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Appendix A. Proofs

A.1. Proof of Theorem 3.

Proof. Suppose the constraint Fs of s is not a general upper-bound. Consider the following

two cases.

(1) Suppose that ; is infeasible at s. Then, assume all students find s to be unaccept-

able. It is clear that there is no feasible and individually rational matching in this

case.

(2) Suppose that ; is feasible at s. Then there exist non-empty sets I 00 ( I 0 ✓ I such

that I 0 is feasible at s but I 00 is infeasible at s. Let s0 be a school di↵erent from

s (note that such a school exists by the assumption that |S| � 2). Fix student

preferences as follows:

�i : s, s
0, for every i 2 I 00,

�i : s
0, s, for every i 2 I 0 \ I 00,

and every other student finds all schools unacceptable. In addition, assume that

each school other than s has a capacity constraint with a capacity of |I|.

In this problem, both of the following matchings are fair as well as feasible and individually

rational:

(1) every student in I 0 is matched to s and every other student is unmatched.

(2) every student in I 0 is matched to s0 and every other student is unmatched.

Therefore, if there is an SOFM, then it should match every student in I 00 to s, every

student in I 0 \ I 00 to s0, and leave every other student unmatched. But such a matching is

infeasible because I 00 /2 Fs. ⇤
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A.2. Proof of Proposition 2.

Proof. Because µ is feasible in the problem (I, S,�I ,�S,FS) by definition of SOFM and

Fs ✓ F 0
s for every s 2 S by assumption, µ is feasible in (I, S,�I ,�S,F 0

S) as well. More-

over, because µ is individually rational and fair in the problem (I, S,�I ,�S,FS) by defini-

tion of SOFM, µ is individually rational and fair in (I, S,�I ,�S,F 0
S) as well. Therefore,

since µ0 is the SOFM in (I, S,�I ,�S,F 0
S), it follows by the definition of SOFM that

µ0
i ⌫i µi for every i 2 I, completing the first part of the proposition statement. This

conclusion, together with individual rationality of µ and µi 2 S, imply µ0
i ⌫i µi �i ; and

hence µ0
i 2 S, completing the second part of the proposition statement. ⇤

A.3. Proof of Propositions 3 and 4.

Proof. Proposition 3 is a corollary of Proposition 4, hence we only present the proof of

the latter.

Part 1 of Proposition 4: Consider the maximizer µ0 of (5.2) for the SOFM µ. For each

s, µ0
s \ µs is a candidate for the maximizer Ī in (5.3), so we must have |µ0

s \ µs|  ŵs(�I

,�S,FS). Hence,
X

s2S

|µ0
s \ µs| 

X

s2S

ŵs(�I ,�S,FS) = Ŵ (�I ,�S,FS).

Since the left-most side is the waste of µ, the proof is complete.

Part 2 of Proposition 4: Fix FS and let µ be the SOFM. In the remainder of the proof,

we will show ŵs(�I ,�S,FS)  w̄s(Fs) for each s 2 S. For this purpose, fix any s 2 S

and define I0 := {i 2 I|s �i µi} to be the set of all students who strictly prefer s to the

match at µ. Consider the following cases.

(1) Suppose I0 = ;. Because {i 2 I|s �i µi and µi = ;} ✓ I0 in general, this

implies ŵs(�I ,�S,FS) = 0. Since w̄s(Fs) is nonnegative in general, this implies

ŵs(�I ,�S,FS)  w̄s(Fs).

(2) Suppose I0 6= ;. Let j 2 I0 be the student who has the highest priority at s among

students in I0. Now, define a new matching µ00 by

µ00
i =

8
<

:
s if i = j,

µi otherwise.

Then, µ00 is individually rational and fair by construction. In addition, µ00
s0 2 Fs0

for all s0 6= s because µ00
s0 = µs0 2 Fs0 for every s0 6= s, µj and, if µj 6= ;, µ00

µj

is feasible since Fµj is a general upper-bound. This implies µs [ {j} = µ00
s 62 Fs

because otherwise µ00 is an individually rational, feasible, and fair matching that is
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weakly more preferred to µ by every student i 6= j and strictly by j, a contradiction

to the assumption that µ is the SOFM.

Now, consider any I 00 ✓ I such that µs [ I 00 2 Fs, and µi = ; and s �i ;
for each i 2 I 00. Letting µs = I 0, the triple (j, I 0, I 00) satisfies the conditions

I 0 [ {j} 62 Fs, I 0 [ I 002Fs, and I 0 \ I 00 = ; as in the definition of w̄s(Fs). Hence

|I 00|  w̄s(Fs) by the definition of w̄s(Fs). Since µ is the SOFM, inspecting the

definition of ŵs(�I ,�S,FS) (5.3) shows that

ŵs(�I ,�S,FS) = max
I00✓I

{|I 00| : µs [ I 00 2 Fs, and µi = ; and s �i ; for all i 2 I 00},

it follows that ŵs(�I ,�S,FS)  w̄s(Fs).

Therefore, ŵs(�I ,�S,FS)  w̄s(Fs) for every s 2 S, as desired. ⇤

A.4. Proof of Theorem 4.

Proof. Suppose the constraint Fs of s is not a capacity constraint while being a general

upper-bound. Let k be the largest nonnegative integer such that all sets of students with

cardinality k or smaller are feasible at s (note that k may be 0. Also note that k is

well-defined, for ; is feasible at s because Fs is a general upper-bound, and I is finite).

Claim 2. There exist I1 2 Fs and I2 62 Fs such that |I1\I2| = k and |I1\I2| = |I2\I1| = 1.

