Supplementary Information

Flash Pass

Yuichiro Kamada^{[†](#page-0-0)} Zihao Zhou^{[‡](#page-0-1)} First version: November 4, 2022 This version: January 7, 2025

In the Online Appendix, we have generalized and proven the results in Section [5](#page--1-0) in the more general multi-type case. For the reader's convenience, in this Supplementary Information, which consists of Appendix [C,](#page-0-2) we present the proofs for results in Section [5](#page--1-0) without extending to the multi-type case.

C Proofs for Section [5](#page--1-0)

Appendix [C.1](#page-0-3) presents lemmas specific to the two-type case that can be used in proving results in Section [5.](#page--1-0) The correspondence between these lemmas in the two-type case and those in the multi-type case is listed in Table [2.](#page-1-0) The proofs for results in Section [5](#page--1-0) that are specific to the two-type case appear from Appendix [C.2](#page-7-0) onward.

C.1 Lemmas for Two-Type Case

The following two results are analogous to Claim [1](#page--1-1) and Lemma [3](#page--1-2) in the single-type case. Their proofs are omitted as they are perfectly analogous to those in the single-type case.

Claim 1''. Fix $((N^h, N^l), K, (u^h, u^l))$ and a scheme q. Fix $k \in \{1, ..., K\}$ and $t \in \{h, l\}$ *. If* $j_1, j_2 \in \{1, ..., k-1\}$ *, then*

$$
v^t(\theta_k; \theta_{j_1}) = v^t(\theta_k; \theta_{j_2}) > v^t(\theta_k).
$$

If $l_1, l_2 \in \{0, k+1, k+2, \ldots, K\}$, then

$$
v^t(\theta_k) > v^t(\theta_k; \theta_{l_1}) = v^t(\theta_k; \theta_{l_2}).
$$

Lemma 3ⁿ. Fix $((N^h, N^l), K, (u^h, u^l))$ such that $K > 1$. Fix a scheme q and $t \in \{h, l\}$. *If* u^t *is concave, then for any* $j, k \in \{1, ..., K\}$ *such that* $j < k$ *,*

$$
v^t(\theta_j) - v^t(\theta_k; \theta_j) \le v^t(\theta_j; \theta_k) - v^t(\theta_k).
$$

[†]Yuichiro Kamada: Haas School of Business, University of California, Berkeley and University of Tokyo, Faculty of Economics, y.cam.24@gmail.com

[‡]Zihao Zhou: UCL School of Management, University College London, zihao.zhou@ucl.ac.uk

Description	Two-type	Multi-type
Properties of pass-utility function	Claim $1''$	Claim $1'$
Implication of concave base utility function	Lemma $3''$	Lemma $3'$
Properties of type-specific constraints	Lemma 9	Lemma 4
IC and IR characterization	Corollary 4	Corollary 1
IC reduction	Lemma 10	Lemma 5
IR reduction	Lemma 11	Lemma 6
Implementability-checking price vector	Lemma 12	- Lemma 7

Table 2: Correspondence between lemmas in the two-type and multi-type cases.

The inequality is strict if u^t *is strictly concave and either* $\max_{m \in \{j,k\}} (q_m^h + q_m^l) > 1$ *or* $j + 1 < k$.

The proofs for the results specific to the two-type case from Appendix [C.2](#page-7-0) onward often use a result analogous to Lemma [2](#page--1-10) in the single-type case, which we state in this section as Lemma [12.](#page-5-0) This lemma in the two-type case itself uses a generalization of the constraint reduction results in the single-type case (parts [\(a\)](#page--1-11) and [\(b\)](#page--1-12) of Lemma [1\)](#page--1-13), and we state them as Lemmas [10](#page-3-1) and [11.](#page-4-0) Figure [7](#page-4-1) provides a roadmap of how the results in this subsection contribute to proofs from Appendix [C.2](#page-7-0) onward.

We first derive a result for the relation between type-specific IC and IR constraints.

Lemma 9 (Properties of type-specific constraints). *Fix* $((N^h, N^l), K, (u^h, u^l))$ *. Fix a scheme* q and a price vector p. Fix j, k, $m \in \{1, ..., K\}$ such that $j < k$.

- (a) If $q_j^h > 0$ and $q_j^l > 0$, then IC_{jk}^l implies IC_{jk}^h .
- (b) If $q_k^h > 0$ and $q_k^l > 0$, then IC_{kj}^h *implies* IC_{kj}^l .
- (c) If $q_0^h > 0$ and $q_0^l > 0$, then IC_{0m}^h implies IC_{0m}^l .
- (d) If $q_m^h > 0$ and $q_m^l > 0$, then IR_m^l implies IR_m^h .

Proof.

Proof for [\(a\)](#page-1-2) If $q_j^h > 0$ and $q_j^l > 0$, then both IC_{jk}^h and IC_{jk}^l are defined. Note that (p, q) satisfies IC_{jk}^{l} if and only if

$$
p_j - p_k \le v^l(\theta_j) - v^l(\theta_k; \theta_j).
$$

Since $u_n^h - u_{n+1}^h > u_n^l - u_{n+1}^l$ holds for every $n \in \{1, ..., N-1\}$ by the definition of customer types, we have $v^h(\theta_j) - v^h(\theta_k; \theta_j) > v^l(\theta_j) - v^l(\theta_k; \theta_j)$. Therefore, if (p, q)

satisfies IC_{jk}^l , then

$$
p_j - p_k \le v^l(\theta_j) - v^l(\theta_k; \theta_j) < v^h(\theta_j) - v^h(\theta_k; \theta_j),
$$

which means that (p, q) also satisfies IC_{jk}^h .

