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In the Online Appendix, we have generalized and proven the results in Section 5 in
the more general multi-type case. For the reader’s convenience, in this Supplementary
Information, which consists of Appendix C, we present the proofs for results in
Section 5 without extending to the multi-type case.

C Proofs for Section 5
Appendix C.1 presents lemmas specific to the two-type case that can be used in proving
results in Section 5. The correspondence between these lemmas in the two-type case
and those in the multi-type case is listed in Table 2. The proofs for results in Section 5
that are specific to the two-type case appear from Appendix C.2 onward.

C.1 Lemmas for Two-Type Case
The following two results are analogous to Claim 1 and Lemma 3 in the single-type case.
Their proofs are omitted as they are perfectly analogous to those in the single-type
case.

Claim 1′′. Fix ((Nh, N l), K, (uh, ul)) and a scheme q. Fix k ∈ {1, . . . , K} and
t ∈ {h, l}. If j1, j2 ∈ {1, . . . , k − 1}, then

vt(θk; θj1) = vt(θk; θj2) > vt(θk).

If l1, l2 ∈ {0, k + 1, k + 2, . . . , K}, then

vt(θk) > vt(θk; θl1) = vt(θk; θl2).

Lemma 3′′. Fix ((Nh, N l), K, (uh, ul)) such that K > 1. Fix a scheme q and t ∈ {h, l}.
If ut is concave, then for any j, k ∈ {1, . . . , K} such that j < k,

vt(θj)− vt(θk; θj) ≤ vt(θj; θk)− vt(θk).
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Description Two-type Multi-type

Properties of pass-utility function Claim 1′′ Claim 1′

Implication of concave base utility function Lemma 3′′ Lemma 3′

Properties of type-specific constraints Lemma 9 Lemma 4
IC and IR characterization Corollary 4 Corollary 1
IC reduction Lemma 10 Lemma 5
IR reduction Lemma 11 Lemma 6
Implementability-checking price vector Lemma 12 Lemma 7

Table 2: Correspondence between lemmas in the two-type and multi-type cases.

The inequality is strict if ut is strictly concave and either maxm∈{j,k}(q
h
m + qlm) > 1 or

j + 1 < k.

The proofs for the results specific to the two-type case from Appendix C.2 onward
often use a result analogous to Lemma 2 in the single-type case, which we state in this
section as Lemma 12. This lemma in the two-type case itself uses a generalization of
the constraint reduction results in the single-type case (parts (a) and (b) of Lemma 1),
and we state them as Lemmas 10 and 11. Figure 7 provides a roadmap of how the
results in this subsection contribute to proofs from Appendix C.2 onward.

We first derive a result for the relation between type-specific IC and IR constraints.

Lemma 9 (Properties of type-specific constraints). Fix ((Nh, N l), K, (uh, ul)). Fix a
scheme q and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k.

(a) If qhj > 0 and qlj > 0, then ICl
jk implies ICh

jk.

(b) If qhk > 0 and qlk > 0, then ICh
kj implies ICl

kj.

(c) If qh0 > 0 and ql0 > 0, then ICh
0m implies ICl

0m.

(d) If qhm > 0 and qlm > 0, then IRl
m implies IRh

m.

Proof.

Proof for (a) If qhj > 0 and qlj > 0, then both ICh
jk and ICl

jk are defined. Note that
(p, q) satisfies ICl

jk if and only if

pj − pk ≤ vl(θj)− vl(θk; θj).

Since uh
n − uh

n+1 > ul
n − ul

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vh(θj) − vh(θk; θj) > vl(θj) − vl(θk; θj). Therefore, if (p, q)
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satisfies ICl
jk, then

pj − pk ≤ vl(θj)− vl(θk; θj) < vh(θj)− vh(θk; θj),

which means that (p, q) also satisfies ICh
jk.

Proof for (b) If qhk > 0 and qlk > 0, then both ICh
kj and ICl

kj are defined. Note that
(p, q) satisfies ICh

kj if and only if

pj − pk ≥ vh(θj; θk)− vh(θk).

Since uh
n − uh

n+1 > ul
n − ul

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vh(θj; θk) − vh(θk) > vl(θj; θk) − vl(θk). Therefore, if (p, q)
satisfies ICh

kj, then

pj − pk ≥ vh(θj; θk)− vh(θk) > vl(θj; θk)− vl(θk),

which means that (p, q) also satisfies ICl
kj.