Proof of Claim 2. Let I1 = {I 0 ✓ I||I 0| = k+1, I 0 2 Fs} and I2 = {I 0 ✓ I||I 0| = k+1, I 0 62
Fs}. The former is nonempty because otherwise Fs would be a capacity constraint, and

the latter is nonempty due to the definition of k. Let l := min{|I 01 \ I 02| : I 01 2 I1, I 02 2 I2}
and assume for contradiction that l > 1; note that the minimum exists because I1 and I2

are nonempty finite sets. Fix arbitrarily Ī1 2 I1 and Ī2 2 I2 such that |Ī1 \ Ī2| = l. Then,

fix i1 2 Ī1 \ Ī2 and i2 2 Ī2 \ Ī1 and define Ī := (Ī1 \ {i1}) [ {i2}. If Ī 2 Fs, then Ī 2 I1

and |Ī \ Ī2| = l� 1 < l, a contradiction to the minimality of l. If Ī 62 Fs, then Ī 2 I2 and

|Ī1 \ Ī| = 1 < l, again a contradiction to the minimality of l. ⇤

In the remainder, we assume the condition in Claim 2 holds for I1 and I2. Denote by

i1 and i2 the agents such that {i1} = I1 \ I2 and {i2} = I2 \ I1.
Now consider the following preference profile: every student in I1 [ I2 finds only s

acceptable; every other student finds all schools unacceptable. Also assume school s ranks

all students in I1 \ I2 first (in an arbitrary order), then the (unique) student i2 2 I2 \ I1,
then the (unique) student i1 2 I1 \ I2, and then every other student (in an arbitrary

order).
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Suppose that µ is a stable matching. Now, note I2 is infeasible at s by assumption,

but because k = |I2|� 1 is such that any set of doctors whose cardinality is at most k is

feasible at s, non-wastefulness requires that at least k doctors are matched at s under µ.

Because of the construction of �s and the requirement of fairness, all students in I1 \ I2

should be matched at s. Because I1 and I2 satisfy the condition described by Claim 2,

(I2 [ {i1}) \ {i2} = I1 is feasible at s. By non-wastefulness, i1 should be matched at s

(this is because, if i1 is not matched to s but some student in I \ (I1 [ I2) is, then the

matching violates fairness), and this implies i2 is not matched to s and hence unmatched.

This is a contradiction to fairness because i2 �s i1 and s �i2 ;. ⇤

A.5. Proof of Theorems 5 and 6.

Proof. Because Theorem 5 is a special case of Theorem 6, we only provide a proof for

the latter result. Suppose the constraint Fs of s is not a capacity constraint while being

a general upper-bound. Let k be the largest nonnegative integer such that all sets of

students with cardinality k or smaller are feasible at s (note that k may be 0. Also note

that k is well-defined, for ; is feasible at s because Fs is a general upper-bound and I

is finite). Then, Claim 2 implies that there exist subsets of students, I1 and I2, such

that I1 is feasible at s while I2 is not, |I1 \ I2| = k, and there exist i1, i2 2 I such that

{i1} = I1 \ I2 and {i2} = I2 \ I1. Now, fix a school s0 6= s and consider the following

preference and priority profiles as well as constraints: s ranks all doctors in I1 \ I2 as

the highest (in an arbitrary order), then i2, then i1, and then all other students (in an

arbitrary order). School s0 ranks i1 first and i2 second (while the ranking over all other

students are arbitrary) and is subject to the capacity constraint with capacity of 1. Each

student in I1 [ I2 prefers s first and s0 second (while preferences on all other schools are

arbitrary), and all other students find all schools unacceptable.

Fix a mechanism ' that satisfies feasibility, fairness, and unanimity in (I, S,FS). Under

', i2 is not matched to s. To see this, assume for contradiction that i2 is matched to s.

Then, since s is the most preferred by every student in I1 \ I2, fairness implies that every

student in I1 \ I2 is matched to s, so every student in (I1 \ I2) [ {i2} = I2 is matched to

s. But this is a contradiction to feasibility because I2 62 Fs by assumption and Fs is a

general upper-bound.

Because i2 is not matched to s and i2 has higher priority than i1 at s, it follows that

i1 is not matched to s. Given that, it also follows that i2 is not matched to s0 because i1

has higher priority than i2 at s0 and s0 has the capacity of one.
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If i2 misreports and declares that only s0 is acceptable to her, then because ' satisfies

unanimity, it matches all students in I1 to s and i2 to s0, while leaving all other students

unmatched. Thus, i2 benefits from a misreport, and hence ' is not strategy-proof. ⇤

A.6. Proof of Proposition 5.

Proof. Fix �I arbitrarily and let �0
i be a truncation of �i. Denote µ and µ0 be SOFMs

under �I and �0
I := (�0

i,�I\{i}), respectively (note that SOFMs exist for all preference

profiles under general upper-bound). If su�ces to show that µi ⌫i µ0
i.

First, suppose µ0
i = ;. Because the SOFM is individually rational, we have µi ⌫i ;.

These two relations imply µi ⌫i µ0
i as desired.

Second, suppose µ0
i 6= ;. For any j 6= i, j does not have justified envy toward anyone

at µ0 under �j because �j=�0
j and µ0 is fair under �0

I . Moreover, if s �i µ0
i, then s �0

i µ
0
i

(because µ0
i 6= ; and �0

i is a truncation of �i), and hence j �s i for every j 2 µ0
s (because

µ0 is fair under �0
I). This implies that i does not have justified envy toward anyone at µ0

under �i. Therefore, overall, µ0 is fair under �I . Because µ is the SOFM under �I , we

conclude µi ⌫i µ0
i as desired. ⇤

A.7. Proof of Proposition 6.

Proof. Let s̃ be i’s match under �I . Since the cuto↵ adjustment algorithm implements

the SOFM mechanism when the constraints are general upper-bounds and the SOFM is

individually rational by definition, s̃ ⌫i ; holds. Together with s �i s̃, we have s 2 S.