Proof for [\(b\)](#page-1-3) If $q_k^h > 0$ and $q_k^l > 0$, then both IC_{kj}^h and IC_{kj}^l are defined. Note that (p, q) satisfies IC_{kj}^h if and only if

$$
p_j - p_k \ge v^h(\theta_j; \theta_k) - v^h(\theta_k).
$$

Since $u_n^h - u_{n+1}^h > u_n^l - u_{n+1}^l$ holds for every $n \in \{1, ..., N-1\}$ by the definition of customer types, we have $v^h(\theta_j;\theta_k) - v^h(\theta_k) > v^l(\theta_j;\theta_k) - v^l(\theta_k)$. Therefore, if (p,q) satisfies IC_{kj}^h , then

$$
p_j - p_k \ge v^h(\theta_j; \theta_k) - v^h(\theta_k) > v^l(\theta_j; \theta_k) - v^l(\theta_k),
$$

which means that (p, q) also satisfies IC_{kj}^l .

Proof for [\(c\)](#page-1-4) If $q_0^h > 0$ and $q_0^l > 0$, then both IC_{0m}^h and IC_{0m}^l are defined. Note that (p, q) satisfies IC_{0m}^h if and only if

$$
v^h(\theta_m; \theta_0) - p_m \le 0.
$$

Since $u_n^h > u_n^l$ holds for every $n \in \{1, ..., N\}$ by the definition of customer types, we have $v^l(\theta_m; \theta_0) < v^h(\theta_m; \theta_0)$. Therefore, if (p, q) satisfies IC_{0m}^h , then

$$
v^{l}(\theta_m; \theta_0) - p_m < v^{h}(\theta_m; \theta_0) - p_m \le 0,
$$

which means that (p, q) also satisfies IC^l_{0m} .

Proof for [\(d\)](#page-1-5) If $q_m^h > 0$ and $q_m^l > 0$, then both IR_m^h and IR_m^l are defined. Note that (p, q) satisfies IR_m^l if and only if

$$
v^{l}(\theta_{m}) - p_{m} \geq 0.
$$

Since $u_n^h > u_n^l$ holds for every $n \in \{1, ..., N\}$ by the definition of customer types, we have $v^h(\theta_m) > v^l(\theta_m)$. Therefore, if (p, q) satisfies IR_m^l , then

$$
v^{h}(\theta_{m}) - p_{m} > v^{l}(\theta_{m}) - p_{m} \ge 0,
$$

which means that (p, q) also satisfies IR_m^h .

Fix $((N^h, N^l), K, (u^h, u^l))$, a scheme q, and a price vector p. Fix $j \in \{0, ..., K\}$ and $k \in \{1, \ldots, K\}$ such that $j \neq k$ and $q_j^h + q_j^l > 0$. Define IC_{jk} to be the type-specific IC constraint in $\{IC_{jk}^t : t \in \{h, l\}, q_j^t > 0\}$ that implies every constraint in the set; define IR_k to be the type-specific IR constraint in $\{\text{IR}_k^t : t \in \{h, l\}, q_k^t > 0\}$ that implies every constraint in the set. Lemma [9](#page-1-1) ensures that IC_{jk} and IR_k are well-defined.

Lemma [9](#page-1-1) immediately implies the following characterization of IC and IR constraints without the type superscripts. We define the following new notations for ease of characterization: Given a scheme q, for each $j \in \{0, \ldots, K\}$ such that $q_j^h + q_j^l > 0$, define $\bar{t}_j = l$ if $q_j^l > 0$ and otherwise $\bar{t}_j = h$; define $\underline{t}_j = h$ if $q_j^h > 0$ and otherwise $t_i = l$.

Corollary 4 (IC and IR characterization). Fix $((N^h, N^l), K, (u^h, u^l))$. Fix a scheme q and a price vector p. Fix j, k, $m \in \{1, ..., K\}$ such that $j < k$.

- (a) IC_{jk} is equivalent to $IC_{jk}^{\bar{t}_j}$.
- (b) IC_{kj} *is equivalent to* $IC_{kj}^{t_k}$.
- (c) If $q_0^h + q_0^l > 0$, then IC_{0m} *is equivalent to* $IC_{0m}^{\mathbf{t}_0}$.
- (*d*) IR_m *is equivalent to* $IR_m^{\bar{t}_m}$.

Proof. The result is immediate from Lemma [9.](#page-1-1)

The following two lemmas provide conditions under which the downward IC and IR constraint reductions are valid in the two-type case.

Lemma 10 (IC Reduction with two types). Fix $((N^h, N^l), K, (u^h, u^l))$ such that $K > 1$ *. Fix a scheme q and a price vector p. Fix* $j, k \in \{1, ..., K\}$ such that $j < k$ *. Assume that* $q_j^l = 0$ *or* $q_m^l > 0$ *for every* $m \in \{j, \ldots, k-1\}$ *. If* (p, q) *satisfies* $IC_{m,m+1}$ *for every* $m \in \{j, \ldots, k-1\}$ *, then it satisfies* IC_{jk} *.*

Proof. Assume $q_j^l = 0$, which implies that IC_{jk} is equivalent to IC_{jk}^h . Assume that (p, q) satisfies IC_{m,m+1} for every $m \in \{j, \ldots, k-1\}$. By IC_{m,m+1} and the definition of customer types, we have

$$
p_m - p_{m+1} \le \max_{t \in \{h,l\}} \left[v^t(\theta_m) - v^t(\theta_{m+1}; \theta_m) \right] = v^h(\theta_m) - v^h(\theta_{m+1}; \theta_m). \tag{49}
$$

