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Abstract

We construct a dynamic model of election campaigns. In the model, opportunities for can-
didates to refine/clarify their policy positions are limited and arrive stochastically along the
course of the campaign until the predetermined election date. We show that this simple friction
leads to rich and subtle campaign dynamics. We first demonstrate these effects in a series of
canonical static models of elections that we extend to dynamic settings, including models with
valence, a multi-dimensional policy space, policy motivated candidates, campaign spending,
and incomplete information. We then present general principles that underlie the results from
those examples. In particular, we establish that candidates spend a long time using ambiguous
language during the election campaign in equilibrium.
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“Timing is Everything”

—Joe Slade White, the 2014 National Democratic Strategist of the Year

1 Introduction

Election campaigns are inherently dynamic. Joe Slade White, the 2014 National Democratic Strate-

gist of the Year, states “timing makes the difference between winning and losing,” in one of his

“9 Principles of Winning Campaigns” (White, 2012). Despite the apparent importance of election

campaigns on the electoral outcomes and the fact that the campaigns are dynamic in nature, there

seem to be no theoretical models of dynamic campaigns in the literature, to the best of our knowl-

edge.1 One possible reason is that there is no obvious way to model campaigns in a way that would

give rise to nontrivial dynamic strategic considerations.2 The objective of this paper is to fill this

gap by proposing a model in which candidates face nontrivial dynamic strategic considerations.

The paper proposes a “policy announcement timing game” in which candidates strategically

choose the optimal timing of their policy announcements over a campaign period. Each announce-

ment corresponds to restricting the set of available policies—that is, each candidate may clarify

a policy to implement, while she cannot go back to a policy that she has ruled out before—and

the final policy announcements before the predetermined election day determine the result of the

election.

In our model, opportunities for policy announcements are limited and stochastic. Specifically,

we assume that opportunities arrive according to a Poisson process over a campaign period. The

assumption of Poisson opportunities is a simple way to represent frictions present in the commu-

nication process between candidates and voters. For example, administrative procedures to obtain

internal approval for a change of how candidates announce their policies may not always be suc-

cessful, or candidates may not always be able to communicate with the voters about such a change

even if these procedures go through. Moreover, voters may not be convinced that the candidate

has changed her policy position.3 Those frictions cause uncertainty regarding the availability of

1By a model of dynamic election campaigns, we mean a model with a single election; in particular, when we speak
of “models of dynamic election campaigns,” we are excluding models that have primaries and the general election.

2The empirical research shows that candidates do react to each other during election campaign (cf. Banda (2013,
2015)).

3A richer modeling of administrative procedure or dynamics of voter beliefs would generate a more accurate
prediction, but we assume these away and try to concentrate on key effects by investigating what we can say in our
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future opportunities, and we capture such uncertainty by using Poisson processes.4

After laying out the general model, we present a number of applications to demonstrate that

introducing this simple friction to the model generates interesting dynamic strategic considerations

and equilibrium dynamics consistent with election dynamics in reality. The first issue we consider

is ambiguous policy announcements, which we often see in real election campaigns. For example, in

the context of a US presidential election, Nicholas Biddle, the manager of William Henry Harrison’s

campaign for the US presidency in 1840-1841, advised Harrison in these words: “Let him say not

one single word about his principles, or his creed - let him say nothing - promise nothing. Let no

Committee, no convention—no town meeting ever extract from him a single word, about what he

thinks now, or what he will do hereafter.”5

We find that our model leads to a new interpretation of ambiguous policy announcements: In

our applications, if candidates are purely office-motivated and there is no Condorcet winner in the

set of available policies, then the candidates have tentative preferences for the ambiguous policy

statement during the course of the election campaign and, in fact, spend most of the campaign

time keeping their policy statements ambiguous—not announcing a specific policy.6 The incentive

comes from a dynamic consideration. The candidates’ announcements remain ambiguous because

the absence of a Condorcet winner implies that it is less favorable to be the first mover than to be

the second mover.

There are two leading examples with such “first mover disadvantage”: Candidates have valence,

or the policy space is multi-dimensional. When there is valence (Section 3.1), we show that, in

equilibrium, the weak candidate will not make his policy clear in the early stages of the election

campaign, and his policy announcement can possibly occur only close to the election date. This

is because if he clarifies his policy too early, then the strong candidate will have enough time to

simply copy that policy afterward, so that the weak candidate will certainly lose. The result may

simplest framework. As it turns out, the results from our simple setting are quite rich.
4Calvo (1983) uses a Poisson process to model uncertainty about future opportunities of changing prices. This

approach offers a tractable way of modeling sticky prices and analyzing the effect of fiscal and monetary policies.
At the same time, the literature goes forward to offer a micro-foundation of Calvo (1983) by fixed costs of changing
prices, rational inattention, and so on (see Klenow and Malin (2010)). Here, we also show that this Poisson approach
is useful to analyze campaign dynamics, and leave micro-foundation to the future research.

5McGrane, Reginald Charles C. (1919). The quote appears in Shepsle (1972).
6In contrast, we show that if candidates are purely office-motivated and there is a Condorcet winner, each candidate

announces it as soon as possible. The formal definition of Condorcet winner for this result will be provided in Section
4.2.
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explain the dynamics of the election campaign in the 2014 gubernatorial election for Tokyo, Japan,

in which Yoichi Masuzoe and Morihiro Hosokawa fought a close campaign. Although Masuzoe had

been seen as the strongest candidate from the outset of the campaign, Hosokawa became popular

near the election day when he clarified his stance by announcing opposition to the restart of nuclear

power generation. Then Masuzoe, who originally had not specified his policy about nuclear power

generation, clarified his position to aim for a gradual phase-out of nuclear power. As a result,

Masuzoe won against Hosokawa.7

When the policy space is multi-dimensional (Section 3.2), generically there does not exist a

Condorcet winner (so there does not exist a pure-strategy Nash equilibrium in the static environ-

ment). In our policy announcement timing game, however, we can pin down both the equilibrium

probability distribution of times at which candidates make policy announcements and winning

probabilities even in such a setting. In the absence of a Condorcet winner, once a candidate com-

mits to any policy platform and then the opponent optimally responds to it, the former candidate

will lose. Hence, each candidate, upon making an announcement, “becomes a weak candidate” in

that being best-responded afterward will bring the worst outcome. In contrast, the payoff structure

is such that, if candidates knew that the current opportunity is the last one and there will be no

opportunity for either candidate in the future, they would prefer to clarify their policy. Hence,

in equilibrium, when a candidate obtains an opportunity near the election day, they clarify their

policies.

This analysis on the multi-dimensional policy space, however, does not give us a precise predic-

tion regarding the policies that candidates announce due to its excessive simplicity of pure office

motivation. To show that such indeterminacy is not a consequence of the way our general dynamic

model is specified, Section 3.3 introduces policy motivation to the model with a multi-dimensional

policy space. Again, we show that ambiguous language is used for a long time in equilibrium, and

pin down the policies that candidates announce. Interestingly, in equilibrium, a candidate may

announce a policy that is Pareto inefficient among both candidates with positive probability. The

reason is that announcing such a policy will make it incentive compatible for the other candidate

to announce a policy that is not too unfavorable for the candidate in the event that the other can-

7Sankei News (2013) argued on December 24, 2013 that Masuzoe was seen as the strongest among the candidates,
Asahi Shimbun Digital (2014a) reported on January 9, 2014 that Hosokawa clarified his policy about nuclear power,
and Asahi Shimbun (2014b) reported on January 15, 2014 that Masuzoe showed support to the opposition to nuclear
power.
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didate obtains a chance of a policy announcement afterward. Announcing a policy position with a

motive to influence the opposition’s policy, though possibly sounding unrealistic, did actually hap-

pen in real campaigns. During the Democratic Party presidential primaries in 2016, for example,

the far-left Bernie Sanders called for a $15-an-hour minimum wage (more than twice as much as

the $7.25 standard back then) and Medicare-for-all health care, and proposed to end TPP. After

losing Pennsylvania, Maryland, Delaware, and Connecticut in a row, Sanders declared in a town

hall meeting: “But if we do not win, we intend to win every delegate that we can so that when we

go to Philadelphia in July, we are going to have the votes to put together the strongest progressive

agenda that any political party has ever seen.”8 An article in Vox (Stein, 2016) writes: “Bernie

Sanders moved Democrats to the left. The platform is proof. [...] Hillary Clinton may have won

the Democratic Party’s presidential nomination, but Bernie Sanders has still left an outsize mark

on its future.”9

Another topic which attracts much attention with regard to campaign dynamics is political

campaign advertisements (Section 3.4). We provide a simple model in which we reinterpret our

policy announcement timing game to encompass dynamic spending in election campaigns. To

make the reinterpretation work, we notice that the cumulative spending for advertisements cannot

decrease over time; hence any spending is only restricting the set of possible cumulative spending.

Supposing that the probability of winning the election only depends on the ratio of the cumulative

spending of the two candidates and money can be used for purposes other than the campaign as

well and is sufficiently important, we show that, in equilibrium, candidates do not spend as much

money as they can in the early stages of the campaign, and make additional spending close to the

election date if they can. The intuition is as follows. If two candidates spend as much as possible,

both candidates will have a 50% chance of winning (given symmetry). There is little incentive to

spend a lot at the early stages because that means that the opponent can cancel out its effect by

later spending equally much with a high probability. Rather, candidates would save their money in

the early stages and try to spend them later, leaving only a small probability for the opponent to

cancel it out later. Our prediction provides a novel explanation for the empirical evidence, which

8The facts and the quote appear in Strauss (2016) and Gurciullo and Debenedetti (2016).
9The specific interpretation we give to the policy space we study may not be consistent with this episode of Sanders

vs. Clinton. We provide this example to make a point that an entry to a policy platform can happen with a motive
to influence the opposition’s platform.
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suggests that candidates often spend monetary resources gradually over time.10

Although the general model is set up as a complete information game, one can extend it to

include a wider class of settings. To illustrate, our final application allows for incomplete information

by considering a model in which candidates’ types can be either normal or extreme, and their

preferences are such that it is a dominant strategy for the normal types to always announce a

median position, while each extremist prefers a non-median policy and dislikes the bliss policy of

the extreme opposition (Section 3.5). We first show that, if it is common knowledge that both

candidates are extreme, then candidates would be indifferent between announcing their policy as

the median and using ambiguous language. Then we show that, if there is a possibility of the

candidates being normal, then in any symmetric equilibrium the extreme candidates keep being

ambiguous for a long time over the course of the election campaign although the belief that the

opposition is extreme can become very close to (but less than) one when the campaign is long. An

example of the situation where this model can potentially fit is the Japanese House of Councillors

election in 2014, in which Prime Minister Shinzo Abe avoided making the constitutional reform

the main issue of the election and did not specify his plan of how to reform the constitution.11

Nonetheless, the press argued that he had a particular preference for reforming the constitution

such as specifying a foundation of the Self Defense Forces.12 In fact, he started the process of

summarizing the issues about the constitutional reform centered around the Self Defense Forces,

once he won the election (Ota, 2016).

After discussing the applications, we present general principles that underlie the results from

those applications (Section 4). The general results are concerned with the main topics in the ap-

plications, i.e., ambiguity, Condorcet winner, and office-motivated candidates, and show that the

implications of our model are more robust than being valid in specific examples. First, Section 4.1

presents a result that we call the long ambiguity theorem. We formally define a “first-mover disad-

vantage” condition and show that, under that condition (together with some genericity conditions),

10Gerber et al. (2011) empirically show that the effect of campaign spending declines over time (earlier spending
has a weaker effect). Although it might be reasonable to assume such depreciation, and it might result in gradual
spending, we do not assume depreciation. Our main point is that the candidates have incentives to spend gradually
even if the effect of depreciation is absent. Depreciation would strengthen the incentive to spend gradually.

11To reform the constitution, no less than two thirds of the members of the parliament have to agree on the reform
at both the House of Representatives and the House of Councillors.

12For example, an article titled “Shinzo Abe’s Constitution Quest” is published in Wall Street Journal (Harris,
2013).
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candidates spend most of the time keeping their policy statements ambiguous in equilibrium, pro-

vided the campaign period is long enough. This result generalizes the results for valence candidates

and a multi-dimensional policy space.

Second, Section 4.2 examines the robustness of the celebrated median-voter theorem to an

extension to our dynamic setting. We show the dynamic median-voter theorem. Specifically, we

consider a general model in which there is a Condorcet winner in the static version of the model, and

show that each candidate makes an announcement corresponding to a Condorcet winner as soon

as possible. This result generalizes results under some parameter specifications in our applications

where the long ambiguity theorem fails. For example, we show that candidates announce their

policies as soon as possible in the absence of valence, and spend their money as soon as possible

if there are only two levels of spending. These results are implied by the dynamic-median voter

theorem. The third general result presented in Section 4.3 pertains to the cases where candidates

are purely office-motivated. Specifically, we analyze a general model with constant-sum payoffs, and

prove that any perfect Bayesian equilibrium has the Markov property. We call this the constant-

sum Markov theorem. The theorem generalizes the results from the model with valence and the

one with multi-dimensional policy space. It is also used in proving a result for the model with

incomplete information.

Section 5 concludes. The Appendix provides main proofs for the general results presented in

Section 4. All the proofs not provided in the main text or in the Appendix are provided in the

Online Appendix.

1.1 Literature Review

Ambiguity:

Ambiguous policy announcements have long been discussed in the politics and economics lit-

erature. The mechanism that generates ambiguity in our model is starkly different from those

presented in the existing literature. For example, Shepsle (1972) and Aragonès and Postlewaite

(2002) assume that candidates choose their policy positions simultaneously and once and for all. In

their models, ambiguity occurs because voters are assumed to possess convex utility functions and

therefore prefer ambiguity.13 In our model, in contrast, ambiguity arises from dynamic strategic in-

13Callander and Wilson (2008) also consider a simultaneous-move voting game, and show that candidates’ policy
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teractions in an election campaign: Each candidate’s strategic concern about the opponent’s future

play causes ambiguity. In particular, we do not assume convexity; rather, in one of the variants

of our model discussed in the Online Appendix, we show that ambiguity occurs even when voters

have concave utility functions.

Page (1976, 1978) proposes a theory that attributes ambiguity to the fact that candidates

have limited resources to make their policy positions precise, and to voters’ limited capacity to

understand these positions. In our model, however, voters are capable of understanding what the

candidates are announcing. Candidates do have a positive probability of not being able to have

any chance to make a policy announcement, but we obtain ambiguity even in the limit as this

probability shrinks to zero.

Glazer (1990) argues that ambiguity may occur if candidates are uncertain about the median

voter’s preferences. In his model, fixing a candidate’s opponent’s announcement, the candidate

would prefer ambiguity. In our model, in contrast, our applications include cases where ambiguity

is a suboptimal static response for any fixed announcement by the opponent. In other words, we

obtain ambiguity due to dynamic strategic consideration.

Alesina and Cukierman (1990) and Aragonès and Neeman (2000) show that ambiguity occurs

in elections if candidates prefer to keep the freedom to choose their policies after being elected,

even though voters would prefer their candidates to commit themselves to precise policies before

the election. That is, the driving force of ambiguity is different from office motivation. In contrast,

the long ambiguity theorem in our model can be obtained with pure office motivation.

When the selection of candidates consists of more than one step, as is true for the US presi-

dential election with its primaries and general elections, Meirowitz (2005) shows that candidates

announce ambiguous policies in earlier stages if voter preferences are unknown at the beginning

but are revealed by the result of the earlier stages. In our model, no new information arrives about

voter preferences, and ambiguous policies are purely the result of strategic interactions between

candidates.14

statements are ambiguous in equilibrium if voters’ voting behavior is based on preferences exhibiting a taste for
ambiguity due to their context dependence.

14Alesina and Holden (2008) show that candidates announce ambiguous policies even without primaries if (i)
candidates have policy motivation, (ii) the policy motivation is their private information unknown to the voters, and
(iii) campaign contributions from the voters to the candidates affect the electoral outcomes. In contrast, none of
these assumptions are necessary to obtain the long ambiguity theorem in our model.
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Valence: In the standard simultaneous-move Hotelling-Downs model with valence candidates,

there exists no pure-strategy equilibrium: The strong candidate always wants to copy the weak

candidate’s policy, while the weak candidate does not want to be copied, just as in the “matching

pennies” game. There are two approaches to addressing this issue in the literature. The first

approach is to assume that the strong candidate is the incumbent and the weak candidate is the

entrant (Bernhardt and Ingberman (1985), Berger et al. (2000), and Carter and Patty (2015)). In

this approach, a typical result is that the strong candidate positions her policy close to the median

voter and the weak candidate positions his policy at a slight distance from the strong candidate’s

policy, where the distance between the two policies is determined by the degree of asymmetry

between candidates’ valences.15 The second approach is that of Aragonès and Palfrey (2002), who

consider the simultaneous-move game seriously and characterize a mixed equilibrium.16 They show

that the strong candidate assigns high probabilities to the platforms which are close to the location

of the median voter with high probabilities while the weak candidate assigns small probabilities to

such platforms. Although these two approaches give us an understanding of what the equilibrium

behavior looks like in an electoral situation with valence candidates, in both these models the order

of policy announcements is exogenously given by the modelers. In contrast, we view our model

with valence candidates as endogenizing the order of policy announcements.17

Multi-dimensional policy spaces: It is well known that the Downsian model with a multi-

dimensional policy space does not have a pure-strategy Nash equilibrium unless a strong assumption

about symmetry of the distribution of voters over the policy space is satisfied. As in the case

with valence, one way to respond to the nonexistence is to consider a sequential game where the

incumbent moves first and the challenger moves second. However, as Roemer (2001) argues, there

may be no natural order, and we again view our approach as endogenizing the order of moves.

Other approaches to deal with the nonexistence include that of Lindback and Weibull (1987), who

allow the voters’ behavior to be probabilistic and derive a sufficient condition for the existence of

a pure-strategy equilibrium in a one-shot simultaneous-move game (see also Coughlin (1992)), and

15See also Ansolabehere and Snyder (2000) and Groseclose (2001) who consider pure-strategy equilibria in models
with valence candidates.

16More specifically, Aragonès and Palfrey (2002) characterize the unique equilibrium in a discrete policy space and
consider a limit as the discrete space approximates the standard continuous policy space.

17This provides a possible answer to the question posed by Aragonès and Palfrey (2002), who ask “What is the
correct sequential model.”
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that of Roemer (2001), who obtains existence using a weaker equilibrium concept in which the set

of feasible deviations for each candidate is restricted. In contrast to these papers, our analysis in

Section 3.2 keeps the basic structure of the Downsian model.

Campaign spending: Most of the models in the theoretical literature about campaign spend-

ing specify how candidates use campaign funds in order to affect voters’ behavior.18 For exam-

ple, Potters et al. (1997), Prat (2002a,b), and Coate (2004) consider models in which political

campaigns can signal the candidate’s private information. Also, Bailey (2002) assumes that one

candidate chooses the policy position prior to the other, and that contributions can be used to

target the campaign at selected people. In the current paper, in contrast, we are agnostic about

why campaign spending helps, and focus on the timing of spending. There is also a large strand of

empirical literature that analyzes the timing of the campaign spending. We refer interested readers

to Gerber et al. (2011) and the reference therein.

Incomplete information: If candidates announce their policies simultaneously and the me-

dian voter exists, then it is a unique Nash equilibrium that both candidates announce the policy

corresponding to the median voter given that the policy announcement is a credible commitment,

regardless of policy preferences or knowledge about them. In models with incomplete information

about the candidates’ policy preferences, Banks (1990) and Harrington (1992) consider the case in

which the policy announcement is not a credible commitment, while there is a cost of implementing

a policy different from the announcement. Such a setting is later used by Kartik and McAfee (2007)

and Callander and Wilke (2007) to analyze the incentive of telling a lie in elections. In our model,

the policy announcement is a credible commitment, while its timing is endogenous (all the papers

cited here assume exogenous (simultaneous) timing).