To show ps > p0s, recall the definition of demand:

Ds̄(p) := {i 2 I|i ⌫s̄ i
(s̄,ps) and s̄ �i ;; i ⌫s0 i

(s0,ps0 ) ) s̄ ⌫i s
0}.

First, suppose that s̃ = ;. Then, i(s,ps) �s i holds by the definition of Ds̄(·) for all

s̄ 2 S, and i ⌫s i(s,p
0
s) holds by the definition of Ds(·). Thus, we have i(s,ps) �s i(s,p

0
s), and

by the definition of i(s,·), we obtain ps > p0s.

Second, suppose that s̃ 6= ;. Letting s̄ = s̃, we have i ⌫s0 i(s
0,ps0 ) ) s̃ ⌫i s0 for any

s0. Since s �i s̃, we have i ⌫s0 i(s
0,ps0 ) ) s ⌫i s0. Since we have already shown s �i ;, if

i ⌫s i(s,ps) holds then we must have i 2 Ds(p) by letting s̄ = s. This contradicts s̃ 6= s.

Hence, i(s,ps) �s i must hold. Under (�0
i,�I\{i}), i is matched with s, hence i ⌫s i(s,p

0
s)

must hold. Overall, we have i(s,ps) �s i(s,p
0
s), implying ps > p0s. ⇤

A.8. Proof of Proposition 7.

Proof. Here we prove the general result stated in Remark 7.
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Observe that the outcome of the cumulative o↵er algorithm defined in Section 6.4 does

not change even if students apply to schools sequentially one by one, in any order. In

particular, for the problem ⇧n, we can first let students in T n
1 apply to schools until there

is no more rejection, then students in T n
2 apply to schools until there is no more rejection,

and so forth. Given the definition of the cumulative o↵er algorithm and the tier structure,

it is not possible for a student in T n
k to be newly rejected when students in T n

k0 apply for

any k0 > k.

This implies that the cumulative o↵er algorithm is equivalent to the following algorithm

in which, for each Round k (consisting of possibly multiple steps), only students in T n
k

apply and their matching is finalized in that round.

• Round k � 1, Step t � 1: Each student in T n
k applies to her first choice school

among those that have never rejected anyone whose priority is weakly higher than

her if it is acceptable, while making no application otherwise. For each school s, let

{i1, i2, . . . , il} be the set of students who have ever applied to it, with i1 �s i2 �s

. . . �s il. If {i1, i2, . . . , il} 2 Fs, then let s temporarily keep {i1, i2, . . . , il} \ T n
k ;

otherwise, let s temporarily keep the set of students of the form {i1, i2, . . . , il0}\T n
k

such that {i1, i2, . . . , il0} 2 Fs and {i1, i2, . . . , il0+1} 62 Fs. School s rejects all the

remaining students in T n
k who have ever applied to it, {il0+1, . . . , il} \ T n

k .

– If no student is rejected by a new school, finalize the matching for each student

i 2 T n
k , and let µn

i denote the (unique) school which currently keeps (and

thus is permanently matched to) student i if such a school exists, and µn
i = ;

otherwise.

⇤ If k = Kn, terminate the algorithm and define the outcome as the

matching in which each student i is matched with µn
i (the procedure up

to this point uniquely determines µn
i for each i 2 In).

⇤ If k < Kn, then go to Round k + 1, Step 1.

– Otherwise, go to Round k, Step t+ 1.

Under this algorithm, by definition, for each school s, there is at most one tier whose

students are rejected from s.1 If there exists such a tier, denote the index of that tier by

k(s), that is, the tier is T n
k(s).

We proceed by making two observations. First, by the definition of the algorithm, no

students in tier T n
k0 such that k0 > k(s) have a reporting strategy such that they can match

1Note that each student applies to her first choice school among those that have never rejected anyone

whose priority is weakly higher than her if it is acceptable, while making no application otherwise.
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with s. Second, the matching of a student i in tiers T n
k0 such that k0 < k(s) is weakly

more preferred than s because i is not rejected by s by the definition of T n
k(s).

Hence, if a student i has an incentive to misreport their preferences and matches with

s, then i 2 T n
k(s). This implies that, if a student i has an incentive to misreport their

preferences, then i 2
S

s2Sn T n
k(s). Therefore, D(⇧n) ✓

S
s2Sn T n

k(s).

Thus,

|D(⇧n)|
|In| 

|
S

s2Sn T n
k(s)|

|In|  L0(n) · |Sn|
|In|  L0(n) · L(n)

|In| ! 0 as n ! 1.

Since |D(⇧n)|
|In| � 0, we have proved the desired result. ⇤

A.9. Proof of Proposition 8.

Proof. We use the same notations as in the proof of Theorem 2. Suppose that at steps

1, . . . , t of the algorithm, if s has rejected at least one student, let the highest-priority

student s who has been rejected be i(s,l
0) and pts = l0 + 1. Otherwise, let pts = 1. Also, let

p0s = 1. By definition of pts, the cumulative o↵er algorithm is equivalent to the following

algorithm:

• Step t � 1: Each student i applies to her first choice school in {s 2 S|i ⌫s i(s,p
t�1
s )},

while making no application otherwise. Each school s keeps every student i such

that i ⌫s i(s,p
t
s) and rejects all the remaining students who have ever applied to

it. If no student is rejected by a new school, then terminate the algorithm and

define the outcome as the matching in which each school is matched to the set of

students who it currently keeps. Otherwise, go to Step t+ 1.