 \Box

Figure 7: Roadmap of Appendix [C.1.](#page-0-3)

Therefore, if (p, q) satisfies $IC_{m,m+1}$ for every $m \in \{j, \ldots, k-1\}$, then

$$
p_j - p_k = \sum_{m=j}^{k-1} (p_m - p_{m+1})
$$

\n
$$
\leq \sum_{m=j}^{k-1} \left[v^h(\theta_m) - v^h(\theta_{m+1}; \theta_m) \right]
$$
 (by (49))
\n
$$
= v^h(\theta_j) - v^h(\theta_k) - \sum_{m=j}^{k-1} \left[v^h(\theta_{m+1}; \theta_m) - v^h(\theta_{m+1}) \right]
$$

\n
$$
\leq v^h(\theta_j) - v^h(\theta_k) - \left[v^h(\theta_k; \theta_{k-1}) - v^h(\theta_k) \right]
$$
 (by Claim 1")
\n
$$
= v^h(\theta_j) - v^h(\theta_k; \theta_j).
$$
 (by Claim 1")

Thus, (p, q) satisfies IC_{jk}.

Now assume $q_m^l > 0$ for every $m \in \{j, \ldots, k-1\}$, which by part [\(a\)](#page-3-3) of Corollary [4](#page-3-0) implies that IC_{jk} is equivalent to IC_{jk}^{l} and $\text{IC}_{m,m+1}^{l}$ is equivalent to $\text{IC}_{m,m+1}^{l}$. By part [\(a\)](#page--1-11) of Lemma [1,](#page--1-13) (p, q) satisfies IC_{jk}. \Box

Lemma 11 (IR Reduction with two types). Fix $((N^h, N^l), K, (u^h, u^l))$ such that $K > 1$ *. Fix a scheme q and a price vector p. Assume* $q_j^l = 0$ *or* $q_k^l > 0$ *for some* $j, k \in \{1, \ldots, K\}$ such that $j < k$. If (p, q) satisfies IC_{jk} and IR_k , then it satisfies IR_j . *Proof.* Fix $j, k \in \{1, ..., K\}$ such that $j < k$. Assume that (p, q) satisfies IC_{jk} and

IR_k. Assume $q_j^l = 0$, which implies that IC_{jk} is equivalent to IC^h_{jk} and IR_j is equivalent to IR^h, As (p, q) satisfies IR_k, by the definition of customer types, we have

$$
v^{h}(\theta_{k}) - p_{k} = \max_{t \in \{h, l\}} v^{t}(\theta_{k}) - p_{k} \ge 0.
$$
 (50)

 \Box

Therefore, we have

$$
v^{h}(\theta_{j}) - p_{j} \ge v^{h}(\theta_{k}; \theta_{j}) - p_{k}
$$
 (by IC^h_{jk})
\n
$$
\ge v^{h}(\theta_{k}) - p_{k}
$$
 (by Claim 1")
\n
$$
\ge 0.
$$
 (by (50))

Thus, (p, q) satisfies IR_j .

Now assume $q_k^l > 0$, which by part [\(d\)](#page-3-4) of Corollary [4](#page-3-0) implies that IR_k is equivalent to IR^l_k. For every $t \in \{h, l\}$ such that $q_j^t > 0$, we have

$$
v^{t}(\theta_{j}) - p_{j} \ge v^{t}(\theta_{k}; \theta_{j}) - p_{k}
$$
 (by IC^t_{jk})
\n
$$
\ge v^{l}(\theta_{k}; \theta_{j}) - p_{k}
$$
 (by the definition of types)
\n
$$
\ge v^{l}(\theta_{k}) - p_{k}
$$
 (by Claim 1")
\n
$$
\ge 0.
$$
 (by IR^l_k)

Thus, (p, q) satisfies IR_j .

The following result is analogous to Lemma [2](#page--1-10) in the single-type case and provides a price vector to check implementability. It turns out that when there is more than one customer type, we no longer have the partial upward IC constraint reduction as in part [\(c\)](#page--1-19) of Lemma [2.](#page--1-10)

Lemma 12 (Two-type implementation). Fix $((N^h, N^l), K, (u^h, u^l))$ and a scheme q such that $v^{\bar{t}_K}(\theta_K) \geq 0$. Assume that for every $j \in \{1, \ldots, K-1\}$, $q_j^l > 0$ implies $q_{j+1}^l >$ 0*.* Let $p^* = (p_1^*, \ldots, p_K^*)$ be such that $p_K^* = v^{\bar{t}_K}(\theta_K)$ and $p_j^* - p_{j+1}^* = v^{\bar{t}_j}(\theta_j) - v^{\bar{t}_j}(\theta_{j+1}; \theta_j)$ *for every* $j \in \{1, \ldots, K - 1\}$ *. The following statements are equivalent:*

- *(a)* q *is implementable.*
- (b) p^* *implements* q *.*
- *(c)* For any $j, k \in \{1, ..., K\}$ such that $j < k$, (p^*, q) satisfies IC_{kj} . If $q_0^h + q_0^l > 0$, *then* (p^*, q) *satisfies* IC_{0j} *for every* $j \in \{1, \ldots, K\}.$