Dynamic games: To formally model the dynamics of policy announcements, we employ a

framework with continuous time, a finite horizon, and a Poisson revision process. This model-

ing device has been extensively explored recently. The revision games in Kamada and Kandori

(2017a,b) and Calcagno et al. (2014) consider settings in which players obtain opportunities to

revise their preparation of actions according to Poisson processes, and the finally-revised action

profile is implemented at the predetermined deadline.19 In the models of these papers, revisions

18In addition, there are papers about the interaction between the lobbyists and politicians. See, for example,
Austen-Smith (1987), Baron (1994), and Grossman and Helpman (1996).

19Ambrus and Lu (2015) consider a bargaining model in a similar fashion.
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of actions are not restricted, in the sense that players can freely choose their actions from a fixed

action space at each opportunity to move, as opposed to our assumption that once candidates make

their policy platform clear, they cannot change it afterward.

Given the nature of the game analyzed—an election campaign where there is a clear winner

and loser—some of our analysis pertains to constant-sum games. While the aforementioned papers

mainly consider the situations where cooperation or coordination is important, Gensbittel et al.

(2017) analyze general zero-sum revision games in which revisions are not restricted. Our long

ambiguity theorem is similar to the “wait and wrestle” property that they find. The difference is

that we do not restrict ourselves to constant-sum games, and we consider the case where revisions

are restricted.20

The policy announcement timing game can be regarded as a stochastic game. Lovo and Tomala

(2015) analyze general revision games with payoff-relevant states and show existence of Markov

perfect equilibria.21 In contrast, our focus is on the unique prediction of players’ behavior in

perfect Bayesian equilibria in the context of election campaigns.

We use a Poisson process to model frictions in the election campaign. Another way to model such

frictions is to introduce switching costs. In general, switching costs result in different implications

on equilibrium behavior from a Poisson process. See Lipman and Wang (2000) and Caruana and

Einav (2008) for models with switching costs in finite-horizon games.

As for the idea of using ambiguous language or not spending their funds in expectation of future

events, Gale’s (1995, 2001) model of “monotone games” also considers a similar problem. In his

model, at each period, players can only (weakly) increase their actions. In effect, players commit

to a smaller and smaller subset of their action spaces as time passes, and they will never be able to

“expand” that subset (thus, the revisions are restricted). The main difference is that he analyzes

“games with positive spillover” played over an infinite horizon and shows that collusive outcomes

can be achieved, while we analyze a game with a conflict of interests played over a finite horizon

and are interested in uniqueness of an equilibrium outcome.

Another related theoretical literature is about commitment games, where each player simulta-

20Note that, although restricted revisions imply that there is no cycling choice of actions as in Gensbittel et al.
(2017), it is still not trivial that candidates wait for a long time. Gensbittel et al. (2017) also discuss a comparison
between the two models.

21Moroni (2018) also provides an existence proof for revision games, allowing for imperfect and incomplete infor-
mation.
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neously commits to a subset of the entire set of actions at the first stage and then plays the game

with the restricted set of actions at the second stage (see, for example, Hamilton and Slutsky (1990,

1993); van Damme and Hurkens (1996); Romano and Yildirim (2005); Renou (2009)). These mod-

els sometimes yield multiple equilibria. In our analysis, in contrast, the revision opportunities arrive

stochastically and asynchronously, and as a result, we obtain an (essentially) unique equilibrium

prediction.

2 The Model – Policy Announcement Timing Game

There are two candidates, A and B. Whenever we say candidates i and j, we assume i 6= j.22

There is a set of policies, X. For each candidate i = A,B, there is a collection of nonempty subsets

of X, denoted Xi ⊆ 2X \ {∅}, with a property that X ∈ Xi for each i = A,B. Each element in Xi

is called i’s “policy set.” Here, we interpret announcing X as announcing the “ambiguous policy”

while announcing other sets in Xi is seen as (at least partially) specifying a policy platform. Given

a profile of policy sets (XA, XB) ∈ XA×XB, let vi(Xi, Xj) be candidate i’s payoff for each i = A,B.

In our policy announcement timing game, time flows continuously from −T < 0 to 0. Imagine

that 0 is the fixed election date and the campaign starts at −T . For each −t ∈ [−T, 0], according

to the Poisson process with arrival rate λi > 0, each candidate i = A,B obtains opportunities

to announce her policy set. We assume that the Poisson processes are independent between the

candidates. In particular, this implies that policy announcements are asynchronous with probability

one. To simplify the exposition, we often use “enter” to denote the act of announcing a singleton

set. The result of the election only depends on (XA, XB), where Xi with i ∈ {A,B} is candidate

i’s most recently announced policy set at time 0 (the election date).

In what follows, we analyze perfect Bayesian equilibria of this game. To formally define strate-

gies in our setting, we first define history. A history for candidate i is denoted by

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
,

where −T ≤ −t1i < ... < −tkii < −t; Xk
i ∈ Xi for all k; −T ≤ −t1j < ... < −tljj < −t; X l

j ∈ Xj

for all l; and zi ∈ {yes, no}. The interpretation is that −tki is the time at which candidate i

22For ease of exposition, we use feminine pronouns to refer to A and i and masculine pronouns to refer to B and j.
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receives his or her k’th revision opportunity, and Xk
i is the policy set that i has chosen at time −tki .

We assume that candidate i cannot observe whether candidate j receives an opportunity, but can

observe candidate j’s choice of a policy set whenever it changes.23 That is, tlj is the l’th time that

candidate j changes his or her policy set from the previous one, and X l
j is the policy set that j has

chosen at time −tlj . We let X0
i = X0

j = X, that is, the policy set at time −T is exogenously given

to be X. The third element t denotes the current remaining time, and the indicator zi expresses

whether there is an opportunity for candidate i at time −t. By H
ki,lj
i , we denote the set of histories

in which candidate i for i = A,B has received ki opportunities in the past and in which candidate j

has changed policy sets lj times. The set of all histories for candidate i is Hi :=
⋃∞
ki=0

⋃∞
lj=0H

ki,lj
i .

A strategy for candidate i is denoted by σi : Hi → ∆(Xi), with three restrictions: First,

σi(hi) = Xki
i where ki is specified in the first element of hi if the fourth element in hi specifies

zi = no. That is, if there is no opportunity at −t for i, then for notational convenience, we specify

that the candidate takes the same policy set as specified in the last opportunity. Second, if zi = yes,

then the strategy σi(hi) must assign probability zero to Xi ∈ Xi if Xi 6⊆ Xki
i . Thus, the set of

candidate i’s possible announcements at time −t depends on i’s own past policy announcement:

If i has already announced Xi ∈ Xi in the past, then i can only announce a (weak) subset of Xi.

Thus, once a candidate rules out some of the potential platforms, then she cannot go back to them

later. The third requirement is technical. To guarantee that candidates’ payoffs are integrable with

respect to the distribution of the final outcome given the strategy profile, we require that σi (hi)

puts a positive probability only on a countable subset of Xi.

Let Σi be the set of all strategies of candidate i. Let ui(σ|hi, hj) be candidate i’s continuation

payoff given history profile (hi, hj) ∈ Hi ×Hj and the strategy profile σ ∈ ΣA ×ΣB.24 Let Hj (hi)

be the set of candidate j’s feasible histories given hi, and let β(·|·) : Hi → ∆ (Hj) be candidate

i’s belief about candidate j’s history such that
∫
hj∈Hj(hi) dβ (hj |hi) = 1 for each hi ∈ Hi for each

i = A,B. Given a belief β, let uβi (σ|hi) =
∫
hj∈Hj ui(σ|hi, hj)dβ (hj |hi) be candidate i’s expected

continuation payoff given hi. A strategy profile (σ∗A, σ
∗
B) is a perfect Bayesian equilibrium

(PBE) if there exists a belief β such that, for each i ∈ {A,B}, (i) σ∗i ∈ arg maxσi∈Σi u
β
i (σi, σ

∗
j |hi)

23Except for the incomplete information model in Section 3.5, the prediction of the model will be the same even
if candidate i can observe all of candidate j’s opportunities, in the sense formalized in the Constant-Sum Markov
Theorem (Theorem 3) and Remark 5.

24This is well defined because Hi is a countable union of subsets of a finite-dimensional space.
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holds for every hi ∈ Hi and (ii) β is derived from Bayes rule whenever possible.25

3 Examples

We first offer various examples to show that the model of policy announcement timing game enables

us to analyze rich strategic considerations when it is applied to otherwise well-known and canonical

models of elections.

3.1 Valence Election Campaign

We consider the case in which one candidate is stronger than the other, in the sense that if two

of them choose the same policy set, then the former candidate wins. Section 3.1.1 introduces the

model. In Section 3.1.2, we establish that if two candidates are perfectly symmetric, then both

candidates would want to be clear as soon as possible. In Section 3.1.3, we show that if one

candidate is slightly stronger than the other, then there are rich strategic considerations driving

the incentive for each candidate to make an ambiguous policy announcement. The incentive for

ambiguity follows from the “first-mover disadvantage”: The strong candidate wants to copy the

weak candidate’s policy after the weak candidate enters, while the weak candidate does not want

to be the first mover as being copied is the worst outcome. This result presents a novel connection

between ambiguity and valence.

3.1.1 The Model

In the language of the general model, candidate A is the strong candidate S, and candidate B is

the weak candidate W . We keep the model simple, so as to highlight the complexity introduced by

the campaign phase into an election model with valence candidates. In particular, the policy space

is assumed to be X = {0, 1}, and each candidate i’s available policy sets are Xi = {X, {0}, {1}}.

The Online Appendix presents a general version of the model that involves many other cases, such

as a continuous policy space.

If a candidate enters at 0 (or 1) and the other enters at 1 (or 0) or does not enter, then

25Although each information set at any time after −T has probability zero, one cay apply Bayes rule to calculate
relevant conditional probabilities because any Poisson process has a countable number of arrivals with probability
one. We formally define Bayes rule for our context in the Online Appendix.
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the former wins with probability p (or 1 − p); if the two candidates enter at the same policy or

neither of them enters, then the strong candidate wins with probability one. Candidates are purely

office-motivated. That is, we have vS({0}, {0}) = vS({1}, {1}) = vS(X,X) = 1, vS({0}, {1}) =

vS({0}, X) = vS(X, {1}) = p, vS({1}, {0}) = vS({1}, X) = vS(X, {0}) = 1−p, and vW (XW , XS) =

1− vS(XS , XW ) for each (XS , XW ). We assume p ∈ (0, 1
2).

This utility function can be micro-founded in the following manner. Suppose that there are a

continuum of voters, located at policy 0 and policy 1. The distribution of the voters’ locations is

stochastic, and with probability p, policy 0 has more voters. During the campaign, the locations

of the voters are unknown.

If a candidate i ∈ {S,W} wins the election and implements policy x ∈ {0, 1}, then a voter with

position y ∈ {0, 1} obtains a payoff of

u(|x− y|) + δ · Ii=S ,

where u(0) > u(1) and 0 ≤ δ < (u(0)− u(1))/2, with δ representing the advantage of candidate S

due to her charisma or other asymmetries between candidates’ characteristics that are unrelated

to the policy choices.26 The voters believe that, if candidate i has specified a policy x ∈ {0, 1} and

wins, then x will be implemented. If candidate i with the ambiguous policy Xi = {0, 1} wins, then

the voters believe that the policies {0} and {1} will be implemented with equal probability 1
2 .27

The voters are sincere, that is, they each vote for the candidate who, if elected, maximizes their

expected payoff. The candidate with more votes wins. In the case of a tie, each candidate wins

with probability 1/2.

The candidate who obtains more votes wins, and obtains a payoff of 1, while the other candidate

obtains a payoff of 0; these are the only payoffs that they receive in this model, i.e., candidates

are purely office-motivated. Each candidate’s objective is to maximize the expected payoff, that is,

their objective is to maximize their probability of winning. The payoff function (vS , vW ) that we

26One way to interpret δ in a “policy related” manner would be to consider a model as in Krasa and Polborn
(2010), in which candidates choose one policy out of two for each of multiple policy issues. If candidates make
policy announcements for some issues first, they then would compete by choosing policies on remaining issues, where
asymmetry between candidates may exist depending on the relative popularity of the policies that each candidate
has chosen already. We note that, if δ > (u(0)− u(1))/2, it will be straightforward to show that S wins the election
with probability 1 in any PBE.

27It is not crucial that the probability is exactly 1
2
. For an open set of probabilities for tie-breaking, our main

results are unchanged.
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(XS , XW )
at the deadline

Voters at 0
vote for

Voters at 1
vote for

S’s expected
utility

W ’s expected
utility

({0, 1} , {0, 1}) S S 1 0

({0, 1} , {0}) W S 1− p p

({0, 1} , {1}) S W p 1− p
({0} , {0, 1}) S W p 1− p
({0} , {0}) S S 1 0

({0} , {1}) S W p 1− p
({1} , {0, 1}) W S 1− p p

({1} , {0}) W S 1− p p

({1} , {1}) S S 1 0

Table 1: Voter behaviors and the expected payoffs for the valence election campaign.

specified above can be obtained by assuming δ > 0. We summarize in Table 1 the voters’ behaviors

and the resulting expected payoffs for the candidates, given these specifications and δ > 0. Note

that, without valence (δ = 0), the environment just specified is the one in which we can apply the

median voter theorem in the static version of the model; that is, it is each candidate’s dominant

action to announce {1}.

We let λS = λW =: λ.28 We call this dynamic game a valence election campaign. It is

characterized by a tuple (p, T, λ).

3.1.2 The Benchmark Case: Perfectly Symmetric Candidates

Before analyzing the model with valence, we analyze the model with symmetric candidates as a

benchmark case. The only difference from the model with valence is that, if two candidates end up

announcing the same policy set, both of them win with probability 1
2 (this corresponds to setting

δ = 0 in the micro-foundation). Call this game a no-valence election campaign. It turns out that

there are no incentives to announce the ambiguous policy {0, 1}.

The following proposition gives us a stark result:

Proposition 1 In any no-valence election campaign, in any PBE, each candidate announces {1}

as soon as possible.

To see why this holds, fix time −t and suppose that at any time −s > −t, if each candidate has

28This assumption is generalized in the Online Appendix.
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an opportunity to enter, then he/she enters at 1. Then, at time −t, if no candidate has entered,

entering at 1 gives the payoff strictly greater than 1
2 , entering at 0 gives p < 1

2 , and not entering

gives a payoff of 1
2 by symmetry of the supposed continuation strategies. Thus, entering at 1 is a

unique best response. Therefore, by continuity of the probability in time which implies continuity

of the continuation payoff in time, for sufficiently small ε > 0, it is uniquely optimal to enter at

1 for all time in (−t − ε,−t] if no one has entered. Under the history at which the opponent has

entered, an analogous argument shows that entering at 1 is uniquely optimal. This establishes the

desired result.29

In the next subsection, we demonstrate that (i) the above simple argument breaks down once

we introduce asymmetry with respect to candidates’ valence (δ > 0 in the micro-foundation),

and (ii) candidates face complicated dynamic incentive problems, which involve ambiguous policy

announcements. Therefore, a small valence (or small δ > 0) matters and is the key for ambiguous

policy announcements.

3.1.3 The Cases with Valence Candidates

Let us start with the following lemma. It states that, if S has an opportunity to enter after W has

entered at x ∈ {0, 1}, then she enters at x and wins for sure. In contrast, if W has an opportunity

to enter after S has entered at x ∈ {0, 1}, then he is indifferent between announcing {0, 1} and

entering at x′ ∈ {0, 1} \ {x}. These two conclusions imply that, since the median is more likely to

be at policy 1 (p < 1
2), if a candidate enters before the opponent, he/she enters at {1}.

Lemma 1 In any valence election campaign with (p, T, λ), in any PBE, the following are true at

any time −t:

1. Given that W has already entered, S enters at the same platform as soon as possible.

2. Given that S has already entered, W is indifferent between announcing {0, 1} and entering at

the platform different from S’s.

3. If a candidate i enters before the opponent, then i enters at policy 1.

29This last part follows from the “continuous-time backward induction” that we formally present in Appendix B.
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The above lemma characterizes the equilibrium behaviors on and off the equilibrium path except

when no candidates have yet entered. It also says that if both are still using ambiguous language

and a candidate i enters, then i enters at policy 1. Hence, in the following analysis, we consider

the incentives to enter at policy 1 when both are still using ambiguous language.

Before presenting the characterization of the behavior in a PBE in such a situation, we first

provide the basic intuition, which exploits the idea that being the first mover is disadvantageous.

For the time being, consider the case with p = 1
2 .30 Suppose that at time −t, both S and W have

previously announced {0, 1}. On the one hand, if there is no further revision, W ’s payoff is 0. So

W needs to specify his policy to obtain a positive payoff. Thus, W announces {0} or {1} at some

point in [−t, 0], if he can. Since {0} and {1} are symmetric with p = 1
2 , assume without loss of

generality that W announces {1} when he clarifies his policy.

On the other hand, S does not have an incentive to specify her policy until W specifies his

policy. This is because she gets 1
2 for sure by specifying her policy, while using ambiguous language

at all times in [−t, 0] gives her either 1
2 or 1 with the latter taking place with positive probability

(when W does not enter afterward and when W enters and S copies his policy).

If W announces {1} in the early stages of the campaign, then the probability with which S enters

afterward is high. So W wants to postpone announcing. But waiting too much is not optimal for

W either, since if he does not have a chance to revise his policy set, W gets a payoff of 0. So there

should exist a “cutoff,” −t∗, until which W announces {0, 1} and after which W announces {1}

when he gets an opportunity of a policy announcement.

Recall that we do not have this type of strategic consideration in the no-valence election cam-

paign (δ = 0), even if we extend the model to include the case with p = 1
2 . The simple argument

we provided for Proposition 1 breaks down since the continuation payoff after taking each action

is different once we introduce valence. For example, W expects a payoff close to zero if he specifies

some policy when the deadline is far away in the valence election campaign, as opposed to a payoff

of 1
2 that he gets in the no-valence election campaign.

Next, consider the case with p = 0. In this case, S would want to commit to {1} as soon as

possible, because she can then obtain a payoff of 1, which is the highest possible payoff. Since W

can win if and only if he enters at {1} and S does not have an opportunity, W also enters at {1}
30Strictly speaking, since p < 1

2
, this is actually outside of the model, but we consider such a case to provide the

intuition. The same comment applies to the case p = 0 that we consider next.
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as soon as possible.

The next proposition fully characterizes the form of PBE for each p ∈ (0, 1
2) \ { 1

1+e}. Suppose

that the current policy set of each candidate is {0, 1}. The equilibrium strategy of W is to wait

until a finite cutoff time and to enter as soon as possible after that cutoff. In contrast to the case

of p = 0, the cutoff is finite for any strictly positive p because the probability that the median

voter is at 0 is strictly positive. The equilibrium strategy for S depends on the value of p, and the

value p = 1
1+e corresponds to the cutoff at which S’s incentive changes. If p is close to 1

2 (p > 1
1+e ,

considered in part 1 of Proposition 2), S does not enter until W enters for the same reason as in

the case of p = 1
2 . In contrast, for small p (p < 1

1+e , considered in part 2 of Proposition 2), S enters

when the deadline is far away as when p = 0, but does not do so when the deadline is close. The

intuition for the ambiguity near the deadline is as follows: If S obtains an opportunity when the

deadline is close, then the probability with which W has a chance to announce his policy afterward

is small. So it is likely that W uses ambiguous language at the deadline. Thus, keeping ambiguous

language is profitable for S, because by doing so, S gets a payoff of 1 with a high probability.

Proposition 2 Consider the valence election campaign with (p, T, λ). There exists a PBE. More-

over, there exist t∗ := 1
λ , tS, and tW (the latter two depend on p) that are independent of T such

that, for any PBE, the following are satisfied if the previous policy sets are both {0, 1}:31

1. If p > 1
1+e , the following hold:32

(a) S announces {0, 1} for all −t ∈ (−∞, 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−t∗) and {1} for all −t ∈ (−t∗, 0].

2. If p < 1
1+e , then the following hold:

(a) S announces {1} for all −t ∈ (−∞,−tS) and {0, 1} for all −t ∈ (−tS , 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−tW ) and {1} for all −t ∈ (−tW , 0].

