
Flash Pass with Multiple Customer Types∗

Yuichiro Kamada† Zihao Zhou‡

February 14, 2025

Abstract

In this paper, we extend Kamada and Zhou (2025) to the general case where
there are two or more customer types. We find that the difficulty of imple-
menting many passes persists even when there are multiple customer types.

∗We are grateful to Jeff Ely, Refael Hassin, Ganesh Iyer, Michihiro Kandori, Kei Kawai, Tony Ke,
Fuhito Kojima, Chakravarthi Narasimhan, Michael Ostrovsky, Philipp Strack, and Luyi Yang for
their valuable comments and suggestions on this paper. We would also like to thank the feedback
from the conference and seminar participants at the ISMS Marketing Science Conference (2018),
the Summer Institute in Competitive Strategy (2019), the European Quant Marketing Seminar,
Hitotsubashi University, Osaka University, University of Tokyo, and Yokohama National University.
Ayana Kono and Ryosuke Sato provided excellent research assistance. All errors remain with us.

†Yuichiro Kamada: Haas School of Business, University of California Berkeley and University of
Tokyo, Faculty of Economics, y.cam.24@gmail.com

‡Zihao Zhou: UCL School of Management, University College London, zihao.zhou@ucl.ac.uk

1

mailto:y.cam.24@gmail.com
mailto:zihao.zhou@ucl.ac.uk

1 Introduction
Kamada and Zhou (2025) (henceforth KZ for brevity) analyzed a pricing problem
where customers need to line up to experience a service. For example, an amusement
park may sell a Regular Pass and a more expensive Flash Pass, where the customers
purchasing the latter pass are ahead of those purchasing the former pass. Through a
number of results, they demonstrated the difficulty of implementation of multi-pass
schemes: When there are multiple passes, there may not exist any pricing scheme of
those passes such that each pass is bought by at least one customer. Their analysis
was mainly done in the context of a single-type model where all customers share the
same utility function with respect to the position in the queue, and they extended
their analysis to the two-type case.

In this paper, we consider the general case where there are two or more types of
utility functions with respect to the position in the queue, which we call the multi-
type case. We find that the difficulty of implementing many passes persists even
in the multi-type case, and the core intuitions of the two-type case carry through.
Indeed, some lemmas in the multi-type case are analogous to lemmas in KZ for the
single-type case. We list the correspondence between these lemmas in Table 1. With
these lemmas in the multi-type case, we generalize every two-type result in KZ. Specif-
ically, Propositions 2–6 and Theorem 4 in KZ are generalized to Propositions 1–5 and
Theorem 1, respectively. For each pair of correspondence, we later explain how the
multi-type result generalizes the two-type result.

In what follows, Section 2 introduces the model. Section 3 discusses selling mul-
tiple priority passes with two or more customer types. Lastly, Section 4 discusses
how the number of customers in each priority pass affects implementability. Unless
otherwise stated, the proofs of the results are relegated to the Appendix.

2 Model
We first define the model setup, which largely follows that in KZ.

An amusement park chooses K ≥ 1 and p = (p1, . . . , pK) ∈ RK
+ , where K is the

number of priority passes the park sells and pk is the price for the k-th pass. We
denote by θk the k-th pass. Let θ0 denote the option of staying at home and set
p0 = 0. There are N ≥ 1 customers who observe the price vector p and then make
purchase decisions simultaneously: Each customer either buys some priority pass (i.e.,
choose θk for some k = 1, . . . , K) or does not buy any pass and leaves the park (i.e.,
choose θ0).

After the purchase decisions, the customers that purchase a priority pass form
a queue, with the possible positions in the queue being 1, 2, . . . , N ′, where N ′ is
the number of customers who bought some pass. For every k ∈ {1, . . . , K}, every
customer buying θk is guaranteed to be ahead of every customer buying θj if j > k
and behind every customer buying θj if 1 ≤ j < k. For customers in the same priority

2

pass, each order of these customers happens with the same probability. Hence, each
customer’s position is uniformly distributed over the possible positions of customers
buying the same pass.1

A base utility function u : N → R is a strictly decreasing function that assigns
a utility to each position in the queue where u(n) denotes the utility from being at
the n-th position in the queue.2 To simplify the notations, we write un in place of
u(n) in what follows. If a customer buys pass θk and receives position n, then her
payoff is un − pk. We extend the domain of u to include 0, and denote by u0 the
utility from staying at home.3 Thus, if the customer chooses θ0, her payoff is u0 − p0
(which equals u0 since p0 = 0), where u0 is set to zero.

Assume that each customer’s base utility function comes from {ut}Tt=1, where t
is the index for a utility type. For every t ∈ {1, . . . , T}, let N t be the number
of customers with base utility function ut, and thus

∑T
t=1N

t = N by definition.
Assume that for every t ∈ {1, . . . , T − 1}, ut

n > ut+1
n for every n ∈ {1, . . . , N} and

ut
n − ut

n+1 > ut+1
n − ut+1

n+1 for every n ∈ {1, . . . , N − 1}. In addition, set ut
0 = 0 for all

type t.
Given any choice by the amusement park, the above setup where customers make

a choice can be modeled as a strategic-form game. Define a strategic-form game
G
(
(N t)Tt=1, K, p, (ut)Tt=1

)
= 〈I, (Ai)i∈I , (πi)i∈I〉 where I = {1, . . . , N} is the set of

customers, Ai = {θ0, θ1, . . . , θK} is i’s action set, and πi : A → R is i’s payoff function
where A = ×N

i=1Ai: For every a ∈ A, we set πi(a) = v̄i(a)−pk, where v̄i(a) is customer
i’s expected utility from action profile a and we have ai = θk. Given an action profile
a ∈ A, define q̄(a) = (q̄k(a))

K
k=0, where q̄k(a) = |{i : ai = θk}| denotes the number of

customers choosing θk.
Given ((N t)Tt=1, K), a scheme q = (q10, . . . , q

T
0 , q

1
1, . . . , q

T
1 , . . . , q

1
K , . . . , q

T
K) ∈ (0 ∪

N)(K+1)×T such that
∑T

τ=1 q
τ
k > 0 for every k ∈ {1, . . . , K} and

∑K
j=0 q

t
j = N t for

every t ∈ {1, . . . , T} specifies the number of each type of customers in each priority
pass, where qtk denotes the number of type-t customers buying θk. The restriction
that

∑T
t=1 q

t
k > 0 for every k ∈ {1, . . . , K} ensures that every priority pass has at

least one customer, which is analogous to the definition in the single-type case.
We now define implementability, the main concept of this paper. In short, a

scheme is implementable if each customer’s purchase decision is optimal given other
customers’ decisions.

Definition 1 (Implementation). Fix ((N t)Tt=1, K, (ut)Tt=1). A price vector p imple-
ments a scheme q if G((N t)Tt=1, K, p, (ut)Tt=1) has a pure-strategy Nash equilibrium
a∗ ∈ A such that q̄(a∗) = q. A scheme q is implementable if there exists a price
vector p that implements q.

1Although it does not affect any of our results, for completeness, one can assume that the ran-
domization of customer orders within a priority pass is independent across different passes.

2To clarify, N denotes the set of strictly positive integers.
3Strict decreasingness is not extended to include 0, and so we may have u0 ≤ u1.

3

Implementability can be equivalently characterized by incentive constraints, which
we use throughout the paper to verify implementability as it helps to make our dis-
cussions more intuitive. Fix ((N t)Tt=1, K, (ut)Tt=1) and a scheme q. For any j, k ∈
{0, . . . , K} and t ∈ {1, . . . , T} such that

∑T
τ=1 q

τ
j > 0, define vt(θk; θj; q) to be the util-

ity (before payment) that a type-t customer would receive if she (instead) bought θk.4
Given ut, we call vt the type-specific pass-utility function constructed from
ut. When without ambiguity, such as when the scheme in consideration is fixed, q is
omitted and vt(θk; θj) is written instead. Abuse notation to write vt(θk) := vt(θk; θk)
for each k ∈ {0, 1, . . . , K} and t ∈ {1, . . . , T}. In words, vt(θk) denotes the utility of
a type-t customer choosing θk in the scheme.