For a profile p = (ps)s2S, define T̃ : P ! P as follows:

T̃s(p) =

8
<

:
min{p0s|Ds(p0s, p�s) 2 Fs} if Ds(p) 62 Fs

ps if Ds(p) 2 Fs

,

where the minimum exists because P is finite andDs(|I|+1, p�s) = ; 2 Fs. By inspection,

pts = T̃s(pt�1) holds for each t. Hence, for each t, pts = T̃ t
s(p

0).

Observe that, by the definition of Ds(·) and the above algorithm, the set of students

that each s keeps at the terminal step t is Ds(pt). Hence, it can be shown that the above

algorithm produces the SOFM by a proof similar to those of Theorem 2 and Proposition 1.

⇤

A.10. Proof of Proposition 9.
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Proof. (2) ) (1) is straightforward. To show (1) ) (2), define the set of services ⌃ as

⌃ := 2I \ Fs. For each � 2 ⌃, suppose

⌫i
� =

8
<

:
1 if i 2 �,

0 otherwise,

and let s
� = |�| � 1/2.2 We will show that the conclusion of the proposition holds with

respect to these parameters for multidimensional constraints.

To show the “if” direction, suppose I 0 2 Fs. Then, because Fs is a general upper-

bound, it follows that, for any � 2 ⌃, I 0 6◆ � and hence �\ I 0  |�|� 1/2. So,
P

i2I0 ⌫
i
� 

|�| � 1/2 = s
�. Therefore I 0 is DKT-feasible. To show the “only if” direction, suppose

I 0 62 Fs. Then, the service � = I 0 is in ⌃, and thus
P

i2I0 ⌫
i
� = |I 0| > |I 0| � 1/2 = s

�.

Thus, I 0 is not DKT-feasible. ⇤

A.11. Proof of Proposition 10. As mentioned in footnote 12, we will show the following

stronger result: Given a problem with n students from each group as in Proposition 10,

let m 2 N be the minimum cardinality of the sets of services that describe the constraint.3

Then m = n.

Proof. We first show that in the problem of n students from each group, we need at least

n services. To show this, suppose without loss of generality that each service capacity is

normalized to 1.4 Consider a partition of all students into pairs of students from di↵erent

groups. More specifically, label the students from one group as I1 = {i1, i2, . . . , in} and

those from the other group as I2 = {i01, i02, . . . , i0n}, and form n pairs by paring two students

of the same index from the two groups, i.e., I =
Sn

t=1{it, i0t}. For each t, because the pair

{it, i0t} is infeasible at s, there exists � 2 ⌃ for which ⌫it
� + ⌫

i0t
� > 1. Choose such a service

arbitrarily and denote it by �t. To prove our claim, it su�ces to show �t 6= �t0 if t 6= t0.

For this purpose, assume for contradiction that �t = �t0 =: �. Then ⌫it
� + ⌫

i0t
� > 1 and

⌫
it0
� + ⌫

i0
t0
� > 1, so ⌫it

� + ⌫
i0t
� + ⌫

it0
� + ⌫

i0
t0
� > 2. This implies ⌫it

� + ⌫
it0
� > 1 or ⌫

i0t
� + ⌫

i0
t0
� > 1.

Hence {it, it0} 62 Fs or {i0t, i0t0} 62 Fs holds, a contradiction.

We next show that in the problem with n students from each group, there exist multi-

dimensional constraints with n services that describe the given constraint. To do so, let

2Note that the requirement s
� 2 R++ is satisfied because ; 2 Fs by the assumption that Fs is a

general upper-bound and hence ; 62 ⌃.
3Note that the minimum cardinality exists in N because of the construction of the set of services in

the proof of Proposition 9.
4This is without loss of generality because, given any nonzero service capacity and service demands,

one can normalize that service capacity to one while changing service needs of each student for that

service in the same proportion.
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⌃ = {�1, . . . , �n} and (as before) I1 = {i1, i2, . . . , in}. Set each service capacity as 1. For

each t 2 {1, . . . , n}, the service needs for �t are given by

⌫i
�t

=

8
>>><

>>>:

1 if i = it,

0 if i 2 I1 \ {it},
1
n otherwise.

Suppose I 0 2 Fs. Then either I 0 ✓ I1 or I 0 ✓ I2. In the former case, for any service �t,P
i2I0 ⌫

i
�t


P

i2I1 ⌫
i
�t

= 1 + (n � 1) ⇥ 0 = 1 = s
�t
, so I 0 is DKT-feasible. In the latter

case, for any service �t,
P

i2I0 ⌫
i
�t


P

i2I2 ⌫
i
�t

= 1
n ⇥ n = 1 = s

�t
, so I 0 is DKT-feasible.

Next suppose I 0 62 Fs. Then I1 \ I 0 6= ; and I2 \ I 0 6= ;. Let it 2 I1 \ I 0 and i0 2 I2 \ I 0.

Then,
P

i2I0 ⌫
i
�t

� ⌫it
�t
+ ⌫i0

�t
= 1 + 1

n > 1 = s
�t
, so I 0 is not DKT-feasible. ⇤

Appendix B. Analysis of data from Bunkyo City

In this section, we report our simulations using data on daycare seat allocation from

Bunkyo City, Japan. The numerical analysis we report here suggests that the main

findings for Yamagata are robust to data features.

As explained in Section 5.3, Bunkyo City is one of the 23 special districts of Tokyo,

with about 230,000 residents as of 2018. Bunkyo is much more urban than Yamagata.

It has a population density about 30 times that of Yamagata, has a high concentration

of educational institutions, and attracts many dual-income families investing heavily in

education and demanding childcare which, as we will see below, seems to make its daycare

allocation problem more pressing than Yamagata’s.5 Part of our interest in studying

Bunkyo’s data is to investigate whether our numerical findings are robust to demographic

features of di↵erent municipalities.