(c) Moreover, −tW < −tS, dtS
dp > 0 and dtW

dp < 0.

31If p = 1
1+e

, then there is indeterminacy about S’s equilibrium strategy at all −t < −t∗ since she is indifferent.
32Although the entire game lasts for the time interval [−T, 0], we state results for all times in (−∞, 0] as the results

do not rely on whether the cutoff times (at which equilibrium actions change) are earlier or later than −T . Any
statement about time interval K ⊆ (−∞, 0] should be interpreted as a statement about the time interval K ∩ [−T, 0].
The same caution applies to all other formal statements involving time intervals.
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Figure 1: Cutoff times for the valence election campaign (λ = 1).

Note that the cutoffs are independent of T . Hence, when T and p are large, we expect that

candidates use ambiguous language for most of the campaign period. Note also that stretching T

and enlarging λ with the same ratio are equivalent. Hence, this also implies that for a fixed length

of campaign period T , if we consider the situation in which the opportunities arrive frequently,

candidates spend most of the time in [−T, 0] using ambiguous language.

In Figure 1, we depict the times t∗, tS , and tW that appear in Proposition 2, for different values

of p for the case of λ = 1. For example, p = .4 (> 1
1+e) corresponds to part 1 of the proposition. In

this case, there is one point at which the graph in the figure intersects with the p = .4 line, so as a

result, the time spectrum is divided into two regions: In the left region, no candidate enters. In the

right region, S does not enter while W enters. When p = .2 (< 1
1+e), there are two intersections,

and as a result the time spectrum is divided into three regions: In the left-most region, S enters

while W does not enter. In the middle region, both candidates enter. Finally, in the right-most

region, S does not enter while W enters.
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Notice that this particular model predicts that when p is small (p < 1
1+e) and T > tS , S enters

as soon as possible, so if T is large, then there would be almost no ambiguity in equilibrium. This

hinges on our assumption that even if W enters after S, S does not incur any loss. In the Online

Appendix, we show that if there is even a small loss, S prefers to use ambiguous language until

some point in time that does not depend on the horizon length T , and so the modified model is

consistent with ambiguity even if p is low. Despite this feature, we believe that the simple model

in this section provides a basic intuition about the dynamic incentives that candidates face. The

basic takeaway is that the nature of the election game with valence leads candidates to strategically

“time” their announcements, since the benefit and cost of maintaining flexibility of choice vary over

time. Consider W ’s incentive, for example. On the one hand, the benefit comes from the fact that

the election game is constant-sum, so avoiding being the first mover is a good thing. On the other

hand, the cost comes from the difference in valence. He does not want to end up making the

same choice as S (that is, taking {0, 1}). This is the general trade-off of timing strategies faced by

electoral candidates, and our model succinctly captures such a trade-off.

Remark 1 (Empirical implication) Note that Proposition 2 applies to any PBE. This unique-

ness property enables us to conduct meaningful comparative statics, which one can potentially test

empirically. The analysis shows that ambiguity is likely when the probability distribution of the

median voter’s position is close to uniform (p is close to 1/2). This is consistent with Campbell

(1983) who suggests that opinion dispersion has a strong positive effect on the ambiguity in can-

didates’ language.33 Also, a researcher would be able to infer which candidate is stronger, given

the information about the timing of entry or the final policy profiles announced. More detailed

accounts of these claims are in the Online Appendix.

Remark 2 (Robustness of the prediction) The basic structure of the equilibrium is robust

even if the two candidates have different arrival rates, although the fine details change. One can

show that a relatively higher arrival rate makes the candidate better off. This is due to the fact

that the underlying game is constant-sum, and is in a stark contrast to the results for coordination

games in Calcagno et al. (2014) that having a higher arrival rate makes the player worse off since it

33Specifically, we have in mind a situation where n voters are independently distributed over {0, 1} where the
probability on the policy 0 is q < 1

2
. A higher q suggests more option dispersion (a higher standard deviation of the

preferred policies among the voters. Campbell (1983) also considers standard deviation), and corresponds to a higher
p.
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decreases his/her commitment power. More detailed discussions about heterogeneous arrival rates

and a general model with heterogeneous arrival rates and a general class of payoff functions are

provided in the Online Appendix.

Remark 3 (Welfare implications) One may be tempted to conduct a welfare analysis resorting

to the micro-foundation we provided, but there is a caveat in doing so: The distribution of the

median voter does not necessarily pin down the voter distribution at each realized state of the world.

With additional assumptions about the voter distribution, one can conduct welfare analysis. For

example, suppose that there is a single voter. It is then necessary that this single voter’s ideal policy

is 0 with probability p and 1 with probability 1 − p. Then, one can show by a calculation that

the voter’s expected payoff in our model is smaller than under a unique mixed Nash equilibrium

model in which each candidate chooses between 0 and 1 as in Aragonès and Palfrey (2002) when

our model predicts long ambiguity (p > 1
1+e), the valence term δ > 0 is sufficiently small, and T

is sufficiently large.34 Although we acknowledge that welfare analysis is an interesting direction of

research, we do not explore it under other assumptions about the voter distribution in the valence

election campaign, or in other examples we present. This is because such an exercise necessities

additional assumptions about voter distributions which are not necessary when considering our

main focus on candidates’ timing problems and resulting policies.

3.2 Multi-dimensional Policy Space – the Case with Purely Office-Motivated

Candidates

When the policy space is multi-dimensional, there does not generally exist a Condorcet winner,

and a pure-strategy Nash equilibrium does not exist in a static model. In this section, in contrast,

we show that our policy announcement timing game admits existence of a PBE. The ambiguity

again results from a disadvantage of being the first-mover, which follows from the nonexistence of

a Condorcet winner.

Suppose that the policy space X is a full-dimensional connected subset of Rn for some n ∈ N.

The voters are distributed according to a measure µ ∈ ∆(X). As a normalization, let µ(X) = 1.

We assume that µ(Y ) = 0 for any zero-Lebesgue measure set Y ⊆ Rn. Given a policy profile

34The calculation is given in the Online Appendix.
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(xA, xB) ∈ X ×X, we define the set of supporters for each candidate as:

SA(xA, xB) = {x ∈ X| |x− xA| < |x− xB|} and SB(xB, xA) = {x ∈ X| |x− xA| > |x− xB|},

where | · | denotes the Euclidian distance. We define the probability of A’s winning, PA(xA, xB),

to be 1 if µ(SA(xA, xB)) > µ(SB(xB, xA)), 1
2 if µ(SA(xA, xB)) = µ(SB(xB, xA)), and 0 otherwise.

Let the probability of B’s winning be PB(xB, xA) = 1−PA(xA, xB). An interpretation is that each

voter receives a utility that is strictly decreasing in the Euclidian distance between her bliss point

and a policy, and supports the candidate with the policy that would give rise to a strictly higher

utility.

Each candidate is purely office-motivated: She receives payoff 1 if elected, and 0 otherwise.

Each candidate’s objective is to maximize the expected payoff.

Each problem is characterized by a pair (X,µ). Let the set of all problems be P. Define

M =

{
(X,µ) ∈ P | ∃x∗ ∈ X s.t. ∀y ∈ X \ {x∗}, µ ({z ∈ X|(y − x∗) · (z − x∗) > 0}) =

1

2

}
.

Notice first that if X ⊆ R, that is, when X is uni-dimensional, then (X,µ) ∈ M holds for any

µ. Notice second that for multi-dimensional X, M is imposing a severe symmetry condition. For

example, if µ is the uniform distribution over X, then (X,µ) ∈ M is equivalent to X being point

symmetric. Also, for a given multi-dimensional X, (X,µ) 6∈ M holds generically in the space of

µ.35 Third, when (X,µ) ∈ M, the x∗ satisfying the condition in the definition of M is uniquely

determined because X is connected. We denote this unique x∗ by x∗(X,µ).

In the policy announcement timing game, for each i, the available policy sets are all the sin-

gletons and the entire set X, so Xi = {X} ∪
(⋃

x∈X {{x}}
)

for each i = A,B. To define the vote

share and winning probabilities for the case in which some candidate does not enter, we expand

the domain of Si with a restriction that X \ (Si(Xi, Xj) ∪ Sj(Xj , Xi)) has measure zero for any

(Xi, Xj) such that Xi 6= Xj , and Si(X,X) = ∅ for each i = A,B. That is, unless the two candi-

dates specify the same policy set, the set of indifferent voters has measure zero. The domain of

Pi is expanded accordingly for each i = A,B.36 The payoffs are the same as in the static model:

35See Theorem 7.2 of Roemer (2001) for the detail.
36That is, PA(XA, XB) is 1 if µ(SA(XA, XB)) > µ(SB(XB , XA)), it is 1

2
if µ(SA(XA, XB)) = µ(SB(XB , XA)), and

is 0 otherwise. We let the probability of B’s winning be PB(XB , XA) = 1− PA(XA, XB).
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vi(Xi, Xj) = Pi(Xi, Xj) for each Xi ∈ Xi, Xj ∈ Xj , and i = A,B. We assume that there exists

x̄ ∈ X such that vi({x̄}, X) = 1 for each i = A,B, which implies that clarifying a policy position is

better when the other candidate is ambiguous. Moreover, once a candidate enters, she prefers the

opponent not to enter, that is, µ(Si(xi, X)) > infx′∈X µ(Si(xi, x
′)) holds for each xi ∈ X, i = A,B.

This assumption is satisfied if voters believe that candidates, without specifying a policy, take a

policy randomly upon being elected, and the voter utility functions are strictly concave. Finally,

Si(X,X) = ∅ implies that if no one has entered, then the winning probabilities are half-half. We

call this dynamic game a symmetric office-motivated election campaign. It is characterized by a

tuple (X,µ, T, λA, λB).

Proposition 3 Consider a symmetric office-motivated election campaign with (X,µ, T, λA, λB).

There exists a PBE, and the following are true.

1. Suppose that (X,µ) ∈ M. Then, in any PBE, conditional on any history, each candidate i

announces x∗(X,µ).

2. Suppose that (X,µ) 6∈ M. Then, there exist t∗A, t
∗
B ∈ (0,∞) such that, in any PBE, if no one

has entered at time −t, candidate i does not enter if −t ∈ (−∞, t∗i ), and does enter at some

policy if −t ∈ (t∗i , 0]. It must be the case that sign(λA − λB) = sign(t∗A − t∗B).

Remark 4 (Existence of a pure-strategy Nash equilibrium) Note that (X,µ) ∈ M if and

only if there exists a pure-strategy Nash equilibrium in the static game in which each candidate

chooses a policy in X.37 Hence, the proposition shows that ambiguity emerges in a PBE if and

only if there is no pure-strategy Nash equilibrium in such a static game.

Part 1 implies that, if there exists a Condorcet winner, then it is optimal to announce that

policy as soon as possible. In part 2, intuitively, each candidate’s strategic situation is similar to

that of the weak candidate in the valence election campaign (Section 3.1): If the other candidate

cannot enter, she prefers entering to not entering (the former gives a payoff of 1 while the latter

gives 1
2). However, if the other candidate can enter, then she prefers not entering to entering (the

37The reason for the “if” direction is that there always exists at least one candidate, say i, who receives no more
than half of the entire vote share in a Nash equilibrium, and (X,µ) 6∈ M implies that there exists a policy close to
j’s policy such that i always has an incentive to deviate to it to receive a vote share strictly higher than 1/2 (see, for
example, Theorem 7.1 of Roemer (2001) for a related result).
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former gives a positive expected payoff while the latter gives 0). As a result, it is optimal not to

enter if the deadline is far because the probability that the other candidate can enter afterward is

large. If the deadline is close, however, since the probability of such an event is small, it is optimal

to enter.

If candidate B can only move slower (λB < λA), then the proposition predicts that he is more

likely to be ambiguous at the election date, and conditional on entering, the expected entry time

is later. For the entry time, there are two opposing forces: On the one hand, since candidate B

cannot move fast, the risk of him not being able to enter afterward is substantial. This force would

make him willing to enter early. On the other hand, candidate B knows that candidate A is likely

to obtain an opportunity later, and this would make him willing to wait until the last moment.

Since the loss from the latter is particularly large, he does not want to enter until the last moment

(t∗B < t∗A).

An implication of Proposition 3 is that the faster candidate is more likely to win:

Proposition 4 Consider a symmetric office-motivated election campaign with (X,µ, T, λA, λB). If

λA > λB, then for any PBE, candidate A’s expected payoff is strictly greater than that of candidate

B.

The proposition is straightforward if (X,µ) ∈ M. The case of (X,µ) 6∈ M may seem subtle, but

there is a simple intuition: Given the previous proposition, candidate B does not enter until −t∗B.

Candidate A can obtain a higher payoff than candidate B by simply waiting until time −t∗B because

A receives opportunities more frequently than B does after −t∗B. Such a strategy is suboptimal but

provides a lower bound of candidate A’s PBE payoff.

Finally, we state an implication of Proposition 3 on the relationship between the dynamics in

PBE and the dimensionality of the policy set.

Corollary 1 Fix X. The following are true:

1. If X is uni-dimensional (n = 1), then for any (µ, T, λA, λB), the following is true: In the sym-

metric office-motivated election campaign with (X,µ, T, λA, λB), there exists a PBE. More-

over, in any PBE, conditional on any history, each candidate i announces x∗(X,µ).
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2. If X is multi-dimensional (n ≥ 2), then for generic µ, for any (T, λA, λB), the following are

true: There exists a PBE. Moreover, there exist t∗A, t
∗
B ∈ (0,∞) such that, in any PBE, if no

one has entered at time −t, candidate i does not enter if −t ∈ (−∞, t∗i ), and does enter at

some policy if −t ∈ (t∗i , 0].

Notice that the results in this section show the uniqueness of a distribution of entry times in

any PBE, while it does not show the uniqueness of the policies to which the candidates enter.

In fact, there may exist multiple PBE due to the fact that there may exist multiple policies at

which each candidate can win if the opponent does not enter and multiple policies at which each

candidate can win when she enters after her opponent. In the next section, we consider the case

with a multi-dimensional policy space with policy-motivated candidates and show that, with policy

motivation, uniqueness of policies may obtain.

3.3 Multi-dimensional Policy Space – the Case with Policy-Motivated Candi-

dates

We again consider the policy announcement timing game with a multi-dimensional policy space,

but now with policy-motivated candidates. We show that, in a PBE, if a candidate cares about

the policy implemented by the winner of the election, then she may announce a Pareto-inefficient

policy to influence a later announcement by the opposition party. By announcing such a policy,

she can induce the opponent to implement a policy that is not too undesirable even in the event

that she loses.

Specifically, we consider the following setting of Persson and Tabellini (2000): X = {(x1, x2) ∈

[0, 1]2 : x1 + x2 ≤ 1}. Here, a higher x1 is interpreted as a more conservative economic policy and

a higher x2 is interpreted as a more aggressive military policy. There are three voters: Voter 1’s

ideal policy is (1, 0) and her utility from policy x is − (1− x1). That is, she is right-wing and only

cares about the economic policy. Voter 2’s ideal policy is (0, 1) and her utility from policy x is

− (1− x2). That is, she is also right-wing and only cares about the military policy. Finally. voter

3’s ideal policy is (0, 0) and her utility from policy x is −x1 − x2. That is, she generally likes a

left-wing policy.

There are two candidates L and R, whose ideal policies are (0, 0) and
(

1
2 ,

1
2

)
, respectively.38

38When we need to distinguish between the two candidates, we use a masculine pronoun for L and a feminine
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Their ideal policies are common knowledge, and the voters correctly believe that the candidate

who wins without specifying a policy will implement her ideal policy. If a candidate wins with a

specified policy x, then she must implement x. The voters vote for the candidate who brings the

higher utility, with a tie broken equally in favor of the entrant if there is only one candidate who

enters, and in favor of the candidate who enters later if both enter.39 This in particular implies

that R collects two votes when no candidate enters. The candidate collecting two or three votes

wins. Since R has an ideal policy that is preferred by two voters (voters 1 and 2), she has a chance

of winning with probability 1 if no candidate specifies a policy. In this sense, candidate R is similar

to the “strong candidate” in the valence election campaign analyzed in Section 3.1. We will show,

however, that the distribution of entry times differs from the one for that model because the payoff

from the entry is specified differently.

If a candidate k ∈ {L,R} wins the election and implements policy x, the payoff of candidate

i ∈ {L,R} is

Ii=k + εui (x) ,

where uL (x) = −maxn∈{1,2} xn and uR (x) = minn∈{1,2} xn are the utility functions to represent

candidates’ policy preferences, and ε > 0.40 The payoff function vi for each i = L,R is specified

accordingly. Persson and Tabellini (2000) show that there is no Condorcet winner (no median

voter) and there is no pure-strategy Nash equilibrium in the simultaneous-move game in which

choosing X is not allowed.

In the policy announcement timing game, for each i, the available policy sets are again all the

singletons and the entire set X, so Xi = {X} ∪
(⋃

x∈X {{x}}
)
. As a tie-breaking rule, we assume

that if it is optimal for a candidate to enter and X̄ is the set of all policies such that entering

at any policy in X̄ generates the maximum continuation payoff, then she enters at a policy in

pronoun for R.
39 This tie-breaking rule is consistent with considering a limit of unique PBEs in models with discrete policy

spaces. Palfrey (1984) conducts the same exercise of taking a limit in a game where best responses do not exist
with a continuous policy space. To be precise, this tie-breaking rule violates the assumption that the payoffs to the
candidates are determined solely by the functions (vi)i=L,R which only depend on the profile of policy sets. One could
define a value function that depends both on the policy-set profile and on the times at which they are announced,
but we do not write out such formalization in light of the justification due to discrete policy spaces and for the sake
or readability. The same comment applies to later sections where we introduce tie-breaking rules (Section 3.5 and
the Online Appendix).

40To avoid confusion, we use n for the index of a dimension of the policy space; and i, j and k for the indices of
the candidates.
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arg min(x1,x2)∈X̄ |x1−x2|. That is, each candidate enters at a policy that is the most equally right-

wing in both dimensions. Call this game a policy-motivated election campaign. It is characterized

by a tuple (ε, T, λL, λR).

Suppose a candidate has entered at x. Since the tie is broken in favor of the last mover and

there is no Condorcet winner, there exists a closed set X (i, x) such that the remaining candidate i

wins if she enters at a policy in X (i, x). Let yi(x) be the unique minimizer of |x′1 − x′2| among all

x′ ∈ arg maxx′′∈X(i,x) ui(x
′′), that is, it is the policy that candidate i enters.41

Proposition 5 Fix λL and λR such that λL 6= 2λR. There exists ε̄ > 0 such that, for any T <∞

and ε ∈ (0, ε̄), any PBE of the policy-motivated election campaign with (ε, T, λL, λR) satisfies the

following: Each candidate enters at yi (x) as soon as possible, once the other candidate enters at

x. If the other candidate has not entered, the following hold:

1. Candidate R does not enter at any −t ∈ (−∞, 0] for any (λL, λR).

2. Candidate L’s strategy depends on the parameters (λL, λR).

(a) If λL
λR

> 2, then there exists tL ∈ (0,∞) such that L does not enter at −t ∈ (−∞,−tL)

and does enter at
(

1
2 ,

1
2

)
for −t ∈ (−tL, 0].

(b) If λL
λR

< 2, then there exist t∗L, t
∗∗
L ∈ (0,∞) such that L does not enter at −t ∈ (−∞,−t∗∗L ),

enters at either
(

2
3 , 0
)

or
(
0, 2

3

)
at −t ∈ (−t∗∗L ,−t∗L), and enters at

(
1
2 ,

1
2

)
at −t ∈ (−t∗L, 0].

The proof in the Online Appendix provides an explicit expression of ε̄. The bound ensures that

it is a dominated strategy for candidate i to enter at a policy x such that i loses at a policy set

profile ({x}, X).

On the one hand, since both voters (1, 0) and (0, 1) prefer candidate R’s ideal policy, R wins

with probability 1 if no candidate specifies a policy. Moreover, if candidate R enters and then

candidate L can enter, R will lose for sure. These facts turn out to imply that candidate R does

not have an incentive to enter unless candidate L enters.