For fixed ((N t)Tt=1, K, (ut)Tt=1), pick a scheme q and a price vector p. For every
j ∈ {0, 1, . . . , K} such that

∑T
t=1 q

t
j > 0 and k ∈ {1, . . . , K}, a pair (p, q) is said to

satisfy the type-specific IC constraint from θj to θk with respect to customer
type t (henceforth ICt

jk) if no type-t customer choosing θj in q has an incentive to
switch to θk, i.e.,

vt(θj)− pj ≥ vt(θk; θj)− pk. (ICt
jk)

Define the set of IC constraints to be {ICt
jk : 0 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ t ≤

T, qtj > 0}. For every k ∈ {1, . . . , K} and t ∈ {1, . . . , T} such that qtk > 0, a pair (p, q)
is said to satisfy the type-specific IR constraint of θk with respect to customer
type t (henceforth IRt

k) if no type-t customer buying θk in q has an incentive to leave
the queue, that is,

vt(θk)− pk ≥ ut
0(= 0). (IRt

k)

Define the set of IR constraints to be {IRt
k : 1 ≤ k ≤ K, 1 ≤ t ≤ T, qtk > 0}. We

say that p implements q if (p, q) satisfies every constraint in the set of IC and IR
constraints. The scheme q is said to be implementable if there exists a price vector
that implements q.

A multi-type case ((N t)Tt=1, K, (ut)Tt=1) is concave if each base utility function
is concave, strictly concave if it is strictly concave, and linear if it is linear. If
ut = βtu for some β1 > β2 · · · > βT = 1 and some base utility function u such that
uN > 0, then we call such a setup the multiplicative multi-type case.5

2.1 Lemmas for Multi-Type Case
The following two results are analogous to Claim 1 and Lemma 3 in KZ for the single-
type case. Their proofs are omitted as the proofs are perfectly analogous to those in
the single-type case.

4That is, given a ∈ A and a customer i such that ai = θj and i is of type t, let a′ ∈ A be such
that a′i = θk and a′l = al for all l 6= i. We then define vt(θk; θj ; q) := v̄i(a

′).
5Here, the superscript for each β is an index, not an exponent.

4

Description Single-type in KZ Multi-type

Properties of pass-utility function Claim 1 in KZ Claim 1
IC Reduction Lemma 1(a) in KZ Lemma 3
IR Reduction Lemma 1(b) in KZ Lemma 4
Implementability-checking price vector Lemma 2 in KZ Lemma 5
Implication of concave base utility function Lemma 3 in KZ Lemma 1

Table 1: Correspondence between lemmas in the single-type and multi-type cases.

Claim 1. Fix ((N t)Tt=1, K, (ut)Tt=1) and a scheme q. Fix k ∈ {1, . . . , K} and t ∈
{1, . . . , T}. If j1, j2 ∈ {1, . . . , k − 1}, then

vt(θk; θj1) = vt(θk; θj2) > vt(θk).

If l1, l2 ∈ {0, k + 1, k + 2, . . . , K}, then

vt(θk) > vt(θk; θl1) = vt(θk; θl2).

Lemma 1. Fix ((N t)Tt=1, K, (ut)Tt=1) such that K > 1. Fix a scheme q and t ∈
{1, . . . , T}. If ut is concave, then for any j, k ∈ {1, . . . , K} such that j < k,

vt(θj)− vt(θk; θj) ≤ vt(θj; θk)− vt(θk).

The inequality is strict if ut is strictly concave and either maxm∈{j,k}

(∑T
τ=1 q

τ
m

)
> 1

or j + 1 < k.

The rest of this subsection presents lemmas that are useful for implementation
results in the multi-type case that will appear in Section 3. Most results about
implementation use Lemma 5 which we state later. A roadmap of how lemmas in
this subsection contribute to the implementation results in Section 3 is illustrated in
Figure 1.

The following result characterizes the relations between type-specific constraints.

Lemma 2 (Properties of type-specific constraints). Fix ((N t)Tt=1, K, (ut)Tt=1). Fix
a scheme q and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k and
t1, t2 ∈ {1, . . . , T} such that t1 < t2.

(a) If qt1j > 0 and qt2j > 0, then ICt2
jk implies ICt1

jk.

(b) If qt1k > 0 and qt2k > 0, then ICt1
kj implies ICt2

kj.

(c) If qt10 > 0 and qt20 > 0, then ICt1
0m implies ICt2

0m.

(d) If qt1m > 0 and qt2m > 0, then IRt2
m implies IRt1

m.

5

Corollary 1
IC and IR
characterization

Lemma 2
Properties of type-
specific constraints

Lemma 3
IC reduction

Lemma 4
IR reduction

Lemma 5
Implementability-
checking price vector

Proposition 3
Two-pass implementation in strictly con-
cave multiplicative multi-type case

Theorem 1
Implementation in concave multiplicative
multi-type case

Proposition 2
Monotonicity in concave multi-type case

Proposition 4
Sufficiently many customers for imple-
mentation

Proposition 5
Not implementable when customer types
are too close

Proposition 6
Type-separating schemes

Figure 1: Roadmap of results.

Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
, a scheme q, and a price vector p. Fix j ∈ {0, . . . , K} and

k ∈ {1, . . . , K} such that j 6= k and
∑T

t=1 q
t
j > 0.6 Define ICjk to be the type-specific

IC constraint from {ICt
jk : 1 ≤ t ≤ T, qtj > 0} that implies every constraint in the set.

Similarly, define IRk to be the type-specific IR constraint in {IRt
k : 1 ≤ t ≤ T, qtk > 0}

that implies every constraint in the set. Note that Lemma 2 ensures that ICjk and
IRk are well-defined.

Lemma 2 immediately implies the following characterization of IC and IR con-
straints without superscripts. We define the following new notations for ease of
characterization: For each j ∈ {0, . . . , K} such that

∑T
t=1 q

t
j > 0, define t̄j =

max{1 ≤ t ≤ T : qtj > 0}, which is the lowest customer type that chooses θj,
and tj = min{1 ≤ t ≤ T : qtj > 0}, which is the highest customer type that chooses
θj.

Corollary 1 (IC and IR characterization). Fix ((N t)Tt=1, K, (ut)Tt=1). Fix a scheme q
and a price vector p. Fix j, k,m ∈ {1, . . . , K} such that j < k.

(a) ICjk is equivalent to ICt̄j
jk.

(b) ICkj is equivalent to ICtk
kj.

(c) If
∑T

t=1 q
t
0 > 0, then IC0m is equivalent to ICt0

0m.
6Analogous to footnote 16 in KZ, the condition that

∑T
t=1 q

t
j > 0 is restrictive only when j = 0.

6

(d) IRm is equivalent to IRt̄m
m .

Proof. The result is immediate from Lemma 2.

The following lemma is analogous to Lemma 1(a) in KZ for the single-type case.

Lemma 3 (IC reduction with multiple types). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
such that

K > 1. Fix a scheme q and a price vector p. Fix j, k ∈ {1, . . . , K} such that j < k.
Assume that t̄m ≤ t̄m+1 for every m ∈ {j, . . . , k − 1}. If (p, q) satisfies ICm,m+1 for
every m ∈ {j, . . . , k − 1}, then it satisfies ICjk.

The following lemma is analogous to Lemma 1(b) in KZ for the single-type case.

Lemma 4 (IR reduction with multiple types). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
such that

K > 1. Fix a scheme q and a price vector p. Assume that t̄j ≤ t̄k for some
j, k ∈ {1, . . . , K} such that j < k. If (p, q) satisfies ICjk and IRk, then it satisfies
IRj.

The following result is analogous to Lemma 2 in KZ for the single-type case and
provides a price vector to check implementability.