Our data involve applicants (who are anonymized), usually parents, representing chil-

dren who would begin attending the daycare in April of 2018. There were 2114 applicants

aged between 0 to 5 as of April 1, 2018 on which they would begin attending the daycare.

For each applicant, the data show her reported preferences over the daycare centers and

priority ranking (the priorities are common across daycare centers). Regarding reported

preferences, we note that the mechanism in Bunkyo is based on serial dictatorship but

restricts applicants to list at most five daycare centers in their ranking.6 Because of this

5Bunkyo, whose literal translation would be “Literature Capital,” is home to many higher education

institutions such as University of Tokyo as well as prestigious elementary and secondary schools.
6As in the case of Yamagata City, there are a few additional di↵erences between Bunkyo’s mechanism

and serial dictatorship, i.e., there are a few special rules, mainly regarding children with siblings. In our
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restriction, Bunkyo’s mechanism is not strategy-proof, so care is warranted when inter-

preting the results. Note that, however, there is a certain sense in which this mechanism is

“less manipulable” than other mechanisms such as the Boston mechanism with the same

length restriction (Pathak and Sönmez, 2013).

The priority order is based on the applicant characteristics such as parents’ job status

and the number of adults available for care at home. In fact, Bunkyo City (2018) discloses

the explicit formula that converts relevant characteristics of each family to the (common)

priority ranking. There are 63 daycare centers in our dataset. For each daycare center,

the data show how many seats are supplied for each age.

In our simulation, we made several modeling choices given data limitation. First, as for

Yamagata’s data, Bunkyo’s data involve ties although the actual priority order is strict.

This is because our data lack information on some characteristics used by Bunkyo to

determine the strict order, such as whether the child is currently in an alternative form

of childcare and whether the family has a member with disability. As in our analysis

of Yamagata’s data, we randomly break ties using a single tie-breaking rule (that is,

the tie-broken priorities are common across daycare centers) according to the uniform

distribution. For each mechanism that we consider, we conducted 250 runs of simulations

using such a tie-breaking rule.

The second limitation involves constraints. As is the case for Yamagata’s dataset, for

daycare centers, Bunkyo’s dataset does not show the entire collection of feasible sets of

children or the number of teachers corresponding to the flexible constraints. Instead, it

only shows the number of advertised seats at each daycare center for each age, which is

exactly enough to specify the rigid constraints. To overcome this limitation, we define

ms for each s in the daycare constraints (Equation (5.1)) by ms :=
P

t2T rt · qt, where rt

and qt are those in the data (recall that rt is the teacher-child ratio under the national

regulation, and qt is the number of advertised seats for age t at daycare center s). That

is, ms is the smallest possible number of teachers such that the constraint implied by

the number of advertised seats in data is a rigid constraint associated with our daycare

numerical analysis, however, this di↵erence causes only a minor di↵erence between the assignments from

serial dictatorship (with limited length of preference lists) and the actual one.
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From/To rigid SOFM flexible SOFM actual allocation flexible ETSD

rigid SOFM —
1091.76 (51.64%)

(SE= 12.75)

913.72 (43.22%)

(SE= 13.95)

1156.84 (54.72%)

(SE= 12.63)

flexible SOFM 0 —
287.62 (13.61%)

(SE= 6.80)

102.84 (4.86%)

(SE= 8.17)

actual allocation
36.05 (1.71%)

(SE= 5.14)

534.94 (25.30%)

(SE= 8.09)
—

595.42 (28.17%)

(SE= 8.91)

flexible ETSD 0 0
266.95 (12.63%)

(SE= 6.36)
—

Table 3. The number of applicants who are made strictly better o↵ by a

change of a mechanism. For each mechanism that we consider, we conducted

250 runs of simulations, with each run corresponding to a realization of the

tie-broken priorities. The percentage is out of all the 2114 applicants. The

“SE” stands for the standard error of the raw number.

constraint.7 This method is identical to the one we used in our analysis of Yamagata’s

data.

We find that the e↵ect of allowing flexibility in constraints is substantial in our data from

Bunkyo, just as is the case of data from Yamagata: the average number of children who

are matched with a strictly preferred daycare center in the flexible SOFM compared to the

rigid SOFM is 1091.76, which amounts to 51.64% of all applicants (Table 3).8 By contrast,

no applicant is made worse o↵, as implied by Proposition 2. The number of children who

are unallocated changes from 1710.87 to 875.74, a 48.81% decrease (Figure 3). The average

numbers of children who are matched to their first choice, first two choices, and the first

three choices increase by 517.11%, 159.77% and 104.91%, respectively (Figure 4).9 Our

analysis suggests that substantial e�ciency gains from utilizing the flexible nature of the

constraints may be present not only in Yamagata City but more broadly.

7We set ms as the bare minimum that is consistent with the data on advertised seats so that we

do not overstate our estimate of the gains from removing the rigid constraint. In a similar spirit, we

allow for non-integral values of ms although the number of teachers is an integer in practice. With an

alternative specification setting ms to be the integer rounded up from our present definition, for instance,

our estimate of the gains from removing rigid constraints would be larger.
8This table as well as others also report simulations of other mechanisms we discuss below.
9If an applicant lists k daycare centers in her reported preferences and gets unassigned to any of them,

then we list her as being assigned to her (k + 1)st choice.
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Figure 3. The fractions of matched applicants under di↵erent mecha-

nisms. The error bars represent the standard errors.

Next, we compare the rigid and flexible SOFMs with Bunkyo’s actual assignment.