On the other hand, candidate L has to enter at some point to receive a positive payoff. If the

deadline is very far, then since candidate R will enter with a very high probability once L enters,

41The proof of Proposition 5 shows uniqueness of the minimizer.
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it is optimal for him not to enter. If the deadline is very close, then the probability that candidate

R will enter is very small. Therefore, L enters at the policy he prefers the most among those with

which he can win, namely,
(

1
2 ,

1
2

)
. In the middle, his optimal policy depends on the relative arrival

rates of opportunities. If candidate L is a relatively fast mover (λLλR > 2), then the risk of not being

able to enter at all is small. Hence, he waits until the probability of candidate R entering after

L becomes sufficiently small, and then enters at
(

1
2 ,

1
2

)
. If L is relatively slow (λLλR < 2), it is too

risky for him to wait until the probability of candidate R entering becomes small. Hence, he enters

even when there is a significant probability of candidate R entering after L. Taking this event into

account, he does not enter at the policy he prefers the most among those with which he can win,

but at
(

2
3 , 0
)

or
(
0, 2

3

)
. This narrows down the set of policies with which candidate R can win after

L’s entry, so L can make R’s policy more left-wing.

We note that the consideration in this last part (leading L to entering at
(

2
3 , 0
)

or
(
0, 2

3

)
) does

not occur if L does not care about what policy R picks when R wins. For example, candidates

may care about the utility from being in the office and the cost of persuading the voters that

they implement a policy far from their bliss points, while they do not derive any utility from the

implemented policy per se. In the Online Appendix, we formalize such a model, and show that the

equilibrium dynamics in such a model are simpler.

Remark 5 (Outcome-equivalence for a public-monitoring model) The PBE we charac-

terize in this section (as well as the PBE characterized in the Online Appendix) is Markov-perfect

(except for measure-zero sets of times). Hence this equilibrium is outcome-equivalent to a Markov

perfect equilibrium in the “public monitoring” model where candidates observe the other candi-

date receiving opportunities even when the policy set does not change.42 Moreover, we solve the

equilibrium by backward induction. This means that any SPE under public monitoring is outcome-

equivalent to a PBE in our main model where the opponent’s opportunities are not observable. The

same remark applies to Section 3.4.43

Remark 6 (Flexibility in office) We believe that there are various reasons for ambiguous an-

nouncements in real election campaigns. It is not our intention to capture all of those reasons

in our general model, but to focus on those that relate to candidates’ dynamic incentives. In

42See Section 4.3 for the formal description of such a model.
43In Sections 3.1 and 3.2, those claims are a consequence of Theorem 3 in Section 4.3.
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the valence election campaign (Section 3.1) and the symmetric office-motivated election campaign

(Section 3.2), ambiguity is present because each candidate does not want to be the first mover.

In the policy-motivated election campaign in this section, this effect is still present, while there is

another reason to be ambiguous: Not specifying a policy gives a flexibility in choosing a preferred

policy after being elected. This same reason will be present in the analysis of the situation with

incomplete information in Section 3.5.

3.4 Dynamic Campaign Spending Model

The empirical evidence suggests that campaign spending has nontrivial effects on the election

outcome, and candidates often spend monetary resources gradually over time.44 Since the spending

can only increase over time, we can represent such a situation using our policy announcement timing

game. We specify X = {0, L,H} with 0 < L < H. The interpretation is that there are two levels

of positive campaign spending, where L is the lower level of spending and H is the higher level.

The available policy sets are Xi = {X, {L,H}, {H}} for each i = A,B. The interpretation is that

{L,H} implies that candidate i has spent L by the current time and the total spending at the

deadline can be either L (if she does not spend more) or H (if she spends more). To focus on issues

regarding campaign spending, assume that the election outcome depends solely on the amount

of campaign spending.45 In particular, for each candidate i = A,B, the probability of i winning

the election under the policy set profile (Xi, Xj) is wi(Xi, Xj) :=
minx∈Xi x

(minx∈Xi x)+
(

minx∈Xj x
) with a

convention that 0
0+0 = 1

2 . Note that this implies that we are assuming no depreciation of the effect

of campaign spending over time. For simplicity, we assume that the arrival rates of opportunities

are symmetric: λA = λB := λ.

Assuming that the remaining fund is useful to a candidate, candidate i’s payoff is

vi(Xi, Xj) := αwi(Xi, Xj) + (1− α)

(
H − min

x∈Xi
x

)
,

where

α ∈

(
max

{
L

L+ 1
2

,
H + L

H + L+ 1
2

}
, 1

)
. (1)

44See, for example, Gerber et al. (2011).
45With this definition, we capture both positive and negative advertising.
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Here, H−minx∈Xi x in the second term of vi(Xi, Xj) is the remaining cash holdings. The restriction

on α implies that α is sufficiently large so that a static best response to Xj = X is {L,H} and

that to Xj = {L,H} or {H} is {H}.46 We call this game a dynamic campaign spending game. It

is characterized by a tuple (H,L, α, T, λ).

A typical pattern found in the empirical literature (Gerber et al., 2011) is that candidates spend

more money near the deadline than far from it. With depreciation, such a pattern follows from a

mechanical reason: Earlier spending is less effective, holding the other candidate’s spending fixed.

We show that, even without depreciation, it is possible that the candidates spend more near the

deadline. This follows from a strategic reason: Suppose candidate B has spent L and the deadline

is far. If candidate A spends H now, then candidate B will match up with a very high probability.

If she spends L, then the race of matching up will start immediately as well, resulting in both

spending H with a very high probability. In contrast, if she waits at 0, then the opponent will

wait at L as well because both of them know that, once the former spends at least L or the latter

spends H, then the race of matching up will start immediately. Hence they can avoid a wasteful

competition of matching up with the opponent’s high spending until the deadline becomes near.

Depending on how important winning is relative to keeping the money, such an incentive may

be alleviated due to the risk that the winning probability will be 0 if candidate A does not have

an opportunity to spend more later. Specifically, if α is large, that is, if winning the election is

sufficiently important compared to keeping the money, then the risk is prominent and thus they

spend H as soon as possible far from the deadline. In contrast, if α is small, then the benefit

of avoiding escalation when the deadline is far is sufficiently large. Hence, candidates stay at a

spending profile (L, 0) or (0, L) for a long time.

Proposition 6 Fix the dynamic campaign spending game with (H,L, α, T, λ).

1. If

α >
H + L

H + L+ 1
4

(2)

holds, then there exists a PBE. In any PBE, the following hold:

46Formally, these conditions are expressed as: α + (1− α) (H − L) > max{α, α 1
2

+ (1− α)H}, α H
H+L

>

max{α L
H+L

+ (1− α) (H − L) , (1− α)H}, and α 1
2
> max{α L

H+L
+ (1 − α)L, (1 − α)H}, which are equivalent to

α > max
{

L

L+ 1
2

, H+L

H+L+ 1
2

}
.
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(a) For each −t < − 1
α

2(1−α)(H+L)
−1

1
λ , each candidate spends H after each history.

(b) For each −t > − 1
α

2(1−α)(H+L)
−1

1
λ ,47 each candidate spends H if the other candidate has

spent L or H, and spends L otherwise.

2. If

α <
H + L

H + L+ 1
4

(3)

holds, then there exists a PBE. In any PBE, the following hold:

(a) For each −t < − 1
λ , each candidate spends L if both candidates have spent 0; each

candidate does not increase the spending if one candidate has spent L and the other has

spent 0; and each candidate spends H otherwise.

(b) For each −t > − 1
λ , each candidate spends H if the other candidate has spent L or H,

and spends L otherwise.

Note that it is straightforward to show that the set of parameters (H,L, α) satisfying both (1)

and (2) is nonempty, and the one satisfying both (1) and (3) is also nonempty. When the parameters

satisfy (1) and (3), the proposition shows that candidates spend a long time not spending the highest

possible amount for the campaign.

3.5 Incomplete Information Model

The general model setup in Section 2 features a complete information game. To show the potential

of the model to include a wider class of settings, here we allow for incomplete information. We find

that ambiguity still prevails in our incomplete-information game.

Suppose that the set of policies is X = R, and there are two candidates L (he) and R (she).

Each of the candidates has two types, Normal or Extreme. The normal type has the ideal policy

of 0, while the extreme type has the ideal policy of xi with i ∈ {L,H}, depending on the index of

the candidate. We assume xL < 0 < xR and xL = −xR. Let p ∈ (0, 1] be the probability that a

candidate is extreme, and we assume that types are independently distributed between candidates.

We extend the perfect Bayesian equilibrium defined in Section 2 in a straightforward way, where

the associated belief specifies the belief about the other candidate’s type.

47Given α > H+L

H+L+ 1
4

, we have α
2(1−α)(H+L)

− 1 > 0.

32



There is a continuum of voters whose ideal policies are distributed on R, with the median

position being 0. Given the ideal policy y and policy x, the voter’s utility is − |x− y|. A candidate’s

utility given her ideal policy y and implemented policy x is − |x− y|. That is, candidates are purely

policy-motivated.

In the policy announcement timing game, we let Xi = {X} ∪
(⋃

x∈X {{x}}
)

for each i = L,R,

and assume that the arrival rates of opportunities are symmetric: λL = λH = λ. The policy

commitment is irreversible and credible: Even if a candidate enters at a platform different from

her ideal point, she must implement it. However, if a candidate does not enter, then the voters

and the other candidate believe that she will implement her ideal policy. Given this commitment

and belief, each voter votes for a candidate who brings the higher expected utility (ties are broken

randomly with equal probability). The candidate with a higher vote share will win. The payoff

function vi for each type of each i = L,R is specified accordingly. We break ties in favor of a

candidate who enters if only one candidate enters; in favor of the second entrant if both candidates

enter; randomly with equal probability in all other cases. We call this dynamic game an election

with incomplete information. It is characterized by a tuple (p, T, λ). We focus on symmetric PBE

in this game.48

3.5.1 Benchmark: Complete Information

Before fully analyzing the case with p < 1, we analyze the case where both candidates are extreme

for sure (p = 1). The following proposition says that, with p = 1, there is a continuum of equilibria

when the horizon is sufficiently long.

To state the result formally, given the opponent’s policy x, we define BRR (x) and BRL (x) to

be candidate R’s and L’s static best responses, respectively, when they are extreme:

BRR (x) :=


xR if |x| > xR

x if x ∈ (0, xR]

−x if x ∈ [−xR, 0]

, BRL (x) :=


−xR if |x| > xR

−x if x ∈ [0, xR]

x if x ∈ [−xR, 0)

. (4)

48Some results in this section apply to any (possibly asymmetric) PBE, and for those results we do not restrict
ourselves to symmetric PBE in stating them.
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Proposition 7 In any election with incomplete information with (1, T, λ), σ is a pure PBE if and

only if the following hold under σ.

1. If the opponent has not entered, then, the following hold.

(a) If i enters at time −t ∈ (−∞,− 1
λ ln 2), she enters at 0.

(b) If L enters at time −t = − 1
λ ln 2, he enters at a policy in [xL, 0]. If R enters at time

−t = − 1
λ ln 2, she enters at a policy in [0, xR].

(c) Each candidate i ∈ {L,R} enters at xi for −t ∈ (− 1
λ ln 2, 0].

2. If the opponent has entered at x, then each candidate i ∈ {L,R} enters at BRi (x) as soon

as possible.

Intuitively, if the deadline is sufficiently far, it is likely that the opponent will have an oppor-

tunity later. Hence, if candidate R enters at x ≥ 0 then −x ≤ 0 will be implemented with a high

probability, and if L enters at x ≤ 0 then −x ≥ 0 will be implemented with a high probability.

Thus, it is better for each candidate to enter at 0 if she ever enters.

If she skips an opportunity, then by symmetry and the constant-sum nature of payoff functions,

the expected payoff is the same between the candidates. Since each candidate enters at some policy

in
[
−xR, xR

]
when entering (if a candidate enters outside of this interval, then she will certainly

lose since the median voter will prefer the opponent’s ideal policy), this symmetry, together with

piecewise-linearity of the utility function, means that each candidate’s expected payoff is the same

as the one from entering at 0.

In total, each candidate is indifferent between entering at 0 and not entering when the deadline

is far. When the deadline is close, since it is likely that the opponent cannot enter afterward, it is

optimal to enter at her own ideal policy. The cutoff time turns out to be − 1
λ ln 2.

As will be seen, in the model where p ∈ (0, 1), for sufficiently large T , the extreme candidates

do not enter until −t near − 1
λ ln 2. Intuitively, there is an option value of not entering and figuring

out the opponent’s type. More precisely, the normal type enters at 0 as soon as possible, and hence

waiting allows a candidate to learn about the opponent’s type.

3.5.2 Strategy of the Normal Type

The next lemma formally pins down the strategy of the normal type:
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Lemma 2 In any PBE of the election with incomplete information with (p, T, λ) with p ∈ (0, 1),

each normal-type candidate enters at 0 as soon as possible at any history.

The intuition is that, if a normal-type candidate enters at 0, then with probability 1 the winning

policy is 0, which is her ideal policy.

3.5.3 Strategy of the Extreme Candidate

Since the candidates are symmetric and we focus on symmetric PBE, without loss, we consider

candidate R’s incentive.

We first analyze what each extreme candidate does once the opponent enters. Given the defi-

nition of the best response, in any PBE, once the opponent enters at x, the extreme type of each

candidate i ∈ {L,R} enters at BRi (x) as soon as possible.

Hence, given an arbitrary conditional probability p̃ of candidate L being extreme, the expected

payoff of extreme candidate R entering at x at −t when candidate L has not entered and is extreme

depends only on (t, x, p̃) in any PBE. Let vt (p̃, x) be this expected payoff of extreme candidate R and

let vt (p̃, enter) = maxx vt (p̃, x) be the expected payoff of entering.49 The next lemma characterizes

the optimal policy to enter:

Lemma 3 For each p̃ ∈ (0, 1) and t ≥ 0, we have

arg max
x

vt (p̃, x) =


{
p̃xR

}
if e−λt

1−e−λt > p̃

[0, p̃xR] if e−λt

1−e−λt = p̃

{0} if e−λt

1−e−λt < p̃

.50

Intuitively, if the deadline is far (that is, e−λt

1−e−λt < p̃), then it is likely that the opponent L will

have an opportunity to enter and flip the policy if he is extreme: If extreme candidate R enters

at x, then −x will be implemented with a high probability if the opponent is extreme. Hence it

is optimal to enter at 0 (if she ever enters). On the other hand, if the deadline is near (that is,

e−λt

1−e−λt > p̃), then it is unlikely that the opponent will have an opportunity. Hence she enters

49As will be seen, the maximizer always exists.
50We use the convention that 1

0
= +∞ (which applies when t = 0).
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at a policy close to her ideal policy. The value of entering, vt (p̃, enter) = maxx vt (p̃, x), can be

computed by using this lemma.51

Since we have pinned down the strategy of the normal type and the continuation strategy of the

extreme type after the opponent has entered, we are left to specify extreme candidate R’s strategy

at the histories where candidate L has not entered. Let H̄R
t be the set of candidate R’s histories

such that no candidate has entered by −t.

Fix any symmetric PBE σ. Given the history htR ∈ H̄R
t , let p

(
htR
)

be the posterior probability

that candidate L is extreme. Since candidate R’s opportunity and candidate L’s opportunity are

independently distributed and it is possible that candidate L has not obtained any opportunity by

the current time, the posterior p
(
htR
)

depends only on the public history—the event that neither

candidate has entered by −t. Hence, we write it as a function of t, by setting p
(
htR
)

= p (t).

Moreover, candidate R and the voters share the same posterior about candidate L being extreme.

Thus, p (t) is the voters’ posterior about L’s type as well.

The next lemma states that candidate R does not enter at −t with e−λt

1−e−λt ≤ p (t):

Lemma 4 In any election with incomplete information with (p.T, λ) with p ∈ (0, 1), under any

symmetric PBE, for each time −t and htR ∈ H̄t
R, candidate R does not enter if e−λt

1−e−λt ≤ p (t).

To see the intuition, suppose candidate R has an opportunity at −t. Since candidate L and the

voters cannot observe if candidate R received an opportunity, if candidate R does not enter, then

the situation is the same as the case in which no candidate receives an opportunity at −t. Since

we focus on symmetric equilibria and the implemented policy is in
[
−xR, xR

]
, if the opponent is

extreme, then candidate R obtains a payoff of −xR (corresponding to policy 0) if she does not

enter. If the opponent is normal, then she obtains a payoff greater than −xR by not entering. This

is because, since the opponent enters at 0, she can obtain a payoff that is at least −xR at any

history; and if no candidate receives further opportunities, then she obtains a payoff of −1
2x

R. In

contrast, Lemma 3 implies that, if candidate R enters at −t with e−λt

1−e−λt ≤ p (t), she obtains −xR.

Hence, it is uniquely optimal for her not to enter.

Given this lemma, we now characterize the equilibrium dynamics. Fix any prior p > 0. If T

is sufficiently large, then we have e−λt

1−e−λt ≤ p ≤ p (t) for all −t ∈
[
−T

2 ,−T
]
. Hence, the extreme

candidates do not enter for any −t ∈
[
−T

2 ,−T
]
.

51The calculation is provided in the proof of Lemma 3.
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Since normal types enter as soon as they obtain an opportunity and extreme types do not

enter in any symmetric PBE, by a standard argument p (t) can be shown to evolve as follows for

−t ∈
[
−T

2 ,−T
]
:

d

dt
p (t) = −λp (t) (1− p (t)) .

Given this evolution, for large T , we have p
(
T
2

)
≈ 1. Since the normal candidates always enter, we

have p (t) ≥ p
(
T
2

)
≈ 1 for all −t ≥ −T

2 .

At −t = −T
2 , candidate R does not enter. In contrast, for −t sufficiently close to 0, she enters.

To see this, consider the following two scenarios: If she enters at p (t)xR ≈ xR, she will win and

obtain a payoff near 0 if and only if candidate L cannot enter, which happens with probability

close to 1. If candidate R does not enter, then again with a probability close to 1, no candidate

obtains a further opportunity. Hence her payoff is near −xR. Thus, for −t sufficiently close to 0,

it is optimal for R to enter at p (t)xR.

In fact, we can show that there exists a unique cutoff time −t∗ such that candidate R enters

at p (t)xR if −t > −t∗ and does not enter if −t < −t∗, where p (t) evolves according to d
dtp (t) =

−λp (t) (1− p (t)) for −t ∈ [−T,−t∗] (the extreme candidate does not enter for −t ∈ [−T,−t∗))

and p (t) = p (t∗) for −t ≥ −t∗ (the extreme candidate enters for −t ∈ (−t∗, 0] and so there is no

belief update). Moreover, we can show that t∗ converges to the maximum cutoff for the complete-

information case as the horizon becomes long (T → ∞), providing one possible refinement of the

set of PBE in the case of complete information (cf. Proposition 7). We summarize our results as

follows.

Proposition 8 For each p ∈ (0, 1) and λ > 0, there exists T̄p,λ <∞ such that, for each T ≥ T̄p,λ,

in any election with incomplete information with (p, λ, T ), there exists a symmetric PBE, and there

exists t∗ (p, λ, T ) such that any symmetric PBE satisfies the following equilibrium dynamics: For

each −t < −t∗ (p, λ, T ), extreme candidates do not enter and p (t) evolves according to d
dtp (t) =

−λp (t) (1− p (t)) over −t = [−T,−t∗]; and for each −t > −t∗ (p, λ, T ), extreme candidate i = L,R

enters at p (t∗ (p, λ, T ))xi and p (t) = p (t∗ (p, λ, T )). Moreover, for any p ∈ (0, 1) and λ > 0,
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−λt∗ (p, λ, T ) converges to − ln 2 as T →∞:

lim
T→∞

|λt∗ (p, λ, T )− ln 2| = 0.

The proposition shows that candidates use ambiguous language at times before −t∗ (p, λ, T )

in any symmetric PBE. This implies that extreme candidates spend most of the campaign time

keeping their policies ambiguous, provided the campaign is sufficiently long.