Lemma 5 (Implementability conditions in multi-type case). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
.

Fix a scheme q such that vt̄K (θK) ≥ 0. Assume t̄j ≤ t̄j+1 for every j ∈ {1, . . . , K−1}.
Let p∗ = (p∗1, . . . , p

∗
K) be such that p∗K = vt̄K (θK) and p∗j −p∗j+1 = vt̄j(θj)− vt̄j(θj+1; θj)

for every j ∈ {1, . . . , K − 1}. The following statements are equivalent:

(a) q is implementable.

(b) p∗ implements q.

(c) For any j, k ∈ {1, . . . , K} such that j < k, (p∗, q) satisfies ICkj. If
∑T

t=1 q
t
0 > 0,

then (p∗, q) satisfies IC0j for every j ∈ {1, . . . , K}.

3 Implementability in the Multi-Type Case
Now we consider implementability in the multi-type case. In the two-type case,
Proposition 2 in KZ for the two-type case shows that a scheme with exactly one
customer in each priority pass is not implementable if there are more than four priority
passes. We generalize this result to the multi-type case below.

Proposition 1 (One-customer passes in multi-type case). Fix ((N t)Tt=1, K, (ut)Tt=1)
and a scheme q where

∑T
t=1 q

t
k = 1 for every k ∈ {1, . . . , K}. If K > 2T , then q is

not implementable.

7

When T = 1 and T = 2, Proposition 1 is equivalent to Theorem 3 for the single-
type case and Proposition 2 for the two-type case in KZ, respectively. The proof of
the proposition is analogous to the proof of the corresponding result in the single-
type case: when there are more than 2T priority passes in a scheme and each pass
has exactly one customer, we can pick three customers from three different passes
that have the same customer type. The proof shows that for the scheme to be
implementable, these three passes must be consecutive, which is a contradiction by
the reasoning analogous to that in the proof of the single-type result.

We next define the notion of monotonicity in Section 3.1, which is needed for
later results. We then characterize the environment in which multi-pass schemes are
implementable in the multi-type case when the base utility function is concave in
Section 3.2.

3.1 Monotonicity
Fix

(
(N t)Tt=1, K, (ut)Tt=1

)
. Fix a scheme q and a price vector p. As in the two-type

case, we cannot reduce the set of downward IC and IR constraints to the set of
local downward IC constraints and IRK as in Lemma 1 in KZ for the single-type
case. By Lemmas 3 and 4, such constraint reduction results can be obtained if we
impose the additional condition that t̄j ≤ t̄j+1 for every j ∈ {1, . . . , K − 1}. This
restriction eliminates schemes where a lower type customer buys a higher-priority pass
than a higher-type customer. With this restriction, by Lemma 5, we can similarly
check the implementability of a scheme by binding the lowest IR constraint and
every local downward constraint. It turns out that the restriction is necessary for
implementability in the concave multi-type case. To be precise, implementability in
the concave multi-type case implies a condition which we call monotonicity: We say
that a scheme q is monotone if the following two conditions hold:

(a) For any j, k ∈ {1, . . . , K} such that j < k, t̄j ≤ tk.

(b) For every t ∈ {1, . . . , t̄K−1} such that t < t̄K , qt0 = 0.

Condition (a) says that if two customers of different types buy some priority passes,
then the higher-type customer has a weakly higher-priority pass than does the lower-
type customer; condition (b) states that if a customer type is weakly higher than
the lowest customer type in the second-lowest priority pass and strictly higher than
the lowest customer type in the lowest priority pass, then every customer of this
type has bought some priority pass in the scheme. Condition (b) is ambiguous about
customer types strictly between t̄K−1 and t̄K since the negative externality created
when a customer of these types joins a priority pass from outside the queue could be
a sufficient disincentive against joining the queue.

The following result shows that monotonicity is necessary for implementability in
the concave multi-type case:

8

Proposition 2 (Monotonicity in concave multi-type case). Fix the concave multi-
type case ((N t)Tt=1, K, (ut)Tt=1) such that K > 1. If a scheme q is implementable, then
each customer type is in at most two priority passes and q is monotone.

We observe that when T = 2, the monotonicity in the multi-type case is equiv-
alent to the monotonicity in the two-type case. Hence, Proposition 2 generalizes
Proposition 3 in KZ for the two-type case.

The intuition for the necessity of condition (a) of the multi-type monotonicity is
similar to that of condition (a) of the two-type monotonicity in the analogous result
for the two-type case. For the necessity of condition (b) of multi-type monotonicity,
the proof shows that a customer with a type weakly higher than the lowest customer
type in the second-lowest priority pass has at least a weak incentive to purchase a
priority pass, with the incentive further made strict if the customer type is also strictly
higher than the lowest customer type in the lowest priority pass.

3.2 Concave Case
When there are multiple customer types, implementing a multi-pass scheme is possible
if different types of customers have utility functions that are sufficiently different from
each other. The following result for the multiplicative multi-type case characterizes
the implementability conditions with respect to customer types in the concave case,
which in particular covers both linear and strictly concave cases.

Theorem 1 (Implementation in concave multiplicative multi-type case). Fix the
concave multiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1) where K > 1. Fix a scheme
q such that vt̄K (θK) ≥ 0,

∑T
t=1 q

t
0 = 0, and t̄m ≤ t̄m+1 for m ∈ {1, . . . , K − 1}. There

exists a profile (bkj)j,k∈{1,...,K},j<k where bkj ≤ β t̄j for each pair (j, k) with the inequality
being strict if j < k− 1 such that the following holds: The scheme q is implementable
if and only if βtk ≤ bkj for any j, k ∈ {1, . . . , K} such that j < k.

We show how Theorem 1 implies Theorem 4 in KZ for the two-type case. Consider
the setup and the scheme q in the two-type result. As q is regular, we have qhk > 0
only if k ∈ {1, 2}. Moreover, if qh2 > 0, then β t̄1 = β. When qh2 > 0, with the
assumption that uh is linear, we can calculate b21 as in the right-hand side of (10)
to get b21 = β. Thus, if we use Theorem 1, it is sufficient to focus on bkj for any
j, k ∈ {2, . . . , K} such that qhk = 0 and j < k. Denote the set of such bkj by B. By
Theorem 1, q is implementable if and only if bkj ≥ 1 for every bkj ∈ B. Note that
qhK = 0 and qlK−2 = 0 by the regularity of q. Thus, β t̄K−2 = β and bK,K−2 ∈ B. Let β
be the smallest value for β such that if β = β, then bkj ≥ 1 for every bkj ∈ B. Since
bK,K−2 < β t̄K−2 = β by Theorem 1, we have β > 1. Moreover, β is well-defined since
every bkj ∈ B is continuous in β. If β < β, we have bkj < 1 for some bkj ∈ B. That
is, q is not implementable if β < β. If β ≥ β, then bkj ≥ 1 for every bkj ∈ B since bkj
is weakly increasing in β. That is, q is implementable if β ≥ β. We have shown that
q is implementable if and only if β ≥ β. Thus, the two-type result holds.

9

The intuition of Theorem 1 is similar to that of the two-type result: Customer
types in different priority passes need to be sufficiently different for the scheme to
be implementable. Towards a straightforward intuition, consider a special case of
Theorem 1 where u is linear, K = 3, and the scheme in consideration has m customers
in each priority pass. Given p∗ as defined in Lemma 5, by the proof of Theorem 2 in
KZ for the single-type case, (p∗, q) satisfies IC31 if and only if

β t̄1

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p1−p2

+
β t̄2

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p2−p3

≥ βt3

2
(4m− 1)︸ ︷︷ ︸

Lower bound of
p1−p3

. (1)

Note that (1) does not hold if both β t̄1 and β t̄2 are too close to βt3 ; but if β t̄1

is sufficiently larger than βt3 , then IC31 holds. Intuitively, a larger difference in
different types allows for a greater price difference between two priority passes, giving
customers in the lower-priority less incentive to upgrade.