Proof. The following result, which generalizes Claim [3](#page--1-20) to the two-type case, is useful in showing that $p^* \in \mathbb{R}_+^K$. We omit its proof since it is analogous to the proof of Claim [3.](#page--1-20)

Claim [3](#page--1-20)''. Fix $((N^h, N^l), K, (u^h, u^l))$ and a scheme q. For any $j, k \in \{1, ..., K\}$ such *that* $j < k$ *and every* $t \in \{h, l\}$ *, we have* $v^t(\theta_j) > v^t(\theta_k; \theta_j)$ *.*

By Claim [3](#page-6-0)'', for every $j \in \{1, ..., K-1\}$, we have $p_j^* - p_{j+1}^* = v^{t_j}(\theta_j)$ $v^{\bar{t}_j}(\theta_{j+1};\theta_j) > 0$. Moreover, $p_K^* = v^{\bar{t}_K}(\theta_K) \geq 0$ by assumption. Therefore, p^* is a valid price vector.

It is clear that statement [\(b\)](#page-5-2) implies statement [\(a\).](#page-5-3) The proof is complete if we can show that statement [\(a\)](#page-5-3) implies statement [\(c\)](#page-5-4) and that statement (c) implies statement [\(b\).](#page-5-2)

Proof for $(a) \implies (c)$ $(a) \implies (c)$ $(a) \implies (c)$ Assume that q is implementable and let p be a price vector that implements q. Fix $j, k \in \{1, ..., K\}$ such that $j < k$. By part [\(b\)](#page-3-5) of Corollary [4,](#page-3-0) (p, q) satisfies IC_{kj} if and only if $p_j - p_k \geq v^{t_k}(\theta_j; \theta_k) - v^{t_k}(\theta_k)$. Note that

$$
p_j - p_k = \sum_{m=j}^{k-1} p_m - p_{m+1}
$$

\n
$$
\leq \sum_{m=j}^{k-1} \left[v^{\bar{t}_m}(\theta_m) - v^{\bar{t}_m}(\theta_{m+1}; \theta_m) \right]
$$
 (by IC ^{\bar{t}_m} _{$m,n+1$})
\n
$$
= \sum_{m=j}^{k-1} p_m^* - p_{m+1}^*
$$
 (by the definition of p^*)
\n
$$
= p_j^* - p_k^*.
$$
 (51)

Thus, we have $p_j^* - p_k^* \ge p_j - p_k \ge v^{t_k}(\theta_j; \theta_k) - v^{t_k}(\theta_k)$, that is, (p^*, q) satisfies IC_{kj} .

Assume $q_0^h + q_0^l > 0$. We can pick some $t \in \{h, l\}$ such that $q_0^t > 0$. Fix $j \in \{1, ..., K\}$. As (p, q) satisfies IC_{0j} , it satisfies IC_{0j}^t , which is equivalent to

$$
v^t(\theta_j; \theta_0) - p_j \le 0. \tag{52}
$$

In [\(51\)](#page-6-1), if we set $k = K$, we have $p_j - p_j^* \leq p_K - p_K^*$. Moreover, as (p, q) satisfies IR_K , by the definition of p^* , we have $p_K \leq v^{\tilde{t}_K}(\theta_K) = p_K^*$. Therefore, $p_j \leq p_j^*$ holds and by [\(52\)](#page-6-2), we have $v^t(\theta_j;\theta_0) - p_j^* \leq 0$, that is, (p^*,q) satisfies IC_{0j}^t . As the choice of t is arbitrary as long as $q_0^t > 0$, we have shown that (p^*, q) satisfies IC_{0j} .

We have shown that statement (a) implies statement (c) .

Proof for $(c) \implies (b)$ $(c) \implies (b)$ $(c) \implies (b)$ Fix $j, k \in \{1, ..., K\}$ such that $j < k$. By the definition of p^* , part [\(a\)](#page-3-3) of Corollary [4](#page-3-0) implies that (p^*, q) binds $IC_{m,m+1}$ for every $m \in \{j, \ldots, k-1\}$. If $q_j^l = 0$, then the conditions of Lemma [10](#page-3-1) hold. If $q_j^l > 0$, then by assumption $q_m^l > 0$ for every $m \in \{j, \ldots, k-1\}$, in which case the conditions of Lemma [10](#page-3-1) again hold. By Lemma [10,](#page-3-1) (p^*, q) satisfies IC_{jk} . Therefore, (p^*, q) satisfies every downward IC constraint.

By the definition of p^* , part [\(d\)](#page-3-4) of Corollary [4](#page-3-0) implies that (p^*, q) binds IR_K. Fix $k \in \{1, ..., K-1\}$. If $q_k^l > 0$, then by assumption $q_K^l > 0$. Thus, $q_k^l = 0$ or $q_K^l > 0$, that is, the conditions of Lemma [11](#page-4-0) hold. As (p^*, q) satisfies IC_{kK} and IR_K , by Lemma [11,](#page-4-0) (p^*, q) satisfies IR_k. Therefore, (p^*, q) satisfies every IR constraint.

Assume that (p^*, q) satisfies IC_{kj} for any $j, k \in \{1, ..., K\}$ such that $j < k$. By the definition of schemes, $q_0^h + q_0^l \ge 0$ holds. If $q_0^h + q_0^l = 0$, then IC_{0j} is undefined for every $j \in \{1, ..., K\}$. In this case, (p^*, q) satisfies every constraint in the set of IC and IR constraints. For the case where $q_0^h + q_0^l > 0$, if additionally (p^*, q) satisfies IC_{0j} for every $j \in \{1, ..., K\}$, then again (p^*, q) satisfies every constraint in the set of IC and IR constraints. Overall, we have shown that p^* implements q.