4 General Predictions

In Section 3, we have seen that the policy announcement timing game can be applied to analyses

of various examples. In those examples, we showed results that match observations in real election

campaigns (cf. discussions in the Introduction). Now we present general principles that underlie

those results. This helps us understand the logic behind various results in Section 3, as well as

shows the robustness of those results to wider classes of environments.

To recap, our discussion of the applications have the following in common: Candidates use

ambiguous language (or do not use up all the campaign funds) when the election date is not

close if entering before the opponent is disadvantageous, while they enter as soon as possible if a

Condorcet winner exists. Moreover, we obtained uniqueness of the entry times in many results, and

in particular, we obtain uniqueness in the models in which candidates are purely office-motivated.

In this section, we aim to generalize those results.

In Section 4.1, we offer a general condition for candidates to use ambiguous language. The key

condition is what we call the “first-mover disadvantage,” which roughly corresponds to the non-

existence of a Condorcet winner. In contrast, Section 4.2 shows that if there is a Condorcet winner,

then candidates announce the policy corresponding to the Condorcet winner as soon as possible.

Finally, Section 4.3 offers a general implication of the candidates being purely office-motivated.

For each application, Table 2 represents which general prediction is applicable to which appli-

cation. In some applications, the corresponding general theorem only applies to part of the claims

made there. In the subsections that follow, we explain which part of each of those applications is

covered by each general theorem.

38



Model Long ambiguity Dynamic median-voter Constant-sum Markov

Section 3.1: Valence Candidates Yes Yes Yes

Section 3.2: Multi-dimensional
policy space, purely office-motivated Yes Yes Yes

Section 3.3: Multi-dimensional
policy space, policy-motivated No No No

Section 3.4: Spending No Yes No

Section 3.5: Incomplete information No No Yes

Table 2: General Predictions and Applications: “Yes” means that the corresponding result is used
in a proof for the corresponding section, while “No” means it is not.

In Sections 4.1 and 4.2, we assume that, for each candidate i = A,B,

Xi = {{x}|x ∈ X} ∪ {X}. (5)

That is, the choice of a policy set is either to specify a single policy or not to specify any policy at

all.

4.1 The Long Ambiguity Theorem

In this section, we are going to prove the following claim:

Long Ambiguity Theorem: Under certain conditions, for each candidate i, there exists ti such

that i does not enter for any −t ∈ [−T,−ti).

The actual statement of this result is rather complicated and thus is provided at the end of this

section after a presentation of the analysis (Section 4.1.4).

To start the analysis, let (x,X) denote the set of histories at which candidate A has entered at

x and candidate B has not entered. Other sets of histories are denoted in an analogous manner.

Abuse notation to write “xi” to mean {xi} as part of the argument of vi. For each xi ∈ X, let

BRj (xi) be the set of candidate j’s best responses against candidate i’s policy xi:

BRj (xi) = arg max
Xj∈Xj

vj (Xj , xi) ,

and suppose that it is non-empty. To simplify the notation, we sometimes write xj ∈ BRj(xi) to
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mean {xj} ∈ BRj(xi).

We say that X∗i ⊆ X is candidate i’s optimal set if the following hold for each x∗i ∈ X∗i .

1. v
BRj
i := supxj∈BRj(x∗i )

vi (x∗i , xj) ≥ supxi 6∈X∗i ,xj∈BRj(xi) vi (xi, xj) .

2. vi (x∗i , X) = supxi∈Xi vi (xi, X).

Note that the equality in part 1 holds if (vi, vj) is constant-sum, which happens for example if

candidates are purely office-motivated. For general (vi, vj), it is straightforward that the definition

of the optimal set ensures that there exits a unique largest optimal set (the optimal set that is a

superset of all other optimal sets). Hereafter, let X∗i be the largest optimal set for candidate i.52

Assumption 1 For each candidate i, the largest optimal set X∗i is non-empty, and satisfies the

following properties.

1. For any x∗i ∈ X∗ and xj , x
′
j ∈ BRj(x∗i ), vi (x∗i , xj) = vi

(
x∗i , x

′
j

)
holds.

2. For any x∗i , x
∗∗
i ∈ X∗i , vj (x∗i , X) = vj (x∗∗i , X) and max{xj}∈Xj vj (x∗i , xj) = max{xj}∈Xj vj (x∗∗i , xj).

Assumption 1 ensures that X∗i is non-empty. Note that once i enters at xi, j enters at some

xj ∈ BRj (xi) in any PBE. Hence, conditional on any history such that i’s opponent has not

entered, if i enters, then she enters at some x∗i ∈ X∗i . In addition, i’s expected payoff when she

enters is uniquely pinned down. Moreover, fixing j’s strategy, if i enters, then j’s payoff is also

pinned down uniquely. Assumption 1 thus implies that any xi ∈ X∗i gives the same continuation

payoff to both candidates i and j in any PBE.

Assumption 2 For each candidate i and any x∗i ∈ X∗i , vi (x∗i , X) ≥ vBRji .

This assumption implies that, after i’s entry, i cannot be better off by the opponent’s subsequent

entry. Define:

vi,t(enter) = e−λjtvi (x∗i , X) +
(

1− e−λjt
)
v
BRj
i .

Assumption 1 implies that this is candidate i’s expected payoff at time −t when she enters (in any

PBE), and Assumption 2 implies that vi,t(enter) is weakly decreasing in t.

We consider the following three cases, depending on the incentives at the deadline.

52For each xi 6∈ X∗i , we have either “v
BRj

i > vi (xi, xj) for all xj ∈ BRj (xi)” or “vi (x∗i , X) > vi (xi, X).”
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• Case 1: vi (X,X) > vi (x∗i , X) for each i.

• Case 2: vi (X,X) < vi (x∗i , X) for each i.

– More generally, there exist t0 ≥ 0 and a number vi,t0 (X,X) such that the continuation

payoff at time −t0 given any history in (X,X) is equal to vi,t0 (X,X) in any PBE, and

that vi,t0(enter) > vi,t0 (X,X) holds for each i.53

• Case 3: vA (X,X) > vA (x∗A, X) and vB (X,X) < vB (x∗B, X).54

4.1.1 Case 1: No Candidate Enters at the Deadline

In this case, uniqueness and long ambiguity hold without additional assumptions, as follows.

Proposition 9 Consider Case 1. Under Assumptions 1 and 2, there exists a PBE. In any PBE,

at histories in (X,X), candidate i does not enter at any −t ∈ (−∞, 0].

The intuition is simple: Candidate i’s entry at time −t results in either vi(x
∗
i , X) if the opponent

j does not enter afterward, or v
BRj
i if j does. Given that no candidate enters at histories in (X,X)

after time −t, the former payoff is lower than the payoff from not entering, vi(X,X), by the

definition of Case 1, and the latter is weakly lower due to Assumption 2.

4.1.2 Case 2: Both Candidates Enter at the Deadline

Fix t0 that defines Case 2. For t > t0, define v̄i,t(not) as candidate i’s expected continuation payoff

at time −t when she does not enter, assuming that each candidate will enter at times in (−t,−t0)

upon receiving an opportunity. Such a payoff is well defined due to Assumption 1.55 Let

t∗i ≡ inf {t > t0 : v̄i,t(not) ≥ vi,t(enter)} .

Given the continuity of the continuation payoffs in time, −t∗i is the time closest to the deadline at

which candidate i is indifferent between entering and not entering.

53“vi (X,X) < vi (x∗i , X) for each i” corresponds to taking t0 = 0.
54The case with vA (X,X) < vA (x∗A, X) and vB (X,X) > vB (x∗B , X) is symmetric.
55The formal expression of this payoff is complicated, so we relegate it to the Online Appendix.
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Assumption 3 (Genericity) At least one of the following holds: v
BRj
i < sup{xi}∈Xi vi (xi, X) for

each i, or t∗A 6= t∗B, or t∗A = t∗B =∞.

This assumption is a genericity assumption in the sense that the environment in which it is

violated constitutes a degenerate (non-full-dimensional) space in the space of payoff functions.56

Proposition 10 Consider Case 2. Under Assumptions 1, 2, and 3, there exists a PBE. There

exists a profile (tA, tB) ∈ (R++ ∪ {∞})2 such that, for any PBE, at any histories in (X,X), can-

didate i does not enter at any −t ∈ (−∞,−ti), and enters at every time −t ∈ (−ti, 0]. Moreover,

if t∗i ≤ t∗j , then ti ≤ tj and ti = t∗i .

If ti < ∞, then candidate i does not enter when the deadline is sufficiently far. The following

condition, which is stronger than the condition for candidate i in Assumption 2, is a sufficient

condition for ti <∞:

First-mover disadvantage for i

 vi

(
X,x∗j

)
, vi (x∗i , X) , vi (X,X) ≥ vBRji

supxi∈X vi

(
xi, x

∗
j

)
> v

BRj
i

. (6)

The second line of this condition states that, if both candidates have to enter and the order of

the moves is known, then being the first mover is worse than being the second mover. The first

line further requires that the disadvantage of being the first mover is so large, that it is the worst

option even if we include the possibility of some candidates not specifying a policy. Intuitively,

when it is the worst for candidate i to be best-responded by her opponent, i has little incentive

to enter when the election day is far away. This is because when the election day is far away, the

probability of the opponent best-responding in the future is high. In Section 4.1.4, we explain that

this condition holds in various applications.

Proposition 11 For each i, Proposition 10 holds with ti <∞ if we additionally require first-mover

disadvantage for i to hold.57

56To see why t∗A 6= t∗B or t∗A = t∗B = ∞ holds generically, notice that, for each i = A,B and t < ∞, v̄i,t(enter) is
independent of vi(X,X), while v̄i,t(not) is strictly increasing in it. Hence, if there exists w ∈ R such that t∗A = t∗B <∞
holds for some payoff function (vA, vB) such that vA(X,X) = w, then t∗A 6= t∗B holds for any payoff function that is
the same as (vA, vB) except that vA(X,X) 6= w.

57This result is not inconsistent with the case with t∗A = t∗B = ∞ which is allowed in Assumption 3 because the
proof shows that if first-mover disadvantage for i holds then t∗i <∞.
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4.1.3 Case 3: Only One Candidate Enters at the Deadline

We define v̄Ai,t(not) as candidate i’s expected payoff at time −t when she does not enter, assuming

that only candidate B will enter at times in (−t, 0] upon receiving an opportunity.58 Such a payoff

is well defined due to Assumption 1.

Let

t̂A ≡ inf
{
t > 0 : v̄AA,t(not) ≤ vA,t(enter)

}
;

t̂B ≡ inf
{
t > 0 : v̄AB,t(not) ≥ vB,t(enter)

}
.

Given the continuity of the continuation payoffs in time, t̂i is the time closest to the deadline at

which i is indifferent between entering and not entering, respectively, assuming that only candidate

B will enter afterward.

Assumption 4 (Genericity) t̂A 6= t̂B or t̂A = t̂B =∞ holds.

Lik Assumption 3, this assumption is again a genericity assumption. If t̂A = t̂B =∞, then for

each time −t in any PBE, candidate A does not enter and candidate B enters. Hence we focus on

the case in which t̂A 6= t̂B.

Proposition 12 Consider Case 3. Under Assumptions 1, 2, and 4, there exists a PBE, and the

following hold.

1. If t̂A < t̂B, then there exists ε̄ > 0 such that for all ε ∈ (0, ε̄), in any PBE σ and its associated

belief β, at any history at time −(t̂A + ε) in (X,X), each candidate strictly prefers to enter

under the continuation strategy given by σ and the belief β.

2. If t̂A > t̂B, then for any PBE, at any history in (X,X), no candidate enters at any −t ∈(
−∞,−t̂B

)
.

If t̂A < t̂B, we can use Proposition 10 in Case 2 to characterize any PBE, with a substitution

that time t0 is set to be equal to t̂A + ε where ε > 0 is sufficiently small (and with an additional

requirement of a genericity assumption (Assumption 3)). If t̂A > t̂B, in contrast, no candidate

enters at any −t ∈
(
−∞,−t̂B

)
.

58The superscript denotes the candidate who does not enter close to the deadline in Case 3.
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Corresponding to (6), define:

Strong first-mover disadvantage for i


vi (x∗i , X) > v

BRj
i

(6) holds if t̂A < t̂B

.

Putting the two parts of Proposition 12 together, we can show the following result:59

Proposition 13 Consider Case 3 and suppose that strong first-mover disadvantage for i holds.

Under Assumptions 1, 2, and 4, there exists a PBE, and for any PBE, there exists ti < ∞ such

that candidate i does not enter at any −t ∈ (−∞,−ti).

4.1.4 Summary

We are now ready to state our first general prediction:

Theorem 1 (Long Ambiguity) Under Assumptions 1 and 2, the following claims are true.

1. Suppose vi (X,X) > vi (x∗i , X) for each i. Then, there exists a PBE, and in any PBE,

candidate i does not enter at any history in (X,X) at any −t ∈ (−∞, 0].

2. Suppose vi (X,X) < vi (x∗i , X) for each i. Then, with additionally requiring Assumption

3, there exists a PBE. Moreover, if first-mover disadvantage for i holds, then there exists

ti < ∞ such that, for any PBE, candidate i does not enter at any history in (X,X) at any

−t ∈ (−∞,−ti).

3. Suppose that vi (X,X) > vi (x∗i , X) and vj (X,X) < vj

(
x∗j , X

)
for i 6= j. Then, with addi-

tionally requiring Assumption 4, there exists a PBE. Moreover, fix an arbitrary k ∈ {i, j} and

suppose that t̂i > t̂j or strong first-mover disadvantage for candidate k holds. Then, there

exists tk < ∞ such that, for any PBE, candidate k does not enter at any history in (X,X)

at any −t ∈ (−∞,−tk).

Although the conditions referred to in the theorem involve evaluation of variables that are

endogenously determined in equilibrium (such as t̂i), they are fairly easy to check. For example, in

the valence election campaign, the environment of Proposition 2 corresponds to part 3 of Theorem

59The proof shows that, if strong first-mover disadvantage for B holds, then t̂B <∞ must hold.
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1, where i = W and j = S. It satisfies Assumptions 1, 2, and 4, and first-mover disadvantage for

W . In addition, for Proposition 3, any symmetric office-motivated election campaign model with

(X,µ) 6∈ M satisfies Assumptions 1, 2, 3, and first-mover disadvantage for each candidate. Hence,

part 2 of Theorem 1 applies.60

Since some of the assumptions in the above theorem are genericity conditions, we can also

restate part of the theorem in a way that is easier to interpret, as follows.

Corollary 2 Under Assumptions 1 and 2, the following claims are true.

1. Suppose vi (X,X) > vi (x∗i , X) for each i. Then, there exists a PBE. In any PBE, candidate

i does not enter at any history in (X,X) at any −t ∈ (−∞, 0].

2. Suppose vi (X,X) < vi (x∗i , X) for each i. Then, generically in the space of payoff functions,

the following holds. There exists a PBE, and if first-mover disadvantage for i holds, then

there exists ti < ∞ such that, for any PBE, candidate i does not enter at any history in

(X,X) at any −t ∈ (−∞,−ti).

Note that the corollary states that we expect long ambiguity in many cases, but does not identify

conditions under which we expect it. Theorem 1, in contrast, pins down the sufficient condition for

when we expect long ambiguity.

4.2 The Dynamic Median-Voter Theorem

In this section, we consider an extension of the median voter theorem, which has an implication on

several of our examples in Section 3. To this end, we focus on symmetric elections, that is, given any

X̄, X̄ ′ ∈ Xi = Xj , vi(X̄, X̄ ′) = vj(X̄, X̄
′).61 A policy x∗ ∈ X is a Condorcet winner if, for each

i, x∗ ∈ BRi(x∗), x∗ ∈ BRi(X), vi(x
∗, X) > vi(X,X), and for each Xi 6= x∗, vi(x

∗, xj) > vi(Xi, x
′
j)

for some xj ∈ BRj(x∗) and x′j ∈ BRj(Xi).
62 For example, in a uni-dimensional Downsian model

60One might think that part 2 of Theorem 1 can be applied to the analysis of the policy-motivated election cam-
paign. However, Assumption 1 fails because the optimal set is empty in that example. Specifically, for candidate L,
the intersection of the set of best responses to X, {( 1

2
, 1
2
)}, and the set of best responses assuming the opponent’s

subsequent best response, {( 2
3
, 0), (0, 2

3
)}, is disjoint. The example hence demonstrates that even outside the envi-

ronment in which our assumptions hold, long ambiguity can be an equilibrium phenomenon, showing the robustness
of the result.

61An extension to non-symmetric elections is straightforward, where one would define a profile of policies as
Condorcet winners. Analogous results to the ones we present here as well as in Appendix D would go through.

62A policy is in the largest optimal set if it is a Condorcet winner and the stage game is constant sum.
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in which (i) a candidate wins with probability one if the vote share is strictly greater than 1/2

and with probability 1/2 if the vote share is 1/2, and (ii) entering at the median voter ensures

winning when the opponent does not enter (for example, the voters are risk averse and think that

there is uncertainty about what policy a candidate announcing X would implement), the policy

corresponding to the median voter is the unique Condorcet winner. In addition, the policy 1 with

δ = 0 in Proposition 1 and the policy x∗(X,µ) in the symmetric office-motivated election campaign

with (X,µ) ∈ M (part 1 of Proposition 3) are Condorcet winners. Note that, by definition, there

is at most one Condorcet winner.

The following theorem extends the median voter theorem to a dynamic environment.

Theorem 2 (Dynamic Median-Voter) Suppose that X is finite, (vA, vB) is a symmetric constant-

sum game, and there exists a Condorcet winner. Then, there exists a PBE, and in any PBE, at any

time −t, conditional on any history, (i) if the opponent’s action is X, each candidate i announces

the Condorcet winner and (ii) otherwise, each candidate i best-responds to the opponent’s current

policy.

The theorem can be applied to prove that, in the examples mentioned above, candidates enter

at the Condorcet winner specified above as soon as possible.

To see the intuition, note first that if a candidate obtains an opportunity at the deadline, then

the assumption on the payoff function implies that she enters at the Condorcet winner. To show that

this holds for all time −t, we resort to the continuous-time backward induction (formally presented

in Appendix B), which in particular shows that it is not possible in any PBE that candidates keep

using ambiguous language for a long time and try to enter to win at the last moment.

In Appendix D, we generalize the theorem to cover the case with non-constant-sum games.

We show the existence of a PBE in which each candidate announces the Condorcet winner. We

also show the uniqueness of a PBE when we further require that there is a policy that is strictly

dominant for each i, while not requiring condition (5). This last result in particular implies that,

in the dynamic campaign spending game, in subgames in which each candidate has already spent

L, each candidate spends H as soon as possible.

46



4.3 The Constant-Sum Markov Theorem

In some of the examples we consider in Section 3, candidates are purely office-motivated, and thus

their utility functions are constant-sum since the winning probabilities must add up to one. In

this section, we provide a characterization of the equilibrium dynamics for constant-sum elections

by showing that, in constant-sum elections, candidates’ continuation payoffs at any history is de-

termined only by the remaining time and the current policy set profile. Moreover, we show that

it is irrelevant whether each candidate observes the arrival of the opponent’s opportunities. More

specifically, as specified in Section 2, we assume throughout the paper that each candidate cannot

observe the arrivals of opportunities to the opponent but only the changes of the policy set. We

compare such a setting with the model in which each candidate can observe the arrivals of the

opponent’s opportunities, including those that do not involve changes in the policy set. We call

the former and the latter setups “private monitoring” and “public monitoring,” respectively.

To define the setup of “public monitoring” formally, let ht =
((
tkA, X

k
A

)kA
k=1

,
(
tkB, X

k
B

)kB
k=1

, t
)

be the entire history at −t, where −tkj < −t is the time at which candidate j receives his or her

k’th revision opportunity; Xk
j is the policy set that j has chosen at time −tkj ; and t denotes the

current remaining time. Let H be the set of all histories. We say that a history for candidate i

at time −t, denoted hti, is consistent with ht if the former is given by deleting information about

j’s opportunities at which j did not change the policy set. Let θ
(
ht
)

=
(
XkA
A , XkB

B

)
be the most

recent policy profile at time −t; and θi
(
ht
)

= Xki
i be candidate i’s most recent policy at −t.