In the above argument, β t̄2 could even be the same as βt3 for IC31 to hold, as long
as β t̄1 is taken to be sufficiently high. This, however, is a consequence of the linearity
assumption. We emphasize that, in general, for a scheme to be implementable in
the concave multiplicative multi-type case, Theorem 1 implies that customer types in
different priority passes, including those in passes whose priorities are close, need to be
sufficiently different. For example, in the strictly concave multiplicative multi-type
case, the existence of an implementable scheme where every customer buys some
priority pass implies the existence of a large enough “gap” between two adjacent
customer types in the queue, as illustrated below by the following result.

Proposition 3 (Two-pass implementation in strictly concave multiplicative multi-
type case). Fix the strictly concave multiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1)
such that K = 2 and N > 2. Fix a scheme q such that vT (θ2) ≥ 0 and every customer
buys some priority pass. The scheme q is implementable if and only if t2 = t̄1+1 and

β t̄1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
. (2)

Moreover, the right-hand side of (2) is strictly larger than 1.

We show how Proposition 3 generalizes Proposition 4 in KZ for the two-type case.
To see this, consider the setup and the scheme q in the two-type result. The condition
K = 2 is necessary for q to be implementable since the proof of Theorem 1 in KZ for
the strictly concave single-type case implies that when every base utility function is
strictly concave, no customer type can be in multiple priority passes. Assume K = 2.
Note that t2 = t̄1 + 1 is equivalent to qh1 = Nh and ql2 = N l. Thus, when t2 = t̄1 + 1

holds, we have β t̄1 = β and βt2 = 1. Define β = v(θ1;θ2)−v(θ2)
v(θ1)−v(θ2;θ1)

as in Proposition 4 in KZ
for the two-type case. By Proposition 3, q is implementable if and only if qh1 = Nh,

10

ql2 = N l, and β ≥ β. Moreover, β > 1. Thus, Proposition 3 generalizes Proposition 4
the two-type result.

Proposition 3 implies that a multi-pass scheme may not be implementable when
adjacent customer types are very close to each other even if the range of customer
types (i.e., β1 − βT) is very large.

In Theorem 1 and Proposition 3, we have shown that customer types in different
priorities, including those priorities that are close to each other, need to be sufficiently
different in an implementable scheme. However, when the adjacent customer types
are all close to each other, one may wonder whether “gaps” between customer types
in different passes can be created when some types do not buy any pass. For example,
suppose there are five customer types in the strictly concave multi-type case, with
each customer type being very close to the nearest customer types. Consider the
three-pass scheme where the first, the third, and the fifth types respectively buy
the three passes, and the second and the fourth types do not buy any pass. In this
scheme, there is enough difference between the customer types remaining in the queue.
Proposition 2, however, implies that this particular “gap” creation is not possible in
an implementable scheme, and there are restrictions to customer exclusions. We
characterize some of these restrictions in the result below, which is an immediate
implication of Proposition 2.
Corollary 2 (Limits to “gap” creation). Fix the concave multi-type case ((N t)Tt=1, K, (ut)Tt=1).
Let q be an implementable scheme. The following hold.

(a) t1 = 1.

(b) For every j ∈ {1, . . . , K − 2}, we have t̄j = tj+1 or t̄j + 1 = tj+1.

(c) For every j ∈ {1, . . . , K − 1} and t ∈ {tj + 1, . . . , t̄j − 1}, we have qtj = N t.
Part (a) shows that some customer of the highest customer type 1 must buy the

first priority pass. Part (b) means that, for every j ∈ {1, . . . , K − 1}, there is no gap
between t̄j and tj+1. Part (c) implies that, within a pass except for the lowest-priority
pass, customer types in a pass must be “connected”: If a customer’s type is strictly
between the highest and the lowest customer type in a pass whose priority is not the
lowest, then this customer must be in that priority pass. Therefore, Corollary 2 shows
that, if there is any “gap” created such that some customers do not buy any priority
pass, then their types must be between those in the last two priority passes or lower
than the lowest type in the last priority pass.

4 Queue Size and Implementability
The reader may notice that, similar to the two-type case in KZ, with the customer
types fixed, (1) also holds if m is sufficiently large. In the linear multiplicative two-
type case in KZ, Proposition 5 shows that a scheme is implementable if there are suf-
ficiently many customers in each priority pass, and Proposition 6 shows that a scheme

11

is not implementable if there are too few customers in each priority pass. The two
results have generalizations to the general multi-type case. Before we introduce them,
we make a definition that will be useful in the generalized results. Given a scheme q

in the multiplicative multi-type case where K > 2, define R(q) = min1≤j≤K−2
βt̄j

βtj+2
,

which gives the minimum relative difference of customer types in passes that are two
priorities apart.

Given the necessary conditions for implementability in the concave case, we make
the following assumption about schemes in some of the results that follow.

Definition 2 (Regular scheme). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
. A scheme q is called reg-

ular if the following conditions hold:

(a) Every customer buys some priority pass and vT (θK) ≥ 0.

(b) The scheme q is monotone.

(c) Every customer type is in at most two priority passes.

Condition (a) is assumed so that there exists a price that makes IRK hold and that
we do not need to consider IRk or IC0k for k ∈ {1, . . . , K}; thus, we could focus on the
switching incentives between different priority passes. By Proposition 2, conditions
(b) and (c) are necessary for implementability in the concave multi-type case. Note
that when K > 2, R(q) > 1 holds for every regular scheme.

The following result formalizes the conjecture that sufficiently many customers
lead to implementability.

Proposition 4 (Sufficiently many customers for implementation). Fix the linear mul-
tiplicative multi-type case ((N t)Tt=1, K, (ut)Tt=1). Fix a regular scheme q. If

∑T
t=1 q

t
k ≥

R(q)
2(R(q)−1)

for every k ∈ {1, . . . , K}, then q is implementable.

We show how Proposition 4 generalizes Proposition 5 in KZ for the two-type case.
Consider the setup and the scheme q in the two-type result. When K = 2, the same
reasoning as in the proof of Proposition 4 for this case shows that q is implementable.
When K > 2, we have R(q) = β, and the two-type result immediately follows from
Proposition 4.

As in the two-type result, the proposition implies that any regular scheme is im-
plementable if R(q) ≥ 2. Similar to the two-type result, the lower bound of the
number of customers in each priority pass in Proposition 4 tends to infinity as R(q)
approaches 1, and this bound is not stated as a tight bound. This observation mo-
tivates the following proposition, which is analogous to Proposition 6 in KZ for the
two-type case.

Proposition 5 (Not implementable when customer types are too close). Fix the
linear multiplicative multi-type case

(
(N t)Tt=1, K, (ut)Tt=1

)
such that K > 2. Fix a

regular scheme q. If
∑T

t=1 q
t
k <

R(q)− 1
2

2(R(q)−1)
for every k ∈ {1, . . . , K}, then q is not

implementable.

12

With the setup and the scheme q in the two-type result, we have R(q) = β. Hence,
Proposition 5 generalizes the two-type result.

Now, we wish to explicitly analyze how the number of customers in each priority
pass required for implementability would vary when the number of customer types
and passes grow at the same rate, with adjacent customer types getting closer and
closer. For a clear picture of this relationship and tractability, the following result
considers the customer types that are equally distanced and the schemes in which
each priority pass has the same number of customers, and it shows that the required
number of customers grows towards infinity.

Proposition 6 (Type-separating schemes). Fix the linear multiplicative multi-type
case ((N t)Tt=1, K, (ut)Tt=1) such that K = T , N1 = N2 = · · · = NT = m for some m,
and there exists c > 1 such that βt = c− t−1

T−1
(c− 1) for t ∈ {1, . . . , T}. Consider the

scheme q such that qtt = m for every t ∈ {1, . . . , T}, i.e., every t-th type customer
is in the t-th priority pass. Assume vT (θK) ≥ 0. Let M(T) = 1 if T = 1, 2 and
M(T) = c

6(c−1)
(T − 1) + 1

6
if T ≥ 3. The scheme q is implementable if and only if

m ≥ M(T).