Proof for (c) If qh0 > 0 and ql0 > 0, then both ICh
0m and ICl

0m are defined. Note
that (p, q) satisfies ICh

0m if and only if

vh(θm; θ0)− pm ≤ 0.

Since uh
n > ul

n holds for every n ∈ {1, . . . , N} by the definition of customer types, we
have vl(θm; θ0) < vh(θm; θ0). Therefore, if (p, q) satisfies ICh

0m, then

vl(θm; θ0)− pm < vh(θm; θ0)− pm ≤ 0,

which means that (p, q) also satisfies ICl
0m.

Proof for (d) If qhm > 0 and qlm > 0, then both IRh
m and IRl

m are defined. Note
that (p, q) satisfies IRl

m if and only if

vl(θm)− pm ≥ 0.

Since uh
n > ul

n holds for every n ∈ {1, . . . , N} by the definition of customer types, we
have vh(θm) > vl(θm). Therefore, if (p, q) satisfies IRl

m, then

vh(θm)− pm > vl(θm)− pm ≥ 0,
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which means that (p, q) also satisfies IRh
m.

Fix ((Nh, N l), K, (uh, ul)), a scheme q, and a price vector p. Fix j ∈ {0, . . . , K}
and k ∈ {1, . . . , K} such that j 6= k and qhj +qlj > 0. Define ICjk to be the type-specific
IC constraint in {ICt

jk : t ∈ {h, l}, qtj > 0} that implies every constraint in the set;
define IRk to be the type-specific IR constraint in {IRt

k : t ∈ {h, l}, qtk > 0} that implies
every constraint in the set. Lemma 9 ensures that ICjk and IRk are well-defined.

Lemma 9 immediately implies the following characterization of IC and IR con-
straints without the type superscripts. We define the following new notations for ease
of characterization: Given a scheme q, for each j ∈ {0, . . . , K} such that qhj + qlj > 0,
define t̄j = l if qlj > 0 and otherwise t̄j = h; define tj = h if qhj > 0 and otherwise
tj = l.

Corollary 4 (IC and IR characterization). Fix ((Nh, N l), K, (uh, ul)). Fix a scheme
q and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k.

(a) ICjk is equivalent to ICt̄j
jk.

(b) ICkj is equivalent to ICtk
kj.

(c) If qh0 + ql0 > 0, then IC0m is equivalent to ICt0
0m.

(d) IRm is equivalent to IRt̄m
m .

Proof. The result is immediate from Lemma 9.

The following two lemmas provide conditions under which the downward IC and
IR constraint reductions are valid in the two-type case.

Lemma 10 (IC Reduction with two types). Fix ((Nh, N l), K, (uh, ul)) such that
K > 1. Fix a scheme q and a price vector p. Fix j, k ∈ {1, . . . , K} such that j < k.
Assume that qlj = 0 or qlm > 0 for every m ∈ {j, . . . , k − 1}. If (p, q) satisfies ICm,m+1

for every m ∈ {j, . . . , k − 1}, then it satisfies ICjk.

Proof. Assume qlj = 0, which implies that ICjk is equivalent to ICh
jk. Assume that

(p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}. By ICm,m+1 and the definition of
customer types, we have

pm − pm+1 ≤ max
t∈{h,l}

[
vt(θm)− vt(θm+1; θm)

]
= vh(θm)− vh(θm+1; θm). (49)
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Corollary 4
IC and IR
characterization

Lemma 9
Properties of
type-specific
constraints

Lemma 10
IC reduction

Lemma 11
IR reduction

Lemma 12
Implementability-checking
price vector

Proposition 4
Two-pass implementation in strictly
concave multiplicative multi-type case

Theorem 4
Implementation in linear multiplicative
two-type case

Proposition 3
Monotonicity with two concave utility
functions

Proposition 5
Sufficiently many customers for imple-
mentation

Proposition 6
Not implementable when customer
types are too close

Figure 7: Roadmap of Appendix C.1.