We have shown that statement (c) implies statement (b) .

 \Box

C.2 Proof of Proposition [3](#page--1-16)

Proof. Assume that a scheme q is implementable and let p be a price vector that implements q.

We first show that every customer is in at most two priority passes. Towards a contradiction, assume that there exists $t \in \{h, l\}$ and $j, k, m \in \{1, ..., K\}$ such that $j < k < m, q_j^t > 0, q_k^t > 0$, and $q_m^t > 0$. Note that (p, q) satisfies IC_{mj}^t if and only if

$$
p_j - p_m \ge v^t(\theta_j; \theta_m) - v^t(\theta_m). \tag{53}
$$

However, because u^t is concave, we have

$$
p_j - p_m = p_j - p_k + p_k - p_m
$$

\n
$$
\leq v^t(\theta_j) - v^t(\theta_k; \theta_j) + v^t(\theta_k) - v^t(\theta_m; \theta_k)
$$

\n
$$
< v^t(\theta_j) - v^t(\theta_m; \theta_j)
$$

\n
$$
\leq v^t(\theta_j; \theta_m) - v^t(\theta_m),
$$

\n(by Claim 1'')
\n(by Lemma 3'')

which contradicts [\(53\)](#page-7-1). Therefore, each customer type is in at most two priority passes.

We next show monotonicity. For this purpose, fix $j \in \{1, ..., K\}$ such that $q_j^l > 0$. We first show that $q_k^h = 0$ for every $k \in \{j+1,\ldots,K\}$. Towards a contradiction, assume that $q_k^h > 0$ for some $k \in \{j+1,\ldots,K\}$. As $q_j^l > 0$ and $q_k^h > 0$, both IC_{jk}^l and IC_{kj}^h are defined. Note that

$$
v^{l}(\theta_j) - v^{l}(\theta_k; \theta_j) < v^{h}(\theta_j) - v^{h}(\theta_k; \theta_j) \quad \text{(by the definition of types)}
$$

$$
\leq v^h(\theta_j; \theta_k) - v^h(\theta_k). \tag{54}
$$

However, that (p, q) satisfies both IC_{jk}^l and IC_{kj}^h implies that

$$
v^h(\theta_j; \theta_k) - v^h(\theta_k) \le p_j - p_k \le v^l(\theta_j) - v^l(\theta_k; \theta_j),
$$

which contradicts [\(54\)](#page-8-0). Therefore, for every $j \in \{1, ..., K\}$, $q_j^l > 0$ implies $q_k^h = 0$ for every $k \in \{j+1,\ldots,K\}.$

We next show that $q_0^h = 0$. Towards a contradiction, assume $q_0^h > 0$. Fix $t \in \{h, l\}$ such that $q_{K-1}^t > 0$. That (p, q) satisfies $IC_{K-1,K}^t$ implies

$$
v^{t}(\theta_{K-1}) - p_{K-1} \ge v^{t}(\theta_{K}; \theta_{K-1}) - p_{K}.
$$

Because u^t is concave, by Lemma $3''$ $3''$,

$$
v^t(\theta_{K-1}; \theta_K) - v^t(\theta_{K-1}) \ge v^t(\theta_K) - v^t(\theta_K; \theta_{K-1}).
$$

Adding up the two inequalities above, we obtain

$$
v^{t}(\theta_{K-1}; \theta_{K}) - p_{K-1} \ge v^{t}(\theta_{K}) - p_{K}.
$$
\n(55)

If $j = K$, then $q_K^l > 0$ by the definition of j. If $j < K$, because $q_j^l > 0$, by our finding so far, the implementability of q implies $q_K^h = 0$ and hence $q_K^l > 0$. In both cases, IR_K^l is defined. Note that we have

$$
v^{h}(\theta_{K-1}; \theta_{0}) - p_{K-1} = v^{h}(\theta_{K-1}; \theta_{K}) - p_{K-1}
$$
 (by Claim 1")
\n
$$
\geq v^{t}(\theta_{K-1}; \theta_{K}) - p_{K-1}
$$
 (by the definition of types)
\n
$$
\geq v^{t}(\theta_{K}) - p_{K}
$$
 (by the definition of types)
\n
$$
\geq v^{l}(\theta_{K}) - p_{K}
$$
 (by the definition of types)
\n
$$
\geq 0.
$$
 (by IR^l_K) (56)

In [\(56\)](#page-8-2), if $t = l$, then $v^h(\theta_{K-1}; \theta_K) - p_{K-1} > v^t(\theta_{K-1}; \theta_K) - p_{K-1}$; if $t = h$, then $v^t(\theta_K) - p_K > v^l(\theta_K) - p_K$. Thus, at least one of the inequalities in [\(56\)](#page-8-2) must be strict, which means that if $q_0^h > 0$, (p, q) would not satisfy I $C_{0, K-1}^h$, a contradiction. Therefore, $q_0^h = 0$.

We have shown that q is monotone.

This completes the proof.

