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Abstract

We consider a model in which an amusement park sells different priority passes to
customers in a queue whose utilities depend on positions in the queue. A customer’s
valuation of a priority pass depends on the distribution of customers buying each
pass. Hence, other customers’ purchase decisions affect the customer’s valuation,
which differentiates our model from the standard screening models. We discuss the
implementability of selling multiple passes and show that the externality makes the
implementation of multi-pass schemes difficult. This issue can persist even when
customers have heterogeneous utilities of positions in a queue.
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1 Introduction

When access to a service facility is congested, service providers commonly implement a type
of queue called priority queue, where each person/entity in the queue has an associated
priority such that those with a higher priority will be ahead of those with a lower priority
in the queue. For example, an amusement park can sell two types of priority passes to its
customers, one called regular and the other called flash pass. A customer holding a flash pass
is ahead of every regular pass holder in the queue. Event organizers hosting many visitors,
such as an exhibition, can let VIP ticket holders skip the queue and enter the venue ahead
of regular ticket holders. Airport security checks sometimes set up an express lane where
eligible travelers can skip the queue to expedite security checks. In cloud computing, different
computing requests queue for the computing resources; within a computer, various programs
need to queue for access to the CPU. In this paper, we consider the pricing problem faced by
a seller that manages a priority queue, e.g., an amusement park.

When a park sells different priority passes, other customers’ purchase decisions affect a
customer’s valuation of a pass, which differentiates the pricing problem of a priority queue
from the problem where a customer’s valuation of a pass is fixed. For example, consider a
customer buying a flash pass. If she is the only customer buying that pass, then she would
be ahead of everyone else, and hence her valuation of the flash pass is high. If, in contrast,
everyone else buys the flash pass as well, then she would be in the middle of the queue on
average, and thus her valuation of the flash pass would not be so high. This is caused by
the externalities that other customers’ purchase decisions impose on the customer, and this
paper provides insights into the implications of these externalities.

We observe that parks usually sell only a small number of priority passes. For example,
Six Flags, a large amusement park corporation in the US, sells only three tiers of priority
passes: THE FLASH Pass, THE FLASH Pass Gold, and THE FLASH Pass Platinum.
Motivated by this observation, this paper focuses on the implementability of multi-pass
schemes, i.e., whether a park can price many priority passes so that each pass has at least
one willing customer. For example, we show that when customers have the same utility
function concerning the positions in a queue, the park cannot sell a different priority pass
to each customer. We further show that, under some conditions on each customer’s utility
function, implementing a multi-pass scheme is impossible unless different customer utility
types are sufficiently different. We formalize that the existence of externalities contributes to
the difficulty of selling many priority passes.

The main objective of this paper is to show that externalities can contribute to the
constrained number of priority passes that are implementable, and we do not claim to explain
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the constraint on the number of passes thoroughly. Other factors could play a role in the
constraint at the same time. For example, selling many priority passes may incur considerable
logistic costs, prompting the park to sell a small number of passes. Too many choices may
also overwhelm customers (Park and Jang 2013; Kuksov and Villas-Boas 2010).

Queuing literature, such as Balachandran (1972), Adiri and Yechiali (1974), Hassin and
Haviv (1997), and Alperstein (1988), has studied managing priority queues with a setup
different from ours. In these papers, each customer sequentially arrives at a queue, observes
the queue’s state with a forecast about the waiting time in each priority pass, and then chooses
a pass to maximize her expected utility. In contrast, our model is static: the customers make
purchase decisions simultaneously, so they do not observe the state of the entire queue when
they make a purchase decision. We believe these two types of models fit to different situations.
Our models may fit better in the applications we have in mind, such as the queues in the
amusement park: For example, many customers of Six Flags purchase their priority passes
online before their realized arrival. At the purchase time, the customers do not observe the
purchase behavior of the customers who have already bought, nor do they expect that their
purchase behavior would be observed by other customers to affect their purchase behavior.

As for the number of passes, Alperstein (1988) discussed the optimal pricing as well as
the number of passes to sell. The paper finds it profit-optimal to have at most one customer
in each priority pass, which implies a large number of passes when many customers are in the
queue at the same time. However, the number of priority passes is usually much smaller than
the number of customers, and our paper provides one factor contributing to the disparity.
Adiri and Yechiali (1974) showed that in equilibrium, early-arriving customers would purchase
the lower-priority passes and later-arriving customers will purchase higher-priority passes as
the queue gets large, which leads each priority pass to have at least one customer.

Pricing priority passes is like a screening problem. While we use the same approach as in
the standard problems such as Guesnerie and Laffont (1984) and Maskin and Riley (1984),
we show that implementability in our setup does not extend from those models because of
the externalities.1 In Section 6.2, we discuss how the existence of externalities makes the
pricing of priority passes harder.

Several existing studies considered externalities in screening problems. Early works
by Bergstrom, Blume, and Varian (1986) and Rasmusen, Ramseyer, and Wiley Jr (1991)
considered applications with positive and negative externalities, respectively. Segal (1999)
considered a general model of bilateral contracting between a principal and multiple agents.2

1Specifically, we will show that our setup does not permit the constraint reduction as in the standard
screening models.

2A follow-up study, Segal and Whinston (2003), also considered a screening problem with externalities.
Gomes (2005) and Bloch and Gomes (2006) analyzed multilateral contracting problems with externalities.
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He provided results on when the principal-optimal aggregate trade quantity would be above
or below the socially optimal aggregate trade quantity. These results, however, would not
cover our results due to the conditions he imposes.3

For existing applied literature that includes externalities, the nature of externalities
varies by application. For example, Katz and Shapiro (1986) analyzed the adoption of new
technology under the presence of network effects that greater adoption of the technology
increases the utility of adoption; Csorba (2008) considered the externalities when the utility
of using a product increases with the rise in demand; Shi, Zhang, and Srinivasan (2019)
and Kamada and Öry (2020) both looked at product-line design and pricing questions in
which new customers boost the utility of existing customers. None of these papers dealt with
externalities in queues.

The paper proceeds as follows. Section 2 and 3 introduce the main model. Section 4
discusses selling multiple priority passes with one utility type. Section 5 extends the main
model to cases with multiple types of customer utility functions. Section 6 provides a more
detailed discussion of the derived results, with Section 7 concluding the paper.

2 Model

An amusement park chooses K ≥ 1 and p = (p1, . . . , pK) ∈ RK
+ , where K is the number of

types of priority passes that it sells and pk is the price for the k-th pass. We denote by θk

the k-th pass. Let θ0 denote the option of staying at home and set p0 = 0 for completeness.
There are N ≥ 1 customers who observe the price vector p and then make purchase decisions
simultaneously: Each customer either buys some priority pass (i.e., chooses θk for some
k = 1, . . . , K) or does not buy any pass and leaves the park (i.e., chooses θ0).

After the purchase decisions, the customers that purchase a priority pass form a queue,
with the possible positions in the queue being 1, 2, . . . , N ′, where N ′ is the number of customers
who bought some pass. For every k ∈ {1, . . . , K}, every customer buying θk is guaranteed
to be ahead of every customer buying θj if j > k and behind every customer buying θj if
1 ≤ j < k. For customers in the same priority pass, each order of these customers happens

3Specifically, in Segal (1999)’s model, the principal offers a take-it-or-leave-it contract to the agent that
specifies the trade quantity between them. The contracting outcomes of other agents can affect the reserve
utility of an agent. He found that when the externalities are positive (negative), i.e., an agent’s reserve
utility is non-decreasing (non-increasing) if other agents are trading more with the principal, then the
principal-optimal aggregate trade quantity is below (above) the socially optimal aggregate trade quantity. If
we wish to fit our model to the setup of Segal (1999), given a priority queue, we can treat the customers’
choices as the “trade profile” (which specifies the trade quantity of each customer, and dependent on which
each customer has a utility function) and the optimal deviation payoff of the customer as a customer’s reserve
utility. The externalities in the fitted model do not satisfy the conditions for the results of Segal (1999), and
hence that paper’s results do not cover ours.
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with the same probability. Hence, each customer’s position is uniformly distributed over the
possible positions of customers buying the same pass.4

A base utility function u : N → R assigns a utility to each position in the queue
where u(n) denotes the utility from being at the n-th position in the queue.5 To simplify
the notations, we write un in place of u(n) in what follows. If a customer buys pass θk and
receives position n, then her payoff is un−pk. If the customer chooses θ0, her payoff is u0−p0

(which equals u0 since p0 = 0), where u0 is set to zero unless otherwise specified.6

Given any choice by the amusement park, the above setup where customers make a choice
can be modeled as a strategic-form game. Define a strategic-form game G(N,K, p, u) =

〈I, (Ai)i∈I , (πi)i∈I〉, where I = {1, . . . , N} is the set of players, Ai = {θ0, θ1 . . . , θK} is i’s
action set, and πi : A → R is each customer’s payoff function where A = ×N

i=1Ai: For every
a ∈ A, πi(a) = vi(a)− pk, where vi(a) is customer i’s expected utility from action profile a

and we have ai = θk.
Given an action profile a ∈ A, define q(a) = (qk(a))

K
k=0, where qk(a) = |{i : ai = θk}|

denotes the number of customers choosing θk. Given N and K, define Q(N,K) = {q ∈
({0} ∪ N) × NK :

∑K
k=0 qk = N} to be the set of schemes for (N,K). The interpretation

is that, for each q = (q0, . . . , qK) ∈ Q(N,K), the first coordinate of q (i.e., q0) denotes the
number of customers staying at home; for each k ∈ {1, . . . , K}, the (k + 1)-th coordinate of
q (i.e., qk) is the number of customers that buy θk. By setting qk ≥ 1 for k ≥ 1, we require
that each priority pass has at least one customer for q to be a scheme.7 See Figure 1 for an
example of a scheme.

We now define implementability, the main concept of this paper. In short, a scheme
is implementable if each customer’s purchase decision is optimal given other customers’
decisions.

Definition 1 (Implementation). Fix (N,K, u). A price vector p implements a scheme
q ∈ Q(N,K) if G(N,K, p, u) has a pure-strategy Nash equilibrium a∗ ∈ A such that q(a∗) = q.
A scheme q is implementable if there exists a price vector p that implements q.

4Although it does not affect any of our results, for completeness, one can assume that the randomization
of customer orders within a priority pass is independent across different passes.

5To clarify, N denotes the set of strictly positive integers.
6We only let u0 be non-zero in Section 6.3, where we consider the limit as the queue length becomes long.
7This restriction is without loss in the following sense: an action profile a such that there are some priority

passes without any customer is a Nash equilibrium in the game under some price vector p if and only if the
action profile that induces the scheme given by “deleting” these passes is a Nash equilibrium of the game
under another price vector p′. In particular, given p. the p′ can be obtained by deleting the prices for priority
passes that had no customers under p.
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Customer Pass Bought Price Paid Expected Utility

A θ1 p1
u1+u2

2 − p1

B θ1 p1
u1+u2

2 − p1

C θ2 p2
u3+u4+u5

3 − p2

D θ2 p2
u3+u4+u5

3 − p2

E θ2 p2
u3+u4+u5

3 − p2

F θ3 p3 u6 − p3

G θ0 p0(= 0) 0

Amusement
Park

G stays at home

Queue

A B with probability 1/2
B A with probability 1/2

C D E with probability 1/6
C E D with probability 1/6
D E C with probability 1/6
D C E with probability 1/6
E C D with probability 1/6
E D C with probability 1/6

F with probability 1

q1 = 2 q2 = 3 q3 = 1

Figure 1: Example of a scheme: (q0, q1, q2, q3) = (1, 2, 3, 1).

3 Preliminaries

3.1 Pass Utility Function

We begin this section with an equivalent formulation of implementability based on incentive
constraints. We use this formulation throughout the paper to verify implementability as
it helps to make our discussions more intuitive. Towards this objective, we first define the
utility from a deviation. Fix (N,K, u) and a scheme q ∈ Q(N,K). For j, k ∈ {0, . . . , K} such
that qj > 0, define v(θk; θj; q) to be the utility (before payment) that a customer who would
buy θj in scheme q receives if she instead buys θk.8 We call v the pass-utility function
constructed from u. When without ambiguity, such as when the scheme in consideration is

8That is, we define v(θk; θj ; q) := vi(a), where a is any action profile such that qj(a) = qj−1, qk(a) = qk+1,
and ql(a) = ql for every l such that l 6= j, k and ai = θk.

8



fixed, q is omitted and v(θk; θj) is written instead. Abuse notation to write v(θk) := v(θk; θk)

for each k ∈ {0, 1, . . . , K}. In words, v(θk) denotes the utility of a customer choosing θk in
a scheme. The following observation about the pass utility function is fundamental to the
reduction of incentive constraints (as well as the lack of it), which we formalize later.

Claim 1 (Properties of pass-utility function). Fix (N,K, u) and q ∈ Q(N,K). Fix k ∈
{1, . . . , K}. If j1, j2 ∈ {1, . . . , k − 1} and l1, l2 ∈ {k + 1, . . . , K, 0}, then

v(θk; θj1) = v(θk; θj2) > v(θk) > v(θk; θl1) = v(θk; θl2).

To explain the intuition, first consider the case where l1, l2 6= 0. The first equality implies
that the utility of a downgrade does not depend on “how much” higher priority the higher-
priority pass has than the lower-priority pass; similarly, the second equality implies that the
utility of an upgrade does not depend on “how much” lower priority the lower-priority pass
has than the higher-priority pass. To see this, consider a scheme with three priority passes.
When a customer in the second priority pass upgrades to the first pass, the distribution of
positions in the first pass after the switch (equal probability on the first and the second
positions) is the same as when a customer in the third pass upgrades to the first pass.

Meanwhile, the two inequalities in Claim 1 indicate that a downgrade improves the utility
of the lower-priority pass and an upgrade lowers the utility of the higher-priority pass. When
a customer downgrades to a lower-priority pass, the first position of that pass improves by
one, with the last position unchanged, leading to an improved average utility; in an upgrade,
the first position of the higher-priority pass is unchanged, and its last position moves down
by one, lowering the average utility of positions in that pass.

Lastly, the case where l1 = 0 or l2 = 0 shows that joining a priority pass from outside the
queue is like upgrading to this priority pass from a lower-priority pass, which decreases the
utility of the higher-priority pass.

3.2 Individual Rationality, Incentive Compatibility, and External-
ity

For fixed (N,K, u), pick q ∈ Q(N,K) and a price vector p. For every j ∈ {1, . . . , K}, (p, q)
is said to satisfy the individual-rationality constraint of θj (henceforth IRj) if every
customer buying θj in q has no incentive to leave the queue, i.e.,

v(θj)− pj ≥ u0 = 0. (IRj)
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Let the set of IR constraints be the collection of IRj over j ∈ {1, . . . , K}. For every
j ∈ {0, 1, . . . , K} such that qj > 0 and k ∈ {1, . . . , K}, (p, q) is said to satisfy the incentive-
compatibility constraint from θj to θk (henceforth ICjk) if every customer choosing θj in
q has no incentive to switch to θk, i.e.,

v(θj)− pj ≥ v(θk; θj)− pk. (ICjk)

Let the set of IC constraints be the collection of ICjk over j ∈ {0, 1, . . . , K} such that
qj > 0 and k ∈ {1, . . . , K}.9 With these definitions, implementability can be characterized
with respect to IC and IR constraints.

Claim 2 (Implementation with respect to incentive constraints). A scheme q ∈ Q(N,K)

is implementable if and only if there exists a price vector p such that (p, q) satisfies every
constraint in the set of IC and IR constraints.

Fix an IC constraint ICjk where j, k ∈ {1, . . . , K}. The constraint ICjk is said to be
a downward IC constraint if j < k, a local downward IC constraint if k = j + 1,
an upward IC constraint if j > k, and a local upward IC constraint if j = k + 1.
In standard screening models such as Guesnerie and Laffont (1984) and Maskin and Riley
(1984), for implementability, it is sufficient for a price vector to satisfy every local downward
IC constraint and IRK .10 Similarly, we will show that for each downward IC constraint,
there are local downward IC constraints that together imply it: ICjk holds if ICl,l+1 holds for
every l ∈ {j, . . . , k − 1}. Unlike in the standard screening models, however, in our model, no
non-local upward IC constraint is implied by any combination of local upward IC constraints
(We will detail this point shortly). The following lemma summarizes the constraint reduction
results in our model and provides a useful condition for proving some negative results about
implementability.