The proof shows that, with the assumptions in Proposition 6, the scheme q is im-
plementable if and only if p∗ in Lemma 5, which binds IRK and every local downward
IC constraint, satisfies IC31. By the linearity of M(T), we see that as the customer
types get closer and the number of priority passes gets larger, the required number
of customers for implementability grows towards infinity.

Note that in Proposition 6, a larger value of c, which means a wider range for
customer types, helps with implementability by lowering M(T). However, there is a
limit to how much raising c can help: As M(T) is bounded below by T/6, for fixed
m and c > 1, the scheme q is not implementable if T > 6m. In fact, this observation
that q is not implementable for large T is an implication of Proposition 5. To see
this, note that under Proposition 6’s setting, we have β1

β3 = c
c−2(c−1)/(T−1)

, and hence
R(q) ≤ c

c−2(c−1)/(T−1)
. While this upper bound on R(q) is increasing in c, it is bounded

above by T−1
T−3

, which converges to 1 as T tends to infinity. Thus, by Proposition 5,
with the number of customers in each priority pass and the range of the customer
types (c− 1) fixed, the scheme is not implementable if T is large enough.

Figure 2 illustrates the limitation of c’s role in helping with implementability. The
curves are integer-valued level curves of M(T). For a parameter pair (T, c) and a level
curve with value m, if the point (T, c) is to the left of the curve, then the scheme
as described in Proposition 6 where every pass has m customers is implementable.
In contrast, if the point is to the right of the curve, then such a scheme is not
implementable. Given a level curve, we see that whenever the curve becomes vertical,
a larger c no longer helps with implementability, illustrating the limited role the
parameter c can play in a scheme’s implementability. This limitation of c immediately
leads to the following result about the special case with m = 1, which can be seen as

13

0 5 10 15 20 25 30 353
T (number of passes and types)

5

10

15

20

25

30

35

40

1

c
(m

ea
su

re
 o

f r
an

ge
 o

f t
yp

es
)

M(T) = 1
M(T) = 2
M(T) = 3
M(T) = 4
M(T) = 5

Figure 2: Level curves of M(T) with respect to T and c. For any parameter pair (T, c), if
the point (T, c) is to the left of the level curve for M(T) = m, then the scheme as described
in Proposition 6 where each pass has m customers is implementable. If the point is to the
right of that level curve, then such a scheme is not implementable.

a similar result to Theorem 3 in KZ for the single-type case where each customer is
in her own pass and no two customers have the same type.

Corollary 3 (Implementation with one-customer passes). Consider the setting in
Proposition 6, m = 1 in the scheme q. The scheme q is not implementable if K ≥ 6.

Hence, although a large range of customer types (c − 1) makes it possible to
implement the scheme where the number of customers equals the number of passes
and every pair of customers have different types when there are more than 2 priority
passes, this type of scheme is not implementable for however large c when there are
6 or more priority passes.

In summary, we have shown that to implement multi-pass schemes that are not
implementable under the single-type case, there need to be large enough gaps between
different customer types, and sometimes even a very large gap would not make a
scheme implementable. That is, with multiple types of utility functions, the difficulty
of implementation is abated yet could persist.

References
Kamada, Yuichiro, and Zihao Zhou. (2025). “Flash pass.”

14

A Proofs

A.1 Proof of Lemma 2
Proof of (a). If qt1j > 0 and qt2j > 0, then both ICt1

jk and ICt2
jk are defined. Note

that (p, q) satisfies ICt2
jk if and only if

pj − pk ≤ vt2(θj)− vt2(θk; θj).

Since ut1
n − ut1

n+1 > ut2
n − ut2

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vt1(θj)− vt1(θk; θj) > vt2(θj)− vt2(θk; θj). Therefore, if (p, q)
satisfies ICt2

jk, then

pj − pk ≤ vt2(θj)− vt2(θk; θj) < vt1(θj)− vt1(θk; θj),

which means that (p, q) also satisfies ICt1
jk.

Proof of (b). If qt1k > 0 and qt2k > 0, then both ICt1
kj and ICt2

kj are defined. Note
that (p, q) satisfies ICt1

kj if and only if

pj − pk ≥ vt1(θj; θk)− vt1(θk).

Since ut1
n − ut1

n+1 > ut2
n − ut2

n+1 holds for every n ∈ {1, . . . , N − 1} by the definition of
customer types, we have vt1(θj; θk)−vt1(θk) > vt2(θj; θk)−vt2(θk). Therefore, if (p, q)
satisfies ICt1

kj, then

pj − pk ≥ vt1(θj; θk)− vt1(θk) > vt2(θj; θk)− vt2(θk),

which means that (p, q) also satisfies ICt2
kj.

Proof of (c). If qt10 > 0 and qt20 > 0, then both ICt1
0m and ICt2

0m are defined. Note
that (p, q) satisfies ICt1

0m if and only if

vt1(θm; θ0)− pm ≤ 0.

Since ut1
n > ut2

n holds for every n ∈ {1, . . . , N} by the definition of customer types,
we have vt2(θm; θ0) < vt1(θm; θ0). Therefore, if (p, q) satisfies ICt1

0m, then

vt2(θm; θ0)− pm < vt1(θm; θ0)− pm ≤ 0,

which means (p, q) also satisfies ICt2
0m.

15

Proof of (d). If qt1m > 0 and qt2m > 0, then both IRt1
m and IRt2

m are defined. Note
that (p, q) satisfies IRt2

m if and only if

vt2(θm)− pm ≥ 0.

Since ut1
n > ut2

n holds for every n ∈ {1, . . . , N} by the definition of customer types,
we have vt1(θm) > vt2(θm). Therefore, if (p, q) satisfies IRt2

m, then

vt1(θm)− pm > vt2(θm)− pm ≥ 0,

which means that (p, q) also satisfies IRt1
m.

A.2 Proof of Lemma 3
Assume that (p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}. We have

pm − pm+1 ≤ vt̄m(θm)− vt̄m(θm+1; θm) (by ICt̄m
m,m+1)

≤ vt̄j(θm)− vt̄j(θm+1; θm). (by t̄j ≤ t̄m) (3)

Therefore, if (p, q) satisfies ICm,m+1 for every m ∈ {j, . . . , k − 1}, then

pj − pk =
k−1∑
m=j

(pm − pm+1)

≤
k−1∑
m=j

[
vt̄j(θm)− vt̄j(θm+1; θm)

]
(by (3))

= vt̄j(θj)− vt̄j(θk)−
k−1∑
m=j

[
vt̄j(θm+1; θm)− vt̄j(θm+1)

]
≤ vt̄j(θj)− vt̄j(θk)−

[
vt̄j(θk; θk−1)− vt̄j(θk)

]
(by Claim 1)

= vt̄j(θj)− vt̄j(θk; θj). (by Claim 1)

Thus, (p, q) satisfies ICjk.

A.3 Proof of Lemma 4
Fix j, k ∈ {1, . . . , K} such that j < k and t̄j ≤ t̄k. Assume that (p, q) satisfies ICjk

and IRk. We have

vt̄j(θj)− pj ≥ vt̄j(θk; θj)− pk (by ICt̄j
jk)

≥ vt̄k(θk; θj)− pk (by t̄j ≤ t̄k)
≥ vt̄k(θk)− pk (by Claim 1)
≥ 0. (by IRt̄k

k)

Thus, (p, q) satisfies IRj.

16

A.4 Proof of Lemma 5
The following result, which generalizes Claim 3 in KZ for the single-type case to
the multi-type case, is useful in showing that p∗ ∈ RK

+ . We omit its proof as it is
analogous to the proof of Claim 3.

Claim 2. Fix ((N t)Tt=1, K, (ut)Tt=1) and a scheme q. For any j, k ∈ {1, . . . , K} such
that j < k and every t ∈ {1, . . . , K}, we have vt(θj) > vt(θk; θj).