 \Box

C.3 Proof of Theorem [4](#page--1-15)

Since q is regular, the conditions of Lemma [12](#page-5-0) hold. By the lemma, q is implementable if and only if p^* implements q. Fix $j, k \in \{1, ..., K\}$ such that $j < k$. That (p^*, q) satisfies IC_{kj} is equivalent to $v^{t_k}(\theta_j;\theta_{j+1}) - v^{t_k}(\theta_k) \leq p_j^* - p_k^*$. We have

$$
p_j^* - p_k^* = \sum_{m=j}^{k-1} p_m^* - p_{m+1}^*
$$

=
$$
\sum_{m=j}^{k-1} v^{\bar{t}_m}(\theta_m) - v^{\bar{t}_m}(\theta_{m+1}; \theta_m)
$$
 (by the definition of p^*)
=
$$
\sum_{m=j}^{k-1} \beta^{\bar{t}_m} \left[v(\theta_m) - v(\theta_{m+1}; \theta_m) \right].
$$
 (by the definition of multiplicative case)

Therefore, by the definition of the multiplicative case, (p^*, q) satisfies IC_{kj} if and only if

$$
\beta^{\underline{t}_k} \left[v(\theta_j; \theta_{j+1}) - v(\theta_k) \right] \le \sum_{m=j}^{k-1} \beta^{\bar{t}_m} \left[v(\theta_m) - v(\theta_{m+1}; \theta_m) \right]. \tag{57}
$$

If $j = k - 1$, then the regularity of q only admits the following two cases: $\bar{t}_j = t_k$; $\bar{t}_j = h$ and $\underline{t}_k = l$. In the case where $\bar{t}_j = \underline{t}_k$, [\(57\)](#page-9-0) is equivalent to

$$
v(\theta_{k-1}; \theta_k) - v(\theta_k) \le v(\theta_{k-1}) - v(\theta_k; \theta_{k-1}),
$$
\n(58)

which holds since by (16) and (17) in the proof of Theorem [2,](#page--1-23) the linearity of u implies that $v(\theta_{k-1}) - v(\theta_k; \theta_{k-1}) = v(\theta_{k-1}; \theta_k) - v(\theta_k)$. In the case where $\bar{t}_j = h$ and $\underline{t}_k = l$, [\(57\)](#page-9-0) is equivalent to

$$
v(\theta_{k-1}; \theta_k) - v(\theta_k) \leq \beta \left[v(\theta_{k-1}) - v(\theta_k; \theta_{k-1}) \right],
$$

which is implied by [\(58\)](#page-9-1) because $v(\theta_{k-1}) - v(\theta_k; \theta_{k-1}) > 0$ holds by Claim [3](#page-6-0)" in the proof of Lemma [12](#page-5-0) and $\beta \ge 1$ holds by definition. Therefore, if $j = k - 1$, then (p^*, q) satisfies IC_{ki} .

If $j < k - 1$ (which is possible since $K > 2$), by the regularity of $q, \bar{t}_j = h$ and $t_k = l$. For this case, in [\(57\)](#page-9-0), $\beta^{t_k} = 1$ and $\beta^{\bar{t}_m} = \beta$ for at least one $m \in \{j, \ldots, k-1\}$. Therefore, in this case, IC_{kj} in [\(57\)](#page-9-0) can be equivalently written in the form $\beta \geq \underline{\beta}_{kj}$ for some $\underline{\beta}_{kj}$ whose value is independent of β .

Let $\underline{\beta} = \max\{\underline{\beta}_{kj} : j, k \in \{1, ..., K\}, j < k-1\}$. We observe that $\underline{\beta}$ is independent of β . Note that [\(57\)](#page-9-0) holds for any $j, k \in \{1, ..., K\}$ such that $j < k$ if and only if $\beta \geq \beta$. Therefore, by Lemma [12,](#page-5-0) q is implementable if and only if $\beta \geq \beta$.

To see that $\beta > 1$, consider IC₃₁ with respect to p^* , which is defined since $K > 2$. The regularity of q implies that $\bar{t}_1 = h$ and $\underline{t}_3 = l$. In this case, by [\(57\)](#page-9-0), (p^*, q) satisfies IC_{31} if and only if

$$
v(\theta_1; \theta_2) - v(\theta_3) \le \beta \left[v(\theta_1) - v(\theta_2; \theta_1) \right] + \beta^{\bar{t}_2} \left[v(\theta_2) - v(\theta_3; \theta_2) \right],\tag{59}
$$

which implies a lower bound on β . Because $\beta \geq \beta^{\bar{t}_2}$ and the right-hand side of [\(59\)](#page-10-0) is increasing in both β and $\beta^{\bar{t}_2}$, if [\(59\)](#page-10-0) holds for some $\beta \leq 1$, then (59) must hold for $\beta = \beta^{\bar{t}_2} = 1$. Note that [\(59\)](#page-10-0) with $\beta = \beta^{\bar{t}_2} = 1$ is equivalent to

$$
v(\theta_1) - v(\theta_1; \theta_2) \ge v(\theta_2; \theta_1) - v(\theta_2) + v(\theta_3; \theta_2) - v(\theta_3),
$$

which does not hold because $v(\theta_1) - v(\theta_1; \theta_2) \le v(\theta_2; \theta_1) - v(\theta_2)$ by Lemma [3](#page-0-5)'' and $v(\theta_3;\theta_2) - v(\theta_3) > 0$ by Claim [1](#page-0-4)''. Thus, [\(59\)](#page-10-0) does not hold for $\beta \leq 1$. Therefore, the lower bound on β implied by [\(59\)](#page-10-0) must be strictly larger than 1, and hence $\beta > 1$.