Lemma 1 (Constraint reduction). Fix q ∈ Q(N,K) and a price vector p ∈ RK
+ . Fix

j, k ∈ {1, . . . , K} such that j < k.

(a) If (p, q) satisfies ICl,l+1 for every l ∈ {j, . . . , k − 1}, then (p, q) satisfies ICjk.
9Since qj > 0 holds for every j ∈ {1, . . . ,K} if q is a scheme, the condition of qj > 0 is relevant only when

j = 0.
10Carroll (2012) provided a comprehensive discussion about when local incentive constraints are sufficient

for global incentive constraints. Our setup is most closely related to the case with transfers and interdependent
preferences in his paper. Carroll (2012) showed that in that case, if each agent’s utility is linear in the
reported type and each agent’s type space is convex, then local incentives are sufficient. The conditions cover
screening studies like Guesnerie and Laffont (1984) and Maskin and Riley (1984), but not ours because the
linearity condition does not hold in our model.
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(b) If (p, q) satisfies IRk and ICjk, then (p, q) satisfies IRj.

(c) If (p, q) satisfies both ICjk and ICkj, then

v(θj; θk)− v(θk) ≤ v(θj)− v(θk; θj). (IDjk)

The reduction of downward IC constraints and the lack of it for upward IC constraints
can be understood by using the inequalities in Claim 1. Pick j, k ∈ {1, . . . , K} such that
j + 1 < k, i.e., j and k are at least two apart. The downward IC constraint ICjk implies an
upper bound on pj − pk as follows:

pj − pk ≤ v(θj)− v(θk; θj) = v(θj)− v(θk)− [v(θk; θj)− v(θk)]︸ ︷︷ ︸
Downgrade externality

= v(θj)− v(θk)− [v(θk; θk−1)− v(θk)]︸ ︷︷ ︸
Local downgrade externality

,

where the last inequality follows from Claim 1. We call the two differences in the square
brackets the downgrade externality and the local downgrade externality, respectively. The
existence of the downgrade externalities decreases the upper bound pj − pk further. If we
bind and combine all the local downward IC constraints between θj and θk, the resulting
upper bound on pj − pk would decrease from v(θj)− v(θk) by the sum of the local downgrade
externalities (i.e.,

∑k
l=j+1 v(θl; θl−1)− v(θl)). The sum of these local downgrade externalities

is more than the downgrade externality in ICjk (v(θk; θj) − v(θk)) because by Claim 1,
v(θk; θj) = v(θk; θk−1) holds for every j, k ∈ {1, . . . , K} such that j < k. Therefore, binding
every local downward IC constraint between θj and θk satisfies ICjk, hence the simplification
for downward IC constraints.

The analogous simplification for the upward IC constraints, however, does not hold
because an upward IC constraint provides a lower bound, not an upper bound, of the price
difference. Specifically, ICkj implies

pj − pk ≥ v(θj; θk)− v(θk) = v(θj)− v(θk)− [v(θj)− v(θj; θk)]︸ ︷︷ ︸
Upgrade externality

= v(θj)− v(θk)− [v(θj)− v(θj; θj+1)]︸ ︷︷ ︸
Local upgrade externality

,

where the last equality again follows from Claim 1. Binding all the local upward IC constraint
between θk and θj decreases the lower bound on pj − pk by the sum of the local upgrade
externalities (i.e.,

∑k−1
l=j v(θl)− v(θl; θl+1)). The sum of these externalities decreases the lower
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bound on pj − pk by more than what is allowed by ICkj. Therefore, binding every local
upward IC constraint between θk and θj violates ICkj, hence the lack of simplification for
upward IC constraints.

3.3 Increasing Difference

A scheme q is said to satisfy IDjk if the inequality (IDjk) in Lemma 1 holds. Let the set of
increasing difference (ID) conditions be the collection of IDjk for j, k ∈ {1, . . . , K} such
that j < k. Note that IDjk holds if ICjk and ICkj hold simultaneously. Thus, the set of ID
conditions is necessary for implementability. Specifically, ICjk, under which every customer
holding θj has no incentive to downgrade to θk, implies an upper bound on pj − pk, whereas
ICkj, under which every customer holding θk has no incentive to upgrade to θj, implies a
lower bound on pj −pk. Implementability necessitates that the upper bound be weakly higher
than the lower bound, hence IDjk.

Note that (IDjk) can be manipulated as:

v(θk; θj)− v(θk)︸ ︷︷ ︸
Downgrade externality

≤ v(θj)− v(θj; θk)︸ ︷︷ ︸
Upgrade externality

.

In words, an ID condition is equivalent to the requirement that the upgrade externality is no
less than the downgrade externality.

The ID conditions are commonly assumed in the screening literature. In existing studies
such as Guesnerie and Laffont (1984) and Maskin and Riley (1984), the ID conditions
are necessary and sufficient for implementability if every IC constraint is implied by some
combination of local IC constraints.11 In our model, while the ID conditions are necessary for
implementability as part (c) of Lemma 1 shows, they are not sufficient for implementability
(we show this in Theorem 3). The only special case where the ID conditions are necessary and
sufficient for implementability is when K = 2, every customer buys some pass, and v(θ2) ≥ 0.
This is because that is the only case where every IC constraint is a local constraint and every
IR constraint holds with some price vector. For K ≥ 3, the ID conditions are not sufficient
for implementability. For example, when the base utility function is linear, the ID conditions
hold (Proposition 1), but in this case, no schemes with more than two priority passes are
implementable (Theorem 2). Therefore, implementability calls for more conditions, which we
will discuss next.

11See Chapter 2 of Bolton and Dewatripont (2005) for a summary of these results.

12



4 Implementability

This section discusses the implementability of schemes, where our general message is that
implementability is hard to obtain in our setting with externalities. For this purpose, we
formalize our results under different patterns of base utility functions. Section 4.1 introduces
three types of base utility functions and explains their applications. Section 4.2 examines
implementability under each of these three possibilities for the base utility function. Section 4.3
considers a special scheme that was shown to be optimal in the queuing literature (in a
different setting) and shows that it is not implementable under any base utility function in
our setting.

4.1 Examples of Base Utility Functions

Some of our results pay special attention to the following three patterns of base utility
functions. As we argue below, each of these patterns has reasonable applications.

• Concave base utility function (un − un+1 ≤ un+1 − un+2 for each n): The concave
case applies when queuing incurs an opportunity cost to a customer. Specifically, a
customer’s utility from a park depends on the time spent in the park. Assume the
customer has a total amount of available time T > 0. If the customer spends x ∈ [0, T ]

units of time in the park, then her utility is y(x), where y′ > 0 and y′′ ≤ 0, i.e., the
customer enjoys spending time in the park but faces diminishing marginal utility. If
being at the n-th position in the queue means n units of wait time, then the customer’s
utility is un = y(T − n), which is decreasing and concave in n.

• Convex base utility function (un − un+1 ≥ un+1 − un+2 for each n): The convexity
assumption is applicable when queuing is inherently unpleasant to a customer, but
the customer becomes less sensitive to longer queuing time. Specifically, assume that
being at the n-th position in the queue means n units of wait time. The customer
obtains a fixed utility U from visiting the park but incurs a disutility of c(n) from
queuing when the customer waits for n units of time. We assume c(·) to be increasing
and concave to capture the diminishing sensitivity to wait time. In this case, the
customer’s base utility function is un = U − c(n), which is decreasing and convex in n.
Additionally, the convexity assumption holds when upon entry, the customer obtains
a fixed instantaneous utility that is exponentially discounted with the wait time in
the queue. Specifically, assume the customer again obtains a fixed utility U > 0 from
visiting the park and being at the n-th position in the queue means n units of wait
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time. Waiting in the queue discounts the utility by rate r > 0. The customer’s base
utility function is then e−r(n−1)U for some r > 0, which is decreasing and convex in n.

• Linear base utility function (un − un+1 = un+1 − un+2 for each n): The linear case
is commonly assumed in queuing literature such as Balachandran (1972), Adiri and
Yechiali (1974), and Alperstein (1988). Since a linear function is both convex and
concave, some applications of the previous two cases can be adapted to the linear case.
For example, assuming y′′ = 0 in the above concave case and c′′ = 0 in the above convex
case makes the base utility function linear. Additionally, the case with the linear base
utility function is arguably the most tractable.

4.2 Implementability and Base Utility Functions

We start with the concave base utility functions. It turns out that if the base utility function
is strictly concave, i.e., un − un+1 < un+1 − un+2 for every position n, then no scheme with
more than one pass and more than two customers is implementable.

Theorem 1 (Implementation with strictly concave utility). Fix (N,K, u) where K > 1 and
u is strictly concave. If q ∈ Q(N,K) has more than two customers buying a priority pass,
then q is not implementable.

The proof of Theorem 1 shows that when the base utility function is strictly concave, the
downgrade externality is always strictly higher than the upgrade externality, violating IDjk,
i.e., there exists no price vector that satisfies both ICjk and ICkj. The following example
illustrates the intuition.

Example 1 (Strict concavity violates ID). Consider the case where N = 3, K = 2, and u

is strictly concave. Fix a scheme (q0, q1, q2) = (0, 1, 2). Writing both ends of ID12 in (IDjk)
with respect to the base utility function, we have

u1 + u2 + u3

3
− u2 + u3

2
≤ u1 −

u1 + u2

2
,

which we solve to get u1 − u2 ≥ u2 − u3, contracting the strict concavity assumption of u.
Hence, ID12 is violated and the scheme is not implementable.

The existence of externalities contributes to the lack of implementability. If there were no
externalities, then we would have v(θk; θj) = v(θk) for every j and k. In this hypothetical
case, IC12 for the aforementioned example implies p1 − p2 ≤ u1 − u2+u3

2
and IC21 implies
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p1 − p2 ≥ u1 − u2+u3

2
, making the scheme implementable with p1 − p2 = u1 − u2+u3

2
, as in the

standard screening models.12

In contrast to the concave case, when u is convex, i.e., un − un+1 ≥ un+1 − un+2 for every
position n, all ID conditions are satisfied. Moreover, when u is convex and K = 2, the
(unique) ID condition is equivalent to the existence of a price vector with which the two IC
constraints hold. These facts imply the following result.

Proposition 1 (Two-pass implementation with convex utility). Fix (N,K, u) where K = 2

and u is a convex base utility function. Every q ∈ Q(N, 2) such that v(θ2) ≥ 0 is implementable.

The contrast between Theorem 1 and Proposition 1 shows that implementability depends
on the shape of u. It turns out that to check the implementability of a scheme, it is necessary
and sufficient to check whether the price vector binding all local downward IC constraints
and the lowest IR constraint implements the scheme. The next lemma makes this point and
provides further simplification.

Lemma 2 (Implementability condition). Fix (N,K, u) where 1 ≤ K ≤ N . Let q ∈ Q(N,K)

be such that q0 = 0 and v(θK) ≥ 0. Let p∗ be the price vector such that p∗K = v(θK) and
p∗k − p∗k+1 = v(θk)− v(θk+1; θk) for every k ∈ {1, . . . , K − 1}. The scheme q is implementable
if and only if (p∗, q) satisfies every upward IC constraint in {ICKj : 1 ≤ j ≤ K − 1}.

Lemma 1 shows that if IRK and every local downward IC constraint hold, then all
downward IC and IR constraints hold. Hence, to check that p∗ (which by definition satisfies
IRK and every local downward IC constraint) implements q, it only remains to check whether
(p∗, q) satisfies every upward IC constraint. Lemma 2 says that it suffices to check only the
subset of upward IC constraints in the lemma’s statement.

In the standard screening models, with a fixed scheme q, when p∗ as in Lemma 2 binds
every local downward IC constraint and IRK , every IC and IR constraint holds thanks to
the ID conditions and constraint reduction. However, in our model, no combination of
local upward IC constraints implies a non-local upward IC constraint, and this is why p∗ in
Lemma 2 does not always implement the scheme q. The lemma also illustrates how a scheme
fails to be implementable. For every j, k ∈ {1, . . . , K} such that j < k,

p∗j − p∗k =
k−1∑
l=j

p∗l − p∗l+1 = v(θj)− v(θk)−
k+1∑
l=j

[v(θl+1; θl)− v(θl+1)]︸ ︷︷ ︸
Downgrade externality

from θl to θl+1

, (1)

where p∗ is defined in Lemma 2. The summation on the right-hand side is the accumulated
externalities from downgrading to the next-lower-priority pass, which can be interpreted as

12We will have more in-depth discussion on this hypothetical case in Section 6.2.
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the extra surplus the park gives to each customer in θj (relative to customers in θk). At the
same time, ICkj is equivalent to

pj − pk ≥ v(θj; θk)− v(θk) = v(θj)− v(θk)− [v(θj)− v(θj; θj+1)]︸ ︷︷ ︸
Upgrade externality

from θj+1 to θj

, (2)

where the difference in the bracket is the upgrade externality from θj+1 to θj, which is
interpreted as the allowance for the surplus the park can give to each customer in θj . Whenever
the surplus given to customers in θj, expressed as the sum of downgrade externalities in
(1), exceeds the surplus allowance, which is the upgrade externality in (2), the scheme is
not implementable. Note that if additionally k < K, from p∗j − p∗k to p∗j − p∗k+1, the extra
surplus given to customers in θj (relative to customers in θk+1) increases, whereas the surplus
allowance stays the same by Claim 1. Therefore, if ICk+1,j holds with p∗, then ICk,j also
holds.

When K ≥ 3, not every scheme is implementable even if the base utility function is
convex. For example, the next theorem shows that when the base utility function is linear,
which is a special case of convexity, no schemes with more than two passes are implementable.

Theorem 2 (Implementation with linear utility). Fix (N,K, u), where u is linear. Fix
q ∈ Q(N,K) such that v(θK) ≥ 0. The scheme q is implementable if and only if K ≤ 2.

The proof shows that when K ≥ 3, IC31 implies p1 − p3 ≥ v(θ1) − v(θ3) − d
2

where
d = u1 − u2, but binding IC12 and IC23 implies p1 − p3 = v(θ1) − v(θ3) − d, arriving at a
contradiction. By (1), IC12 and IC23 implies that the park needs to give a minimum amount
of surplus d (i.e., u1 − u2) to customers in θ1. This surplus, however, exceeds the surplus
allowance in (2), which is d

2
in this case. In words, the externalities created by downgrades

would lower p1 relative to p3 so much that customers buying θ3 have an incentive to upgrade
to θ1.

4.3 One Customer in Each Priority Pass

In Alperstein (1988), it is profit-maximizing for the park to have at most one customer in
each priority pass. The following result, which holds for any base utility function u, shows
that such a scheme is not implementable with more than two priority passes.

Theorem 3 (Implementation with N = K). Fix (N,K, u) and q ∈ Q(N,K). If K > 2 and
qk = 1 for every k ∈ {1, . . . , K}, then q is not implementable.
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The result is shown by contradiction, comparing the sum of downgrade externalities
and the surplus allowance given by the upgrade externality: Suppose that such a scheme is
implementable and consider the incentives of the first three customers, each of whom buys a
different priority pass. For the first customer, it is tempting to switch to θ2 from θ1 since
the customer pays less but still has the chance of being at the same position after switching.
To incentivize the first customer against downgrading, p1 − p2 needs to be small. Similarly,
p2 − p3 needs to be small so that the second customer does not want to downgrade to θ3

from θ2. However, to eliminate the third customer’s incentive to upgrade to θ1 from θ3, the
park also needs to set p1 − p3 to be high enough. The proof shows that the upper bound
on p1 − p3 derived from the upper bounds on p1 − p2 and p2 − p3 (the sum of downgrade
externalities) is strictly less than the lower bound on p1 − p3 (surplus allowance implied by
the upgrade externality), which is a contradiction.

5 Two Utility Types

So far, we have considered the case where there is a single base utility function for all buyers.
Name this case the single-type case. Now consider the case where there are two types of
base utility functions, which we call the two-type case. This section discusses how this
heterogeneity affects the implementability of a scheme. We will show that although the
heterogeneity in the base utility functions sometimes makes it possible to implement a scheme
with more than two passes as Six Flags does, the conflict between the upgrade and downgrade
incentives can persist.

We first introduce the setup of the two-type case in Section 5.1 and then provide some
analyses of implementability (and the lack of it) for the case with two concave or linear
base utility functions in Section 5.2. Overall, we find that implementability requires the two
customer types to be sufficiently different. In Section 5.3, we discuss how the number of
customers in each priority pass affects implementability. Lastly, in Section 5.4, we briefly
describe some new insights we obtain if there are more than two customer types, such as the
possibility of the park incentivizing some customer types not to buy any priority pass.