Note that θ
(
ht
)

= θ
(
hti
)

for each i and t. We allow the available policy set to depend on the

current policy sets. Formally, let Xi (θ) ⊆ 2θi \ {∅} be the collection of available policy sets under

θ ∈ XA × XB. Candidate i’s strategy is a map σi : H → ∪θ∈XA×XB∆ (Xi (θ)), with a restriction

that σi
(
ht
)
∈ ∆

(
Xi
(
θ
(
ht
)))

. Let Σi be the space of i’s strategies, and Σ = ΣA × ΣB. With

σi, candidate i takes σi
(
ht
)

if she has an opportunity at time −t and takes θi
(
ht
)

otherwise. A

subgame-perfect equilibrium (SPE) can be defined in the standard manner. We call this setup

“public monitoring.”

In the “private monitoring” setup, the definition of PBE naturally extends to the case in which

each candidate i’s feasible announcements depend on the current announcement through the Xi(·)

function. Recall that a strategy profile (σ∗A, σ
∗
B) is a PBE if there exists a belief β such that, for

each i ∈ {A,B}, (i) σ∗i ∈ arg maxσi∈Σi u
β
i (σi, σ

∗
j |hti) holds for every hti ∈ Hi and (ii) β is derived
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from Bayes rule whenever possible.

First, take an arbitrary PBE σ in private monitoring, and let wit
(
σ, hti, Xi

)
be candidate i’s

continuation payoff of taking Xi ∈ Xi
(
θ
(
hti
))

when her private history is hti and she receives

an opportunity at −t. Similarly, let ŵit
(
σ, hti, Xj

)
be candidate i’s continuation payoff when her

private history is hti and candidate j receives an opportunity and takes Xj ∈ Xj
(
θ
(
htj

))
; and let

wit
(
σ, hti, no

)
be candidate i’s continuation payoff when her private history is hti and no candidate

receives an opportunity at −t.

Second, take an arbitrary SPE σ̄ in public monitoring, and let W i
t

(
σ̄, ht, Xi

)
be candidate i’s

continuation payoff of taking policy Xi ∈ Xi
(
θ
(
ht
))

when the public history is ht and she receives

an opportunity at −t. Similarly, let Ŵ i
t

(
σ̄, ht, Xj

)
be candidate i’s continuation payoff when the

public history is ht and candidate j receives an opportunity and takes Xj ∈ Xj
(
θ
(
ht
))

; and let

W i
t

(
σ̄, ht, no

)
be candidate i’s continuation payoff when the public history is ht and no candidate

receives an opportunity at −t.

We can show that the continuation payoff of choosing policy Xi and not receiving an opportunity

depends only on the current time −t and the current policy set of the opponent θj
(
ht
)

(recall that

θj
(
ht
)

= θj
(
hti
)

= θj

(
htj

)
).

Theorem 3 (Constant-Sum Markov) Suppose vA(XA, XB)+vB(XA, XB) = 1 for each (XA, XB) ∈

XA × XB. Then, there exists vi,t : Xi × Xj → R such that, for any PBE σ under private monitor-

ing, SPE σ̄ under public monitoring, public history ht, private history hti consistent with ht, and

(Xi, Xj) ∈ Xi ×Xj, we have

wit
(
σ, hti, Xi

)
= W i

t

(
σ̄, ht, Xi

)
= vi,t

(
Xi, θj

(
ht
))

; (7)

ŵit
(
σ, hti, Xj

)
= Ŵ i

t

(
σ̄, ht, Xj

)
= vi,t

(
θi
(
ht
)
, Xj

)
(8)

and

wit
(
σ, hti, θi

(
hti
))

= ŵit
(
σ, hti, θj

(
hti
))

= wit
(
σ, hti, no

)
(9)

= W i
t

(
σ̄, ht, θi

(
ht
))

= Ŵ i
t

(
σ̄, ht, θj

(
ht
))

= W i
t

(
σ̄, ht, no

)
= vi,t

(
θ
(
ht
))
.

In the revision games with public monitoring, Gensbittel et al. (2017) show that the minimax

theorem holds. In addition, Lovo and Tomala (2016) show the existence of Markov perfect equilib-
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rium (MPE) with a finite equilibrium payoff after each profile of current policy sets. Putting them

together, we obtain the results for public monitoring.

The theorem’s contribution is to show that the equilibrium continuation payoff under private

monitoring is the same as the one under public monitoring, and hence depends only on the current

policy set profile. In the private monitoring case, for any Markov strategy of candidate i (where

i’s Markov strategies refer to those that depend only on the current policy set profile, the current

time, and whether i receives an opportunity), there exists a best response by j that is Markov.

This implies that i can guarantee her minimax value as in the public monitoring case. Since the

symmetric argument implies that candidate j can guarantee his minimax value too, the equilibrium

continuation payoff is uniquely determined.63

In the valence election campaign and symmetric office-motivated election campaign, candidates

are office-motivated, so the payoffs are constant-sum. Also, the case with p = 1 in the election

with incomplete information (the case with no normal types presented in Proposition 7) can be

thought of as a constant-sum game after an elimination of strictly dominated strategies. Moreover,

these models satisfy (5). Hence, in each of those models, the outcome characterized under private

monitoring is outcome-equivalent to the one under public monitoring, and the continuation payoffs

are uniquely determined for each time −t.

5 Conclusion

We have introduced the first model of dynamic campaigns into the literature on elections, which

we call “policy announcement timing game.” In the model, candidates cannot always announce

their policies, but stochastically obtain opportunities to announce their policies or spend their

funds. We applied the model to various examples, demonstrating that the introduction of such a

simple friction to the model generates interesting dynamic strategic considerations and equilibrium

dynamics consistent with election dynamics in reality. In particular, we showed that it is useful to

analyze the candidates’ motivations to defer a clear announcement of policies, depending on the

opponent’s latest announcement and the time left until the election; and to keep the budget for

later use, depending on the opponent’s cumulative spending and the time left. Depending on the

63Although it is intuitive, we do not know whether the result extends to the case with non-constant sum games.
The (generic) uniqueness of continuation payoffs is an open question in the revision-games literature.
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environment that the candidates face, they may or may not have such incentives for ambiguity. The

insights from the examples are generalized in the Long Ambiguity Theorem, the Dynamic Median

Voter Theorem, and the Constant-Sum Markov Theorem. Our work raises a wide range of new

questions.

First, except for Sections 3.4 and 4.3, we restricted ourselves to the case in which policies

are either perfectly ambiguous or perfectly precise. One could allow for “intermediate language”

and analyze how gradually candidates shift from ambiguous to clear language over the course of

the campaign. For example, in a uni-dimensional Downsian model, one could let the candidates

choose any subintervals of [0, 1] for the initial opportunity, and from the next opportunity, let them

choose any subintervals included in their most recent announcements. In the multi-dimensional

case, we can consider a model where a candidate commits to a policy in one dimension first, and

then commits to a policy in another dimension. We consider a model of such a case in the Online

Appendix.

Second, it would be more realistic to assume that policy announcements are sometimes syn-

chronous and sometimes asynchronous. Although this problem seems nontrivial as Ishii and Ka-

mada (2011) show in their analysis of revision games with synchronous and asynchronous revisions,

we conjecture that there should remain the incentive to announce an ambiguous policy when the

deadline is far. We consider a model of such a case in the Online Appendix.

Third, we restricted ourselves to the case in which, once a candidate commits to a particular

policy, he or she cannot overturn it later. Although we believe that this is a reasonable starting

point for analysis, one could also assume that candidates can change their policies if they are willing

to incur a “reputational cost” for announcing “inconsistent” policies. The idea is that if a candidate

overturns his or her opinion, voters would infer that it is likely that the candidate would change

policies even after the election.

Fourth, it would be interesting to enrich the model by assuming that the median voter’s position

gets gradually revealed over the course of the campaign (for example, because of polls), so that

candidates have an additional reason to wait. Our analysis in Section 3.5 shows that our general

model can be extended to cover the cases involving incomplete information.

Fifth, the model of dynamic campaign spending could be enriched to test hypotheses for the

“June Puzzle.” This is a puzzle that asks why the Obama campaign significantly outspent the
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Romney campaign in June 2012, even though the election was in November and the effect of

TV advertisements on voter’s preferences is known to be short-lived.64 An explanation for this

puzzle argues that popularity in the early stages may help with gathering more donations. Another

explanation claims that if the opponent’s popularity is below a certain level, then that opponent

will “never come back.” It will be interesting to enrich the model of Section 3.4 to analyze these

hypotheses.

Sixth, we have considered two-candidate elections, but it would be interesting to consider more

than two candidates.65 In such an environment, there is no pure-strategy equilibrium in a static

election game, while we can hope for the existence of an (essentially) unique pure-strategy PBE

in a corresponding election campaign game, just as in the case with the multi-dimensional policy

space.

Finally, our work raises empirical questions as well. For example, first, our model predicts

different patterns of the timing of policy clarification/campaign spending for different parameter

values. For example, in the valence election campaign, p, which measures how much uncertainty

candidates face with respect to the position of the median voter, affects the timing of policy

announcements. One may want to test whether this prediction is supported by the data.66 The

second example is about the case with a multi-dimensional policy space. In that model, we obtained

a unique prediction about the entry timing and announced policies (when candidates are policy-

motivated). The uniqueness may be useful in empirically testing the model.
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A Structure of the Appendix

We first state and prove the continuous-time backward induction, which turns out to be useful

in many proofs. Second, we offer the proofs of the results. Although we present the applications

before the general theorems in the main text to highlight the applicability of the model, since the

general theorems are useful for proving the results in the applications, here we prove the general

theorems. The proofs of the results in the applications can be found in the Online Appendix.

B Continuous-Time Backward Induction

The following result, which we call continuous-time backward induction, is due to Calcagno et al.

(2014), and is repeatedly used in the proofs of this paper. We reproduce its statement and proof

for reader’s convenience.

Lemma 5 Suppose that for any t ∈ [0,∞), there exists ε > 0 such that statement At′ is true for

all t′ ∈ [t, t+ ε) if statement At′′ is true for any t′′ < t. Then, for any t ∈ [0,∞), statement At is

true.

Proof. Suppose that the premise of the lemma holds. Let −t∗ be the supremum of −t such that

At is false. If t∗ = ∞, we are done. So suppose that t∗ < ∞. Then it must be the case that for

any ε > 0, there exists −τ ∈ (−t∗ − ε,−t∗] such that Aτ is false. But by the definition of t∗, there

exists ε̃ > 0 such that statement Aτ is true for all −τ ∈ (−t∗ − ε̃,−t∗] because the premise of the

lemma is true. This is a contradiction.

C Proof of Theorem 1

The most important proofs for Theorem 1 are here. Other proofs for the theorem can be found in

the Online Appendix.

Proof of Proposition 11.

Suppose tj =∞. On the one hand, since candidate j enters whenever she has an opportunity, if

candidate i does not enter until j enters, the payoff i obtains at time−t converges to supxi vi

(
xi, x

∗
j

)
as t→∞. On the other hand, we have vi,t(enter)→ v

BRj
i as t→∞ since candidate j will have an
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opportunity afterward with a probability converging to 1 as t→∞. Hence, for sufficiently large t,

not entering is the unique best response at time −t in any PBE given that first-mover disadvantage

for i holds.

Suppose next tj < ∞. On the one hand, for each −t < −tj , if candidate i does not enter

until −tj , i obtains the payoff v̄i,tj (not), which is a convex combination of vi

(
X,x∗j

)
, vi (x∗i , X),

vi (X,X), supxi vi

(
xi, x

∗
j

)
, and v

BRj
i . Moreover, since j enters at times sufficiently close to time

−t0 (given the continuity of the continuation payoff in time), we have a strictly positive weight

on supxi vi

(
xi, x

∗
j

)
in the convex combination. On the other hand, we have vi,t(enter) → v

BRj
i as

t → ∞. Hence, for sufficiently large t, not entering is the unique best response at time −t in any

PBE given that first-mover disadvantage for i holds.

Proof of Proposition 13.

Suppose first that strong first-mover disadvantage for A holds. In this case, if t̂A = t̂B = ∞,

then by the definition of t̂A, A never has an incentive to enter at any time. Hence the conclusion of

the proposition holds with tA = 0. If t̂A > t̂B, then part 2 of Proposition 12 implies that A never

has an incentive to enter at all times strictly before −t̂B. Hence the conclusion of the proposition

holds with tA = t̂B. If t̂A < t̂B, then part 1 of Proposition 12 implies that we can use the argument

for Case 2. Hence, Proposition 11 implies that A never has an incentive to enter at all times

strictly before −t̃ where t̃ is equal to tA that we take in Proposition 10. Hence the conclusion of

the proposition holds with tA = t̃.

Next, suppose that strong first-mover disadvantage for B holds. First, we show t̂B <∞. To see

why this holds, observe the following. On the one hand, the payoff from entering at −t converges

to vBRAB as t→∞. On the other hand, for an arbitrary fixed t̄ ∈ (0,∞), not entering until −t̄ (and

entering when an opportunity arrives at time −t ≥ −t̄) gives the payoff that is a convex combination

of vB (x∗B, X), vBRAB , and vB (X,X) with a strictly positive weight on vB (x∗B, X) (recall that t̂B is

calculated assuming that candidate A never enters unless B has entered). Hence, for sufficiently

large t, not entering is better at time −t in any PBE given strong first-mover disadvantage for

B. Thus, we have t̂B < ∞. With this condition, we obtain the desired result as in the case of

strong first-mover disadvantage for A, using part 2 of Proposition 12 for the case of t̂A > t̂B and

Proposition 11 for the case of t̂A < t̂B.
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D Proof of a Generalized Version of Theorem 2

In in part 3 of the following theorem, we consider general games in which it is not necessarily the

case that Xi = {{x}|x ∈ X} ∪ {X} holds. In such a game, when {x∗i } ∈ Xi, we say that x∗i is a

strictly dominant policy if for all Xi ∈ Xi \ {x∗i }, vi({x∗i }, Xj) > vi(Xi, Xj) for all Xj ∈ Xj .

We note that, even though we require (vA, vB) to be symmetric in the following theorem, it is

straightforward to extend the result to the case with non-symmetric cases, as described in footnote

61.

Theorem 4 (General Dynamic Median-Voter) 1. Suppose that (vA, vB) is symmetric and,

for each i = A,B, x∗ is a Condorcet winner. Then, there exists a PBE in which, at any time

−t, conditional on any history, (i) if the opponent’s current policy set is X, each candidate

i announces {x∗}, and (ii) otherwise, each candidate i chooses a static best response to the

opponent’s current policy.

2. Suppose that X is finite, (vA, vB) is a symmetric constant-sum game, and there exists a

Condorcet winner. Then, there exists a PBE, and in any PBE, at any time −t, conditional

on any history, (i) if the opponent’s current policy set is X, each candidate i announces the

Condorcet winner and (ii) otherwise, each candidate i chooses a static best response to the

opponent’s current policy.

3. Suppose that X is finite and (vA, vB) is symmetric. Consider an environment with a general

(XA,XB). Suppose that x∗i is a strictly dominant policy for each i = A,B. Then, in any

PBE, at any time −t, conditional on any history, each candidate i announces {x∗}.

As will be seen in the Online Appendix, part 3 of Theorem 4 does not hold if we replace “strictly

dominant policy” with “weakly dominant policy.”

Proof. Part 1: Let x∗ be a Condorcet winner. First, note that after the opponent enters at x∗, the

given strategy specifies a best response. Second, we show that it is optimal for each candidate to

announce x∗ at time −t if j’s current policy set is X. Take an arbitrary x̄j(xi) ∈ maxxj∈X vi(x
∗, xj).

By the assumption that x∗ is a Condorcet winner, it follows that for any xi ∈ X, there exists

x̄j(xi) ∈ BRj(xi) such that vi(x
∗, x̄i(x

∗)) > vi(xi, x̄j(xi)). We consider a strategy profile in which,

once i enters at xi ∈ X, j enters at x̄j(xi); and also if no one has entered, each i enters at x∗.
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Take any time −t ∈ [−T, 0]. Suppose that for every time in (−t, 0], conditional on any history,

each candidate i announces x∗. Under the strategy profile specified above, the following are true.

If i announces x∗, her payoff is

e−λjtvi(x
∗, X) + (1− e−λjt)vi(x∗, x̄j(x∗)). (10)

If i announces xi 6= x∗, her payoff is

e−λjtvi(xi, X) + (1− e−λjt)vi(xi, x̄j(xi)). (11)

If i announces X, her payoff is

e−λjt
(
e−λitvi(X,X) + (1− e−λit)vi(x∗, X)

)
+ (1− e−λjt)(

e−λitvi(X,x
∗) + (1− e−λit) (wivi(x

∗, x̄j(x
∗)) + (1− wi) vi(x̄i(x∗), x∗))

)
, (12)

where wi ∈ (0, 1).

Note that the first term in (10) is weakly larger than the first terms in (11) and (12) due to the

assumption that x∗ is a Condorcet winner. In addition, the second term in (10) is weakly larger

than the second term in (11) by the construction of the function x̄j(·). Finally, the second term

in (10) is weakly larger than the second term in (12) due to x∗ ∈ BRi(x∗) (implied by x∗ being a

Condorcet winner), and its implication that vi(x̄i(x
∗), x∗) = vi(x

∗, x∗). This implies that, for any

t ≥ 0, (10) is weakly larger than both (11) and (12). Hence, it is optimal for each candidate to

announce x∗ at time −t if j’s current policy set is X.

Part 2: Let x∗ be the Condorcet winner. For each Xi ∈ Xi, we have vi(x
∗
i , xj) > vi(Xi, x

′
j)

for some xj ∈ BRj(x∗) and x′j ∈ BRj(Xi). Since (vA, vB) is constant-sum, we have vi(x
∗, xj) >

vi(Xi, x
′
j) for each xj ∈ BRj(x∗) and x′j ∈ BRj(Xi). This implies that, since x∗ ∈ BRj(x∗), we

have vi(x
∗, x∗) = minXj∈Xj vi(x

∗, Xj) > minXj∈Xj vi(Xi, Xj) for each Xi 6= {x∗}.

Take any time −t ∈ [−T, 0]. Suppose that, for every time in [−t, 0], conditional on any history,

(i) if the opponent’s current policy set is X, each candidate i announces x∗ and (ii) otherwise, each

candidate i takes a static best response to the opponent’s current policy. We show that, conditional

on any history, if the opponent’s current policy set is X at time −t, each candidate i has a strict
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incentive to announce x∗ over announcing X or any singleton policy set {xi} 6= {x∗}. Given the

constant-sum assumption, if i announces x∗, her payoff is

e−λjtvi(x
∗, X) + (1− e−λjt)vi(x∗, x∗). (13)

If i announces xi 6= x∗, her payoff is

e−λjtvi(xi, X) + (1− e−λjt) min
Xj∈Xj

vi(xi, Xj). (14)

If i announces X, her payoff is

e−λjt
(
e−λitvi(X,X) + (1− e−λit)vi(x∗, X)

)
+ (1− e−λjt)

(
e−λitvi(X,x

∗) + (1− e−λit)vi(x∗, x∗)
)
.

(15)

Given that x∗ is the Condorcet winner and xi 6= x∗, (13) is strictly larger than (14) and (15).

Moreover, by the assumption that X is finite, there exits ε > 0 such that, for all xi 6= x∗, the value

in (13) is no less than the sum of ε and the value in (14), and also no less than the sum of ε and the

value in (15). By continuity of the continuation payoff in time, this implies that there exists ε′ > 0

such that i strictly prefers announcing x∗ to announcing X or any singleton policy set {xi} 6= {x∗}

at times in (−t− ε′,−t] if j’s current policy set is X. Therefore, by the continuous-time backward

induction, in any PBE, at any time −t, conditional on any history, each candidate i announces x∗

if j’s current announcement is X.