Therefore, if (p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}, then

pj − pk =
k−1∑
m=j

(pm − pm+1)

≤
k−1∑
m=j

[
vh(θm)− vh(θm+1; θm)

]
(by (49))

= vh(θj)− vh(θk)−
k−1∑
m=j

[
vh(θm+1; θm)− vh(θm+1)

]
≤ vh(θj)− vh(θk)−

[
vh(θk; θk−1)− vh(θk)

]
(by Claim 1′′)

= vh(θj)− vh(θk; θj). (by Claim 1′′)

Thus, (p, q) satisfies ICjk.
Now assume qlm > 0 for every m ∈ {j, . . . , k − 1}, which by part (a) of Corollary 4

implies that ICjk is equivalent to ICl
jk and ICm,m+1 is equivalent to ICl

m,m+1. By
part (a) of Lemma 1, (p, q) satisfies ICjk.

Lemma 11 (IR Reduction with two types). Fix ((Nh, N l), K, (uh, ul)) such that
K > 1. Fix a scheme q and a price vector p. Assume qlj = 0 or qlk > 0 for some
j, k ∈ {1, . . . , K} such that j < k. If (p, q) satisfies ICjk and IRk, then it satisfies IRj.

Proof. Fix j, k ∈ {1, . . . , K} such that j < k. Assume that (p, q) satisfies ICjk and
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IRk. Assume qlj = 0, which implies that ICjk is equivalent to ICh
jk and IRj is equivalent

to IRh
j . As (p, q) satisfies IRk, by the definition of customer types, we have

vh(θk)− pk = max
t∈{h,l}

vt(θk)− pk ≥ 0. (50)

Therefore, we have

vh(θj)− pj ≥ vh(θk; θj)− pk (by ICh
jk)

≥ vh(θk)− pk (by Claim 1′′)
≥ 0. (by (50))

Thus, (p, q) satisfies IRj.
Now assume qlk > 0, which by part (d) of Corollary 4 implies that IRk is equivalent

to IRl
k. For every t ∈ {h, l} such that qtj > 0, we have

vt(θj)− pj ≥ vt(θk; θj)− pk (by ICt
jk)

≥ vl(θk; θj)− pk (by the definition of types)
≥ vl(θk)− pk (by Claim 1′′)
≥ 0. (by IRl

k)

Thus, (p, q) satisfies IRj.

The following result is analogous to Lemma 2 in the single-type case and provides
a price vector to check implementability. It turns out that when there is more than
one customer type, we no longer have the partial upward IC constraint reduction as
in part (c) of Lemma 2.

Lemma 12 (Two-type implementation). Fix ((Nh, N l), K, (uh, ul)) and a scheme q

such that vt̄K (θK) ≥ 0. Assume that for every j ∈ {1, . . . , K−1}, qlj > 0 implies qlj+1 >

0. Let p∗ = (p∗1, . . . , p
∗
K) be such that p∗K = vt̄K (θK) and p∗j−p∗j+1 = vt̄j(θj)−vt̄j(θj+1; θj)

for every j ∈ {1, . . . , K − 1}. The following statements are equivalent:

(a) q is implementable.

(b) p∗ implements q.

(c) For any j, k ∈ {1, . . . , K} such that j < k, (p∗, q) satisfies ICkj. If qh0 + ql0 > 0,
then (p∗, q) satisfies IC0j for every j ∈ {1, . . . , K}.

Proof. The following result, which generalizes Claim 3 to the two-type case, is useful
in showing that p∗ ∈ RK

+ . We omit its proof since it is analogous to the proof of
Claim 3.
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Claim 3′′. Fix ((Nh, N l), K, (uh, ul)) and a scheme q. For any j, k ∈ {1, . . . , K} such
that j < k and every t ∈ {h, l}, we have vt(θj) > vt(θk; θj).

By Claim 3′′, for every j ∈ {1, . . . , K − 1}, we have p∗j − p∗j+1 = vt̄j(θj) −
vt̄j(θj+1; θj) > 0. Moreover, p∗K = vt̄K (θK) ≥ 0 by assumption. Therefore, p∗ is
a valid price vector.

It is clear that statement (b) implies statement (a). The proof is complete if we
can show that statement (a) implies statement (c) and that statement (c) implies
statement (b).