5.1 Notation and Setup

There are two customer types, h (high) and l (low). Denote the high type’s base utility
function by uh and that of the low type’s by ul. For t ∈ {h, l}, let N t > 0 be the number
of type-t customers and define N = Nh +N l to be the total number of customers. Assume
ul
0 = uh

0 = 0 for t ∈ {h, l} and uh
n > ul

n for every n ∈ {1, . . . , N}. Moreover, for every
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n ∈ {1, . . . , N − 1}, assume uh
n − uh

n+1 > ul
n − ul

n+1. For each customer type τ ∈ {h, l},
construct the type-specific pass utility function vt from ut.

For q to be a scheme, we require that every priority pass has at least one customer, that is,
qhk + qlk > 0 for every k ∈ {1, . . . , K}, where qτk denotes the number of customers of type τ in
θk. Given (N,K), let Q((Nh, N l), K) denote the set of schemes.13 Given j ∈ {0, . . . , K} such
that qτj > 0 and k ∈ {1, . . . , K}, let ICt

jk and IRt
k be the type-specific IC and IR constraints,

whose definitions are taken directly from the single-type case.14

Fix
(
(Nh, N l), K

)
and a scheme q ∈ Q((Nh, N l), K). Fix j ∈ {0, . . . , K} such that

qhj + qlj > 015 and k ∈ {1, . . . , K}. If qhj , qlj > 0, then because both ICh
jk and ICl

jk provide
upper bounds on pj − pk, one of the two upper bounds must imply the other. The same
reasoning goes for every IR constraint. Define ICjk ∈ {ICτ

jk : τ ∈ {h, l}, qτj > 0} to be the
type-specific IC constraint that implies every constraint in {ICτ

jk : τ ∈ {h, l}, qτj > 0}.16

Define IRk ∈ {IRh
k, IRl

k} analogously.17 Let the set of IC constraints be the collection of ICjk

over j ∈ {0, . . . , K} and k ∈ {1, . . . , K} such that qhj + qlj > 0; let the set of IR constraints be
the collection of IRk over k ∈ {1, . . . , K}. With this notation, we can define implementability
in the two-type case with respect to the set of IR and IC constraints just like in the single-type
case.

5.2 Implementability in the Two-Type Case

Now we consider implementability in the two-type case. We first define the notions of
monotonicity and regularity in Section 5.2.1 that we use in stating our results. Then
Sections 5.2.2 and 5.2.3 characterize the environments in which multi-pass schemes are
implementable in the two-type case where the base utility function is strictly concave and
linear, respectively. We do not pursue analogous results in the case with strictly convex base
utility function because the results from Section 6.3 on large queue implementation suggest
that the strictly convex case could admit many priority passes in the single-type case, which
would make it hard to derive conditions about type differences for implementability like we
will do for the strictly concave and linear cases.

13We provide the formal definition of a scheme for the case with multiple customer types in Appendix B.
14We provide a more detailed setup for the type-specific constraints in Appendix B, where we discuss the

case with more than two customer types.
15This inequality may not hold if j = 0.
16When ICjk is a downward IC constraint, ICjk is equivalent to ICl

jk if qlj > 0 and to ICh
jk if not; when

ICjk is an upward IC constraint, ICjk is equivalent to ICh
jk if qhj > 0 and to ICl

jk if not.
17We provide the complete characterization of this constraint reduction between customer types in Ap-

pendix B, where we discuss the general case with multiple customer types.
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5.2.1 Monotonicity and Regularity

The added customer heterogeneity introduces some complications for constraint reduction.
In the single-type case, Lemma 1 shows that it is sufficient to check every local downward IC
constraint and IRK for implementability. In general, in the two-type case, we cannot reduce
the set of downward IC and IR constraints to the set of local downward IC constraints and
IRK , but there are sufficient conditions to guarantee that such a reduction works. Specifically,
constraint reduction similar to that in the single-type case can be obtained if we require the
scheme in consideration to be such that qlj > 0 implies qlk > 0 for every j, k ∈ {1, . . . , K}
such that j ≤ k.18 This restriction eliminates schemes where a lower-priority pass has only
high-type customers, but a higher-priority pass has at least one low-type customer. With
this restriction, we can similarly check the implementability of a given scheme by binding the
lowest IR constraint and every local downward IC constraint, as we did in Lemma 2.19 It
turns out that the restriction is necessary for implementability with two concave utilities.
To be precise, implementability with two concave base utility functions implies a condition
stronger than the restriction which we call the monotonicity property: We say that a scheme
q is monotone if, for every j, k ∈ {1, . . . , K} such that j < k, qlj > 0 implies qhk = 0.

Proposition 2 (Monotonicity with concave utilities). Fix
(
(Nh, N l), K, (uh, ul)

)
in the two-

type case and assume both uh and ul are concave. If q ∈ Q
(
(Nh, N l), K

)
is implementable,

then q is monotone.

The monotonicity property does not generally hold in our setup because of externalities.
Consider the following example.

Example 2 (High-type in lower priority). Consider
(
(Nh, N l), K, (uh, ul)

)
in the two-type

case, where Nh = 2, N l = 1, and K = 2. Let ul = (11, 1, 0) and uh = (14, 3, 1) be
the base utility functions of the two types. Consider the scheme q = (qh, ql) such that
(qh0 , q

h
1 , q

h
2 ) = (0, 0, 2) and (ql0, q

l
1, q

l
2) = (0, 1, 0). It can be verified that setting p1 = 9 and

p2 = 2 implements the scheme. In this scheme, the high-type customers buy the lower-priority
pass while the low-type customer buys the higher-priority pass. Calculations are shown in
Figure 2. In this example, monotonicity fails because when a high type attempts to buy the
higher-priority pass, the customer creates congestion to this pass, which lowers the high-type
valuation of the high-priority pass so much that the high-type customer buying θ2 has no
incentive to switch to θ1.

In the standard screening model, a “monotonicity” condition would also require that if a
lower type buys some priority pass then all higher types buy some priority pass. The next

18See Lemma 4 and Lemma 5 in Appendix A.3.1 for the formal statements of the conditions.
19See Lemma 6 in Appendix A.3.1 for the formal statement.
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l

Figure 2: Example 2 where high type buys some strictly
lower-priority pass than low type.

Stay at home

l h

Figure 3: Example 3 where low
type buys some pass, but high
type does not.

example illustrates that this property does not hold in our model even if the utility function
is concave (it is a two-position example).

Example 3 (High-type not buying). In the two-type case, let
(
(Nh, N l), K, (uh, ul)

)
be such

that Nh = N l = 1 and K = 1. Let ul = (5, 0) and uh = (7, 1) be the base utilities of the
two types. Consider the scheme q with only the low-type customer in the queue, i.e., the
high-type customer buys no priority pass. It can be verified that p1 = 5 implements q, with
calculations shown in Figure 3. In this example, monotonicity fails because, given the price,
the second position is bad enough even for the high type, incentivizing the high-type customer
who is staying at home not to join the queue.

When monotonicity does not hold, by definition either the high type does not buy any
pass, or a high type buys a strictly lower-priority pass. In Example 3, a low type buys
some pass, but the high type does not buy any pass; in Example 2, the low type buys the
higher-priority pass, whereas the high type buys the lower-priority pass.

We now define further terminology used in the results in the rest of this section. If a
two-type case ((Nh, N l), K, (uh, ul)) is such that uh = βul for some β > 1, then we call this
case the multiplicative two-type case. A two-type case is concave if both base utility
functions are concave, and linear if the functions are linear.

Definition 2 (Regular scheme). In the two-type case, a scheme q ∈ Q((Nh, N l), K) is said
to be regular if it satisfies the following conditions:

(i) Every customer buys some priority pass, and vt(θK) ≥ 0 for every t such that qtK > 0.
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(ii) Each customer type is in at most two priority passes.

(iii) The scheme q is monotone.

Condition (i) lets us ignore the IR constraints and focus on IC constraints. Condition
(ii) is necessary for implementability in the concave two-type case by Theorems 1 and 2.20

Lastly, condition (iii) is the monotonicity condition, which is necessary for implementability
in the concave two-type case by Proposition 2.

In what follows, we consider the strictly concave case and the linear case in turn.

5.2.2 Strictly Concave Case

In the strictly concave single-type case, an implementable scheme can have at most one
priority pass. When there are two customer types, upper hemicontinuity of pure-strategy
Nash equilibria for utility functions implies that when the two customer types are only
slightly different, a two-pass scheme with two strictly concave base utility functions is still
not implementable. However, if the two types are sufficiently different, we can separate the
two types. The following proposition provides a cutoff of this closeness for a fixed scheme so
that separation is feasible if and only if the two customer types are no closer than the cutoff.

Proposition 3 (Two-pass with two strictly concave utilities). Consider the strictly concave
multiplicative two-type case where K > 1 and N > 2. There exists β > 1 such that a regular
scheme q is implementable if and only if K = 2, qh1 = Nh, ql2 = N l, and β ≥ β.

In the strictly concave multiplicative two-type case, the only implementable regular
scheme must have every high-type customer in the high-priority pass and every low-type
customer in the low-priority pass. The condition that K = 2 is necessary since, by Theorem 1,
a strictly concave customer type can be in at most one priority pass. The condition that
every high-type customer buys the high-priority pass and every low-type customer buys the
low-priority pass is implied by Proposition 2.

We now turn to the cutoff on β, which characterizes the two customer types’ difference in
the proposition. Consider a scheme q such that qh1 = Nh and ql2 = N l. We can generalize
Lemma 2 to the two-type case to show that q is implementable if and only if the following
price vector implements q:

p2 = vl(θ2), p1 = vh(θ2)−
[
vh(θ2; θ1)− p2

]
= vh(θ2)−

[
vh(θ2; θ1)− vl(θ2)

]
,

20One further implication is that each implementable scheme in the concave two-type case has at most four
priority passes.
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where the term in the bracket on the right-hand side of p1 is the surplus given to the high-type
customers.21 In this price vector, each high-type customer holding the high-priority pass is
indifferent between the two passes, whereas each low-type customer holding the low-priority
pass gets zero surplus. This pattern is consistent with the optimal pricing formula in the
standard screening models. However, the existence of externalities plays a role in the above
pricing formula, leading to different results of implementability. To see this, note that the
price vector implies,

p1−p2 = vh(θ1)−vh(θ2; θ1) = vh(θ1)−vl(θ2)−

Total surplus giveaway︷ ︸︸ ︷
[
(
vh(θ2; θ1)− vh(θ2)

)︸ ︷︷ ︸
Downgrade externality

+
(
vh(θ2)− vl(θ2)

)︸ ︷︷ ︸
Information rent in
standard screening

], (3)

where the second parenthesized difference is often called the information rent of the high-type
customers in the standard screening models. In our model, the additional term vh(θ2; θ1)−
vh(θ2) is the externality created when a high-type customer unilaterally downgrades to the
low-priority pass. The externality is strictly positive and hence the park needs to give away
more surplus to the higher-type customer, which further lowers p1. To check whether q is
implementable, note that IC21 of q implies

p1 − p2 ≥ vl(θ1; θ2)− vl(θ2) = vh(θ1)− vl(θ2)−

Surplus allowance︷ ︸︸ ︷
[
(
vl(θ1)− vl(θ1; θ2)

)︸ ︷︷ ︸
Upgrade externality

+
(
vh(θ1)− vl(θ1)

)
], (4)

where the first parenthesized difference in the bracket is the externality created when the
low-type customer upgrades to the high-priority pass. Since vh(θ1) − vl(θ1) > vh(θ2) −
vl(θ2) > 0, in the standard screening models without externalities, the price difference
from the pricing formula would satisfy IC21, making q implementable.22 However, from
the proof of Theorem 1, when the base utility functions are strictly concave and N > 2,
vh(θ2; θ1) − vh(θ2) > vh(θ1) − vh(θ1; θ2) > vl(θ1) − vl(θ1; θ2), which could potentially make
the price difference in (3) violate IC21. For example, in the hypothetical case where uh = ul,
we obtain vh(θ1) − vl(θ1) = vh(θ2) − vl(θ2) = 0. In this case, the right-hand side of (3)
is strictly below the right-hand side of (4), making the scheme not implementable as in
Theorem 1. In the two-type case, as the customer type difference gets larger, e.g., β in
Proposition 3 gets larger, both the total surplus giveaway in (3) and the surplus allowance
in (4) increase. However, because the allowance grows faster than the giveaway, the scheme

21The generalization appears in Lemma 6 in Appendix A.3.1.
22The inequality holds because uh

n − uh
n+1 > ul

n − ul
n+1 > 0 for every position n.
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becomes implementable with large enough β. Lastly, to see that β > 1 in Proposition 3 is
necessary, we observe that when β ≤ 1, vh(θ2) − vl(θ2) ≤ 0 holds, and hence (4) does not
hold with the price difference in (3).

5.2.3 Linear Case

In the linear single-type case, an implementable scheme can have at most two priority passes.
As in the strictly concave case, the upper hemicontinuity implies that at most two priority
passes can be implemented in the linear multiplicative two-type case if the two types are
sufficiently close to each other. Again, as in the strictly concave case, however, it is possible
to implement a scheme with more than two priority passes when the types are sufficiently
apart from each other. The following result characterizes the implementability condition as a
requirement on the difference between the two customer types.

Theorem 4 (Multi-pass scheme with two types). Fix a linear multiplicative two-type case
where K > 2. For each regular scheme q, there exists β > 1 such that q is implementable if
and only if β ≥ β.

Note that in the concave two-type case, the regularity condition excludes the case where
K > 4. Towards a straightforward intuition for the theorem, consider the special case of the
linear multiplicative two-type case where K = 3 and there are only high-type customers in
the first two priority passes and only low-type customers in the lowest-priority pass. Assume
also that the scheme has exactly m customers in each priority. In this case, IC31 holds if and
only if

β

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p1−p2

+
β

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p2−p3

≥ 1

2
(4m− 1)︸ ︷︷ ︸

Lower bound of
p1−p3

(5)

The inequality holds if and only if β is sufficiently larger than 1, hence the condition in the
theorem that the two customer types be adequately different. The intuition is similar to
that of Proposition 3: A larger difference between the two customer types enlarges the price
difference between θ1 and θ3 when IC12 and IC23 are binding, giving customers in θ3 less
incentive to upgrade to θ1.

5.3 Queue Size and Implementability

Note that, for fixed β > 1, (5) also holds if m is sufficiently large: In the linear multiplicative
two-type case, more customers lead to higher price differences, making it easier to satisfy
IC31. One could conjecture that a scheme is implementable with sufficiently many customers
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in each priority pass. We formalize this conjecture in the following two results. The first
result confirms that, in the linear multiplicative two-type case, having more customers helps
with implementation.

Proposition 4 (Sufficiently many customers for implementation). Fix a linear multiplicative
two-type case where K ≤ 4. There exists M < ∞ such that every regular scheme q with at
least M customers in every priority pass is implementable. Moreover, if β ≥ 2, then the
previous statement holds for M = 1.

When there are sufficiently many customers in each priority pass, the price difference
between a higher and lower priority pass is large enough to eliminate the upgrade incentives
of customers in the lower-priority pass. It turns out that when β ≥ 2, the two customer
types are sufficiently different such that every IC constraint holds even if there is only one
customer in each pass.

Proposition 4 does not clarify how large the required number of customers (M) is to
obtain implementability. The following result shows that when the number of customers in
each priority pass of a scheme is bounded, the scheme is not implementable when the two
customer types are too close.

Proposition 5 (Customer types are too close for implementation). Fix a linear multiplicative
two-type case where K > 2. For each m ≥ 1, there exists δ > 0 such that no regular scheme
with at most m customers in each priority pass is implementable if β < 1 + δ.

One implication of the result is that as the two customer types get closer towards 1, M
in Proposition 4 gets unboundedly higher. In this case, the price differences between different
passes are not large enough to resolve the customers’ upgrade and downward incentives.

5.4 Extension to Multiple Customer Types

Results in the two-type case can be extended to the case with more than two customer types,
which we call the multi-type case. Because the two cases have similar core intuitions, we
relegate the formal analysis of the multi-type case to Appendix B.

In the multi-type case where each base utility function is concave, implementability needs
customer types in different priority passes to be sufficiently different, which is a generalization
of the implementability condition in Theorem 4.23 For example, if every customer type is
strictly concave and buys some pass, which is a generalized case of Proposition 3, then the
existence of an implementable multi-pass scheme implies the existence of a large enough
“gap” between customer types in two adjacent priority passes.