Part 3: Fix time −t, suppose that at all time strictly after −t, each candidate i enters at x∗i

conditional on any history. Then, if i announces x∗i when the current policy set is (Xi, Xj), then

her payoff is

e−λjtvi(x
∗
i , Xj) + (1− e−λjt)vi(x∗i , x∗j ).

If i announces Xi 6= {x∗i } when the current policy set is (Xi, Xj), then her payoff is

e−λjt
(
e−λitvi(Xi, Xj) + (1− e−λit)v̄i

)
+ (1− e−λjt)

(
e−λitvi(Xi, x

∗
j ) + (1− e−λit)¯̄vi

)
,

where v̄i, ¯̄vi ≤ vi(x∗i , Xj). Note that v̄i and ¯̄vi are equal to vi(x
∗
i , Xj) and vi(x

∗
i , x
∗
j ), respectively, if

x∗i ∈ Xi, but they are respectively strictly less than those values otherwise, due to the definition of
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a strictly dominant policy.

Since vi(Xi, Xj) < vi(x
∗
i , Xj) and vi(Xi, x

∗
j ) < vi(x

∗
i , x
∗
j ) by the definition of a strictly dominant

policy, the payoff from announcing {x∗i } is strictly greater than the payoff from announcing Xi 6=

{x∗i }. Hence, by the continuous-time backward induction, we obtain the desired result.

E Proof of Theorem 3

We first prove that conditions (7)–(9) hold for public monitoring. Using this result, we prove that

conditions (7)–(9) hold for private monitoring.

E.1 Public Monitoring

We prove that conditions (7)–(9) hold for public monitoring:

Lemma 6 Suppose vA(XA, XB) + vB(XB, XA) = 1 for each (XA, XB) ∈ XA × XB. There exists

vi,t (θ) for each θ ∈ Xi ×Xj such that, for any SPE σ̄ and ht, we have

W i
t

(
σ̄, ht, Xi

)
= vi,t

(
Xi, θj

(
ht
))

;

Ŵ i
t

(
σ̄, ht, Xj

)
= vi,t

(
θi
(
ht
)
, Xj

)
;

and

W i
t

(
σ̄, ht, θi

(
ht
))

= Ŵ i
t

(
σ̄, ht, θj

(
ht
))

= W i
t

(
σ̄, ht, no

)
= vi,t

(
θ
(
ht
))
.

Proof. In the revision games with public monitoring, the minimax theorem holds if there exists an

equilibrium with a finite equilibrium payoff after any history (see Gensbittel et al. (2017)). Hence,

we are left to show that there exists an equilibrium with a finite equilibrium payoff after each profile

of policy sets, θ. Lovo and Tomala (2016) show the existence of Markov perfect equilibrium (MPE)

with a finite equilibrium payoff after each θ, as desired.

E.2 Private Monitoring

Fix any σj (not necessarily an equilibrium strategy). Given hti and θ
(
hti
)

= (X,X), calculate

candidate i’s belief about htj . For any time −t and history hti, θj
(
hti
)

= X happens with a
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positive probability given (σi, σj) for any strategy σi of candidate i since it is possible that no

candidate receives any opportunity in the time interval [−T,−t). Hence the belief given θj
(
hti
)

= X

should satisfy Bayes rule. In particular, we can show that, since the arrivals of opportunities are

independent between candidates, for any two histories of candidate i such that no commitment has

been made at −t, candidate i’s belief about htj is the same. Denote by βσj a belief to be explicit

about the fact that the belief is solely determined by σj :

Lemma 7 For any σj, there exists βσj such that, for each hti and h̃ti with θ
(
hti
)

= θ
(
h̃ti

)
= (X,X),

we have βσj
(
htj |h̃ti

)
= βσj

(
htj |hti

)
=: βσj

(
htj

)
.

Proof. Note that, if θ
(
hti
)

= (X,X), then we have
(
tli, X

l
i

)li
l=1

= {∅},67 that is, candidate i never

changes her policy announcement. Let H
σj
j

(
hti
)

be the set of candidate j’s histories compatible

with hti and σj .
68 Define H

σj
j

(
h̃ti

)
analogously. Note that H

σj
j

(
hti
)

and fi(h
t
j |hti) depend on hti

only through
(
tli, X

l
i

)li
l=1

= {∅}. Hence, H
σj
j

(
hti
)

= H
σj
j

(
h̃ti

)
and fi(h

t
j |hti) = fi(h

t
j |h̃ti) for each hti

and h̃ti with θ
(
hti
)

= θ
(
h̃ti

)
= (X,X). Thus, the result follows from (20).

Using this independence of the belief, we can show that candidate i’s continuation payoff does

not depend on hti. Take any strategy profile σ (not necessarily an equilibrium). Let

w̃it
(
σi, σj , h

t
i, X

)
=

∫
hj∈H

σj
j (hti)

ui
(
σi, σj |

(
hti, X

)
, htj
)
dβσj

(
htj |hti

)
be candidate i’s payoff when she takes X given hti, given that (i) candidate i takes a continuation

strategy determined by σi and history
(
hti, X

)
for (−t, 0],69 and (ii) if candidate j has never received

an opportunity before time −t in htj , she takes a continuation play determined by σj and history htj

for (−t, 0]. Note that (i) candidate i’s decision X does not affect candidate i’s belief βσj
(
·|hti
)
; and

(ii) the belief βσj
(
·|hti
)

does not depend on whether candidate i obtains an opportunity at time −t

by the independence of the Poisson processes.

67We follow the convention that, with lj < 1, we define
(
tli, X

l
i

)li
l=1

= {∅}.
68The formal definition of H

σj
j

(
hti
)

is provided in the Online Appendix when we formally define Bayes rule.
69Recall that, in Section 2, we define ui(σi, σj |hti, htj). Here, we define ui(σi, σj |(hti, X), htj) analogously, conditional

on the event that candidate i takes X at time −t.
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By Lemma 7, for each hti and h̃ti with θ
(
hti
)

= θ(h̃ti) = (X,X), we have

sup
σi
w̃it
(
σi, σj , h

t
i, X

)
= sup

σi

∫
hj

ui(σi, σj |
(
hti, X

)
, htj)dβ

σj
(
htj
)

= sup
σi

∫
hj

ui(σi, σj |(h̃ti, X), htj)dβ
σj
(
htj
)

= sup
σi
w̃it
(
σi, σj , h

t
i, X

)
.

The second last line follows since the distribution of the final outcome that candidate i can induce

depends only on βσj
(
htj

)
and θ

(
hti
)
. Hence, we can write

w̃it (σj , X) = sup
σi
w̃it
(
σi, σj , h

t
i, X

)
for each hti with θ

(
hti
)

= (X,X).

Similarly, let w̃it
(
σi, σj , h

t
i, no

)
be candidate i’s payoff given that she does not receive an oppor-

tunity at time −t. We also have

w̃it (σj , X) = sup
σi
w̃it
(
σi, σj , h

t
i, X

)
= sup

σi
w̃it
(
σi, σj , h

t
i, no

)
(16)

since, given htj , candidate j’s continuation play after (hti, X) and that after (hti, no) are the same

(candidate j’s history will be the same after (hti, X) and after (hti, no)).

Together with the constant-sum assumption, we can show that w̃it (σj , X) + w̃jt (σi, X) = 1 for

any PBE σ.

Lemma 8 Suppose vA(XA, XB) + vB(XB, XA) = 1 for each (XA, XB) ∈ XA × XB. For any PBE

σ, the following holds: Fix vi ∈ [0, 1] and t ≥ 0. Then, the following two claims hold:

1. If we have w̃it (σj , X) > vi, then we have w̃jt (σi, X) < 1− vi.

2. If we have w̃it (σj , X) < vi, then we have w̃jt (σi, X) > 1− vi.

Proof. By symmetry, we only prove Claim 1. The ex-ante continuation payoff for candidate i from

65



period t given θ
(
hti
)

= (X,X) is, by Bayes rule,

∫
hti:θ(hti)=(X,X) w̃

i
t

(
σ, hti, no

)
dβ
(
hti
)∫

hti:θ(hti)=(X,X) dβ (hti)
=

∫
hti:θ(hti)=(X,X) w̃

i
t (σj , X) dβ

(
hti
)∫

hti:θ(hti)=(X,X) dβ (hti)
(by the equilibrium condition)

= w̃it (σj , X) > vi.

Similarly, the ex-ante continuation payoff for candidate j from period t given θ
(
htj

)
= (X,X) is

w̃jt (σi, X). Since the ex ante continuation payoffs should add up to one, we have w̃jt (σi, X) < 1−vi.

Given Lemma 6, together with Lemmas 7 and 8, proving the following lemma will be sufficient

for conditions (7)–(9) to hold in private monitoring:

Lemma 9 Suppose vA(XA, XB) + vB(XB, XA) = 1 for each (XA, XB) ∈ XA × XB. Take vi,t (θ)

that satisfies conditions stated in Lemma 6. Then, for any hti, we have

wit
(
σ, hti, Xi

)
= vi,t

(
Xi, θj

(
hti
))

;

ŵit
(
σ, hti, Xj

)
= vi,t

(
θi
(
hti
)
, Xi

)
;

and

wit
(
σ, hti, θi

(
ht
))

= ŵit
(
σ, hti, θj

(
ht
))

= wit
(
σ, hti, no

)
= vi,t

(
θ
(
ht
))
.

Proof. Once a candidate takes x ∈ X, then the other candidate takes a static best response against

x whenever he receives an opportunity. In the constant-sum game, this continuation strategy

uniquely pins down the equilibrium payoff once a candidate takes x ∈ X, and the payoff does not

depend on whether candidates observe the opponent’s arrivals of the Poisson process. Hence, we

will focus on the case θ
(
hti
)

= θ
(
htj

)
= (X,X). By (16) and the equilibrium condition, we can

write wit
(
σ, hti, X

)
= ŵit

(
σ, hti, X

)
= wit

(
σ, hti, no

)
= w̃it (σj , X).

Suppose that there exists a PBE σ̃ ∈ Σ such that, for some i ∈ {A,B} and hti, we have

w̃it (σ̃j , X) 6= vi,t (X,X). Without loss,70 we can assume

w̃it (σ̃j , X) > vi,t (X,X) . (17)

70If w̃it (σ̃j , X) < vi,t (X,X), then since the game is constant-sum, we have vj,t (X,X) = 1 − vi,t (X,X). From
Lemma 8, we have w̃jt (σ̃i, X) > vj,t (X,X). The following lemma goes through with indices i and j being reversed.
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From Lemma 8, for each h̃tj with θ
(
h̃tj

)
= (X,X), candidate j’s expected payoff is less than

1− vi,t (X,X).

First, candidate i’s Markov strategy is a map σi : Xi × Xj × [0, T ] → ∆(Xi). Let Mi be the

the space of i’s Markov strategies. Note that the space for Markov strategies in public monitoring

is the same as the space for Markov strategies in private monitoring. Since Markov strategies are

constant with respect to the part of the histories other than the current policy sets and the current

time, we write Mi ⊆ Σi for each i.

Note that, in the model with public monitoring, there exists a Markov perfect equilibrium

(MPE), where each candidate’s strategy depends only on t, θ
(
ht
)
, and whether he or she receives

an opportunity at the current time (see Gensbittel et al. (2017) for the proof). Fix a MPE

(σi, σj) ∈Mi ×Mj . We have

W i
t

(
σ′i, σj , h

t, X
)

= Ŵ i
t

(
σ′i, σj , h

t, X
)
≤ vi,t (X,X) (18)

for each σ′i ∈ Σi since σi must designate a best response at every ht in public monitoring.

Since this strategy σj is Markov, candidate j can take this strategy in private monitoring. We

will show wit

(
σ̃i, σj , ĥ

t
i, X

)
> vi,t (X,X) for some ĥti with θ

(
ĥti

)
= (X,X) by (17) since otherwise

candidate j would like to deviate to σj from σ̃j given each htj with θ
(
htj

)
= (X,X) in private

monitoring and obtain the expected payoff no less than 1 − vi,t (X,X). Then, by (16), we have

w̃it (σj , X) > vi,t (X,X).

Thus, for each h̃ti with θ
(
h̃ti

)
= (X,X), we have

w̃it (σj , X) = sup
σi
w̃it

(
σi, σj , h̃

t
i, X

)
= sup

σi

∫
htj

ui

(
σi, σj |

(
h̃ti, X

)
, htj

)
dβσj

(
htj
)
.

Since σj ∈Mj , candidate j’s continuation strategy depends only on θt = (X,X). Hence,71 for each

71This is a standard result in dynamic programming. See Gensbittel, et al. (2017) for the application of this
result to the game with Poisson arrivals. Although their paper assumes public monitoring, since σj is Markov, the
observability of the Poisson arrivals does not affect the formulation of Bellman equations.
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htj , we can write

sup
σi
ui

(
σi, σj |

(
h̃ti, X

)
, htj

)
= sup

σi∈Mi

ui(σi, σj |θt = (X,X)).

Therefore,

w̃it (σj , X) = sup
σi∈Mi

ui(σi, σj |θt = X) = vi,t (X,X) .

This is a contradiction. Thus, for each PBE σ, we have wit (σ,X) = vi,t (X,X).
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Online Supplementary Appendix to: “Optimal Timing of Policy
Announcements in Dynamic Election Campaigns”

Yuichiro Kamada† Takuo Sugaya‡

March 27, 2019

F Definition of Bayes Rule

Fix candidate i’s history hti =

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
arbitrarily. If t = T , then candidate

i believes that htj = (∅, ∅, T, no) with probability one. Hence, we focus on t < T . Let
(
tli, X

l
i

)li
l=1

be what candidate j can observe and is compatible with
(
tki , X

k
i

)ki
k=1

: Let t1i be the smallest time

t ∈ {t1i , ..., t
ki
i } such that, for k with t = tki , X

k
i 6= X0

i holds (that is, −t1i is the first time for

candidate i to change her policy set); given t1i , let t2i be the smallest time t ∈ {t1i , ..., t
ki
i } such that

t > t1i and for k with t = tki , X
k
i 6= Xk−1

i holds (that is, −t2i is the second time for candidate i

to change her policy set), and so on. Fix
(
tli, X

l
i

)li
l=1

. Suppose that there exists
(
tkj , X

k
j

)kj
k=1

with

which
(
tlj , X

l
j

)lj
l=1

is compatible, such that

htj =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)

happens with a positive probability by σ∗j conditional on the realization of
(
tkj

)kj
k=1

,
(
tli, X

l
i

)li
l=1

, and

t:1 At each time tkj for k = 1, ..., kj , given candidate j’s history h
tkj
j =

((
tli, X

l
i

)l(tkj )
l=1 ,

(
tk
′
j , X

k′
j

)k−1

k′=1
, tkj , yes

)
with l

(
tkj

)
being the largest l with tli < tkj (that is, h

tkj
j is the history compatible with htj),

σ∗j (h
tkj
j )
(
Xk
j

)
> 0. Let H

σ∗j
j

(
hti
)

be the set of candidate j’s history satisfying this condition.

If H
σ∗j
j

(
hti
)
6= ∅, then for each htj =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ H

σ∗j
j

(
hti
)
, we define the

†Haas School of Business, University of California Berkeley, 2220 Piedmont Avenue, Berkeley, CA 94720-1900,
USA, e-mail: y.cam.24@gmail.com
‡Stanford Graduate School of Business, Stanford, CA, 94305, e-mail: tsugaya@stanford.edu
1Given candidate i’s history, she believes that candidate j does not receive an opportunity at −t when candidate

i receives an opportunity. Hence, we require that the last element is no.
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density f as follows:

f(htj |hti) = e−(T−t)λ ((T − t)λ)kj

kj !

∏kj

k=1
σ∗j (h

tkj
j )
(
Xk
j

)
(19)

for kj 6= 0 and f(htj |hti) = e−(T−t)λ for kj = 0. Note that e−(T−t)λ ((T−t)λ)kj

kj !
is the probability

that candidate j receives kj opportunities between −T and −t. Conditional on this event, every(
tkj

)kj
k=1

, has the same density.

Using the density of htj defined in (19),2 we define

dβi
(
htj |hti

)
=

f(htj |hti)∫
h̃tj∈H

σ∗
j
j (hti)

f(h̃tj |hti)dh̃tj
dhtj . (20)

If H
σ∗j
j

(
hti
)

= ∅ (hti cannot be explained without j’s deviation), then dβi

(
htj |hti

)
is arbitrary,

as long as
∫
htj∈Hj(hti)

dβi

(
htj |hti

)
= 1.

Now, given a history hti (note that this determines
(
tli, X

l
i

)li
l=1

and
(
tlj , X

l
j

)lj
l=1

) and a set

Ĥj

(
hti
)
⊆ H

σ∗j
j

(
hti
)
, we can classify htj ∈ Ĥj

(
hti
)

into the following subsets: Given hti and Ĥj

(
hti
)
,

letKXj be the set of kj and
(
Xk
j

)kj
k=1

such that there exists (tkj )
kj
k=1 such that

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈

Ĥj

(
hti
)
. Given hti, Ĥj

(
hti
)
, and (kj ,

(
Xk
j

)kj
k=1

) ∈ KXj , let T 1
j , T 2

j

(
t1j

)
, ..., T

kj
j (t1j , ..., t

kj−1
j ) be,

respectively, the set of t1j such that there exists (t2j , ..., t
kj
j ) such that

(
tkj , X

k
j

)kj
k=1

is compatible with(
tlj , X

l
j

)lj
l=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ Ĥj

(
hti
)
; the set of t2j such that, given t1j , there

exists (t3j , ..., t
kj
j ) such that

(
tkj , X

k
j

)kj
k=1

is compatible with
(
tlj , X

l
j

)lj
l=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈

Ĥj

(
hti
)
; and so on, up to the set of t

kj
j such that, given t1j , t

2
j , . . . , t

k−1
j ,

(
tkj , X

k
j

)kj
k=1

is compatible

with
(
tlj , X

l
j

)lj
l=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ Ĥj

(
hti
)
.3 Given hti and H

σ∗j
j

(
hti
)
, define

KX∗j , T 1,∗
j , T 2,∗

j

(
t1j

)
, ..., T

kj ,∗
j (t1j , ..., t

kj−1
j ) in a similar manner. Then, given hti and Ĥj

(
hti
)
, for

2Since the Poisson process has a density, we directly define the conditional probability using the ratio of the density
functions. Since the Poisson process is right-continuous, we can micro-found this definition by a measure-theoretic
definition as well. See Karazas and Shreve (1988, Proposition 1.13) for the details.

3For simple notation, we suppress the dependence of KXj on hti and Ĥj
(
hti
)

and the dependence of T 1
j , T 2

j

(
t1j
)
,

..., T
kj
j (t1j , ..., t

kj−1

j ) on hti, Ĥj
(
hti
)
, and (kj ,

(
Xk
j

)kj
k=1

).

2



any g
(
htj

)
, we define

∫
htj∈Ĥj(hti)

g
(
htj
)
dβi
(
htj |hti

)

:=

∑(
kj ,(Xk

j )
kj
k=1

)
∈KXj

∫
t1j∈T 1

j

∫
t2j∈T 2

j (t1j )
· · ·
∫
t
kj
j ∈T

kj
j (t1j ,...,t

kj−1

j )

 g
(
htj

)
e−(T−t)λ ((T−t)λ)kj

kj !

×
∏kj
k=1 σ

∗
j (h

tkj
j )
(
Xk
j

)
dt
kj
j · · · dt1j


∑(

kj ,(Xk
j )
kj
k=1

)
∈KX∗j

∫
t1j∈T

1,∗
j

∫
t2j∈T

2,∗
j (t1j )

· · ·
∫
t
kj
j ∈T

kj,∗
j (t1j ,...,t

kj−1

j )

 g
(
htj

)
e−(T−t)λ ((T−t)λ)kj

kj !

×
∏kj
k=1 σ

∗
j (h

tkj
j )
(
Xk
j

)
dt
kj
j · · · dt1j


.

