̄n(θn)− vt̄n(θn+1; θn)

])
−
[
vtk(θj; θk)− vtk(θk)

]
≥ 0. (46)

Note that (46) holds for j = k − 1. Thus, q is implementable if T = 2.
Assume that T ≥ 3. The following lemma is useful in deriving the condition for

(46) to hold for any j, k ∈ {1, . . . , K} such that j < k. Let ∆ = β1 − β2 = · · · =
βK−1 − βK = c−1

T−1
.

Lemma 8. Fix k ∈ {3, . . . , K}. We have that (46) holds for every j ∈ {1, . . . , k − 1}
if and only if m ≥ βk

6∆
+ 1

2
.

Proof of Lemma. We first derive an equivalent representation of (46), and then prove
the “only if” and “if” parts in turn.

Fix j ∈ {1, . . . , k − 1}. By the choice of customer types and q, for each n ∈
{j, . . . , k − 1}, β t̄n = βn = βk + (k − n)∆ and βtk = βk. Moreover, by the linearity of
the base utility functions and the choice of q, we have

vt̄n(θn)− vt̄n(θn+1; θl) =
βk + (k − n)∆

2
(2m− 1),

and
vtk(θj; θk)− vtk(θk) =

βk

2
[2(k − j)m− 1] .

Therefore, (46) is equivalent to(
k−1∑
n=j

βk + (k − n)∆

2
(2m− 1)

)
− βk

2
[2(k − j)m− 1] ≥ 0. (47)

Note that (47) holds for j = k − 1. If j = k − 2, an algebraic manipulation shows
that (47) is equivalent to m ≥ βk

6∆
+ 1

2
. Thus, the proof for the lemma is complete if

k = 3. For the rest of the proof, assume k > 3.

“Only if” Part This part is an immediate consequence of our analysis of the case
where j = k − 2 above.

20



“If” Part Assume m ≥ βk

6∆
+ 1

2
. Let

Π :=
βk + 2∆

2
(2m− 1) +

βk +∆

2
(2m− 1)− βk

2
(4m− 1),

which is the left-hand side of (47) when j = k − 2. Therefore, Π ≥ 0 holds since
m ≥ βk

6∆
+ 1

2
. Fix j ∈ {1, . . . , k − 3}. It remains to show that (47) holds for the

fixed j and k. With the definition of Π, an algebraic manipulation shows that (47) is
equivalent to

Π ≥ −
k−3∑
n=j

[
βk + (k − n)∆

2
(2m− 1)− βkm

]
= −

k−3∑
n=j

B(n), (48)

where B(n) := βk+(k−n)∆
2

(2m− 1)−βkm for every n ∈ {j, . . . , k− 3}. As Π ≥ 0 holds,
(48) holds if B(n) ≥ 0 for every n ∈ {j, . . . , k− 3}. Since B(n) is decreasing in n, it is
minimized at n = k − 3. The minimized value is βk+3∆

2
(2m− 1)− βkm. This value is

non-negative for m ≥ βk

6∆
+ 1

2
, which holds by assumption. Therefore, B(n) ≥ 0 holds

for every n ∈ {j, . . . , k − 3} and thus (48) holds. This completes the proof for the
case k > 3.

Overall, for every k ∈ {3, . . . , K}, (47) holds for j ∈ {1, . . . , k − 1} if and only if
m ≥ βk

6∆
+ 1

2
.

The proof for the lemma is complete.

By Lemma 8, conditional on T ≥ 3, (46) holds for any j, k ∈ {1, . . . , K} such that
j < k if and only if m ≥ βk

6∆
+ 1

2
. As βk is decreasing in k, we have that conditional

on T ≥ 3, (46) holds for any j, k ∈ {1, . . . , K} such that j < k if and only if

m ≥ β3

6∆
+

1

2
=

c− 2(c− 1)/(T − 1)

6(c− 1)/(T − 1)
+

1

2
=

c

6(c− 1)
(T − 1) +

1

6
.

To complete the proof, set M(T ) = 1 if T = 1, 2 and M(T ) = c
6(c−1)

(T − 1) + 1
6

if
T ≥ 3. Then q is implementable if and only if m ≥ M(T ).

The proof shows that, with the assumptions in Proposition 16, the scheme q

is implementable if and only if p∗ in Lemma 7, which binds IRK and every local
downward IC constraint, satisfies IC31. By the linearity of M(T ), we see that as the
customer types get closer and the number of priority passes gets larger, the required
number of customers for implementability grows towards infinity.

Note that in Proposition 16, a larger value of c, which means a wider range for
customer types, helps with implementability by lowering M(T ). However, there is a
limit to how much raising c can help: As M(T ) is bounded below by T/6, for fixed m

21



0 5 10 15 20 25 30 353
T (number of passes and types)

5

10

15

20

25

30

35

40

1

c 
(m

ea
su

re
 o

f r
an

ge
 o

f t
yp

es
)

M(T) = 1
M(T) = 2
M(T) = 3
M(T) = 4
M(T) = 5

Figure 6: Level curves of M(T ) with respect to T and c. For any parameter pair (T, c), if
the point (T, c) is to the left of the level curve for M(T ) = m, then the scheme as described
in Proposition 16 where each pass has m customers is implementable. If the point is to the
right of that level curve, then such a scheme is not implementable.

and c > 1, the scheme q is not implementable if T > 6m. In fact, this observation
that q is not implementable for large T is an implication of Proposition 15. To see
this, note that under Proposition 16’s setting, we have β1

β3 = c
c−2(c−1)/(T−1)

, and hence
R(q) ≤ c

c−2(c−1)/(T−1)
. While this upper bound on R(q) is increasing in c, it is bounded

above by T−1
T−3

, which converges to 1 as T tends to infinity. Thus, by Proposition 15,
with the number of customers in each priority pass and the range of the customer
types (c− 1) fixed, the scheme is not implementable if T is large enough.

Figure 6 illustrates the limitation of c’s role in helping with implementability. The
curves are integer-valued level curves of M(T ). For a parameter pair (T, c) and a level
curve with value m, if the point (T, c) is to the left of the curve, then the scheme
as described in Proposition 16 where every pass has m customers is implementable.
In contrast, if the point is to the right of the curve, then such a scheme is not
implementable. Given a level curve, we see that whenever the curve becomes vertical,
a larger c no longer helps with implementability, illustrating the limited role the
parameter c can play in a scheme’s implementability. This limitation of c immediately
leads to the following result about the special case with m = 1, which can be seen
as a similar result to Theorem 3 where each customer is in her own pass and no two
customers have the same type.

Corollary 3 (Implementation with one-customer passes). Consider the setting in
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Proposition 16, m = 1 in the scheme q. The scheme q is not implementable if K ≥ 6.

Hence, although a large range of customer types (c − 1) makes it possible to
implement the scheme where the number of customers equals the number of passes
and every pair of customers have different types when there are more than 2 priority
passes, this type of scheme is not implementable for however large c when there are 6
or more priority passes.

In summary, we have shown that to implement multi-pass schemes that are not
implementable under the single-type case, there need to be large enough gaps between
different customer types, and sometimes even a very large gap would not make a
scheme implementable. That is, with multiple types of utility functions, the difficulty
of implementation is abated yet could persist.
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