23The required conditions are formally characterized in Theorem 5 in Appendix B.
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Propositions 4 and 5, both of which can be generalized to the multi-type case, together
have some insights about the number of passes the park can implement when there are
more than two customer types. By Proposition 5, a scheme with many priority passes is not
implementable if customer types from different priority passes are too close. On the other
hand, given a scheme that is not implementable, if we “merge” some priority passes such that
the number of customers in each priority pass of the new scheme is large, then by Proposition 4,
the new scheme with a reduced number of priority passes may be implementable.

One complication of the implementability condition that customer types in different
priority passes need to be sufficiently different is that the park could potentially exclude
some customer types from the queue to create the “gaps” between customer types in different
priorities. For example, suppose there are five customer types (ordered by their utility
decrease along a queue), with each adjacent pair of customer types being very close with
regard to their rate of utility decrease. If the park would like to implement a three-pass
scheme, the park may consider excluding the second and the fourth customer types from the
queue so that there is enough difference between the customer types remaining in the queue.
However, through a monotonicity result that generalizes Proposition 2, we show that there
are restrictions to this type of customer exclusion,24 which further strengthens the difficulty
with implementing multi-pass schemes.

6 Discussions

Section 6.1 looks at the park’s profit. We first explain how the one-pass scheme maximizes
the park’s profit in the single-type case, and then revisit the two-type case to show that a
multi-pass scheme can be more profitable than a single-pass scheme. Section 6.2 discusses
how the externality affects implementability in a model that generalizes our assumption
about how the purchased pass affects the utility. Section 6.3 discusses implementability in
large queues where the size of externalities approaches zero.

6.1 Profits

In the single-type case, having more passes weakly hurts the park’s profit: When K = 1, and
q0 = 0, setting p1 = v(θ1) implements (q0, q1) = (0, N) and extracts all the customer surplus.
This is because when everyone buys the same priority pass, each customer’s valuation of

24For example, Proposition 10 and its Corollary 2 in Appendix B show that, if a customer’s base utility
function decreases strictly faster than that of a customer in the lowest-priority pass in an implementable
priority queue, then that customer must have purchased some priority pass.
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the priority pass is the same and adds up to the sum of utility over all the positions in the
scheme, enabling the park to extract all the customer surplus.

In the strictly concave case, Theorem 1 implies that any implementable scheme has K = 1,
so the optimal profit is attained under the uniquely implementable scheme. In the linear
and strictly convex case, an implementable scheme can have multiple passes. Because of
the externality created when a customer downgrades to a lower priority pass, implementing
a multi-pass scheme means that the park needs to give some surplus to customers with
higher-priority passes, making a multi-pass scheme suboptimal for profits. Thus, in the linear
case, in which any implementable scheme must have one or two passes by Theorem 2, having
one more priority pass always decreases profits.

Furthermore, in the single-type convex case, for each implementable scheme with K

priority passes with K > 1, the firm can strictly improve its profit from an implementable
scheme with K − 1 priority passes.

Proposition 6 (Profit decreasing in K). Fix (N,K, u) where K ≥ 2. Assume q ∈ Q(N,K)

is implementable. If K = 2 or u is convex, then there exists q̃ ∈ Q(N,K − 1) such that q̃ is
implementable and the firm’s optimal profit (by pricing p∗ as in Lemma 2) from q̃ is strictly
higher than the profit from q.

The proposition is proved by showing that the firm’s profit always improves by merging
the lowest two priority passes. Indeed, conditional on implementability, when the last two
priority passes are merged, the park can extract all the surplus of customers in the merged
priority pass, improving the park’s profit. As for the implementability of merging the last two
priority passes, the proof shows that the downgrade externality to the merged priority pass
in q̃ is less than the sum of downgrade externalities to the two priority passes in q. Given
j, k ∈ {1, . . . , K} such that j < k, by (1) and (2) in Section 4, the implementability of q
implies that the upgrade externality to θj is more than the sum of downgrade externalities
to priority passes from θj+1 to θk. Therefore, if the downgrade externality to the merged
priority pass in q̃ is less than the sum of downgrade externalities to θK−1 and θK in q, then
merging the lowest two priority passes preserves the scheme’s implementability.25

When there is more than one type, however, the single-pass scheme does not always
dominate a multi-pass one. For the two-type case with strictly concave utilities, the two-pass
scheme could be more profitable than a single-pass scheme. The next proposition focuses on
all-serving schemes, which we define to be the schemes where every customer of every type

25Merging the last two priority passes does not always preserve implementability. For example, fix N = 6
and a base utility function (un)

N
n=0 = (95, 62, 60, 59, 1, 0). Consider the scheme (qk)

3
k=0 = (0, 2, 3, 1). It can

be calculated that q is implementable, whereas the scheme q̃ obtained by merging the last two priority passes
is not.
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buys some priority pass.

Proposition 7 (Profitability of two-pass schemes). Consider the strictly concave two-type
case. There exists β > 1 such that the profit from the unique regular two-pass scheme is
higher than that of the all-serving one-pass scheme if and only if β ≥ β.

Note that the uniqueness of a regular two-pass scheme follows from Proposition 3. When
the one-pass scheme serves both types, the park needs to respect the low type’s IR constraint,
lowering the price. If the two types are sufficiently different, the park will have an incentive
to add a higher-priority pass to extract more surplus from the high-type customers. When
the park adds a second pass and sells it to the high-type customers, it gets lower profit from
the low-type customer. If the two types are too close, then the increase in profit from the
high-type customers does not cover the decrease from the low-type customers, making the
one-pass scheme more profitable.

6.2 Implementation and Externality

The lack of upward IC constraint reduction makes the implementation of multi-pass schemes
non-trivial. In the standard screening models, the ID conditions imply that binding local
downward IC constraints satisfies all upward IC constraints, and the local IC constraints
together imply all the IC constraints, making the ID conditions sufficient for implementability
in the standard setup. However, in our model, as any non-local upward IC constraint is
generally not implied by any combination of local upward IC constraints, the ID conditions
do not guarantee implementability.

The IC constraints in our model differ from those in the standard screening models because
of the existence of externalities from switching: When one customer switches to another
pass, the customer creates congestion if switching to a higher-priority pass and improves the
waiting time if switching to a lower-priority pass. It turns out that the existence of this type
of externalities makes implementation harder than in a model without externalities.

We focus on the single-type case, formalize the notion of externalities in a general
model and discuss its impact on implementability. For this purpose, we use the notation in
Section 2 and consider a game G̃(N,K, p, ṽ) = 〈N,A, (π̃i)

N
i=1〉, where π̃i(a) = ṽ(ai; q(a))− pk

is each customer’s payoff function over the action set A = ({θ0, . . . , θK})N .26 Recall that
q(a) = (qk(a))

K
0 such that qk(a) = |{i : ai = θk}|. Here, ṽ tells the expected utility for

each θj ∈ {θ0, . . . , θK} in each action profile a and only depends on the customer’s action ai

and the number of customers for each possible action, which is characterized by q(a). The
26To complete the definition of ṽ, for each θj such that ai 6= θj for every customer i, set ṽ(θj ; q(a)) = 0

without loss of generality.
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function ṽ need not be constructed as an expected utility over positions in the queue and we
take it as exogenous the provision of the function ṽ. The function v̄ that we constructed in
Section 2 is a special case of ṽ. Thus, the game G in Section 2 is a special case of G̃ if we set
ṽ(ai; q(a)) = vi(a). The definition of implementation with respect to G̃ is analogous to the
one with respect to G.

Definition 3. Fix a game G̃(N,K, p, ṽ). We say that ṽ

(a) creates more downgrade externality if for each q ∈ Q(N,K), every a ∈ A such that
q(a) = q, and every j, k ∈ {1, . . . , K} such that j < k, 0 < ṽ(θj; q(a))− ṽ(θj; q(a

′)) <

ṽ(θk; q(a
′′)) − ṽ(θk; q(a)) for all a′ ∈ A such that there is i with ai = θk, a′i = θj and

an = a′n for every n 6= i, and all a′′ ∈ A such that there is i with ai = θj, a′i = θk, and
an = a′n for every n 6= j.

(b) creates zero externality if for every a, a′ ∈ A and j ∈ {0, . . . , K}, ṽ(θj; q(a)) =

ṽ(θj; q(a
′)), i.e., ṽ only depends on the customer’s choice of priority pass.

The definition of creating zero externality corresponds to the setup in the standard
screening models, where each customer’s utility depends only that customer’s action.27

In the game G(N,K, p, u) defined in Section 2, if u is strictly concave, then in the game
expressed as a special case of G̃, whose setup we have just described, ṽ creates more downgrade
externality. It turns out that if ṽ in game G̃(N,K, p, ṽ) creates zero externality, then q is
implementable for every q ∈ Q(N,K). In contrast, if ṽ creates more downgrade externality
and K ≥ 2, then no scheme is implementable.

Proposition 8 (Externality vs. no externality). Fix G̃(N,K, p, ṽ) and q ∈ Q(N,K).

(a) If ṽ creates zero externality, then q is implementable by setting pk = v(θk) for each pass
θk.

(b) If ṽ creates more downgrade externality and K ≥ 2, then q is not implementable.

By Part (a), since every pass is implementable when ṽ creates zero externality, the set
of implementable schemes when ṽ creates more downgrade externality is a subset of the
set when ṽ creates zero externality. Moreover, Part (b) implies that the externalities can
strictly shrink the set of implementable schemes. Specifically, when ṽ creates more downgrade
externality, the externality created by downgrading to a lower-priority pass are large relative
to the externality created by upgrading to a different pass, to the extent that the difference

27The definition is equivalent to a condition that is more wordy yet perhaps more comparable to the
definition of creating more downgrade externality: For each j, k ∈ {0, . . . ,K} and a, a′ ∈ A such that ai = θj
for some customer i and a′ is the strategy profile where i switches to θk unilaterally, ṽ(θk; q(a′)) = ṽ(θk; q(a)).
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brings about an unresolvable conflict between incentivizing against upgrading and against
downgrading when K ≥ 2.

6.3 Implementation in Large Queues

This section analyzes how implementability changes when the queue grows. The implemen-
tation results so far depend on the externalities customers impose on each other. By p∗ in
Lemma 2, a scheme fails to be implementable when the externalities from downgrading are
too large: To incentivize the customers in the high-priority pass not to downgrade, to the
extent that a customer in a lower-priority pass will have an incentive to upgrade. If the
downgrade externalities can be sufficiently small with enough customers, which limits the
price decrease of a higher-priority pass, then implementing schemes with many passes is
possible.

Proposition 9 (Implementation with fixed K and large N). Fix K and a strictly decreasing
sequence (un)

∞
n=1. Assume u0 = −∞. If limn→∞

un

n
= 0, then there exists M < ∞ such that

N ≥ M implies the existence of some implementable q ∈ Q(N,K).

The condition limn→∞
un

n
= 0 ensures that the downgrade externality v(θk; θk−1)− v(θk)

converges to 0 when qk → ∞ for every k ∈ {2, . . . , K}. The condition is mild and admits
an unbounded utility function such as un = − log n while implying a rate of decrease slower
than that of the linear and concave base utility functions. Proposition 9 shows that a scheme
becomes implementable if the externalities are made arbitrarily small (by having sufficiently
many customers). This result reinforces the message emphasized throughout this paper: The
existence of externalities contributes to the difficulty of implementing schemes with many
priority passes.

7 Conclusions

This paper has shown the difficulty of implementing a multi-pass scheme under a static
setting where customers make purchase decisions simultaneously and have uncertainty about
the final position within each priority pass. The difficulty with implementing many passes
derives from the conflict between incentivizing customers against upgrading and downgrading.
When the base utility function is strictly concave, implementing a multi-pass scheme cannot
be incentive compatible if there is only one customer type. This paper has shown that such
incentive conflicts can persist even when there are multiple types of base utility functions.

This paper used a stylized model to deliver clear and concise insights about implementing
multi-pass schemes, and there are many avenues for future research. For example, how does
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implementability change if the model has more dynamic components? The extreme case in
which customers arrive sequentially is considered in the queuing literature as we discussed in
the Introduction. The reality would probably be in the middle of these two extreme settings.
Another topic to study is a profit-maximization problem in the multi-type case. Yet another
possibility that would be worth an investigation is a realistic situation in which other perks
such as free drinks or better seating are added to the flash pass benefits. We leave the analysis
of those setups to the future research.

Appendix A Proofs of Results in Main Text

We define a new notation repeatedly used in this section. In the single-type case, for any
(N,K), q ∈ Q(N,K), and k ∈ {1, . . . , K}, define Qk =

∑k
j=1 qj, which is the last position of

θk in q. For completeness, define Q0 = 0.

A.1 Proofs for Section 3

A.1.1 Proof of Claim 1

Proof. Fix k ∈ {1, . . . , K} and consider any j1, j2 ∈ {1, . . . , k−1} and l1, l2 ∈ {k+1, . . . , K, 0}.
When a customer switches from θj1 to θk, the distribution of her resulting position is
uniform over {Qk−1, . . . , Qk}, and this is the same as when the customer switches from θj2

to θk. Therefore, v(θk; θj1) = v(θk; θj2). For l1 and l2, the same reasoning implies that the
distribution is now uniform over {Qk−1+1, . . . , Qk+1}, and thus we have v(θk; θl1) = v(θk; θl2).
Finally, note that the distribution of the position of the customer buying θk is uniform over
{Qk−1 + 1, . . . , Qk}. Since this last distribution is first-order stochastically dominated by
the distribution given by the downgrade while it first-order stochastically dominates the
distribution given by the upgrade, we have v(θk; θl1) < v(θk) < v(θk; θj2) since u is decreasing.
This completes the proof.

A.1.2 Proof of Claim 2

Proof. Let a ∈ A be an action profile such that q(a) = q and fix a price vector p. We look
at the incentives of customer i. If ai = θ0, then the customer does not gain by deviating to
θj 6= θ0 if and only if IC0j holds.

Now assume ai = θj 6= θ0. The customer does not gain by does not gain by deviating to
θ0 if and only if IRj holds. Lastly, for every k ∈ {1, . . . , K} such that k 6= j, the customer
does not gain by deviating to θk if and only if ICjk holds.
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Therefore, q is implementable if and only if there exists some price p such that (p, q)

satisfies every IC and IR constraint.

A.2 Proofs for Section 4

A.2.1 Proof of Lemma 1

Proof. Fix j, k ∈ {1, . . . , k} such that j < k.

Part (a) Assume ICl,l+1 holds for every l ∈ {j, . . . , k−1}. We prove the result by induction.
First, if k = j + 1, we obviously have ICjk. Second, for any k > j + 1, suppose that ICj,k−1

holds. Then,

v(θj)− pj ≥ v(θk−1; θj)− pk−1 (by ICj,k−1)

≥ v(θk−1)− pk−1 (by Claim 1)

≥ v(θk; θk−1)− pk (by ICk,k−1)

= v(θk; θj)− pk (by Claim 1).

Thus, ICjk holds.

Part (b) Assume ICjk and IRk hold. We have

v(θj)− pj ≥ v(θj; θk)− pk (by ICjk)

≥ v(θk)− pk (by Claim 1)

≥ 0 (by IRk).

Thus, IRj holds.

Part (c) Assume ICjk and ICkj hold. We have

v(θj; θk)− v(θk) ≤ pj − pk (by ICkj)

≤ v(θj)− v(θk; θj) (by ICjk).

Thus, IDjk holds.

A.2.2 Proof of Theorem 1

Proof. We will use the following lemma to prove the theorem.
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Lemma 3. Fix (N,K, u) where K ≥ 2. Fix q ∈ Q(N,K). If u is concave, then for every
j, k ∈ {1, . . . , K} such that j < k,

v(θk; θj)− v(θk) ≥ v(θj)− v(θj; θk),

and the inequality is strict if u is strictly concave and either qj + qk > 2 or j + 1 < k.

Proof of lemma. For m ∈ {0, . . . , qj}, define xm = uQj−m+1. Similarly, for m ∈ {0, . . . , qk},
define ym = uQk−1+m. By the concavity of u, we have

xqj − xqj−1 ≤ · · · ≤ x1 − x0 ≤ y0 − y1 ≤ · · · ≤ yqk−1 − yqk .