Bunkyo’s mechanism is based on rigid (justified) envy-tolerating serial dictatorship (rigid

ETSD), just as is the case with Yamagata (with the limitation on the length of preference

list). This means that, among other things, there may remain justified envy between two

children i and i0 if they are of di↵erent ages, while by construction there is no justified

envy between children of the same age. Bunkyo’s assignment is expected to have some

e�ciency advantage over the rigid SOFM since justified envy is tolerated across di↵erent

ages, while the comparison with the flexible SOFM is theoretically indeterminate because

Bunkyo’s assignment is based on the rigid constraint, which may or may not overwhelm

the e�ciency gains from tolerating justified envy across di↵erent ages.

We find that the flexible SOFM outperforms Bunkyo’s assignment not only in terms of

fairness but also in terms of e�ciency. Regarding e�ciency, all of our e�ciency measures

favor the flexible SOFM; the average fraction of unmatched children decreased by 11.18%,

and 25.30% of children are matched with strictly preferred daycare under the flexible

SOFM while only 13.61% are matched with strictly preferred daycare under the actual

allocation. Turning our focus to fairness, Table 4 provides several measures of justified

envy for Bunkyo’s assignment (note that all measures of justified envy are zero for the

rigid and flexible SOFM). There are 1622 pairs (i, s) such that i has a justified envy
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Figure 4. Rank distributions under di↵erent mechanisms: The graph

reports the average cumulative number of children at each rank, as well as

its range (shown by the error bars) across all 250 simulation runs.

toward some i0 matched to s under the actual allocations. Also, students involved in at

least one of such pairs and daycares involved are 40.82% and 96.83% of the respective

total numbers. As for the analysis of Yamagata’s data, the amount of justified envy

for Bunkyo’s actual assignment seems comparable to those in TTC on Boston and New

Orleans data (Abdulkadiroglu et al., 2017).

We also study what happens in serial dictatorship if the rigid constraint is removed so

that it is only subject to the daycare constraint. In the induced mechanism, flexible (jus-

tified) envy-tolerating serial dictatorship (flexible ETSD), some justified envy is tolerated

while the constraint is flexible in this mechanism. Thus, its e�ciency is expected to be
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rigid SOFM flexible SOFM actual allocation flexible ETSD

pairs with justified envy 0 0 1622 (18.79%)
923.00 (10.70%)

(SE= 114.76)

students with justified envy 0 0 863 (40.82%)
613.79 (29.03%)

(SE= 50.03)

daycares with justified envy 0 0 61 (96.83%)
44.35 (70.40%)

(SE= 2.94)

Table 4. Measures of justified envy under di↵erent mechanisms. The

percentages for pairs with justified envy divide the numbers of pairs with

justified envy by the numbers of pairs (i, s) such that s is acceptable to i.

The “SE” stands for the standard error of the raw number.

even higher than both Bunkyo’s actual assignment and SOFM under daycare constraint.

Somewhat surprisingly, however, the magnitude of the improvement of this mechanism

over the flexible SOFM seems rather small; the average number of unmatched children

decreases only by 63.83 (7.29%), and the average number of children who become strictly

better o↵ under the flexible ETSD is 102.84 (4.86%). This di↵erence is smaller than the

improvement of the flexible SOFM over Bunkyo’s assignment, whose corresponding num-

bers are 110.26 (11.18%) and 534.94 (25.30%), respectively. Meanwhile, the measures of

justified envy show similar magnitudes to those for Bunkyo’s assignment. These numbers

may suggest that the flexible SOFM may be a potentially useful mechanism in daycare

allocation.

Overall, the numerical analysis we report here suggests that the main findings for

Yamagata are robust to data features.

Appendix C. Additional Discussions

C.1. General Upper Bounds andMultidimensional Constraints. In a recent work,

Delacrétaz, Kominers and Teytelboym (2016) study a model of matching with multidi-

mensional constraints. This subsection investigates the relationship between our model

of general upper-bound and their model.

In the model with multidimensional constraints, there is a finite set of services, ⌃.

Each student i is associated with service needs ⌫i = (⌫i
�)�2⌃ 2 R|⌃|

+ , and each school
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s is endowed with service capacity profile s = (s
�)�2⌃ 2 R|⌃|

++.
10 We say that a set

of students I 0 is DKT-feasible at school s if
P

i2I0 ⌫
i
�  s

� for every � 2 ⌃ and that

matching µ is DKT-feasible if µs is DKT-feasible at every s 2 S.

It is obvious that any constraint given as multidimensional constraints described above

is a general upper-bound. The following proposition establishes that there is a specific

sense in which these two classes of constraints are “equivalent” to each other, if one can

specify any (possibly very large) set of services.

Proposition 9. Fix I, s, and a constraint Fs. The following two statements are equiva-

lent.

(1) Fs is a general upper-bound.

(2) There exist a set of services ⌃, a profile of students’ service needs (⌫i)i2I , and a

service capacity profile s such that a set of students I 0 is DKT-feasible at s if and

only if I 0 2 Fs.

This proposition demonstrates that the class of constraints that can be described as

general upper-bounds is the same as those that can be described by multidimensional con-

straints. This characterization exactly identifies what property is imposed on the types

of constraints considered by Delacrétaz, Kominers and Teytelboym (2016) that use linear

inequalities. Furthermore, this result is useful as it provides a potentially tractable “lan-

guage” to code any general upper-bound using a number of linear inequalities. Related,

the existence of an SOFM (our Theorem 2) can be obtained by exploiting the connection

between these two models. More specifically, Proposition 6 of Delacrétaz, Kominers and

Teytelboym (2016) shows the existence of an SOFM in the model with multidimensional

constraints. This result and Proposition 9 provide an alternative proof for one of our

results, i.e., the su�ciency of general upper-bound to guarantee existence of SOFM.

However, we also note that our “equivalence” result is subtle, and we need caution when

interpreting this result. In order to establish that a given general upper-bound can be

described by multidimensional constraints, the analyst needs to have the freedom to define

the set of “services,” as well as students’ service needs and service capacities at each school.