Proof for (a)=⇒(c) Assume that q is implementable and let p be a price vector
that implements q. Fix j, k ∈ {1, . . . , K} such that j < k. By part (b) of Corollary 4,
(p, q) satisfies ICkj if and only if pj − pk ≥ vtk(θj; θk)− vtk(θk). Note that

pj − pk =
k−1∑
m=j

pm − pm+1

≤
k−1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
(by ICt̄m

m,m+1)

=
k−1∑
m=j

p∗m − p∗m+1 (by the definition of p∗)

= p∗j − p∗k. (51)

Thus, we have p∗j − p∗k ≥ pj − pk ≥ vtk(θj; θk)− vtk(θk), that is, (p∗, q) satisfies ICkj.
Assume qh0 + ql0 > 0. We can pick some t ∈ {h, l} such that qt0 > 0. Fix

j ∈ {1, . . . , K}. As (p, q) satisfies IC0j, it satisfies ICt
0j, which is equivalent to

vt(θj; θ0)− pj ≤ 0. (52)

In (51), if we set k = K, we have pj − p∗j ≤ pK − p∗K . Moreover, as (p, q) satisfies IRK ,
by the definition of p∗, we have pK ≤ vt̄K (θK) = p∗K . Therefore, pj ≤ p∗j holds and by
(52), we have vt(θj; θ0) − p∗j ≤ 0, that is, (p∗, q) satisfies ICt

0j. As the choice of t is
arbitrary as long as qt0 > 0, we have shown that (p∗, q) satisfies IC0j.

We have shown that statement (a) implies statement (c).

Proof for (c)=⇒(b) Fix j, k ∈ {1, . . . , K} such that j < k. By the definition of p∗,
part (a) of Corollary 4 implies that (p∗, q) binds ICm,m+1 for every m ∈ {j, . . . , k− 1}.
If qlj = 0, then the conditions of Lemma 10 hold. If qlj > 0, then by assumption qlm > 0

for every m ∈ {j, . . . , k − 1}, in which case the conditions of Lemma 10 again hold.
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By Lemma 10, (p∗, q) satisfies ICjk. Therefore, (p∗, q) satisfies every downward IC
constraint.

By the definition of p∗, part (d) of Corollary 4 implies that (p∗, q) binds IRK .
Fix k ∈ {1, . . . , K − 1}. If qlk > 0, then by assumption qlK > 0. Thus, qlk = 0 or
qlK > 0, that is, the conditions of Lemma 11 hold. As (p∗, q) satisfies ICkK and IRK ,
by Lemma 11, (p∗, q) satisfies IRk. Therefore, (p∗, q) satisfies every IR constraint.

Assume that (p∗, q) satisfies ICkj for any j, k ∈ {1, . . . , K} such that j < k. By
the definition of schemes, qh0 + ql0 ≥ 0 holds. If qh0 + ql0 = 0, then IC0j is undefined for
every j ∈ {1, . . . , K}. In this case, (p∗, q) satisfies every constraint in the set of IC
and IR constraints. For the case where qh0 + ql0 > 0, if additionally (p∗, q) satisfies IC0j

for every j ∈ {1, . . . , K}, then again (p∗, q) satisfies every constraint in the set of IC
and IR constraints. Overall, we have shown that p∗ implements q.

We have shown that statement (c) implies statement (b).

C.2 Proof of Proposition 3
Proof. Assume that a scheme q is implementable and let p be a price vector that
implements q.

We first show that every customer is in at most two priority passes. Towards a
contradiction, assume that there exists t ∈ {h, l} and j, k,m ∈ {1, . . . , K} such that
j < k < m, qtj > 0, qtk > 0, and qtm > 0. Note that (p, q) satisfies ICt

mj if and only if

pj − pm ≥ vt(θj; θm)− vt(θm). (53)

However, because ut is concave, we have

pj − pm = pj − pk + pk − pm

≤ vt(θj)− vt(θk; θj) + vt(θk)− vt(θm; θk) (by ICt
jk and ICt

km)
< vt(θj)− vt(θm; θj) (by Claim 1′′)
≤ vt(θj; θm)− vt(θm), (by Lemma 3′′)

which contradicts (53). Therefore, each customer type is in at most two priority
passes.

We next show monotonicity. For this purpose, fix j ∈ {1, . . . , K} such that qlj > 0.
We first show that qhk = 0 for every k ∈ {j + 1, . . . , K}. Towards a contradiction,
assume that qhk > 0 for some k ∈ {j + 1, . . . , K}. As qlj > 0 and qhk > 0, both ICl

jk

and ICh
kj are defined. Note that

vl(θj)− vl(θk; θj) < vh(θj)− vh(θk; θj) (by the definition of types)
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≤ vh(θj; θk)− vh(θk). (by Lemma 3′′) (54)

However, that (p, q) satisfies both ICl
jk and ICh

kj implies that

vh(θj; θk)− vh(θk) ≤ pj − pk ≤ vl(θj)− vl(θk; θj),

which contradicts (54). Therefore, for every j ∈ {1, . . . , K}, qlj > 0 implies qhk = 0 for
every k ∈ {j + 1, . . . , K}.