Hence, we have
∑qj

m=1(xm − x0) ≤ qj(qj+1)(x1−x0)

2
and

∑qk
m=1(y0 − ym) ≥ qk(qk+1)(y0−y1)

2
, which

together imply ∑qj
m=1(xm − x0)

qj(qj + 1)
≤ x1 − x0

2
≤ y0 − y1

2
≤

∑qk
m=1(y0 − ym)

qj+1(qj+1 + 1)
. (6)

The left-most side of (6) being no greater than the right-most side is equivalent to∑qj
m=0 xm

qj + 1
−

∑qk
m=1 ym
qk

≥
∑qj

m=1 xm

qj
−

∑qk
m=0 ym
qk + 1

,

which is equivalent to v(θk; θj)− v(θk) ≥ v(θj)− v(θj; θk).
If u is strictly concave, the first inequality in (6) is strict if qj > 1, the second inequality

is strict if j + 1 < k, and the last inequality is strict if qk > 1. Thus, at least one inequality
must be strict. The proof for the lemma is complete.

Assume q ∈ Q(N,K) for some K > 1 is implementable and more than two customers buy
a priority pass in q. To arrive at a contradiction, it is without loss of generality to assume
q0 = 0 because if q is implementable with respect to (N,K, u), then when we subtract q0

from N , the scheme in which the customers who stay at home under q are removed is still
implementable.

When K > 1, for each q ∈ Q(N,K) where more than two customers buy a priority pass,
K > 2 or ql > 1 for some l ∈ {1, . . . , K}. In both cases, Lemma 3 implies that if u is strictly
concave, then we can find some j, k ∈ {1, . . . , K} such that j < k and v(θk; θj) − v(θk) >

v(θj)− v(θj; θk). This contradicts IDjk and hence q is not implementable.
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A.2.3 Proof of Proposition 1

Proof. Let q ∈ Q(N, 2) such that v(θ2) ≥ 0. For n ∈ {0, . . . , q1}, define xn = uQ1−n+1.
Similarly, for n ∈ {0, . . . , q2}, define yn = uQ1+n. By the definition of the base utility
function,

xq1 > · · · > x1 = y0 > x0 = y1 > · · · yq2 .

By the convexity of u, we have

xq1 − xq1−1 ≥ · · · ≥ x1 − x0 = y0 − y1 ≥ · · · ≥ yq2−1 − yq2 ,

which implies
∑q1

n=1(xn − x0) ≥ q1(q1+1)(x1−x0)
2

and
∑q2

n=1(y0 − yn) ≤ q2(q2+1)(y0−y1)
2

, which
together imply ∑q1

m=1(xm − x0)

q1(q1 + 1)
≥ x1 − x0

2
=

y0 − y1
2

≥
∑q2

m=1(y0 − ym)

q2(q2 + 1)
. (7)

Consider the price vector p such that

p = (p1, p2) = (v(θ2) + v(θ1)− v(θ2; θ1), v(θ2)).

Because v(θ2) ≥ 0, p is a valid price vector. We are to show that p implements q. By
definition of p, (p, q) binds IC12 and IR2. By Lemma 1, (p, q) satisfies IR1. Note that (p, q)

satisfies IC21 if and only if p1−p2 ≥ v(θ1; θ2)−v(θ2), which by the definition of p is equivalent
to

v(θ1)− v(θ1; θ2) ≥ v(θ2; θ1)− v(θ2). (8)

With our definition of {xn}q1n=1 and {yn}q2n=1, (8) is equivalent to∑q1
n=1 xn

q1
−

∑q1
n=0 xn

q1 + 1
≥

∑q2
n=0 yn

q2 + 1
−

∑q2
n=1 yn
q2

.

This is equivalent to ∑q1
n=1(xn − x0)

q1(q1 + 1)
≥

∑q2
n=1(y0 − yn)

q2(q2 + 1)
,

which holds by (7). Therefore, IC21 holds.
Since IR2 binds and v(θ2; θ0) < v(θ2) holds by Claim 1, we have

v(θ2; θ0)− p2 < v(θ2)− p2 = 0,
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and hence IC02 holds. For IC01, note that

v(θ1; θ0)− p1 = v(θ1; θ2)− p1 (by Claim 1)

= v(θ1; θ2)− v(θ2)− [v(θ1)− v(θ2; θ1)] (by the definition of p)

≤ 0 (by (8))

Thus, IC01 holds. Since we have now shown that all the constraints hold, we conclude that q

is implementable.

A.2.4 Proof of Lemma 2

Proof. First, v(θK) ≥ 0 implies that p∗ is a valid price vector. Because q0 = 0, IC0k for any
k ∈ {1, . . . , K} is not defined. By the definition of p∗, (p∗, q) binds IRK . It also binds every
local downward IC constraint and hence every downward IC constraint holds by part (a) of
Lemma 1. For each k ∈ {1, . . . , K − 1}, since IRK and ICkK holds, IRk holds by part (b) of
Lemma 1.

The “if” part The argument so far implies that, if (p∗, q) satisfies every upward IC
constraint, p∗ implements q. If K = 2, then there is only one upward IC constraint and
therefore p∗ implements q if and only if IC21 holds. Assume K > 2 and fix j, k ∈ {1, . . . , K−1}
such that j < k. If (p∗, q) satisfies ICkj, then (2) holds with p being set to p∗. We then plug
(1) into (2) to get

v(θj)− v(θj; θj+1) ≥
k−1∑
l=j

[v(θl+1; θl)− v(θl+1)] . (9)

Note that the left-hand side of this inequality is independent of k as long as j < k. Similarly,
(p∗, q) satisfies ICk+1,j if and only if

v(θj)− v(θj; θj+1) ≥
k∑

l=j

[v(θl+1; θl)− v(θl+1)] . (10)

Since the right-hand side of (10) is larger than that of (9) by Claim 1, ICk,j holds whenever
(p∗, q) satisfies ICk+1,j. Therefore, if ICKj holds for every j ∈ {1, . . . , K − 1}, then every
upward IC constraint holds. Therefore, if (p∗, q) satisfies ICKj for every j ∈ {1, . . . , K − 1},
then p∗ implements q and hence, q is implementable.
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The “only if” part Now assume that q is implementable and let p be a price vector that
implements q. Fix j, k ∈ {1, . . . , K} such that j < k. We have

pj − pk =
k−1∑
l=j

pl − pl+1

≤
k−1∑
l=j

v(θl)− v(θl+1; θl) (because (p, q) satisfies ICl,l+1)

=
k−1∑
l=j

p∗l − p∗l+1 (by the definition of p∗)

= p∗j − p∗k.

Thus, (p∗, q) satisfies ICkj . Because ICkj is an arbitrary upward IC constraint, (p∗, q) satisfies
every upward IC constraint and hence, in particular, (p∗, q) satisfies every upward IC constraint
in {ICKj : 1 ≤ j ≤ K − 1}.

A.2.5 Proof of Theorem 2

Proof. Fix (N,K, u) where u is linear. Fix q ∈ Q(N,K) with v(θK) ≥ 0. If K ≤ 2, by
Proposition 1, every q ∈ Q(N,K) such that v(θK) ≥ 0 is implementable since u is convex.
Assume instead K ≥ 3. Let d = u1−u2 > 0. Note that by the linear setup, un = u1−(n−1)d

for every n ∈ {1, . . . , N}. Therefore, for every l ∈ {1, . . . , K},

v(θl) =

∑Ql

n=Ql−1+1 un

ql
=

∑Ql

n=Ql−1+1[u1 − (n− 1)d]

ql

=

∑Ql−Ql−1

n=1 [u1 − (Ql−1 + n− 1)d]

ql

= u1 −
[
Ql−1 +

ql − 1

2

]
d.

(11)

Fix j, k ∈ {1, . . . , K} such that j < k. To calculate v(θk; θj), we set ql to qk + 1 and Ql−1 to
Qk−1 − 1 in (11) to get

v(θk; θj) = u1 −
[
Qk−1 − 1 +

qk
2

]
= v(θk) +

d

2
. (12)

To calculate v(θj; θk), we set ql to qj + 1 and Ql−1 to Qj−1 to get

v(θj; θk) = u1 −
[
Qj−1 +

qj
2

]
= v(θj)−

d

2
(13)
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If p implements q, then IC12 implies p1− p2 ≤ v(θ1)− v(θ2; θ1) and p2− p3 ≤ v(θ2)− v(θ3; θ2).
Adding up the two inequalities, we obtain

p1 − p3 ≤ v(θ1)− v(θ2; θ1) + v(θ2)− v(θ3; θ2) (14)

= v(θ1)− v(θ3)− d. (by (13))

However, IC31 implies

p1 − p3 ≥ v(θ1; θ3)− v(θ3)

= v(θ1)− v(θ3)−
d

2
, (by (12))

which contradicts (14) since d > 0. Thus q is not implementable.

A.2.6 Proof of Theorem 3

Proof. Let q ∈ Q(N,K) where qk = 1 for every k ∈ {1, . . . , K}. Using p∗ defined in Lemma 2,
we obtain

p∗1 − p∗3 =
2∑

l=1

v(θl)− v(θl+1; θl) = u1 −
u1 + u2

2
+ u2 −

u2 + u3

2
=

u1 − u3

2
.

However, as p∗1 − p∗3 < u1+u2−2u3

2
= v(θ1; θ3) − v(θ3), (p∗, q) does not satisfy IC31, and by

Lemma 2, q is not implementable.

A.3 Proofs for Section 5

In this section we first state and prove lemmas that we use in the proofs for results in
Section 5. These lemmas are stated in Section A.3.1. The proofs for results in Section 5
appear in Section A.3.2 onward.

A.3.1 Lemmas for Two-Type Case

Proofs for results in Section 5 often use a generalization of Lemma 2 in the single-type case,
which we state in this section as Lemma 6. This lemma in the two-type case itself uses the
generalization of the constraint reduction results in the single-type case (parts (a) and (b) of
Lemma 1), and we state them as Lemmas 4 and 5. Figure 4 provides a road map of how
these lemmas in this section contribute to some of the results in the two-type case.

The following two lemmas provide conditions under which the downward IC and IR
constraint reductions are valid in the two-type case.
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Lemma 4
IC reduction

Lemma 5
IR reduction

Lemma 6
Implementability-
checking price vec-
tor

Proposition 3
Implementation
with two concave
utilities

Theorem 4
Implementation
with two linear
utilities

Figure 4: Road map of Appendix A.3.1

Lemma 4 (IC Reduction with two types). Fix ((Nh, N l), K, (uh, ul)) with K ≥ 2, a scheme
q, a price vector p, and j, k ∈ {1, . . . , K} such that j < k. Assume that (p, q) satisfies ICm,m+1

for every m ∈ {j, . . . , k − 1}. If qlj = 0 or qlm > 0 for every m ∈ {j, . . . , k − 1}, then (p, q)

satisfies ICjk.

Proof. Assume qlj = 0, which implies that ICjk is equivalent to ICh
jk. For any m ∈ {j, . . . , k−

1}, ICm,m+1 implies

pm − pm+1 ≤ max
t∈{l,h}

[
vt(θm)− vt(θm+1;m)

]
= vh(θm)− vh(θm+1; θm).

Therefore, if ICm,m+1 holds for every m ∈ {j, . . . , k − 1}, then

pj − pk =
k−1∑
m=j

(pm − pm+1)

≤
k−1∑
m=j

[
vh(θm)− vh(θm+1; θm)

]
(by ICm,m+1)

= vh(θj)− vh(θk)−
k−1∑
m=j

[
vh(θm+1; θm)− vh(θm+1)

]
≤ vh(θj)− vh(θk)−

[
vh(θk; θk−1)− vh(θk)

]
(by Claim 1)

= vh(θj)− vh(θk; θj). (by the proof of Theorem 1)

Thus, ICjk holds.
Now assume qlm > 0 for every m ∈ {j, . . . , k − 1}. By the construction of customer types,

ICjk is equivalent to ICl
jk and ICm,m+1 is equivalent to ICl

m,m+1. Therefore, by part (a) of
Lemma 1, ICjk holds.

Lemma 5 (IR Reduction with two types). Fix ((Nh, N l), K, (uh, ul)) such that K ≥ 2,
q ∈ Q((Nh, N l), K), and a price vector p. Fix j, k ∈ {1, . . . , K} such that j < k and assume
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that (p, q) satisfies ICjk and IRk. If qlj = 0 or qlk > 0, then (p, q) satisfies IRj.

Proof. If qlj = 0, then IRj is equivalent to IRh
j and ICjk is equivalent to ICh

jk. Also, IRk

implies vh(θk)− pk ≥ 0 or vl(θk)− pk ≥ 0, and since the latter implies the former, we have
that IRk implies vh(θk)− pk ≥ 0. Therefore,

vh(θj)− pj ≥ vh(θk; θj)− pk (by ICjk)

≥ vh(θk)− pk (by Claim 1)

≥ 0 (by IRk),

and thus, IRj holds.
If qlk > 0, then IRk is equivalent to IRl

k. For any t such that qtj > 0, we have

vt(θj)− pj ≥ vt(θk; θj)− pk (by ICt
jk)

≥ vl(θk; θj)− pk (by the definition of types)

≥ vl(θk)− pk (by Claim 1)

≥ 0 (by IRk).

Thus, IRj holds.

The following result extends Lemma 2 in the single-type case and provides a pricing
formula to check implementability.

Lemma 6 (Two-type implementation). Fix ((Nh, N l), K, (uh, ul)) and q ∈ Q((Nh, N l), K)

where every customer buys some pass and vl(θK) ≥ 0. Assume for every j ∈ {1, . . . , K − 1},
qlj > 0 implies qlj+1 > 0. Let p∗ = (p∗1, . . . , p

∗
K) be such that p∗K = vl(θK) and p∗j − p∗j+1 =

vtj(θj) − vtj(θj+1; θj), where tj = l if qlj > 0 and otherwise tj = h. The scheme q is
implementable if and only if (p∗, q) satisfies every upward IC constraint.

Proof. By the definition of p∗, (p∗, q) satisfies every local downward IC constraint. Pick
j, k ∈ {1, . . . , K} such that j < k. If qlj = 0, then Lemma 4 implies that ICjk holds. If qlj > 0,
then by assumption qlm > 0 for every m ∈ {j, . . . , k − 1}, and hence again by Lemma 4, ICjk

holds. Therefore, (p∗, q) satisfies every downward IC constraint. Since qlj > 0 implies qlj+1 > 0

for every j ∈ {1, . . . , K−1} and every customer buys some pass, we have qlK > 0. Hence, IRK

is equivalent to IRl
K , and (p∗, q) satisfies IRK by the definition of p∗K . Because in addition

IRl
K holds, by Lemma 5, all the IR constraints also hold. Therefore, q is implementable if

(p∗, q) satisfies every upward IC constraint.
Now, assume that q is implementable and let p implement q. Given j, k ∈ {1, . . . , K}

such that j < k, (p, q) satisfying ICkj implies pj − pk ≥ vtk(θj; θk)− vtk(θk), where tk = h if
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qhk > 0 and otherwise tk = l. By the definition of customer types, ICkj is equivalent to ICtk
kj.

On the other hand, we have

pj − pk =
k−1∑
l=j

pl − pl+1

≤
k−1∑
l=j

vtl(θl)− vtl(θl+1; θl) (by ICl,l+1)

=
k−1∑
l=j

p∗l − p∗l+1 = p∗j − p∗k (by definition of p∗)

Therefore, p∗j − p∗k ≥ pj − pk ≥ vtk(θj; θk)− vtk(θk), and hence (p∗, q) satisfies ICkj.

A.3.2 Proof of Proposition 2

Proof. Assume q ∈ Q((Nh, N l), K) is implementable and fix j, k ∈ {1, . . . , K} such that
j < k, qlj > 0 and qhk > 0 (If there are no such j and k, the proof is done). By the definition
of customer types, ICjk is equivalent to ICl

jk and ICkj is equivalent to ICh
kj. Note that

vl(θj)− vl(θk; θj) < vh(θj)− vh(θk; θj) (by the definition of types)

≤ vh(θj; θk)− vh(θk), (by the proof of Theorem 1)

However, if a price vector satisfies both ICl
jk and ICh

kj, then we would have

vh(θj; θk)− vh(θk) ≤ pj − pk ≤ vl(θj)− vl(θk; θj),

which is a contradiction. Thus, for every j, k ∈ {1, . . . , K} such that j < k, if qlj > 0, then
qhk = 0.

A.3.3 Proof of Proposition 3

Proof. Since conditions of Lemma 6 hold, we can check the implementability of q by p∗ in
the lemma. If K > 2, then in every q ∈ Q((Nh, N l), K), at least one customer type has
customers in two different priority passes, which makes q unimplementable by Theorem 1.