C.4 Proof of Proposition [4](#page--1-14)

By the regularity of q and Lemma [12,](#page-5-0) we can check the implementability of q by p^* as defined in the lemma. If $K > 2$, then at least one customer type has customers in two different priority passes, which together with the assumption that $N > 2$ makes q not implementable by Theorem [1.](#page--1-24)

Assume instead $K = 2$. Because $q_0^h = q_0^l = 0$ by the regularity of q, if $0 < q_j^t < N^t$ for some $j \in \{1,2\}$ and $t \in \{h, l\}$, then $q_k^t > 0$ for some $k \in \{1, 2\}$ such that $k \neq j$, which together with the assumption that $N > 2$ makes q not implementable by Theorem [1.](#page--1-24) Therefore, since $K = 2$, if q is implementable, then $q_i = N^h$ and $q_k = N^l$ for some $j, k \in \{1, 2\}$ such that $j \neq k$. Moreover, by Proposition [3,](#page--1-16) we have $q_1 = N^h$ and $q_2 = N^l$ if q is implementable.

Now assume $q_1 = N^h$ and $q_2 = N^l$. By the regularity of q and Lemma [12,](#page-5-0) q is implementable if and only if p^* satisfies IC₂₁, that is, $p_1^* - p_2^* \geq v^l(\theta_1; \theta_2) - v^l(\theta_2)$. By the definitions of multiplicative two-type case and p^* , we have $p_1^* - p_2^* = \beta \left[v(\theta_1) - v(\theta_2; \theta_1) \right]$ and $v^l(\theta_1;\theta_2) - v^l(\theta_2) = v(\theta_1;\theta_2) - v(\theta_2)$. Therefore, (p^*,q) satisfies IC₂₁ if and only if

$$
\beta[v(\theta_1)-v(\theta_2;\theta_1)] \ge v(\theta_1;\theta_2)-v(\theta_2),
$$

which holds if and only if $\beta \geq \beta$, where $\beta = \frac{v(\theta_1, \theta_2) - v(\theta_2)}{v(\theta_1, \theta_1) - v(\theta_2, \theta_2)}$ $\frac{v(\theta_1;\theta_2)-v(\theta_2)}{v(\theta_1)-v(\theta_2;\theta_1)}$. Thus, q is implementable if and only if $K = 2$, $q_1 = N^h$, $q_2 = N^l$, and $\beta \geq \beta$. Lastly, because $N > 2$, by Lemma $3''$ $3''$, the strict concavity of u implies $\beta > 1$.

C.5 Proof of Proposition [5](#page--1-17)

If $K = 1$, q is the unique regular scheme, and it is implemented by $p = v^l(\theta_1) \geq 0$.

Assume $K > 1$. By the regularity of q and Lemma [12,](#page-5-0) q is implementable if and only if p^* as defined in the lemma implements q. By the definition of p^* , (p^*, q) satisfies IC_{j+1,j} for $j \in \{1, ..., K-1\}$ if and only if

$$
\beta^{\bar{t}_j} \left[v(\theta_j) - v(\theta_{j+1}; \theta_j) \right] \ge \beta^{t_{j+1}} \left[v(\theta_j; \theta_{j+1}) - v(\theta_{j+1}) \right],\tag{60}
$$

where $\beta^h = \beta$ and $\beta^l = 1$. Because u is linear, by [\(16\)](#page--1-21) and [\(17\)](#page--1-22), $v(\theta_j) - v(\theta_{j+1}; \theta_j) =$ $v(\theta_j;\theta_{j+1}) - v(\theta_{j+1})$. Moreover, as $\beta^{\bar{t}_j} \geq \beta^{t_{j+1}}$ by the regularity of q, [\(60\)](#page-11-0) holds, that is, (p^*, q) satisfies $IC_{j+1,j}$. Thus, q is implementable if $K = 2$.

Assume $K > 2$. Fix $k \in \{1, ..., K-2\}$ and $j \in \{1, ..., k\}$. It remains to show that (p^*, q) satisfies $IC_{k+2,j}$. Towards this end, note that the regularity of q implies that $q_{k+2}^h = 0$. Therefore, by part [\(b\)](#page-3-5) of Corollary [4,](#page-3-0) (p^*, q) satisfies $IC_{k+2,j}$ if and only if $p_j^* - p_{k+2}^* \ge v(\theta_j; \theta_{k+2}) - v(\theta_{k+2})$, which by the definition of p^* is equivalent to

$$
\sum_{m=j}^{k+1} \left[v^{\bar{t}_m}(\theta_m) - v^{\bar{t}_m}(\theta_{m+1}; \theta_m) \right] - \left[v(\theta_j; \theta_{k+2}) - v(\theta_{k+2}) \right] \ge 0. \tag{61}
$$

Let $d = u_1 - u_2$. Because each base utility function is linear, we have

$$
v^{\bar{t}_m}(\theta_m) - v^{\bar{t}_m}(\theta_{m+1}; \theta_m) = \frac{\beta^{\bar{t}_m}}{2} (u_{Q_{m-1}(q)+1} + u_{Q_m(q)}) - \frac{\beta^{\bar{t}_m}}{2} (u_{Q_m(q)} + u_{Q_{m+1}(q)})
$$

=
$$
\frac{\beta^{\bar{t}_m} d}{2} (q_m + q_{m+1} - 1)
$$

for each $m \in \{j, \ldots, k+1\}$, and

$$
v(\theta_j; \theta_{k+2}) - v(\theta_{k+2}) = \frac{1}{2} (u_{Q_{j-1}(q)+1} + u_{Q_j(q)+1}) - \frac{1}{2} (u_{Q_{k+1}(q)+1} + u_{Q_{k+2}(q)})
$$