We next show that qh0 = 0. Towards a contradiction, assume qh0 > 0. Fix t ∈ {h, l}
such that qtK−1 > 0. That (p, q) satisfies ICt

K−1,K implies

vt(θK−1)− pK−1 ≥ vt(θK ; θK−1)− pK .

Because ut is concave, by Lemma 3′′,

vt(θK−1; θK)− vt(θK−1) ≥ vt(θK)− vt(θK ; θK−1).

Adding up the two inequalities above, we obtain

vt(θK−1; θK)− pK−1 ≥ vt(θK)− pK . (55)

If j = K, then qlK > 0 by the definition of j. If j < K, because qlj > 0, by our finding
so far, the implementability of q implies qhK = 0 and hence qlK > 0. In both cases, IRl

K

is defined. Note that we have

vh(θK−1; θ0)− pK−1 = vh(θK−1; θK)− pK−1 (by Claim 1′′)
≥ vt(θK−1; θK)− pK−1 (by the definition of types)
≥ vt(θK)− pK (by (55))
≥ vl(θK)− pK (by the definition of types)
≥ 0. (by IRl

K) (56)

In (56), if t = l, then vh(θK−1; θK) − pK−1 > vt(θK−1; θK) − pK−1; if t = h, then
vt(θK) − pK > vl(θK) − pK . Thus, at least one of the inequalities in (56) must be
strict, which means that if qh0 > 0, (p, q) would not satisfy ICh

0,K−1, a contradiction.
Therefore, qh0 = 0.

We have shown that q is monotone.
This completes the proof.
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C.3 Proof of Theorem 4
Since q is regular, the conditions of Lemma 12 hold. By the lemma, q is implementable
if and only if p∗ implements q. Fix j, k ∈ {1, . . . , K} such that j < k. That (p∗, q)

satisfies ICkj is equivalent to vtk(θj; θj+1)− vtk(θk) ≤ p∗j − p∗k. We have

p∗j − p∗k =
k−1∑
m=j

p∗m − p∗m+1

=
k−1∑
m=j

vt̄m(θm)− vt̄m(θm+1; θm) (by the definition of p∗)

=
k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] . (by the definition of multiplicative case)

Therefore, by the definition of the multiplicative case, (p∗, q) satisfies ICkj if and only
if

βtk [v(θj; θj+1)− v(θk)] ≤
k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] . (57)

If j = k − 1, then the regularity of q only admits the following two cases: t̄j = tk;
t̄j = h and tk = l. In the case where t̄j = tk, (57) is equivalent to

v(θk−1; θk)− v(θk) ≤ v(θk−1)− v(θk; θk−1), (58)

which holds since by (16) and (17) in the proof of Theorem 2, the linearity of u implies
that v(θk−1)− v(θk; θk−1) = v(θk−1; θk)− v(θk). In the case where t̄j = h and tk = l,
(57) is equivalent to

v(θk−1; θk)− v(θk) ≤ β [v(θk−1)− v(θk; θk−1)] ,

which is implied by (58) because v(θk−1)− v(θk; θk−1) > 0 holds by Claim 3′′ in the
proof of Lemma 12 and β ≥ 1 holds by definition. Therefore, if j = k − 1, then (p∗, q)

satisfies ICkj.
If j < k − 1 (which is possible since K > 2), by the regularity of q, t̄j = h and

tk = l. For this case, in (57), βtk = 1 and β t̄m = β for at least one m ∈ {j, . . . , k − 1}.
Therefore, in this case, ICkj in (57) can be equivalently written in the form β ≥ β

kj

for some β
kj

whose value is independent of β.
Let β = max{β

kj
: j, k ∈ {1, . . . , K}, j < k−1}. We observe that β is independent

of β. Note that (57) holds for any j, k ∈ {1, . . . , K} such that j < k if and only if
β ≥ β. Therefore, by Lemma 12, q is implementable if and only if β ≥ β.
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To see that β > 1, consider IC31 with respect to p∗, which is defined since K > 2.
The regularity of q implies that t̄1 = h and t3 = l. In this case, by (57), (p∗, q) satisfies
IC31 if and only if