Assume instead K = 2 and fix a regular scheme q. Because qh0 = ql0 = 0 by the definition
of regular schemes, qhk < N t for any k ∈ {1, 2} implies qhj > 0 for j ∈ {1, 2} such that j 6= k,
which makes q unimplementable by Theorem 1. Similarly, qlk < N l for any k ∈ {1, 2} implies
qlj > 0 for j ∈ {1, 2} such that j 6= k, which again makes q unimplementable. If ql1 = N l and
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qh2 = Nh, the scheme is not implementable by Proposition 2. Therefore, if a regular scheme
q ∈ ((Nh, N l), K) for K > 1 is implementable, then K = 2, qh1 = Nh, and ql2 = N l.

Now consider the regular scheme q ∈ ((Nh, N l), 2) where qh1 = Nh and ql2 = N l. With p∗

defined in Lemma 6, IC21 holds when p∗1 − p∗2 ≥ vl(θ1; θ2)− vl(θ2). By definition, p∗1 − p∗2 =

βh [v(θ1)− v(θ2; θ1)] and vl(θ1; θ2)− vl(θ2) = v(θ1; θ2)− v(θ2). Therefore, IC21 holds if

βh [v(θ1)− v(θ2; θ1)] ≥ v(θ1; θ2)− v(θ2),

which holds if and only if βh ≥ v(θ1;θ2)−v(θ2)
v(θ1)−v(θ2;θ1)

. We define the right-hand side of the inequality
to be β. Lastly, by the proof of Theorem 1, the strict concavity of u implies β > 1 when
N > 2.

A.3.4 Proof of Theorem 4

Proof. First assume q is implementable. By Proposition 2, conditions of Lemma 6 hold
and p∗ defined in the lemma implements q. For (p∗, q) to satisfy ICkj for j, k ∈ {1, . . . , k}
such that j < k, we have vtk(θj; θj+1) − vtk(θk) ≤ p∗j − p∗k, where tk = h if qhk > 0 and
otherwise tk = l. The definition of p∗ implies that p∗j − p∗k =

∑k−1
l=j vtl(θj) − vtl(θl+1; θl) =∑k−1

l=j βtl [v(θl)− v(θl+1;θl)], where each tl is defined in Lemma 6. Therefore, ICkj and the
definition of p∗ imply

vtk(θj; θj+1)− vtk(θk) ≤
k−1∑
l=j

βtl [v(θl)− v(θl+1;θl)] (15)

Since q is implementable, by Proposition 2, if tk = h, then it is necessary that tl = h for every
l in (15). Moreover, because by Theorem 2, a customer type can be in at most two priority
passes in an implementable scheme, if tk = h, then j = k − 1 and hence ICkj is equivalent to
ICk,k−1, a local upward IC constraint, which holds by the ID conditions with respect to uh.

If tk = l and tj = l, then again by Theorem 2, j = k − 1, and ICkj is a local upward IC
constraint with respect to ul, which holds by the ID conditions. If tk = l and tm = h for some
m ∈ {j, . . . , k − 2}, then βtm = β and ICkj in (15) is a lower bound on β. Therefore, every
non-local upward IC constraint provides a lower bound on β. Let β be the highest lower
bound on β over all the lower bounds implied by the non-local upward IC constraints, and
hence β ≥ β if q is implementable. To see that β > 1, consider IC31. Since each customer
type can be in at most two priority passes in an implementable scheme with concave base
utility functions, Proposition 2 implies that t1 = h and t3 = l. In this case, by the definition
of p∗, p∗1 − p∗3 = β [v(θ1)− v(θ2; θ1)] + βt2 [v(θ2)− v(θ3; θ2)]. Since t3 = l, IC31 is equivalent
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to ICl
31, i.e., v(θ1; θ2)− v(θ3) ≤ p∗1 − p∗3. Therefore, we have

v(θ1; θ2)− v(θ3) ≤ β [v(θ1)− v(θ2; θ1)] + βt2 [v(θ2)− v(θ3; θ2)] , (16)

which implies a lower bound on β. Because β ≥ βt2 ≥ 1, if β = 1, then βt2 = 1 and (16) is
equivalent to

v(θ1)− v(θ1; θ2) ≥ v(θ2; θ1)− v(θ1) + v(θ3; θ2)− v(θ3),

which does not hold when the base utility function is concave by the proof of Theorem 1 by
Theorem 2, (16) does not hold when β = 1. Therefore, the lower bound on β implied by (16)
must be strictly larger than 1, and hence β > 1.

For the other direction, assume β < β. Pick j and k such that ICkj implies a lower bound
on β and the lower bound is β. However, this would imply that (15) would not hold, i.e.,
(p∗, q) does not satisfy ICkj. Hence q is not implementable by Lemma 6. Therefore, q is
implementable if and only if β ≥ β.

A.3.5 Proof of Proposition 4

Proof. The proposition is implied by Proposition 11 in Appendix B for the general multi-type
case. To see this, note that every regular scheme in the two-type case is also regular in the
multi-type case. Using the notation in Appendix B, R(q) = β for every regular scheme q

in the linear multiplicative two-type case where K > 2. Therefore, by Proposition 11 in
Appendix B for the multi-type case, we can find some M such that every regular scheme in
the two-type case is implementable if every priority pass has at least M customers. Lastly,
by Proposition 11, when β ≥ 2, then R(q) ≥ 2 for every regular scheme q in the linear
multiplicative two-type case. Therefore, when β ≥ 2, every regular scheme in the linear
multiplicative two-type case is implementable.

A.3.6 Proof of Proposition 5

Proof. The proposition is an implication of Proposition 12 in Appendix B for the linear
multiplicative multi-type case. To see this, note that every regular scheme in the two-type
case is regular in the multi-type case. Using the notation in Appendix B, in the linear
multiplicative two-type case where K > 2, R(q) = β for every regular scheme q. Therefore,
for each m ≥ 1, we can find some δ > 0, such that no regular scheme q with at most m

customers in each priority pass is implementable if β < 1 + δ.
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A.4 Proofs for Section 6

A.4.1 Proof of Proposition 6

Proof. Assume q ∈ Q(N,K) is implementable. Consider the scheme q̃ ∈ Q(N,K − 1), which
is obtained by merging the last two priority passes in q is implementable. We are to show
first that q̃ is implementable, and then that the profit from q̃, by the price vector in Lemma 2,
is higher than the profit from q.

If K = 2, the result is clear. Assume K > 2 and u is convex. For each symbol, we denote
that the symbol is defined with respect to q̃ by accenting it with the tilde sign. For example,
ĨCjk is the IC constraint between θj and θk defined with respect to q̃. Symbols without the
tilde sign are defined with respect to q.

Note that for every j ∈ {1, . . . , K − 1}, k ∈ {1, . . . , K − 2}, and l ∈ {1, . . . , K − 3},

v(θj) = ṽ(θj) (17)

v(θk)− v(θk; θk+1) = ṽ(θk)− ṽ(θk; θk+1) (18)

v(θl+1; θl)− v(θl+1) = ṽ(θl+1; θl)− ṽ(θl+1) (19)

By Lemma 2, q̃ is implementable if ĨCK−1,j holds with p̃∗ for every j ∈ {1, . . . , K−2} and
ĨC0k holds for every k ∈ {1, . . . , K − 1}. Plugging (1) into (2), we see that (p∗, q) satisfies
ICkj if

v(θj)− v(θj; θj+1) ≥
K−1∑
l=j

[v(θl+1; θl)− v(θl+1)] . (20)

Similarly, ĨCK−1,j holds with p̃∗ if and only if

ṽ(θj)− ṽ(θj; θj+1) ≥
K−2∑
l=j

[ṽ(θl+1; θl)− ṽ(θl+1)] ,

which by (18) and (19) is equivalent to

v(θj)− v(θj+1) ≥
K−3∑
l=j

[v(θl+1; θl)− v(θl+1)] + ṽ(θK−1; θK−2)− ṽ(θK−1) (21)

Comparing (20) and (21), we see that (p̃∗, q̃) satisfies ĨCK−1,j if (p∗, q) satisfies ICKj and

ṽ(θK−1; θK−2)− ṽ(θK−1) < [v(θK−1; θK−2)− v(θK−1)] + [v(θK ; θK−1)− v(θK)] . (22)

Let xn = uQK−2+n for n ∈ {1, . . . , qK−1} denote the positions of θK−1 in q. Similarly, let
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ym = uQK−1+m for m ∈ {1, . . . , qK} denote the positions of θK in q. Lastly, define x0 = uQK−2
.

With these new notations, by the definition of the pass-utility functions, we have

∆̃ :=ṽ(θK−1; θK−2)− ṽ(θK−1)− [v(θK−1; θK−2)− v(θK−1)]− [v(θK ; θK−1)− v(θK)]

=

∑qK−1

n=1 (x0 − xn) +
∑qK

m=1(x0 − ym)

(qK−1 + qK)(qK−1 + qK + 1)
−

∑qK−1

n=1 (x0 − xn)

qK−1(qK−1 + 1)
−

∑qK
m=1(xqK−1

− ym)

qK(qK + 1)
.

Consider the maximization of ∆̃ subject to the constraint

x0 − x1 ≥ x1 − x2 ≥ · · · ≥ xqK−1
− y1 ≥ y1 − y2 ≥ · · · yqK−1 − yqK ≥ 0,

which is implied by the definition and convexity of u. Since ∂∆̃
∂x0

< 0 and ∂∆̃
∂xn

> 0 for
n ∈ {1, . . . , qK−1 − 1}, x0 − x1 = x1 − x2 = · · · = xqK−1−1 − xqK−1

at maximum. Similarly,
since ∂∆̃

∂ym
> 0 for m ∈ {1, . . . , qK}, we have xqK−1

= y1 = · · · = yqK at maximum. Define
d := x0−x1 = · · · = xqK−1−q −xqK−1

at maximum. Therefore, at maximum, the value of ∆̃ is

∆̃∗ :=

∑qK−1

n=1 (x0 − xn) + qK(x0 − xqK−1
)

(qK−1 + qK)(qK−1 + qK + 1)
−

∑qK−1

n=1 x0 − xn

qK−1(qK−1 + 1)

=
d [
∑qK−1

n=1 n+ qKqK−1]

(qK−1 + qK)(qK−1 + qK + 1)
− d

∑qK−1

n=1 n

qK−1(qK−1 + 1)

=
d

2

[
qK−1(qK−1 + 1) + 2qK−1qK
(qK−1 + qK)(qK−1 + qK + 1)

− 1

]
which is strictly negative for d > 0. Thus, (22) holds and ĨCK−1,j holds with p̃∗ for every
j ∈ {1, . . . , K − 2}. Now fix k ∈ {1, . . . , K − 1}. Since p̃∗K−1 = ṽ(θK−1), ĨRK−1 holds. By
Lemma 1, ĨRk holds.

If k < K − 1, then we have

ṽ(θk)− p̃∗k =
K−2∑
l=k

[ṽ(θl+1; θl)− ṽ(θl+1)] (by the definition of p̃∗)

=
K−3∑
l=k

[
v(θl+1; θl)− v(θθl+1

)
]
+ ṽ(θK−1; θK−2)− ṽ(θK−1) (by (21))

<
K−1∑
l=k

[v(θl+1; θl)− v(θl+1)] (by (22))

= v(θk)− p∗k. (by the definition of p∗)

Because v(θk) = ṽ(θk), the inequality implies p̃∗k > p∗k. Additionally, because v(θk; θk+1) =

ṽ(θk; θk+1), if IC0k holds with p∗, i.e., v(θk; θk+1)− p∗k ≤ 0, then ṽ(θk; θk+1)− p̃∗k < 0, i.e., ĨC0k
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holds. Therefore, if q is implementable, then q̃ is implementable.
Now we show that the optimal profit from q̃ is higher than that from q. For each

k ∈ {1, . . . , K − 2}, because p̃∗k > p∗k, p̃∗kqk > p∗kqk, i.e., the park’s profit from θk is higher in
q̃. Since p̃∗K−1 = ṽ(θK−1) and p∗K−1 < v(θK−1), p̃∗k−1(qK−1 + qK) = v(θK−1)qK−1 + v(θK)qK >

p∗K−1qK−1 + p∗KqK , i.e., the firm’s profit from the lowest two priority passes is higher in q̃.
Therefore, the optimal profit from q̃ is higher than that from q.

A.4.2 Proof of Proposition 7

Proof. By Proposition 3, a two-pass all-serving implementable scheme exists if and only if
βh ≥ v(θ1;θ2)−v(θ2)

v(θ1)−v(θ2;θ1)
. By p∗ in Lemma 6, the revenue of the all-serving two-pass scheme is

N lp∗2 +Nhp∗1 = N lv(θ2) +Nh
[
v(θ2) + βh(v(θ1)− v(θ2; θ1))

]
.

The revenue of the all-serving one-pass scheme is Nhv(θ1) +N lv(θ2). Thus, conditional
on βh[v(θ1)− v(θ2; θ1)] ≥ v(θ1; θ2)− v(θ2), the two-pass scheme is better than the one-pass
scheme if and only if

N lv(θ2) +Nh
[
v(θ2) + βh(v(θ1)− v(θ2; θ1))

]
≥ N lv(θ2) +Nhv(θ1), (23)

from which we have

βh ≥ v(θ1)− v(θ2)

v(θ1)− v(θ2; θ1)
(by (23))

≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
(by Claim 1)

> 1 (by the proof of Theorem 1)

To conclude, set β = v(θ1)−v(θ2)
v(θ1)−v(θ2;θ1)

.

A.4.3 Proof of Proposition 8

Proof. Assume ṽ creates zero externality. For each q ∈ Q(N,K) and a ∈ A such that
q(a) = q, setting pk = ṽ(θk; q) for k ∈ {1, . . . , K} implements q.

Now assume K ≥ 2 and ṽ creates more downgrade externality. Given q ∈ Q(N,K), to
arrive at a contradiction, assume some price vector p implements q. Let a ∈ A be a strategy
profile such that q(a) = q. Let a′ ∈ A be a strategy profile where exactly one customer buying
θ2 in a switches to θ1 and a′′ ∈ A a strategy profile where exactly one customer buying θ1 in
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a switches to θ2. Thus, IC12 and IC21 imply

ṽ(θ1; q(a
′))− ṽ(θ2; q) ≤ p1 − p2 ≤ ṽ(θ1; q)− ṽ(θ2; q(a

′′))

However, the inequality above contradicts the definition of ṽ creating more downgrade
externality. Hence IC12 and IC21 cannot both hold, a contradiction.

A.4.4 Proof of Proposition 9

Proof. The proof focuses on schemes with every customer buying some pass. Since u0 = −∞,
for implementability, it is sufficient to consider the set of IC constraints. To construct a
K-pass implementable scheme, first fix q1 > 0. By p∗ in Lemma 228, IC21 holds if

v(θ2; θ1)− v(θ2) ≤ v(θ1)− v(θ1; θ2).

The right-hand side is strictly positive. Thus, for IC21 to hold, it is sufficient for the left-hand
side to converge to 0 as q2 grows. To see this, note that for every k ∈ {2, . . . , K},

v(θk; θk−1)− v(θk) =
uQk−1

qk + 1
− v(θk)

qk + 1
,

where Qk−1 is the last position of θk−1 in q. The first term, uQk−1

qk+1
, converges to 0 as qk → ∞.

For the second term, note that

lim
qk→∞

v(θk)

qk + 1
= lim

qk→∞

1

qk + 1

∑Qk

n=Qk−1+1 un

qk
= 0.

The last equality holds because limn→∞
un

n
= 0. Therefore, for fixed q1, IC21 holds strictly

with large q2.
Suppose that with this procedure, we have picked q1, . . . , qk−1 for some k ∈ {3, . . . , K} such

that IClj holds strictly for every j, l ∈ {1, . . . , k − 1} such that j < l. Fix j ∈ {1, . . . , k − 1}.
By (1) and (2), (p∗, q) satisfying ICk−1,j with a strict inequality is equivalent to

v(θj)− v(θj; θj+1) >
k−2∑
l=j

v(θl+1; θl)− v(θl+1). (24)

28If p∗K < 0, redefine p∗K = 0 and p∗j − p∗j+1 = v(θj)− v(θj+1; θj) for j ∈ {1, . . . ,K − 1}.