=
$$
\frac{d}{2} \left(q_j + q_{k+2} - 1 + 2 \sum_{m=j+1}^{k+1} q_m \right).
$$

Therefore, [\(61\)](#page-11-1) is equivalent to

$$
\sum_{m=j}^{k+1} \frac{\beta^{\bar{t}_m}}{2} (q_m + q_{m+1} - 1) - \frac{1}{2} \left(q_j + q_{k+2} - 1 + 2 \sum_{m=j+1}^{k+1} q_m \right) \ge 0.
$$
 (62)

By the regularity of q, $q_k^l = 0$, and hence $\beta^{\bar{t}_j} = \cdots = \beta^{\bar{t}_k} = \beta^h = \beta > 1$ and $\beta^{\bar{t}_{k+1}} \geq 1$, which together imply that the left-hand side of [\(62\)](#page-11-2) is increasing in q_m for $m \in \{j, \ldots, k+2\}$. Thus, [\(62\)](#page-11-2) is implied by the following inequality:

$$
\frac{\beta}{2}(k+1-j)(2\underline{m}-1) + \frac{1}{2}(2\underline{m}-1) - \frac{1}{2}[2\underline{m}(k+2-j)-1] \ge 0,
$$

where $\underline{m} = \min_{1 \leq k \leq K} (q_k^h + q_k^l)$. This inequality is equivalent to

$$
\beta(k+1-j)(2\underline{m}-1) + (2\underline{m}-1) - [2\underline{m}(k+2-j) - 1] \ge 0.
$$
 (63)

Now assume $q_k^h + q_k^l \geq \frac{\beta}{2(\beta-1)}$ for every $k \in \{1, ..., K\}$, which is equivalent to $\underline{m} \geq \frac{\beta}{2(\beta-1)}$. We will show that q is implementable. Since $\underline{m} \geq \frac{\beta}{2(\beta-1)}$, the left-hand side of (63) is weakly decreasing in j. Therefore, the left-hand side of (63) weakly decreases if we set $j = k$ since $j \leq k$ by definition. Thus, to show that [\(63\)](#page-12-0) holds, it suffices to show that it holds with $j = k$, that is, [\(63\)](#page-12-0) is implied by:

$$
\beta(2\underline{m}-1) + (2\underline{m}-1) - (4\underline{m}-1) \ge 0,
$$

which holds for $\underline{m} \geq \frac{\beta}{2(\beta-1)}$. We have shown that (p^*, q) satisfies $IC_{k+2,j}$ for any $j, k \in \{1, \ldots, K-2\}$ such that $j \leq k$. Therefore, (p^*, q) satisfies IC_{kj} for any $j, k \in \{1, \ldots, K\}$ such that $j < k$. Thus, by Lemma [12,](#page-5-0) q is implementable.

Overall, for every $K \geq 1$, q is implementable. This completes the proof.

C.6 Proof of Proposition [6](#page--1-18)

Because $K > 2$, by the regularity of q, we can find $k \in \{1, ..., K-2\}$ such that $q_k^l = q_{k+2}^h = 0$. By Lemma [12,](#page-5-0) q is implementable if and only if p^* as defined in the lemma implements q. By the definition of p^* and the assumption that $q_k^l = q_{k+2}^h = 0$, (p^*, q) does not satisfy $IC_{k+2,k}$ if and only if

$$
\underbrace{\beta \left[v(\theta_k) - v(\theta_{k+1}; \theta_k) \right]}_{p_k^* - p_{k+1}^*} + \underbrace{\beta^{\bar{t}_{k+1}} \left[v(\theta_{k+1}) - v(\theta_{k+2}; \theta_{k+1}) \right]}_{p_{k+1}^* - p_{k+2}^*} - \left[v(\theta_k; \theta_{k+2}) - v(\theta_{k+2}) \right] < 0,
$$

where we let $\beta^h = \beta$ and $\beta^l = 1$. By the linear multiplicative setup, the above inequality is equivalent to

$$
\frac{\beta}{2}(q_k + q_{k+1} - 1) + \frac{\beta^{\bar{t}_{k+1}}}{2}(q_{k+1} + q_{k+2} - 1) - \frac{1}{2}(q_k + 2q_{k+1} + q_{k+2} - 1) < 0. \tag{64}
$$

The left-hand side of [\(64\)](#page-12-1) is increasing in $\beta^{\bar{t}_{k+1}}$, q_k , q_{k+1} , and q_{k+2} . Specifically, if we set q_k , q_{k+1} , and q_{k+2} to $\bar{M} := \max_{1 \leq k \leq K} (q_k^h + q_k^l)$ and $\beta^{\bar{t}_{k+1}}$ to β , the left-hand side of [\(64\)](#page-12-1) weakly increases. Therefore, [\(64\)](#page-12-1) is implied by

$$
\frac{\beta}{2}(2\bar{M}-1) + \frac{\beta}{2}(2\bar{M}-1) - \frac{1}{2}(4\bar{M}-1) < 0. \tag{65}
$$

Now assume $q_k^h + q_k^l < \frac{\beta - \frac{1}{2}}{2(\beta - 1)}$ for every $k \in \{1, ..., K\}$, which is equivalent to $\bar{M} < \frac{\beta - \frac{1}{2}}{2(\beta - 1)}$. Note that [\(65\)](#page-13-0) is equivalent to $\bar{M} < \frac{\beta - \frac{1}{2}}{2(\beta - 1)}$. Thus, (p^*, q) does not satisfy $IC_{k+2,k}$. Therefore, by Lemma [12,](#page-5-0) q is not implementable.