v(θ1; θ2)− v(θ3) ≤ β [v(θ1)− v(θ2; θ1)] + β t̄2 [v(θ2)− v(θ3; θ2)] , (59)

which implies a lower bound on β. Because β ≥ β t̄2 and the right-hand side of (59) is
increasing in both β and β t̄2 , if (59) holds for some β ≤ 1, then (59) must hold for
β = β t̄2 = 1. Note that (59) with β = β t̄2 = 1 is equivalent to

v(θ1)− v(θ1; θ2) ≥ v(θ2; θ1)− v(θ2) + v(θ3; θ2)− v(θ3),

which does not hold because v(θ1) − v(θ1; θ2) ≤ v(θ2; θ1) − v(θ2) by Lemma 3′′ and
v(θ3; θ2)− v(θ3) > 0 by Claim 1′′. Thus, (59) does not hold for β ≤ 1. Therefore, the
lower bound on β implied by (59) must be strictly larger than 1, and hence β > 1.

C.4 Proof of Proposition 4
By the regularity of q and Lemma 12, we can check the implementability of q by p∗ as
defined in the lemma. If K > 2, then at least one customer type has customers in two
different priority passes, which together with the assumption that N > 2 makes q not
implementable by Theorem 1.

Assume instead K = 2. Because qh0 = ql0 = 0 by the regularity of q, if 0 < qtj < N t

for some j ∈ {1, 2} and t ∈ {h, l}, then qtk > 0 for some k ∈ {1, 2} such that k 6= j,
which together with the assumption that N > 2 makes q not implementable by
Theorem 1. Therefore, since K = 2, if q is implementable, then qj = Nh and qk = N l

for some j, k ∈ {1, 2} such that j 6= k. Moreover, by Proposition 3, we have q1 = Nh

and q2 = N l if q is implementable.
Now assume q1 = Nh and q2 = N l. By the regularity of q and Lemma 12, q is

implementable if and only if p∗ satisfies IC21, that is, p∗1−p∗2 ≥ vl(θ1; θ2)−vl(θ2). By the
definitions of multiplicative two-type case and p∗, we have p∗1−p∗2 = β [v(θ1)− v(θ2; θ1)]

and vl(θ1; θ2)− vl(θ2) = v(θ1; θ2)− v(θ2). Therefore, (p∗, q) satisfies IC21 if and only if

β [v(θ1)− v(θ2; θ1)] ≥ v(θ1; θ2)− v(θ2),

which holds if and only if β ≥ β, where β = v(θ1;θ2)−v(θ2)
v(θ1)−v(θ2;θ1)

. Thus, q is implementable
if and only if K = 2, q1 = Nh, q2 = N l, and β ≥ β. Lastly, because N > 2, by
Lemma 3′′, the strict concavity of u implies β > 1.
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C.5 Proof of Proposition 5
If K = 1, q is the unique regular scheme, and it is implemented by p = vl(θ1) ≥ 0.

Assume K > 1. By the regularity of q and Lemma 12, q is implementable if and
only if p∗ as defined in the lemma implements q. By the definition of p∗, (p∗, q) satisfies
ICj+1,j for j ∈ {1, . . . , K − 1} if and only if

β t̄j [v(θj)− v(θj+1; θj)] ≥ βtj+1 [v(θj; θj+1)− v(θj+1)] , (60)

where βh = β and βl = 1. Because u is linear, by (16) and (17), v(θj)− v(θj+1; θj) =

v(θj; θj+1)− v(θj+1). Moreover, as β t̄j ≥ βtj+1 by the regularity of q, (60) holds, that
is, (p∗, q) satisfies ICj+1,j. Thus, q is implementable if K = 2.