45



Similarly, if ICkj holds strictly with p∗, then

v(θj)− v(θj; θj+1) >
k−1∑
l=j

v(θl+1; θl)− v(θl+1),

which, by (24), holds if the difference v(θk; θk−1)− v(θk) is sufficiently small. By our earlier
discussion, the difference approaches zero when qk → ∞. Therefore, there exists large enough
qk such that ICkj holds with p∗ for every j ∈ {1, . . . , k − 1}. Repeat this procedure for all
k ∈ {2, . . . , K}, and we have constructed an implementable scheme, and let M be the total
number of customers in the scheme. For every N ≥ M , we can add to the constructed scheme
the additional customers (in excess of M) to the last priority pass, and the new scheme with
N customers is implementable. Therefore, there exists M > 0 such that if N ≥ M then there
exists q ∈ Q(N,K) that is implementable.

Appendix B The General Multi-Type Case

In this section, we consider the general case where there could be more than two types of
base utility functions. Suppose there are T types of basic utility functions and we call this
case the multi-type case. To be precise, assume each customer’s base utility function comes
from {ut}Tt=1, where t is the index for utility types. For each t = 1, . . . , T , let N t be the
number of customers with base utility function ut, and let N =

∑T
t=1N

t be the total number
of customers. Similarly to the two-type case, we assume that for every t ∈ {1, . . . , T − 1},
ut
n > ut+1

n for every n ∈ {1, . . . , N} and ut
n−ut

n+1 > ut+1
n −ut+1

n+1 for every n ∈ {1, . . . , N −1}.
In addition, assume that the reserve utility of each customer type is zero, i.e., ut

0 = 0 for all
type t. Let G((N t)Tt=1, K, p, (ut)Tt=1) be the strategic-form game defined analogously to that
in the single-type case. Given (N,K), let Q (N,K) = {q ∈ ({0} ∪ N)K+1 :

∑K
k=0 qk = N}.

Define the set of schemes as

Q
((

N t
)T
t=1

, K
)
=

{
q = (q1, . . . , qt) ∈ ×T

t=1Q(N t, K) :
T∑

τ=1

qτk > 0 if 1 ≤ k ≤ K

}
.

The restriction that
∑T

t=1 q
t
k > 0 for every k ∈ {1, . . . , K} ensures that every priority pass

has at least one customer, which is analogous to the definition in the single-type case. For
each customer type t, construct the pass utility function vt from ut. Given j ∈ {0, . . . , K}
and k ∈ {1, . . . , K}, ICt

jk and IRt
k are defined analogously to the single-type case with the

pass-utility function changed to vt. Analogous to the two-type case, ICt
jk and IRt

k may not
be defined for every j, k ∈ {1, . . . , K}. To be precise, for a scheme q to be implementable,
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IC reduction
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IR reduction
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Implementability-checking
price vector

Theorem 5
Implementation with mul-
tiple concave utilities

Proposition 10
Monotonicity property of
implementable schemes

Corollary 1
Two-Pass implementation
with multiple strictly
concave utilities

Figure 5: Road map of Appendix B.1

ICt
jk is defined only if there is some customer of type t that buys θj, i.e., qtj > 0. Similarly,

IRt
k is defined only if qtk > 0.
Fix a scheme q. Let tj = max{1 ≤ τ ≤ T : qτj > 0}, which is the lowest customer type

that buys θj, and tj = min{1 ≤ τ ≤ T : qτj > 0}, which is the highest customer type that
buys θj. As in the two-type case, ICtj

jk implies every constraint in {ICτ
jk : q

τ
j > 0, 1 ≤ τ ≤ T}

if 0 < j < k and ICtj
jk implies every constraint in {ICτ

jk : qτj > 0, 1 ≤ τ ≤ T} if j = 0 or
1 ≤ k < j ≤ K. Write ICjk = ICtj

jk if 0 < j < k and ICjk = ICtj
jk if j = 0 or 1 ≤ k < j ≤ K.

Similarly, IRtk
k implies every constraint in {IRτ

k : qτk > 0, 1 ≤ τ ≤ T}, and we write
IRjk = IRtk

k . Let the set of IC constraints be the collection of ICjk over j ∈ {0, . . . , K} such
that

∑T
t=1 q

t
j > 0 and k ∈ {1, . . . , K}; let the set of IR collection of IRk over k ∈ {1, . . . , K}.

Like the one-type case, implementation can be similarly defined with respect to the set of IC
and IR constraints.

B.1 Lemmas for Multi-Type Case

This subsection generalizes the lemmas in the two-type case to the general multi-type case.
Most results in the multi-type case use Lemma 9 that we state later in this subsection, which
is a generalization of Lemma 6 in the two-type case. This lemma allows us to check the
implementability of a scheme by the price vector binding IRK and every local downward
IC constraint. A road map of how lemmas in this section contribute to the results in the
multi-type case is illustrated in Figure 5.

Lemma 7 (Generalization of Lemma 4). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
with K ≥ 2, a scheme

q ∈ Q((N t)Tt=1, K), and a price vector p. Fix j, k ∈ {1, . . . , K} such that j < k and assume
ICl,l+1 holds for every l ∈ {j, . . . , k − 1}. If tl ≤ tl+1 for every l ∈ {j, . . . , k − 1}, then ICjk

holds.
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Proof. Since tl ≤ tl+1, we have

pl − pl+1 ≤ vtl(θl)− vtl(θl+1; θl) (by ICtl
l,l+1)

≤ vtj(θl)− vtj(θl+1; θl). (by the definition of types)

Therefore, combining ICtl
l,l+1 for l ∈ {j, . . . , k − 1} implies

pj − pk =
k−1∑
l=j

pl − pl+1 ≤
k−1∑
l=l

vtj(θl)− vtj(θl+1; θl) (by ICtl
l,l+1)

= vtj(θj)− vtj(θk)−
k−1∑
l=j

[
vtj(θl+1; θl)− vtj(θl+1)

]
≤ vtj(θj)− vtj(θk)−

[
vtj(θk; θk−1)− vtj(θk)

]
(by Claim 1)

= vtj(θj)− vtj(θk; j). (by Claim 1)

Thus, ICjk holds.

Lemma 8 (Generalization of Lemma 5). Given
(
(N t)Tt=1, K, (ut)Tt=1

)
with K ≥ 2, fix a

scheme q ∈ Q((N t)Tt=1, K) and a price vector p. Assume there exists some j, k ∈ {1, . . . , K}
such that j < k and tj ≤ tk. If ICjk and IRk hold, then IRj holds.

Proof. Pick t ∈ {1, . . . , T} such that qtj > 0. We have

vt(θj)− pj ≥ vtj(θj)− pj (by t ≤ tj)

≥ vtj(θk; θj)− pk (by ICtj
jk)

≥ vtk(θk)− pk (by tj ≤ tk)

≥ 0. (by IRtk
k )

Thus, IRk holds.

The following result is an extension of Lemma 6 from the two-type case.

Lemma 9 (Implementability conditions in multi-type case). Fix
(
(N t)Tt=1, K, (ut)Tt=1

)
. Pick

q ∈ Q((N t)Tt=1, K) where (i) tj ≤ tk for every j, k ∈ {1, . . . , K} such that j < k, (ii) every
customer buys some priority pass, (iii) vT (θK) ≥ 0. Let p∗ = (p∗1, . . . , p

∗
K) such that

p∗K = vT (θK) and p∗j − p∗j+1 = vtj(θj)− vtj(θj+1; θj) for every j ∈ {1, . . . , K− 1}. The scheme
q is implementable if and only if (p∗, q) satisfies every upward IC constraint.

Proof. Since every customer buys some priority pass and tj ≤ tk for every j, k ∈ {1, . . . , K}
such that j < k, qTK > 0 and IRT

K holds. By Lemma 7 and Lemma 8, (p∗, q) satisfies every
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downward IC and IR constraint. Therefore, q is implementable if (p∗, q) satisfies every upward
IC constraint.

Now assume p implements q. Pick j, k ∈ {1, . . . , K} such that j < k. Then (p, q) satisfying
ICkj implies pj − pk ≥ vtk(θj; θk)− vtk(θk). We have

pj − pk =
k−1∑
l=j

pl − pl+1

≤
k−1∑
l=j

vtl(θl)− vtl(θl+1; θl) (by (p, q) satisfying ICtl
l,l+1)

=
k−1∑
l=j

p∗l − p∗l+1 = p∗j − p∗k. (by the definition of p∗)

Hence (p∗, q) satisfies ICkj. The proof is complete.

B.2 Implementability in the Multi-Type Case

For tractability, a recurring setup we have in this subsection is to fix ((N t)Tt=1, K, (ut)Tt=1)

in the multi-type case and a base utility function u. For every t such that 1 ≤ t ≤ T , let
ut = βtu, where β1 > β2 > . . . > βT = 1.29 We call this setup the multiplicative multi-type
case. A multi-type case is called concave if each customer type’s base utility function is
concave and linear if each base utility function is linear.

When there are multiple customer types, implementing multi-pass schemes is possible if
customers have utility functions that are sufficiently different from each other. The following
result characterizes the implementability conditions with respect to customer types.

Theorem 5 (Implementation with multiple concave utilities). Consider the concave mul-
tiplicative multi-type case. Fix a scheme q ∈ Q((N t)Tt=1, K) such that

∑T
t=1 q

t
0 = 0 and

tk ≤ tk+1 for k ∈ {1, . . . , K−1}. For j, k ∈ {1, . . . , K} such that j < k, there exists bkj ≤ βtj

such that q is implementable if and only if βtk ≤ bkj for each j, k ∈ {1, . . . , K} such that
j < k.

Proof. Assume q is implementable. Since tk ≤ tk+1 for k ∈ {1, . . . , K − 1}, the conditions of
Lemma 9 hold, and we can check the implementability of q by the price vector p∗ that binds
all local downward IC constraints and IRK . Therefore, for every j, k ∈ {1, . . . , K} such that

29Here the superscript for each β is an index, not an exponent.

49



j < k,

p∗j − p∗k =
k−1∑
l=j

[
vtl(θl)− vtl(θl+1; θl)

]
=

k−1∑
l=j

βtl [v(θl)− v(θl+1; θl)] .

Thus, (p∗, q) satisfies ICkj if and only if

p∗j − p∗k =
k−1∑
l=j

βtl [v(θl)− v(θl+1; θl)] ≥ βtk [v(θj; θj+1)− v(θk)] .

We can solve for βtk to get

βtk ≤
k−1∑
l=j

v(θl)− v(θl+1; θl)

v(θj; θj+1)− v(θk)
βtl . (25)

Let bkj be the right-hand side of the inequality above. Note that

k−1∑
l=j

v(θl)− v(θl+1; θl) = v(θj)− v(θk)−
k−1∑
l=j

[v(θl+1; θl)− v(θl+1)]

≤ v(θj)− v(θk)− [v(θk; θk−1)− v(θk)] (by Claim 1)

≤ v(θj; θj+1)− v(θk), (by the proof of Theorem 1)

which implies that bkj is in the affine simplex of βtl for l ∈ {j, . . . , k − 1}, hence bkj ≤
maxj≤l≤k−1 β

tl = βtj . Therefore, if q is implementable, then βtk ≤ bkj for every j, k ∈
{1, . . . , K} such that j < k.

Conversely, let bkj for every j, k ∈ {1, . . . , K − 1} such that j < k be defined to be the
right-hand side of (25) and assume βtk ≤ bkj . Again, because tk ≤ tk+1 for k ∈ {1, . . . , K−1},
the conditions of Lemma 9 hold. Since βtk ≤ bkj defined in (25) for j, k ∈ {1, . . . , K} such
that j < k is exactly the condition for (p∗, q) in Lemma 9 to satisfy ICkj , q is implementable
if βtk ≤ bkj for every j, k ∈ {1, . . . , K} such that j < k.

The intuition of the theorem is similar to that of Theorem 4 in the two-type case:
Customer types in different priority passes need to be sufficiently different for the scheme to
be implementable. Towards a straightforward intuition, consider a special case of Theorem 5
where u is linear, K = 3, and the scheme in consideration has m customers in each pass. In
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this case, the price vector binding every downward IC constraint satisfies IC31 if and only if

βt1

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p1−p2

+
βt2

2
(2m− 1)︸ ︷︷ ︸

Upper bound of
p2−p3

≥ βt3

2
(4m− 1)︸ ︷︷ ︸

Lower bound of
p1−p3

(26)

Hence, (26) does not hold if both βt1 and βt2 are too close to βt3 ; if both slopes on the
left-hand side are sufficiently larger than βt3, then IC31 holds. The implementability condition
is for the customer types to be sufficiently different. Intuitively, a larger difference in different
types raises the price difference between two priority passes, giving customers in the lower
priority less incentive to upgrade.

We emphasize that the implementability condition in Theorem 5 requires that customer
types in different priority passes, including customers whose priorities are close, need to be
sufficiently different. For example, in the strictly concave multiplicative multi-type case, an
implementable scheme implies the existence of a large enough “gap” between two adjacent
customer types in the queue, as illustrated below by an immediate implication of Theorem 5.

Corollary 1 (Two-pass implementation with multiple strictly concave utilities). Consider
the strictly concave multiplicative multi-type case where K = 2. Let q ∈ Q

(
(N t)Tt=1, K

)
be

such that vT (θ2) ≥ 0 and qt0 = 0 for every customer type t. The scheme q is implementable if
and only if t2 = t1 + 1 and

βt1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
, (27)

where v is the pass utility function constructed from u. In addition, the right-hand side of
(27) is strictly greater than 1 and converges to 1 as N t → ∞ for every t ∈ {t2, . . . , T}.

Proof. Since every customer buys some pass and each ut is strictly concave, by Theorem 1
and Lemma 10, t1 = t2 − 1. Since K = 2 and every customer buys some priority pass, ID12

is necessary and sufficient for implementability, which implies

βt1

βt2
≥ v(θ1; θ2)− v(θ2)

v(θ1)− v(θ2; θ1)
.

The right-hand side is strictly larger than 1 by the proof of Theorem 1 for strictly concave base
utility functions. If N t → ∞ for every t ∈ {t2, . . . , T}, then q2 tends to infinity. Because u is
concave, both v(θ2) and v(θ2; θ1) converge to −∞. lastly, as v(θ2; θ1) =

1
q2+1

uq1 +
q2

q2+1
v(θ2),

the right-hand side converges to 1 as q2 tends to infinity.

The result implies that a multi-pass scheme may not be implementable even if the range
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of customer types (i.e., β1 − βT ) is very large but adjacent customer types are very close to
each other.

Note that the conditions and the result of Theorem 5, that tk ≤ tk+1 for k ∈ {1, . . . , K−1},
and that βtk ≤ bkj ≤ βtj for j, k ∈ {1, . . . , K} such that j < k, together imply tk ≤ tk+1 for
k ∈ {1, . . . , K − 1}. It turns out that this implication is necessary for implementability in
the concave multi-type case, which we include in the following monotonicity result.30

Proposition 10 (Monotonicity with multiple concave utilities). Fix the concave multi-type
case where K ≥ 2. Assume q ∈ ((N t)Tt=1, K) is implementable.

(a) For every j ∈ {1, . . . , K − 1}, tj ≤ tj+1. Moreover, if additionally j ≤ K − 2, then in
the inequalities tj ≤ tj+1 ≤ tj+1 ≤ tj+2, at least one of the inequalities is strict.

(b) If 1 ≤ τ ≤ tK−1 and τ < tK, then qτ0 = 0.

Proof. The two parts of the results are shown through the following two lemmas. The first
lemma shows that a higher-priority customer never buys a strictly lower-priority pass than a
lower-type customer does in an implementable scheme; the second lemma shows that if the
customer’s type is (weakly) higher than the lowest customer type that buys θK−1 and strictly
higher than the lowest customer type that buys θK , then this customer must necessarily buy
some pass.

Lemma 10 (Higher-Priority for higher type). Consider the concave multi-type case and
assume that q ∈

(
(N t)Tt=1, K

)
is implementable. For every j ∈ {1, . . . , K − 1}, tj ≤ tj+1.

Proof of lemma. Towards a contradiction, assume that there exists q ∈ Q((N t)Tt=1, K) where
tj > tk for some j, k ∈ {1, . . . , K} such that j < k. With this assumption, we have

vtj(θj)− vtj(θj; θk) < vtk(θj)− vtk(θj; θk) (by tj > tk)

≤ vtk(θk; θj)− vtk(θk), (by the proof of Theorem 1)

However, the inequality from the two ends violates IDjk and hence q is not implementable.