By Claim 2, for every j ∈ {1, . . . , K−1}, we have p∗j−p∗j+1 = vt̄j(θj)−vt̄j(θj+1) > 0.
Moreover, p∗K = vt̄K (θK) ≥ 0 by assumption. Therefore, p∗ is a valid price vector.

It is clear that statement (b) implies statement (a). The proof is complete if we
can show that statement (a) implies statement (c) and that statement (c) implies
statement (b).

Proof of (a)=⇒(c). Assume that q is implementable and let p be a price vector
that implements q. Fix j, k ∈ {1, . . . , K} such that j < k. By part (b) of Corollary 1,
(p, q) satisfies ICkj if and only if pj − pk ≥ vtk(θj; θk)− vtk(θk). Note that

pj − pk =
k−1∑
m=j

pm − pm+1

≤
k−1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
(by ICt̄m

m,m+1)

=
k−1∑
m=j

p∗m − p∗m+1 (by the definition of p∗)

= p∗j − p∗k. (4)

Thus, we have p∗j − p∗k ≥ pj − pk ≥ vtk(θj; θk)− vtk(θk), that is, (p∗, q) satisfies ICkj.
Assume

∑T
t=1 q

t
0 > 0. We can pick some t ∈ {1, . . . , T} such that qt0 > 0. Fix

j ∈ {1, . . . , K}. As (p, q) satisfies IC0j, it satisfies ICt
0j, which is equivalent to

vt(θj; θ0)− pj ≤ 0. (5)

In (4), if we set k = K, we have pj − p∗j ≤ pK − p∗K . Moreover, as (p, q) satisfies IRK ,
by the definition of p∗, we have pK ≤ vt̄K (θK) = p∗K . Therefore, pj ≤ p∗j holds and
by (5), we have vt(θj; θ0)− p∗j ≤ 0, that is, (p∗, q) satisfies ICt

0j. As the choice of t is
arbitrary as long as qt0 > 0, we have shown that (p∗, q) satisfies IC0j.

We have shown that statement (a) implies statement (c).

17

Proof of (c)=⇒(b). Fix j, k ∈ {1, . . . , K} such that j < k. By the definition of p∗,
part (a) of Corollary 1 implies that (p∗, q) binds ICm,m+1 for every m ∈ {j, . . . , k−1}.
As t̄m ≤ t̄m+1 for each m ∈ {j, . . . , k−1}, by Lemma 3, (p∗, q) satisfies ICjk. Therefore,
(p∗, q) satisfies every downward IC constraint.

By the definition of p∗, part (d) of Corollary 1 implies that (p∗, q) binds IRK .
Fix k ∈ {1, . . . , K − 1}. Note that we have t̄k ≤ t̄K , and (p∗, q) satisfies both ICkK

and IRK . Thus, by Lemma 4, (p∗, q) satisfies IRk Therefore, (p∗, q) satisfies every IR
constraint.

Assume that (p∗, q) satisfies ICkj for any j, k ∈ {1, . . . , K} such that j < k. By
the definition of schemes,

∑T
t=1 q

t
0 ≥ 0 holds. If

∑T
t=1 q

t
0 = 0, then IC0j is undefined

for every j ∈ {1, . . . , K}. In this case, (p∗, q) satisfies every constraint in the set of
IC and IR constraints. For the case where

∑T
t=1 q

t
0 > 0, if additionally (p∗, q) satisfies

IC0j for every j ∈ {1, . . . , K}, then again (p∗, q) satisfies every constraint in the set
of IC and IR constraints. Overall, we have shown that p∗ implements q.

We have shown that statement (c) implies statement (b).

A.5 Proof of Proposition 1
Assume K > 2T . As T ≥ 1, we have K > 2. Towards a contradiction, assume that
q is implementable and let p be a price vector that implements q.

We claim that t̄k ≤ tk+1 for every k ∈ {1, . . . , K − 1}. Towards a contradiction,
assume that there exists some k ∈ {1, . . . , K − 1} such that t̄k > tk+1. In this case,
ICt̄k

k,k+1 implies

pk − pk+1 ≤ vt̄k(θk)− vt̄k(θk+1; θk) =
ut̄k
k − ut̄k

k+1

2
.

Meanwhile, ICtk+1

k+1,k implies

pk − pk+1 ≥ vtk+1(θk; θk+1)− vtk+1(θk+1) =
u
tk+1

k − u
tk+1

k+1

2
,

which contradicts the implication of ICh
k,k+1 just derived. This is because t̄k > tk+1

implies that ut̄k
k −ut̄k

k+1 < u
tk+1

k −u
tk+1

k+1 by the definition of customer types. Hence, we
have that t̄k ≤ tk+1 for every k ∈ {1, . . . , K − 1}.

By the definition of schemes, as K > 2T , there exists some t ∈ {1, . . . , T} and
k1, k2, k3 ∈ {1, . . . , K} where k1 < k2 < k3 such that qtk1 = qtk2 = qtk3 = 1. Since
t̄k ≤ tk+1 for every k ∈ {1, . . . , K − 1}, we must have k3 − k2 = k2 − k1 = 1. For
concision, we let k = k1 from now on.

18

By the choice of q, that (p, q) satisfies ICt
k,k+1 and ICt

k+1,k+2 implies

pk − pk+2 =pk − pk+1 + pk+1 − pk+2

≤vt(θk)− vt(θk+1; θk) + vt(θk+1)− vt(θk+2; θk+1)

=
ut
k − ut

k+1

2
+

ut
k+1 − ut

k+2

2

=
ut
k − ut

k+2

2
.

Meanwhile, that (p, q) satisfies ICk+2,k implies

pk − pk+2 ≥vt(θk; θk+2)− vt(θk+2)

=
ut
k + ut

k+1

2
− ut

k+2

=
ut
k + ut

k+1 − 2ut
k+2

2
,

which contradicts the implication of ICk+2,k just derived since ut
k+1−ut

k+2 > 0 by the
definition of base utility functions. Therefore, q is not implementable.

A.6 Proof of Proposition 2
Assume that a scheme q is implementable and let p be a price vector that implements
q. We first show that every customer type is in at most two priority passes and then
show that q is monotone.

We first show that each customer type is in at most two priority passes. Towards
a contradiction, assume that there exists t ∈ {1, . . . , T} and j, k,m ∈ {1, . . . , K} such
that j < k < m, qtj > 0, qtk > 0, and qtm > 0. Note that (p, q) satisfies ICt

mj if and
only if

pj − pm ≥ vt(θj; θm)− vt(θm). (6)
However, as ut is concave, we have

pj − pm = pj − pk + pk − pm

≤ vt(θj)− vt(θk; θj) + vt(θk)− vt(θm; θk) (by ICt
jk and ICt

km)
< vt(θj)− vt(θm; θj) (by Claim 1)
≤ vt(θj; θm)− vt(θm), (by Lemma 1)

which contradicts (6). Therefore, each customer type is in at most two priority passes.
We next show that q is monotone by starting with condition (a) of monotonicity.

Towards a contradiction, assume that t̄j > tk for some j, k ∈ {1, . . . , K} such that
j < k. With this assumption, we have

vt̄j(θj)− vt̄j(θk; θj) < vtk(θj)− vtk(θk; θj) (by t̄j > tk)
≤ vtk(θj; θk)− vtk(θk). (by Lemma 1) (7)

19

However, that (p, q) satisfies both ICjk and ICkj implies

vtk(θj; θk)− vtk(θk) ≤ pj − pk ≤ vt̄j(θj)− vt̄j(θk; θj),

which contradicts (7). Therefore, t̄j ≤ tk for any j, k ∈ {1, . . . , K} such that j < k,
which is condition (a) of monotonicity.