These services and related parameters defined in this attempt may not correspond to any

physical services or other entities which one would regard as real services. In fact, in the

10Delacrétaz, Kominers and Teytelboym (2016) further assume that service needs and capacities are

represented by integers. As they mention, none of the results in their paper or ours depends on this

assumption. In a similar vein, they allow for zero service capacities but it does not a↵ect any results in

their paper or ours. Our assumptions are made only for convenience in proofs.
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proof of the direction “(1) ) (2)” of Proposition 9, we define a “service” corresponding

to every single infeasible set of students.

A related problem is that the number of services needed to describe a given general

upper-bound may be unreasonably large even if the underlying constraint is simple and

easily interpretable. To make this point in a simple setting, suppose that there is a

school s, and the set of students I is partitioned into two groups, I1 and I2. Suppose

Fs = {I 0|I 0 ✓ I1 or I 0 ✓ I2}, that is, s can admit a set of students if and only if all of its

members belong to a single group.11 Now, suppose that each of I1 and I2 has n students.

The following proposition demonstrates that even describing the above simple constraint

requires an unboundedly large number of services as n grows.

Proposition 10. Suppose that multidimensional constraints with the set of services ⌃

describe the above constraint for the problem with n students from each group. Then

|⌃| � n.12

This result calls for some caution when interpreting the “equivalence” result of Propo-

sition 9. Although for any given general upper-bound one can find multidimensional con-

straints that describe it, the set of services–and hence the number of linear inequalities–

needed to describe it may be large when there are many students. In such a case, the

representation of a given general upper-bound by a system of linear inequalities may not

be practical.

C.2. The (Lack of) Connection with Hatfield and Milgrom (2005). We some-

times receive comments that our results may be implied by Hatfield and Milgrom (2005).

In this subsection, we illustrate a precise sense in which that is not the case. The discussion

also clarifies that, although the present paper shares broad interest with the literature

of matching with distributional constraints such as Kamada and Kojima (2015, 2018)

and Kojima, Tamura and Yokoo (2018), the theoretical development in our present paper

needs to be independent of those from such papers because the latter makes use of results

from Hatfield and Milgrom (2005).

The argument for the “connection” between our analysis and theirs is based on defining

each school’s choice function which, faced with a set of students applying to the school,

chooses the highest-ranked students until adding the next preferred student results in

infeasibility. Formally, define a choice function Cs : 2I ! 2I by

Cs(I
0) = {i1, i2, . . . , ik},(C.1)

11As detailed in Section 4.1, such a constraint is realistic in the context of refugee match.
12 In Appendix A.11, we show that this bound is tight.
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where I 0 = {i1, i2, . . . , iK} is ordered by the school’s priority so that i1 �s i2 �s . . . �s iK ,

and k is the largest integer such that {i1, i2, . . . , ik} 2 Fs.
13 One can show that this choice

function satisfies the substitutes condition. Then, it is argued that a result from Hatfield

and Milgrom (2005) can be used to prove that a student-optimal stable matching exists,

and that the equivalence can be shown between a student-optimal stable matching with

respect to this choice function and a student-optimal fair matching in our setting.

However, in the setting of Hatfield and Milgrom (2005), the substitutes condition alone

does not guarantee the existence of a stable matching, let alone a student-optimal stable

matching. As pointed out by Aygün and Sönmez (2013), the existence is not guaranteed

without another condition called the irrelevance of rejected contracts (IRC), and there is

an example showing non-existence in the absence of that condition.

In fact, the choice function defined by (C.1) does not necessarily satisfy IRC. To see this

point, let us first define IRC in our setting. A choice function Cs is said to satisfy IRC if for

every subset of students I 0 and a student i 62 I 0, i 62 Cs(I 0 [ {i}) implies Cs(I 0) = Cs(I 0 [
{i}). To see that the choice function defined by (C.1) does not necessarily satisfy IRC,

consider the following example. The set of students is {i1, i2, i3}, school s has a priority

order i1 �s i2 �s i3, and the feasibility constraint is Fs = {;, {i1}, {i2}, {i3}, {i1, i3}}.
Then we have Cs({i1, i2, i3}) = {i1} and Cs({i1, i3}) = {i1, i3}. Taking I 0 = {i1, i3} and

i = i2, we see that Cs(I 0) = {i1, i3} 6= {i1} = Cs(I [ {i}). Hence, Cs violates IRC.

The above example has demonstrated that our existence theorem (Theorem 2) cannot

be derived as a corollary of Hatfield and Milgrom (2005). In a similar vein, none of the

results in our paper can be obtained as a corollary of Hatfield and Milgrom (2005).

It is worth noting that, to our knowledge, the IRC condition is always satisfied in

the literature and plays a crucial role for the existence of a solution.14 Our paper is an

exception as illustrated above. This di↵erence is due to the fact that we allow for general

constraints. Our work presents an instance in which IRC is violated and investigates how

to handle such a situation. We believe that this feature of the problem is of independent

interest.

13Hatfield and Milgrom (2005) consider a setting of matching with contracts. Here a choice function

is defined over the family of subsets of students (the terms of contracts are fixed in our setting). An

interpretation is that we are identifying a contract with the identity of the student involved in that

contract.
14Hatfield and Kominers (2013) consider the technique of “completing” a choice function, by which

the resulting choice function may satisfy IRC. This technique would not alter the current choice function,

so the violation of IRC is not resolved by completion.
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C.3. Pareto-Undominated Fair Matchings under General Constraints. The next

example provides an environment in which schools’ constraints are not general upper-

bounds and there is no truncation-proof mechanism that always produces a Pareto-

undominated fair matching.