Lemma 11 (Pass-Buying with concave utilities). Consider the concave multi-type case
where K ≥ 2 and assume q ∈ Q((N t)Tt=1, K) is implementable. For every customer type
t ∈ {1, . . . , tK−1} such that t < tK, qt0 = 0.

30Recall that the monotonicity property does not hold in general, as Example 3 and Example 2 in the
two-type case show.
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Proof of lemma. By Lemma 10, tk ≤ tK . Let p be a price vector implementing q. ICK−1,K

implies
vtK−1(θK−1)− vtK−1(θK ; θK−1) ≥ pK−1 − pK .

Because each ut is concave, by the proof of Theorem 1,

vtK−1(θK ; θK−1)− vtK−1(θK) ≥ vtK−1(θK−1)− vtK−1(θK−1; θK).

Adding up the two inequalities we have in this lemma so far, we obtain

vtK−1(θK−1; θK)− pK−1 ≥ vtK−1(θK)− pK (28)

Moreover, by Lemma 10, tk−1 ≤ tk. We therefore have

vtK−1(θK−1; θK)− pK−1 ≥ vtK−1(θK)− pK (by (28))

≥ vtK (θK)− pK (by tk−1 ≤ tl)

≥ 0, (by IRk)

Lastly, assume there is some t ∈ {1, . . . , tK−1} such that t < tK and qt0 > 0. We have

vt(θK−1; θK)− pK−1 ≥ vtK−1(θK−1; θK)− pK−1 ≥ vtK (θK)− pK ≥ 0.

At least one of the first two inequalities must be strict because t < tK , and hence ICt
0j does

not hold. Therefore, for q to be implementable, qt0 = 0.

Therefore, by Lemma 10, if q is implementable, then tk ≤ tk+1 ≤ tk+1 ≤ tk+2 for every
k ∈ {1, . . . , K − 2}. To see that at least one of the inequalities must be strict, note that by
Theorem 1 and 2, a customer type can be found in at most two passes. Lastly, part (b) is
the same as Lemma 11.

Part (a) of Proposition 10 states that, in an implementable scheme, a higher-type customer
cannot have a lower priority than does a lower-type customer. For intuition, consider a
scheme in which a lower customer type buys a higher priority pass than a higher customer
type. Because the lower-type’s base utility function decreases more slowly with respect to
positions in the queue, the price difference between the higher and the lower priority pass
is not large enough for the higher-type customers’ upward IC constraint from the lower
priority pass, making the scheme unimplementable. An interpretation of part (b) is that
if a customer’s type is (weakly) higher than the lowest-type in the second-to-last priority
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pass, then this customer must purchase some priority pass.31 When the park incentivizes a
high-priority customer not to downgrade, the park needs to give some surplus to the customer
due to the downgrade externality, and this extra surplus would incentivize every (weakly)
higher-type customer not in the queue to join the queue.

Proposition 10 also sheds some indirect intuition on the constrained number of priority
passes. In Theorem 5 and its Corollary 1, we have shown that customer types in different
priorities, including those priorities that are close to each other, need to be sufficiently
different in an implementable scheme. However, when the adjacent customer types are all
close to each other, one may wonder whether the park can create “gaps” between customer
types by excluding some types from the queue. For example, suppose there are five customer
types in the strictly concave multi-type case, with each customer type very close to the
nearest customer types. If the park would like to implement a three-pass scheme, the park
may consider excluding the second and the fourth customer types from the queue so that
there is enough difference between the customer types remaining in the queue. Proposition 10,
however, implies that this particular exclusion is not possible in an implementable scheme, and
there are restrictions to such customer exclusions. We characterize some of these restrictions
in the result below, which is an immediate implication of Proposition 10.

Corollary 2 (Limit to customer exclusion). Consider the concave multi-type case. Let
q ∈ Q((N t)Tt=1, K) be an implementable scheme.

(a) For every j ∈ {1, . . . , K − 2}, tj = tj+1 or tj + 1 = tj+1.

(b) Fix j ∈ {1, . . . , K − 1}. For every τ ∈ {tj + 1, . . . , tj − 1}, qτj = N τ .

Part (a) means that, between two adjacent priority passes, if there are any customer types
that are completely excluded from the queue, this exclusion can only happen between the
lowest customer type in the second-last priority pass and the highest customer type in the
last priority pass; otherwise, customers of an excluded type would have an incentive to join
the queue. Part (b) implies that, within a pass except for the lowest-priority pass, customer
types in a pass must be “connected”: Given an implementable scheme, if a customer’s type is
strictly between the highest and the lowest customer type in a pass whose priority is not the
lowest, then this customer must be in that priority pass. Therefore, if the park wishes to
create any “gaps”, it could only do so between the two lowest priority passes.

The reader may again notice that, with the customer types fixed, (26) also holds if m is
sufficiently large. In Propositions 4 and 5 for the linear multiplicative two-type case, we find
that more customers help with implementability, and a scheme is not implementable if the two

31Note that in Example 3, the condition is not met, and the monotonicity property does not hold.
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customer types are too close. The two results have extensions to the multi-type case. Before
we introduce them, we make a definition that will be useful in the extended results. Given a
scheme q in the multiplicative multi-type case where K > 2, define R(q) = min1≤k≤K−2

βtj

βtj+2
,

which gives the minimum relative difference of customer types that are two priorities apart.
Given the necessary conditions derived in Proposition 10, we often make the following

recurring assumptions about schemes.

Definition 4 (Regular scheme). In the multi-type case, a scheme q ∈ Q((N t)Tt=1, K) is called
regular if the following two conditions hold:

(i) Every customer buys some priority pass, and IRK holds for some price vector.

(ii) For every j ∈ {1, . . . ≤ K − 1}, tj ≤ tj+1. If additionally j ≤ K − 2, then in the
inequalities tj ≤ tj+1 ≤ tj+1 ≤ tj+2, at least one inequality is strict.

Condition (i) is assumed so that we could focus on the switching incentives between
different priority passes. By Proposition 10, condition (ii) is necessary for implementability
in the concave multi-type case. Note that, when K > 2, R(q) > 1 for every regular scheme.

The following result formalizes the conjecture that sufficiently many customers lead to
implementability.

Proposition 11 (Sufficiently many customers for implementation). Consider the linear
multiplicative multi-type case where K > 2. Fix a regular scheme q.

(a) For each R > 1, there exists M ≥ 1 such that if a regular scheme q has at least M

customers in each priority pass and R(q) ≥ R, then q is implementable.

(b) If R ≥ 2, then part (a) is true for M = 1.

Proof. Since the scheme in consideration is fixed, denote R(q) by R instead. Fix R > 1

and assume R ≥ R. Since K > 2, by part (a) of Proposition 10, R > 1. Let m =

min1≤k≤K

∑T
t=1 q

t
k. Fix j ∈ {1, . . . , K − 2}. From the proof of Theorem 5, ICj+2,j holds if

and only if

βtj

2
(qj + qj+1 − 1) +

βtj+1

2
(qj+1 + qj+2 − 1)− βtj+2

2
(qj + 2qj+1 + qj+2 − 1) ≥ 0. (29)

Since the left-hand side is increasing in βtj , βtj+1 , qj , qj+1, and qj+2, the inequality is implied
by the following inequality:

Rβtj+2

2
(2m− 1) +

βtj+2

2
(2m− 1)− βtj+2

2
(4m− 1) ≥ 0, (30)
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because
∑T

t=1 q
t
k ≥ m for every k ∈ {1, . . . , K} and βtj/βtj+2 ≥ R ≥ R. Inequality (30)

holds if R ≥ 2m
2m−1

. Now additionally assume j > 1 and consider ICj+2,j−1. From ICj+2,j

to ICj+2,j−1 with respect to (29), the left-hand side of the inequality increases by at least
Rβtj+2

2
(2m − 1) − βtj+2m because βtj−1 ≥ βtj . Therefore, conditional on ICj+2,j, ICj+2,j−1

holds if R ≥ 2m
2m−1

. Provided that j > 2, continue the same reasoning, and we see that if
R ≥ 2m

2m−1
, then ICj+2,l holds for every l ∈ {1, . . . , j + 1}. Since 2m

2m−1
is decreasing in m ≥ 1

and tends to 1, for each fixed R > 1, we can find M such that R ≥ 2M
2M−1

. Therefore, if
R(q) ≥ R and m ≥ M , q is implementable.

Lastly, note that 2m
2m−1

≤ 2 for m ≥ 1. Therefore, if R ≥ 2, then every scheme q such that
R(q) ≥ R is implementable.

The result’s condition on the relative difference between types ensures enough price
difference between priority passes to eliminate upgrade incentives. When R is bounded below
strictly above 1, provided that IRK still holds, having sufficiently many customers raises the
price difference between a high and low-priority pass, making the IC constraints between the
two passes hold.

To see how a sufficiently large R(q) makes a scheme implementable, consider the linear
multiplicative multi-type case where K = 4. Consider a regular scheme where each priority
pass has exactly m customers. We can get IC42 by changing the pass indices in (26):

βt2

2
(2m− 1)︸ ︷︷ ︸

Upper bound
of p2−p3

+
βt3

2
(2m− 1)︸ ︷︷ ︸

Upper bound
of p3−p4

≥ βt4

2
(4m− 1)︸ ︷︷ ︸

Lower bound
of p2−p4

,

which holds if βt2

βt4
≥ 2m

2m−1
by the proof of Proposition 11. For linear utility functions, binding

the downward local IC constraints satisfies IC41 if and only if

βt1

2
(2m− 1)︸ ︷︷ ︸

Upper bound
of p1−p2

+
βt2

2
(2m− 1) +

βt3

2
(2m− 1) ≥ βt4m+

βt4

2
(4m− 1)︸ ︷︷ ︸

Lower bound of p1−p4

.

Comparing the two inequalities shows that, from IC42 to IC41, the left-hand side increases
by βt1

2
(2m− 1) and the right-hand side increases by βt4m. Thus, conditional on IC42, IC41

holds if βt1

βt4
≥ 2m

2m−1
, which the proof shows holds when R(q) ≥ 2 even when there is only

one customer in each priority pass, i.e., m = 1. For a customer buying θ4, the inequality
βt1(2m − 1) ≥ 2βt4m means that the price difference p1 − p4 is more than the customer’s
utility increase between switching to θ1, eliminating the customer’s incentive to upgrade to
θ1 conditional on IC42.
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Note that R(q) ≥ 2 implies an exponential growth in the difference between customer
types. For example, when R(q) = 2, a scheme with six priority passes implies that the slope
of the lowest customer type in the highest-priority pass is at least eight times larger than
that of the highest customer type in the lowest-priority pass.

Proposition 11 shows that having sufficiently many customers in each priority pass leads
to implementability, but it does not provide clarification on implementability when the
number of customers in each pass is small. The following result shows that a scheme is not
implementable if some customer types are close and there are not many customers in each
pass.

Proposition 12 (Not implementable when customer types are too close). Consider the linear
multiplicative multi-type case where K > 2. For each m ≥ 1, there exists δ ∈ (0, 1) such that
a regular scheme q with at most m customers in each priority pass is not implementable if
R(q) < 1 + δ.

Proof. Since the scheme in consideration is fixed, denote R(q) by R instead. Let m =

max1≤k≤K

∑T
t=1 q

t
k. Pick j ∈ {1, . . . , K − 2} such that βtj

βtj+2
= R. From the proof of

Theorem 5, ICj+2,j does not hold if and only if

βtj

2
(qj + qj+1 − 1) +

βtj+1

2
(qj+1 + qj+2 − 1)− βtj+2

2
(qj + 2qj+1 + qj+2 − 1) < 0.

The left-hand side is increasing in βtj , βtj+1 , qj , qj+1,and qj+2, and hence the above inequality
is implied by:

Rβtj+2

2
(2m− 1) +

Rβtj+2

2
(2m− 1)− βtj+2

2
(4m− 1) < 0,

because
∑T

t=1 q
T
k ≤ m for every k ∈ {1, . . . , K} and βtj+1 ≤ βtj = Rβtj+2 . The inequality

implies that q is not implementable if R < 4m−1
4m−2

. The proof is complete if we let δ =
4m−1
4m−2

− 1 > 0.

This result further shows that as the difference between customer types gets closer to zero,
the lowest possible M that one can take in the statement of Proposition 11, gets higher and is
unbounded as the difference approaches zero. When the customer types are not significantly
different for two non-consecutive passes and the number of customers in each pass (including
the passes between them) is small, the price difference between the passes is not sufficiently
large to resolve the upgrade and downgrade incentives between the two passes.

Now, we wish to explicitly analyze how the required number of customers in each priority
pass would vary when the number of customer types and passes grow at the same rate, with
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adjacent customer types getting closer and closer. For a clear picture of this relationship, we
consider schemes in which each priority pass has the same number of customers and customer
types in adjacent priorities are equally distanced. The following result shows that, when
the number of passes grows, the number of customers in each priority that is sufficient and
necessary for implementability grows towards infinity.

Proposition 13 (Type-separating schemes). Consider the linear multiplicative multi-type
case, where K = T , N1 = N2 = · · · = NT = m for some m, and (βt)Tt=1 decreases uniformly
from c to 1 for some c > 1. Consider the scheme q ∈ Q((N t)Tt=1, K) where qtt = m

for every t ∈ {1, . . . , T}, i.e., every t-th type customer is in the t-th priority pass. Let
M(T ) = c

6(c−1)
(T − 1) + 1

6
. The scheme q is implementable if and only if m ≥ M(T ).

Proof. Let ∆ = β1 − β2 = · · · = βK−1 − βK = c−1
T−1

. Pick j ∈ {1, . . . , K − 2}. By the proof
of Theorem 2 and choice of the scheme q, ICj+2,j holds if and only if

βj+2 + 2∆

2
(2m− 1) +

βj+2 +∆

2
(2m− 1)− βj+2

2
(4m− 1) ≥ 0, (31)

which holds if and only if m ≥ βj+2

6∆
+ 1

2
. Provided that j ≥ 2, from ICj+2,j to ICj+2,j−1, the left-

hand side of (31) increases by βj+2+3∆
2

(2m− 1)− βj+2m. Therefore, conditional on ICj+2,j−1,
ICj+2,j holds if βj+2+3∆

2
(2m−1)−βj+2m ≥ 0, which is equivalent to m ≥ βj+2

6∆
+ 1

2
. Continuing

this reasoning, we see that if m ≥ βj+2

6∆
+ 1

2
, ICj+2,k holds for every k ∈ {1, . . . , j + 1}. Since

βj+2 is maximized at j = 1 for β3, we see that the scheme q is implementable if and only if
m ≥ β3

6∆
+ 1

2
= c

6(c−1)
(T − 1) + 1

6
. To complete the proof, set M(T ) = c

6(c−1)
(T − 1) + 1

6
.

For linear base utility functions, having equally distanced customer types and a uniform
number of customers in each priority pass allows us to track all IC constraints. Specifically,
the proof shows that, with the assumptions in Proposition 13, the scheme q is implementable
if and only if p∗ in Lemma 9, which binds IRK and every local downward IC constraint,
satisfies IC31. By the linearity of M(T ), we see that as the customer types get closer and the
number of priority passes gets larger, the required number of customers for implementability
grows towards infinity.

Note that in Proposition 13, a larger value of c, which means a larger range for customer
types, helps with implementability by lowering M(T ). However, there is a limit to how much
this range parameter can help: Because M(T ) is bounded below by T/6, in Proposition 13,
for fixed m and c > 1, the scheme q is not implementable if T > 6m. This observation
highlights the role that the difference between “close-by” customer types plays in the scheme’s
implementability: Even if the customer types have a very wide range, if the (relative)
differences between “close-by” customer types are not large enough, then the scheme is
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Figure 6: Level curves of M(T ) with respect to T and c

still not implementable without sufficiently many customers in each priority pass. Figure 6
illustrates this intuition. The curves are integer-valued level curves of M(T ). For a level
curve with value M , every point (c′, T ′) on the left of the curve means that, when c = c′ and
T = T ′, the scheme is implementable if every pass has M customers. In contrast, if the point
is on the right, the scheme is not implementable if every pass has M customers. Given a
level curve, we see that whenever the curve becomes vertical on a point’s left, a larger c no
longer helps with implementability, illustrating the limited role the range parameter can play
in the scheme’s implementability.

In summary, when there are multiple types of utility functions, the issue with resolving
the upgrade and downgrade incentives is abated yet could persist. We have shown that to
implement multi-pass schemes that are not implementable under the single-type case, there
need to be large enough gaps between different customer types.
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