We now show condition (b) of monotonicity. Towards a contradiction, assume
qt0 > 0 for some t ∈ {1, . . . , t̄K−1} such that t < t̄K . That (p, q) satisfies ICK−1,K

implies
vt̄K−1(θK−1)− pK−1 ≥ vt̄K−1(θK ; θK−1)− pK .

As ut is concave for each t ∈ {1, . . . , T}, by Lemma 1,

vt̄K−1(θK−1; θK)− vt̄K−1(θK−1) ≥ vt̄K−1(θK)− vt̄K−1(θK ; θK−1).

Adding up the two inequalities above, we obtain

vt̄K−1(θK−1; θK)− pK−1 ≥ vt̄K−1(θK)− pK . (8)

Note that we have

vt(θK−1; θ0)− pK−1 = vt(θK−1; θK)− pK−1 (by Claim 1)
≥ vt̄K−1(θK−1; θK)− pK−1 (by t ≤ t̄K−1)
≥ vt̄K−1(θK)− pK (by (8))
≥ vt̄K (θK)− pK (by t̄K−1 ≤ t̄K)
≥ 0. (by IRK) (9)

In (9), if t < t̄K−1, then vt(θK−1; θK) − pK−1 > vt̄K−1(θK−1; θK) − pK−1; if t = t̄K−1,
then t̄K−1 < t̄K and therefore vt̄K−1(θK)− pK > vt̄K (θK)− pK . Thus, at least one of
the inequalities in (9) must be strict, which means that if qt0 > 0, then (p, q) would
not satisfy ICt

0,K−1, a contradiction. Therefore, if t ∈ {1, . . . , t̄K−1} and t < t̄K , then
qt0 = 0, which is condition (b) of monotonicity.

We have shown that q is monotone.
The proof is complete.

A.7 Proof of Theorem 1
Define p∗ as in Lemma 5. As

∑T
t=1 q

t
0 = 0, ICt

0k is undefined for every k ∈ {1, . . . , K}
and t ∈ {1, . . . , T}. Since t̄m ≤ t̄m+1 for m ∈ {1, . . . , K − 1}, the conditions of
Lemma 5 hold, and hence q is implementable if and only if p∗ implements q. Fix
j, k ∈ {1, . . . , K} such that j < k. The definition of p∗ implies that

p∗j − p∗k =
k−1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
=

k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] .

20

Thus, (p∗, q) satisfies ICkj if and only if

p∗j − p∗k =
k−1∑
m=j

β t̄m [v(θm)− v(θm+1; θm)] ≥ βtk [v(θj; θj+1)− v(θk)] .

This is equivalent to

βtk ≤
k−1∑
m=j

v(θm)− v(θm+1; θm)

v(θj; θj+1)− v(θk)
β t̄m . (10)

Letting bkj be the right-hand side of (10), Lemma 5 and (10) together imply that q
is implementable if and only if βtk ≤ bkj for any j, k ∈ {1, . . . , K} such that j < k.
Lastly, to see that bkj ≤ β t̄j , note that
k−1∑
m=j

v(θm)− v(θm+1; θm) = v(θj)− v(θk)−
k−1∑
m=j

[v(θm+1; θm)− v(θm+1)]

≤ v(θj)− v(θk)− [v(θk; θk−1)− v(θk)] (by Claim 1)
(11)

≤ v(θj; θj+1)− v(θk), (by Lemma 1)

which implies that bkj is a convex combination of 0, β t̄j , β t̄j+1 , . . . , and β t̄k−1 , hence
bkj ≤ maxj≤m≤k−1 β

t̄m = β t̄j . Moreover, the inequality in (11) is strict when j < k−1.
In this case, the weight on 0 in the convex combination for bkj is strictly positive.
That is, the sum of coefficients of the β’s on the right-hand side of (10) is strictly less
than 1. Thus, bkj < β t̄k holds when j < k − 1.

A.8 Proof of Proposition 3
Assume that q is implementable. Fix t ∈ {1, . . . , T}. Because N > 2 and every
customer buys some priority pass, by Theorem 1 in KZ for the strictly concave single-
type case, qt1 > 0 implies qt2 = 0, which implies t̄1 6= t2. Moreover, Proposition 2
implies t̄1 ≤ t2. Lastly, since every customer buys some priority pass, we have t̄1 =
t2 − 1.

Define p∗ as in Lemma 5. Since K = 2 and every customer buys some priority pass,
if t̄1 = t2− 1, then the conditions of Lemma 5 hold. Therefore, by the same lemma, q
is implementable if and only if (p∗, q) satisfies IC21. By part (b) of Corollary 1, IC21

is equivalent to ICt2
21. Thus, given the multiplicative setup, that (p∗, q) satisfies IC21

is equivalent to
β t̄1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
.

Therefore, q is implementable if and only if t2 = t̄1+1 and (2) holds. Lastly, because
every customer buys some priority pass and N > 2, by Lemma 1, the right-hand side
of (2) is strictly larger than 1.

21

A.9 Proof of Proposition 4
If K = 1, q is the unique regular scheme, and it is implemented by p = vT (θ1) ≥ 0.

Assume K > 1. By the regularity of q and Lemma 5, q is implementable if and
only if p∗ as defined in the lemma implements q. By the definition of p∗, for every
j ∈ {1, . . . , K − 1},

p∗j − p∗j+1 = β t̄j [v(θj)− v(θj+1; θj)] .

Thus, (p∗, q) satisfies ICj+1,j if and only if

β t̄j [v(θj)− v(θj+1; θj)] ≥ βtj+1 [v(θj; θj+1)− v(θj+1)] .

Because each base utility function is linear, by (16) and (17) derived in KZ for the
single-type case, v(θj) − v(θj+1; θj) = v(θj; θj+1) − v(θj+1). Moreover, as β t̄j ≥ βtj+1

by the definition of regular schemes, (p∗, q) satisfies ICj+1,j. Thus, q is implementable
if K = 2.

Assume K > 2. Fix k ∈ {1, . . . , K − 2} and j ∈ {1, . . . , k}. It remains to show
that (p∗, q) satisfies ICk+2,j. Towards this end, note that (p∗, q) satisfies ICk+2,j if and
only if p∗j − p∗k+2 ≥ vtk+2(θj; θk+2)− vtk+2(θk+2). The definition of p∗ implies that this
condition is equivalent to

k+1∑
m=j

[
vt̄m(θm)− vt̄m(θm+1; θm)

]
−
[
vtk+2(θj; θk+2)− vtk+2(θk+2)

]
≥ 0. (12)

Because each base utility function is linear, we have

vt̄m(θm)− vt̄m(θm+1; θm) =
β t̄m

2
(uQm−1(q)+1 + uQm(q))−

β t̄m

2
(uQm(q) + uQm+1(q))

=
β t̄m

2
(qm + qm+1 − 1)

for each m ∈ {j, . . . , k + 1}, and

vtk+2(θj; θk+2)− vtk+2(θk+2) =
βtk+2

2
(uQj−1(q)+1 + uQj(q)+1)−

βtk+2

2
(uQk+1(q)+1 + uQk+2(q))

=
βtk+2

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
.