Example 4. Suppose that there are n � 2 students i1 . . . in, and two schools, s1 and s2.

Fix an integer m such that 1 < m < n, and let preferences be as follows:

�ik : s1, s2 for k = 1, . . . ,m,

�ik : s2, s1 for k = m+ 1, . . . , n.

The schools’ priorities are arbitrary. The constraints are: Fs1 = Fs2 = {;, {i1, . . . , in}}.
Note that these constraints are not general upper-bounds.

Now, consider the following two matchings µ1 and µ2: The matching µ1 satisfies µ1
ik
= s1

for all k, and the matching µ2 satisfies µ2
ik

= s2 for all k. It is straightforward to verify

that, under �I , µ1 and µ2 are the (only) Pareto-undominated fair matchings. Fix any

mechanism ' that always produces a Pareto-undominated fair matching. We consider

two (exhaustive) cases:

(1) Suppose that '�S(�I) = µ1. Consider �0
in such that s2 �0

in ; �0
in s1. Under the

preference profile (�0
in ,�I\{in}), µ

2 is a unique Pareto-undominated fair matching

(note that µ1 is no longer individually rational). This implies that '�S(�0
in ,�I\{in}

) = µ2 because ' always produces a Pareto-undominated fair matching. Since

µ2
in �in µ1

in and �0
in is a truncation of �in , ' is not truncation-proof.

(2) Suppose that '�S(�I) = µ2. Consider �0
i1 such that s1 �0

i1 ; �0
i1 s2. Under the

preference profile (�0
i1 ,�I\{i1}), µ

1 is a unique Pareto-undominated fair matching

(note that µ2 is no longer individually rational). This implies that '�S(�0
i1 ,�I\{i1}

) = µ1 because ' always produces a Pareto-undominated fair matching. Since

µ1
i1 �i1 µ

2
i1 and �0

i1 is a truncation of �i1 , ' is not truncation-proof.

Overall, we have shown that ' cannot be truncation-proof, as desired. ⇤

The same example can be used to show that the cuto↵ adjustment algorithm does not

always find a Pareto-undominated fair matching.

Example 4’. Consider the same environment as in Example 4. In the first step of the

cuto↵ adjustment algorithm, the cuto↵ profile changes from p0 = (1, 1) to p1 = T (p0) =

(2, 2) because {i1, . . . , im} 62 Fs1 and {im+1, . . . , in} 62 Fs2 . This implies that Ds(pk) 6= I

for all s 2 S and k � 1.
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Since ; 2 Fs for each s 2 S, the cuto↵ profiles are nondecreasing (recall that the

definition of function T in Equation (3.1) implies Ts(p) 6� ps only when (i) ps = n + 1

and thus Ds(p) = ; as well as (ii) Ds(p) 62 Fs). This means that pk converges in a finite

number of steps. Let p⇤ be the limit cuto↵ profile.

For any k � 1 such that Ds(pk) 6= ; for some s 2 S, because Ds(pk) 6= I as previously

shown, it follows that Ds(pk) 62 Fs, and thus Ts(pk) = pks + 1. Therefore, p⇤ must satisfy

Ds(p⇤) = ; for each s 2 S.15 By the definition of the cuto↵ adjustment algorithm, the

outcome µp⇤ thus satisfies µp⇤
s = Ds(p⇤) = ; for each s 2 S, i.e., the algorithm produces

the empty matching.

Since the empty matching is Pareto-dominated by µ1 (and µ2 as well) that is fair, the

cuto↵ adjustment algorithm does not produce a Pareto-undominated fair matching in this

example. ⇤

C.4. Weak Fairness and Non-Existence: An Example. Delacrétaz, Kominers and

Teytelboym (2016) consider a slightly di↵erent setting from ours and find an example to

show that their concept of stability may lead to non-existence. The following example,

which is a slight variation of theirs, shows that there does not necessarily exist a matching

that is feasible, individually rational, non-wasteful, and weakly fair.16

Example 5. Suppose that there are three students i1, i2, and i3, and two schools, s1 and

s2. Their preferences and priorities are as follows:

�i1 : s2, s1 �s1 : i1, i2, i3

�i2 : s1, s2 �s2 : i3, i1, i2

�i3 : s1, s2

The feasibility constraints areFs1 = {;, {i1}, {i2}, {i3}, {i1, i3}} and Fs2 = {;, {i1}, {i2}, {i3}}.
Note that the constraint of school s2 is a capacity constraint while the constraint of school

s1 is not, and both are general upper-bounds.

In this market, there is no matching satisfying feasibility, individual rationality, non-

wastefulness, and weak fairness. To see this, consider the following (exhaustive) cases:

(1) Suppose i1 is matched with s2. Then i3 should be matched with s1 because oth-

erwise i3 is unmatched and hence has a feasible justified envy toward i1. Then i2

is unmatched, but this means i2 has feasible justified envy toward i3.

15In fact, one can show that p⇤ = (n + 1, n + 1), although it is not necessary to show this for our

conclusion.
16Adapted to our setting, their stability concept is slightly stronger than our requirements of feasibility,

individual rationality, non-wastefulness, and weak fairness.
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(2) Suppose i1 is matched with s1. Then i3 should be matched to s1 because otherwise

the allocation is wasteful (i3 prefers s1 most and {i1, i3} 2 Fs1). This implies that

i2 is matched with s2. But then i1 has a feasible justified envy toward i2.

(3) Suppose i1 is unmatched. Then neither i2 nor i3 can be matched to s1 as otherwise

i1 has a feasible justified envy toward the student who matches with s1. But

this is wasteful because, by letting µ denote the resulting matching, we have

s1 �i1 ; = µi1 and µs1 [ {i1} 2 Fs1 . ⇤