Assume K > 2. Fix k ∈ {1, . . . , K − 2} and j ∈ {1, . . . , k}. It remains to show
that (p∗, q) satisfies ICk+2,j. Towards this end, note that the regularity of q implies
that qhk+2 = 0. Therefore, by part (b) of Corollary 4, (p∗, q) satisfies ICk+2,j if and
only if p∗j − p∗k+2 ≥ v(θj; θk+2)− v(θk+2), which by the definition of p∗ is equivalent to

k+1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
− [v(θj; θk+2)− v(θk+2)] ≥ 0. (61)

Let d = u1 − u2. Because each base utility function is linear, we have

vt̄m(θm)− vt̄m(θm+1; θm) =
β t̄m

2
(uQm−1(q)+1 + uQm(q))−

β t̄m

2
(uQm(q) + uQm+1(q))

=
β t̄md

2
(qm + qm+1 − 1)

for each m ∈ {j, . . . , k + 1}, and

v(θj; θk+2)− v(θk+2) =
1

2
(uQj−1(q)+1 + uQj(q)+1)−

1

2
(uQk+1(q)+1 + uQk+2(q))

=
d

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
.

Therefore, (61) is equivalent to

k+1∑
m=j

β t̄m

2
(qm + qm+1 − 1)− 1

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
≥ 0. (62)

By the regularity of q, qlk = 0, and hence β t̄j = · · · = β t̄k = βh = β > 1 and
β t̄k+1 ≥ 1, which together imply that the left-hand side of (62) is increasing in qm for
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m ∈ {j, . . . , k + 2}. Thus, (62) is implied by the following inequality:

β

2
(k + 1− j)(2m− 1) +

1

2
(2m− 1)− 1

2
[2m(k + 2− j)− 1] ≥ 0,

where m = min1≤k≤K

(
qhk + qlk

)
. This inequality is equivalent to

β(k + 1− j)(2m− 1) + (2m− 1)− [2m(k + 2− j)− 1] ≥ 0. (63)

Now assume qhk + qlk ≥ β
2(β−1)

for every k ∈ {1, . . . , K}, which is equivalent to
m ≥ β

2(β−1)
. We will show that q is implementable. Since m ≥ β

2(β−1)
, the left-hand

side of (63) is weakly decreasing in j. Therefore, the left-hand side of (63) weakly
decreases if we set j = k since j ≤ k by definition. Thus, to show that (63) holds, it
suffices to show that it holds with j = k, that is, (63) is implied by:

β(2m− 1) + (2m− 1)− (4m− 1) ≥ 0,

which holds for m ≥ β
2(β−1)

. We have shown that (p∗, q) satisfies ICk+2,j for any
j, k ∈ {1, . . . , K − 2} such that j ≤ k. Therefore, (p∗, q) satisfies ICkj for any
j, k ∈ {1, . . . , K} such that j < k. Thus, by Lemma 12, q is implementable.

Overall, for every K ≥ 1, q is implementable. This completes the proof.

C.6 Proof of Proposition 6
Because K > 2, by the regularity of q, we can find k ∈ {1, . . . , K − 2} such that
qlk = qhk+2 = 0. By Lemma 12, q is implementable if and only if p∗ as defined in the
lemma implements q. By the definition of p∗ and the assumption that qlk = qhk+2 = 0,
(p∗, q) does not satisfy ICk+2,k if and only if

β [v(θk)− v(θk+1; θk)]︸ ︷︷ ︸
p∗k−p∗k+1

+ β t̄k+1 [v(θk+1)− v(θk+2; θk+1)]︸ ︷︷ ︸
p∗k+1−p∗k+2

− [v(θk; θk+2)− v(θk+2)] < 0,

where we let βh = β and βl = 1. By the linear multiplicative setup, the above
inequality is equivalent to

β

2
(qk + qk+1 − 1) +

β t̄k+1

2
(qk+1 + qk+2 − 1)− 1

2
(qk + 2qk+1 + qk+2 − 1) < 0. (64)

The left-hand side of (64) is increasing in β t̄k+1 , qk, qk+1, and qk+2. Specifically, if we
set qk, qk+1, and qk+2 to M̄ := max1≤k≤K

(
qhk + qlk

)
and β t̄k+1 to β, the left-hand side
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of (64) weakly increases. Therefore, (64) is implied by

β

2
(2M̄ − 1) +

β

2
(2M̄ − 1)− 1

2
(4M̄ − 1) < 0. (65)

Now assume qhk + qlk <
β− 1

2

2(β−1)
for every k ∈ {1, . . . , K}, which is equivalent to

M̄ <
β− 1

2

2(β−1)
. Note that (65) is equivalent to M̄ <

β− 1
2

2(β−1)
. Thus, (p∗, q) does not satisfy

ICk+2,k. Therefore, by Lemma 12, q is not implementable.
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