Therefore, (12) is equivalent to

k+1∑
m=j

β t̄m

2
(qm + qm+1 − 1)− βtk+2

2

(
qj + qk+2 − 1 + 2

k+1∑
m=j+1

qm

)
≥ 0. (13)

As the scheme q in consideration is fixed, denote R(q) by R. By the definition of
R and the regularity of q, β t̄j ≥ · · · ≥ β t̄k ≥ Rβtk+2 > 1 and β t̄k+1 ≥ βtk+2 ≥ 1,

22

which together imply that the left-hand side of (13) is increasing in qm for each
m ∈ {j, . . . , k + 2}. Thus, (13) is implied by the following inequality:

Rβtk+2

2
(k + 1− j)(2m− 1) +

βtk+2

2
(2m− 1)− βtk+2

2
[2m(k + 2− j)− 1] ≥ 0,

where m = min1≤k≤K

∑T
t=1 q

t
k. This inequality is equivalent to

R(k + 1− j)(2m− 1) + (2m− 1)− [2m(k + 2− j)− 1] ≥ 0. (14)

Now assume
∑T

t=1 q
t
k ≥ R

2(R−1)
for every k ∈ {1, . . . , K}, which is equivalent to m ≥

R
2(R−1)

. We will show that q is implementable. Since m ≥ R
2(R−1)

, the left-hand side of
(14) is weakly decreasing in j. Therefore, the left-hand side of (14) weakly decreases
if we set j to k since j ≤ k by definition. Thus, in this case, (14) is implied by

R(2m− 1) + (2m− 1)− (4m− 1) ≥ 0,

which holds for m ≥ R
2(R−1)

. We have shown that (p∗, q) satisfies ICk+2,j for any
j, k ∈ {1, . . . , K − 2} such that j ≤ k. Therefore, (p∗, q) satisfies ICkj for any
j, k ∈ {1, . . . , K} such that j < k. Thus, by Lemma 5, q is implementable.

Overall, for every K ≥ 1, q is implementable. This completes the proof.

A.10 Proof of Proposition 5
Since the scheme in consideration is fixed, denote R(q) by R instead. Pick k ∈
{1, . . . , K − 2} such that βt̄k

βtk+2
= R. By Lemma 5, q is implementable if and only

if p∗ as defined in the lemma implements q. By the definition of p∗, (p∗, q) does not
satisfy ICk+2,k if and only if

vt̄k(θk)− vt̄k(θk+1; θk)︸ ︷︷ ︸
p∗k−p∗k+1

+ vt̄k+1(θk+1)− vt̄k+1(θk+2; θk+1)︸ ︷︷ ︸
p∗k+1−p∗k+2

−
[
vtk+2(θk; θk+2)− vtk+2(θk+2)

]
< 0.

By the linear multiplicative setup, the above inequality is equivalent to

β t̄k

2
(qk + qk+1 − 1) +

β t̄k+1

2
(qk+1 + qk+2 − 1)− βtk+2

2
(qk + 2qk+1 + qk+2 − 1) < 0. (15)

In the left-hand side of (15), the coefficient of β t̄k+1 is qk+1 + qk+2 − 1, which is
strictly positive; the coefficients of qk, qk+1 and qk+2 are βt̄k

2
− βtk+2

2
, βt̄k

2
+ βt̄k+1

2
−βtk+2 ,

and βt̄k+1

2
− βtk+2

2
, all of which are strictly positive by the regularity of q. Thus, if

we set qk, qk+1, and qk+2 to M̄ := max1≤k≤K

∑T
t=1 q

t
k and β t̄k+1 to β t̄k = Rβtk+2 , the

left-hand side of (15) weakly increases. Therefore, (15) is implied by

Rβtk+2

2
(2M̄ − 1) +

Rβtk+2

2
(2M̄ − 1)− βtk+2

2
(4M̄ − 1) < 0. (16)

23

Now assume that
∑T

t=1 q
t
k <

R− 1
2

2(R−1)
for every k ∈ {1, . . . , K}, which is equivalent to

M̄ <
R− 1

2

2(R−1)
. Note that (16) is equivalent to M̄ <

R− 1
2

2(R−1)
. Thus, (p∗, q) does not

satisfy ICk+2,k. Therefore, by Lemma 5, q is not implementable.

A.11 Proof of Proposition 6
As vT (θK) ≥ 0, q is implementable if T = 1. Assume T ≥ 2. Define p∗ as in
Lemma 5. Fix j, k ∈ {1, . . . , K} such that j < k. Note that by the definition of p∗,
(p∗, q) satisfies ICkj if and only if(

k−1∑
n=j

[
vt̄n(θn)− vt̄n(θn+1; θn)

])
−
[
vtk(θj; θk)− vtk(θk)

]
≥ 0. (17)

Note that (17) holds for j = k − 1. Thus, q is implementable if T = 2.
Assume that T ≥ 3. The following lemma is useful in deriving the condition for

(17) to hold for any j, k ∈ {1, . . . , K} such that j < k. Let ∆ = β1 − β2 = · · · =
βK−1 − βK = c−1

T−1
.

Lemma 6. Fix k ∈ {3, . . . , K}. We have that (17) holds for every j ∈ {1, . . . , k− 1}
if and only if m ≥ βk

6∆
+ 1

2
.

Proof of Lemma. We first derive an equivalent representation of (17), and then prove
the “only if” and “if” parts in turn.

Fix j ∈ {1, . . . , k − 1}. By the choice of customer types and q, for each n ∈
{j, . . . , k− 1}, β t̄n = βn = βk + (k− n)∆ and βtk = βk. Moreover, by the linearity of
the base utility functions and the choice of q, we have

vt̄n(θn)− vt̄n(θn+1; θl) =
βk + (k − n)∆

2
(2m− 1),

and
vtk(θj; θk)− vtk(θk) =

βk

2
[2(k − j)m− 1] .

Therefore, (17) is equivalent to(
k−1∑
n=j

βk + (k − n)∆

2
(2m− 1)

)
− βk

2
[2(k − j)m− 1] ≥ 0. (18)

Note that (18) holds for j = k− 1. If j = k− 2, an algebraic manipulation shows
that (18) is equivalent to m ≥ βk

6∆
+ 1

2
. Thus, the proof of the lemma is complete if

k = 3. For the rest of the proof, assume k > 3.

“Only if” Part. This part is an immediate consequence of our analysis of the case
where j = k − 2 above.

24

“If” Part. Assume m ≥ βk

6∆
+ 1

2
. Let

Π :=
βk + 2∆

2
(2m− 1) +

βk +∆

2
(2m− 1)− βk

2
(4m− 1),

which is the left-hand side of (18) when j = k − 2. Therefore, Π ≥ 0 holds since
m ≥ βk

6∆
+ 1

2
. Fix j ∈ {1, . . . , k − 3}. It remains to show that (18) holds for the

fixed j and k. With the definition of Π, an algebraic manipulation shows that (18) is
equivalent to

Π ≥ −
k−3∑
n=j

[
βk + (k − n)∆

2
(2m− 1)− βkm

]
= −

k−3∑
n=j

B(n), (19)

where B(n) := βk+(k−n)∆
2

(2m − 1) − βkm for every n ∈ {j, . . . , k − 3}. As Π ≥ 0
holds, (19) holds if B(n) ≥ 0 for every n ∈ {j, . . . , k − 3}. Since B(n) is decreasing
in n, it is minimized at n = k − 3. The minimized value is βk+3∆

2
(2m − 1) − βkm.

This value is non-negative for m ≥ βk

6∆
+ 1

2
, which holds by assumption. Therefore,

B(n) ≥ 0 holds for every n ∈ {j, . . . , k − 3} and thus (19) holds. This completes the
proof for the case k > 3.

Overall, for every k ∈ {3, . . . , K}, (18) holds for j ∈ {1, . . . , k − 1} if and only if
m ≥ βk

6∆
+ 1

2
.

The proof of the lemma is complete.

By Lemma 6, conditional on T ≥ 3, (17) holds for any j, k ∈ {1, . . . , K} such that
j < k if and only if m ≥ βk

6∆
+ 1

2
. As βk is decreasing in k, we have that conditional

on T ≥ 3, (17) holds for any j, k ∈ {1, . . . , K} such that j < k if and only if

m ≥ β3

6∆
+

1

2
=

c− 2(c− 1)/(T − 1)

6(c− 1)/(T − 1)
+

1

2
=

c

6(c− 1)
(T − 1) +

1

6
.

To complete the proof, set M(T) = 1 if T = 1, 2 and M(T) = c
6(c−1)

(T − 1) + 1
6

if
T ≥ 3. Then q is implementable if and only if m ≥ M(T).

25

	Introduction
	Model
	Lemmas for Multi-Type Case

	Implementability in the Multi-Type Case
	Monotonicity
	Concave Case

	Queue Size and Implementability
	Proofs
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