For example, given a fixed continuation strategy profile σ and hti, the function g
(
htj

)
can be

candidate i’s continuation payoff ui

(
σ|hti, htj

)
.

G Proofs Omitted in Appendix C

G.1 Proof of Proposition 9

Fix any t ∈ (−∞, 0], and suppose that no candidate enters at any −τ ∈ (−t, 0]. On the one hand,

if candidate i enters at −t, her payoff is vi,t(enter). By Assumption 2, vi,t(enter) ≤ vi,0(enter).

Since vi,0(enter) = vi (x∗i , X) by definition and vi (x∗i , X) < vi (X,X) as we are in Case 1, we have

vi,t(enter) < vi (X,X). On the other hand, if she does not enter, then her payoff is vi (X,X).

Hence, it is uniquely optimal not to enter at −t. Since the payoffs are continuous in time, there

exists ε > 0 such that no candidate enters for any time in (−t− ε,−t]. Hence the continuous-time

backward induction implies the desired result.

G.2 The Formal Definition of v̄i,t(not)

Formally, v̄i,t(not) is defined by the following:

v̄i,t(not) = e−(λi+λj)tvi(X,X) + e−λit(1− e−λjt)vi(X,x∗j ) + (1− e−λit)e−λjtvi(x∗i , X)

+
(

1− e−λit
)(

1− e−λjt
)( λi

λi + λj
v
BRj
i +

λj
λi + λj

sup
xi
vi(xi, x

∗
j )

)
.
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G.3 Proof of Proposition 10

By the definition of t0, there exists ε > 0 such that for all time in (−t0 − ε,−t0], each candidate

i enters under any PBE. Hence, if t∗i = t∗j = ∞, each candidate enters at all times in (−∞,−t0].

For the rest of the proof, we focus on the case in which at least one of t∗A and t∗B is less than ∞.

Without loss, we assume t∗A ≤ t∗B.

The following lemma shows that, for any PBE, candidate A does not enter at any time−t < −t∗A:

Lemma 10 Fix any σB such that (i) σB(htB) = x∗B for any htB with θB(htB) = X for each −t ∈

(−t∗A,−t0] and (ii) σB(ht) = BRB(xA) for any htB with θA(htB) = xA for each −t ∈ [−T, 0].4 If σA

is a best response to σB, then for any ht ∈ (X,X) with −t < −t∗A, we have σA(ht)(X) = 1.

The proof of the lemma is complicated, so we first assume that the lemma holds and show the

proposition, and then prove the lemma. If t∗A = t∗B, then Lemma 10 implies Proposition 10 with

ti = t∗i for each i. Hence, we assume t∗A < t∗B.

Fix a PBE and, for each i = A,B, let vi,t(not) be candidate i’s continuation payoff at time

−t when i does not enter. Given Lemma 10, for t ∈ [t∗A, t
∗∗
B ] with t∗∗B defined below, we calculate

vi,t(not) assuming that only candidate B enters in the time interval (−t,−t∗A) and both candidates

enter in the time interval [−t∗A,−t0]. For τ ≥ t, Lemma 10 implies that candidate A does not enter

at times in (−τ,−t). Hence, we have vB,τ (not) ≥ vB,t(not) for τ ≥ t because candidate B at −τ

can receive vB,t(not) by committing to a strategy in which he keeps skipping opportunities from

−τ to −t. Let

t∗∗B ≡ inf {t > t0 : vB,t(not) ≥ vB,t(enter)} .

There are the following two cases: t∗∗B <∞ or t∗∗B =∞. The following lemma is useful:

Lemma 11 If t∗∗B <∞, then v2 (x∗B, X) > vBRAB .

Proof. Suppose otherwise. Then, Assumption 2 implies vB (x∗B, X) = vBRAB . Then, vB,t(enter) is

constant in t ∈ [t0,∞). At time −t∗∗B < −t∗A, there are the following three cases:

1. Candidate A has the next opportunity at time −t ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

candidate B obtains a payoff of vBRAB = vB (x∗B, X) = vB,t(enter) when he enters at −t
4Recall the definition of θi(·) from Section 4.3.
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and a payoff of vB,t(not) when he does not. Since t∗∗B is the infimum of t > t0 such that

vB,t(not) ≥ vB,t(enter), candidate B prefers to enter in this event.

2. Candidate B has the next opportunity at time −t ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

since candidate B receives vB,t(enter) at any −t upon entering, candidate B is indifferent

between entering and not entering.

3. No candidate has an opportunity at any time −t̄ ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

candidate B strictly prefers to enter since vB,t∗A(enter) > vB,t∗A (X,X).

Hence, it is uniquely optimal to enter at −t∗∗B , which is a contradiction.

Given this lemma, consider the following two cases:

1. t∗∗B < ∞: In this case, we are left to prove Lemma 10. To see why, once we have shown

Lemma 10, then for t > t∗∗B , vB,t(not) ≥ vB,t∗∗B (not) since candidate B can skip opportunities

until −t∗∗B without the opponent entering. Together with the fact that vB,t(enter) is strictly

decreasing in t by Lemma 11, we can conclude that candidate B does not enter at times in

(−∞,−t∗∗B ) in any PBE.

2. t∗∗B =∞: This means that candidate B enters at times in (−∞, 0] in any PBE given Lemma

10.

We now prove Lemma 10:

Proof of Lemma 10. Suppose now candidate A receives an opportunity at time −t̄ < −t∗A at a

history in (X,X).

Fix candidate B’s strategy arbitrarily. Once we fix his strategy, conditional on the event that

candidate A does not enter at any time in (−∞,−t∗A] and that candidate B has at least one

opportunity in (−t̄,−t∗A], we can define a random variable t that is the largest τ ∈ [t∗A, t̄) such that

candidate B enters at time −τ .

From candidate A’s perspective at time −t̄, there are the following two possible events:

1. t ≤ t∗A or candidate B does not have any opportunities in (−t̄,−t∗A]. Conditional on this

event, not entering at times in [−t̄,−t∗A) ensures candidate A the value of vA,t∗A(not). Since

vA,t∗A(not) = vA,t∗A(enter) and vA,t(enter) is weakly decreasing in t by Assumption 2, it is

weakly better for candidate A not to enter at time −t̄.
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2. t > t∗A. Conditional on this event, at time −t̄, candidate A’s continuation payoff from entering

is weakly less than her continuation payoff from not entering if and only if

vBRBA ≤ (1− e−λAt)
(

max
XA∈XA

vA(XA, x
∗
B)

)
+ e−λAtvA(X,x∗B) =: v̂A,t.

To see why, note first that the left-hand side is the payoff from entering at time −t̄, while the

right-hand side is the payoff at time −t when the current policy profile is (X,x∗B). The payoff

from not entering at time −t̄ is a convex combination of the following two payoffs, where the

weight on the latter payoff is strictly positive.

• The payoff under the event that candidate A receives at least one opportunity at which

she enters in the time interval (−t̄,−t).

• The payoff under the event that candidate A does not receive any opportunity at which

she enters in the time interval (−t̄,−t).

Note that the former payoff is equal to the left-hand side of the expression (vBRBA ), while the

latter payoff is the same as the right-hand side of the expression. This implies the desired

equivalence.

To compare the two values, it is instructive to examine why candidate A at −t∗A is indifferent

between entering and not entering at histories in (X,X). Suppose now that candidate B

has not entered at −t∗A. There are following three events that can happen with positive

probability until the deadline:

(a) Candidate A receives the next opportunity at −τ > −t∗A: In this case, candidate A

receives vA,t(enter) at −τ regardless of candidate A’s choice at −t∗A. Note that, even if

candidate A has entered before −τ , since we assume that candidate A enters at some

policy in X∗A, the situation is that candidate A enters at some policy in X∗A and candidate

B has not at −τ (note that all the policies in X∗A give rise to the same payoff).

(b) Candidate B receives the next opportunity at −τ > −t∗A: Candidate A receives a payoff

of vBRBA (candidate B best-responds to x∗A at −τ) if she enters before −t∗A; and v̂A,τ

(candidate B enters while candidate A has not at −τ) if she does not enter before −t∗A.
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(c) No candidate receives any opportunity in the time interval (−t∗A,−t0]: Candidate A

receives vA,t0(enter) if she enters at −t∗1; and vA,t0(not) if she does not at −t∗A. We have

assumed that vA,t0(enter) > vA,t0(not).

Note that candidate A is indifferent between entering and not entering at −t∗A in case (2a)

and strictly prefers entering in case (2c). Since case (2c) happens with positive probability,

it must be the case that candidate A strictly prefers not entering to entering in case (2b),

in order for her to be indifferent between entering and not entering at −t∗A. This implies

that there exists −t̃ ∈ (−t∗A, t0] such that vBRBA < v̂A,t̃. Since candidate A can always skip

opportunities between −t and −t̃, we have v̂A,t̃ ≤ v̂A,t, implying vBRBA < v̂A,t.

Hence, conditional on the event that candidate B has an opportunity and enters at −t,

candidate A at −t̄ strictly prefers not entering to entering.5

Now we prove that candidate A does not enter at any history in (X,X) at any time before −t∗A
in any PBE. There are the following two cases:

1. If “v
BRj
i < sup{xi}∈Xi vi (xi, X) for each i” holds in Assumption 3, then vA,t(enter) is strictly

decreasing in t. Hence, conditional on the event that t ≤ t∗A or candidate B does not have any

opportunities in (−t̄,−t∗A], candidate A at −t̄ strictly prefers not entering to entering. Since

it happens with a positive probability that candidate B does not receive any opportunity in

(−t̄,−t∗A], candidate A does not enter before −t∗A in any PBE.

2. If t∗A 6= t∗B holds in Assumption 3, then t∗A < t∗B. By continuity of the continuation payoff in

time, there exists ε > 0 such that candidate B enters for each −t ∈ (−t∗A − ε,−t∗A]. Hence,

the event that candidate B has an opportunity and enters at some time in this time interval

happens with a positive probability. Therefore, candidate A does not enter before −t∗A in any

PBE.

5Here we are using Assumption 1 which implies that vBRB
A must be independent of the time at which candidate

A chooses x∗A.
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G.4 Proof of Part 1 of Proposition 12

By continuity of the continuation payoff in time, for times −t < −t̂A sufficiently close to −t̂A,

candidate B enters, and thus we focus on candidate A’s incentive at those times. Let

v̂A,t := (1− e−λAt)
(

max
XA∈XA

vA(XA, x
∗
B)

)
+ e−λAtvA(X,x∗B)

be candidate A’s payoff when she has not entered and candidate B has at time −t. The straight-

forward algebra shows that v̄AA,t(not) satisfies

v̄AA,t(not) =

∫ t

0
λBe

−λBτ v̂A,t−τdτ

=
(
e−λAt − e−(λ1+λ2)t

)
vA (X,x∗B) +

(
1− e−2λBt − 2e−λBt

)
max
xA

vA (xA, x
∗
B) .

In contrast, we have

vA,t(enter) = e−λBtvA (x∗A, X) +
(

1− e−λBt
)
vBRBA .

Hence, vA,t(enter) and v̄AA,t(not) are differentiable in t. Since t̂A is the infimum of t with v̄AA,t(not) ≤

vA,t(enter), we have
d

dt
v̄AA,t(not)

∣∣∣∣
t=t̂A

<
d

dt
vA,t(enter)

∣∣∣∣
t=t̂A

.

Consider candidate A’s incentive at time −t̂A. For any ε > 0, there are the following three cases

(assuming that candidate B enters as soon as she obtains an opportunity):

1. Candidate A has the next opportunity at time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

since we fix candidate B’s strategy at histories in (X,X), candidate A is indifferent between

entering and not entering.

2. Candidate B has the next opportunity at time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

candidate A obtains a payoff of vBRBA when she enters at −t and a payoff of v̂A,t̄ when she

does not.

3. No candidate has an opportunity at any time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

candidate A obtains a payoff of vA,t−ε(enter) when she enters at −t and a payoff of v̄1
A,t−ε(not)

8



when she does not.

Since candidate A is indifferent between entering and not entering at time −t̂A, for any ε > 0,

we have

∫ ε

τ=0
λBe

−(λA+λB)τ︸ ︷︷ ︸
Candidate B has the next opportunity at time −t+τ

(
vBRBA − v̂A,t−τ

)
dτ

= e−(λA+λB)ε
(
v̄1
A,t−ε(not)− vA,t−ε(enter)

)
.

Dividing both sides by ε and taking the limit as ε ↓ 0, we have

vBRBA − v̂A,t̂A =

(
d

dt
v̄1
A,t(not)

∣∣∣∣
t=t̂A

− d

dt
vA,t(enter)

∣∣∣∣
t=t̂A

)
< 0.

By continuity of the continuation payoff in time, there exists η̄ > 0 such that, for each η ∈ [0, η̄),

we have

vBRBA − v̂A,t̂A+η < 0. (21)

We now consider candidate A’s incentive at −t < −t̂A. There are again following three cases:

1. Candidate A has the next opportunity at time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

since we fix candidate B’s strategy at histories in (X,X), candidate A is indifferent between

entering and not entering.

2. Candidate B has the next opportunity at time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

candidate A obtains a payoff of vBRBA when she enters at −t and a payoff of v̂A,t̄ when she

does not.

3. No candidate has an opportunity at any time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

candidate A is indifferent between entering and not entering.

Hence, (21) implies that, for −t ∈ (−t̂A − η̄,−t̂A), candidate A strictly prefers to enter in any

PBE, as desired.
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G.5 Proof of Part 2 of Proposition 12

Since candidate A does not enter for each −t ∈
[
−t̂B, 0

]
, the fact that candidate B strictly prefers

to enter at time 0 and becomes indifferent between entering and not entering at −t̂B implies that

he is strictly worse off if candidate A enters than if she does not enter, after candidate B enters:

Lemma 12 t̂B ≤ t̂A implies vB (x∗B, X) > vBRAB .

Proof. Suppose otherwise. Then, by Assumption 2, we have vB (x∗B, X) = vBRAB and so we have

vB,t(enter) = vB (x∗B, X) .

At time −t̂B, consider the following three cases:

1. Candidate A has the next opportunity at time −t ∈ (−t̂B, 0]. Conditional on this event,

candidate B obtains a payoff of vBRAB = vB (x∗B, X) when he enters at −t and a payoff of

v̄1
B,t(not) when he does not.

2. Candidate B has the next opportunity at time −t ∈ (−t̂B, 0]. Conditional on this event,

since we fix candidate A’s strategy at histories in (X,X), candidate B is indifferent between

entering and not entering.

3. No candidate has an opportunity at any time −t̄ ∈ (−t̂B, 0]. Conditional on this event,

candidate B strictly prefers to enter since vB (x∗B, X) > vB (X,X).

Hence, candidate B strictly prefers to enter at −t̂B, which is a contradiction.

Given this lemma, we are left to show that, at each −t ∈ (−∞,−t̂B], given that no candidate

enters for −τ ∈ (−t,−t̂B), each candidate strictly prefers not to enter at −t < −tB.

On the one hand, if candidate i enters at −t, her payoff is vi,t(enter). By Lemma 12, vi,t(enter) <

vi,t̂B (enter). On the other hand, if she does not enter, then her payoff is v̄1
i,t̂B

(not). Hence, it is

indeed uniquely optimal not to enter at −t.

H Example for Playing the Weakly Dominated Action

In Section D, we claimed that the conclusion of part 3 of Theorem 4 does not hold if we replace

strictly dominant policy with weakly dominant policy. This appendix provides an example to
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illustrate this. Let X = {0, 1} and define (vA, vB) by the payoff matrix as in Table 3.

0 1

0 0, 1 2, 1

1 1, 2 3, 0

Table 3: Payoff matrix for an example with multiple PBE with weakly dominant policies

In addition, for each i = A,B, we define vi(X, aj) =
∑

ai∈X
1
2vi(ai, aj) for each aj ∈ X;

vi(ai, X) =
∑

aj∈X
1
2vi(ai, aj) for each ai ∈ X; and vi(X,X) =

∑
(ai,aj)∈X×X

1
4vi(ai, aj).

Notice that (1, 0) is the weakly (but not strictly) dominant policy profile, meaning that the

defining inequality for a strictly dominant policy is required to hold only weakly for all Xi ∈ Xi\{x∗i }

except at least one Xi ∈ Xi \ {x∗i } for which the inequality needs to hold strictly. However, if

candidate B announces {1} after candidate A announces {0} — he rewards her by taking the

weakly dominated strategy, then it is possible in a PBE that candidate A announces {0} for some

time interval.

Specifically, suppose λA = λB, let t∗ = − 1
λ ln 2, and consider the strategy profile as follows:

Candidate A chooses {1} except when B’s current policy set is X and the time is in the interval

[−T,−t∗), at which she takes {0}. Player B chooses {0} except when candidate A has already

chosen {0}, in which case he takes {1}. We show that this strategy profile is a PBE.

It is straightforward to check that candidate B is taking a best response. We check candidate

A’s incentive. Suppose first that −t ∈ [−t∗, 0]. The expected payoff from taking {1} is

e−λt2 + (1− e−λt). (22)

The expected payoff from taking {0} is e−λt1 + (1 − e−λt)2, and this is no more than (22) if

−t ∈ [−t∗, 0]. Next, the expected payoff from taking {0, 1} is

∫ t

0
e−2λ(t−s)2λ

(
e−λs + (1− e−λs)2

)
+
(
e−λs0.5 + (1− e−λs)

)
2

ds+ e−2λt1.5

= 3− 3e−λt + 1.5e−2λt.
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Given (22), the payoff from {1} is larger than the payoff from {0, 1} if and only if

e−λt2 + (1− e−λt) > 3− 3e−λt + 1.5e−2λt ⇐⇒ 4e−λt > 2 + 1.5e−2λt.

This holds if and only if −t ∈ (−t∗, 0].

Second, suppose that −t ∈ (−∞,−t∗). The expected payoff from taking {0} and the one from

taking {1} have the same expressions as before, and the former is strictly greater than the latter if

−t ∈ (−∞,−t∗). The expected payoff from taking {0, 1} is at most a strict convex combination of

(i) the expected payoff at time −t∗ from the continuation strategy profile that coincides with the

specified strategy profile, (ii) the expected payoff from taking {0} at time −t, and (iii) the expected

payoff from the opponent taking {0} at time −t. Since we have shown that (i) is less than (ii) for

any −t = −t∗ and (ii) is increasing in t, (i) is less than (ii) for any −t ∈ (−∞,−t∗). Hence, it

suffices to show that (iii) is no more than (ii), which is equivalent to

e−λt + (1− e−λt)2 > e−λt0.5 + (1− e−λt),

and this holds for any t ≥ 0.

Overall, we have shown that candidate A is taking a best response conditional on any history.

I A Proof and Additional Discussions for Section 3.1

This section provides discussions of the valence election campaign model. First, Section I.1 provides

a proof of Proposition 2. Next, Section I.2 derives empirical implications of our model. Although

we see these findings as only suggestive, they are consistent with the empirical findings such as

those presented in Campbell (1983). Then, Section I.3 conducts a welfare analysis, comparing our

model with that of Aragonès and Palfrey (2002).

The dynamic model we have analyzed in Section 3.1 was kept as simple as possible to highlight

the complexity added by the fact that candidates face dynamic incentive problems in the presence of

valence. In Appendix I.4, we extend and modify this model to examine robustness of our prediction

that candidates use ambiguous language at the early stages of the campaign.

Appendix I.5 considers a model with synchronous opportunities for policy announcements, and
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Appendix I.6 considers the case with partial commitment.

I.1 Proof of Proposition 2

Note that Assumptions 1 and 2 in Section 4.1 are satisfied given X∗i = {1}. Moreover, we have

v
BRj
i < supxi∈Xi vi(xi, X) (Assumption 3) and first-mover disadvantage is satisfied for i = W .

Fix a PBE σ arbitrarily. Given candidate i’s history hti =

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
at

−t, let wit
(
σ, hti

)
be candidate i’s continuation payoff at time −t given σ and hti. In addition, let

θ(hti) = (Xki
i , X

lj
j ) be the profile of policy sets that are chosen most recently, where we always write

S’s current policy set first in this proof. Since the most recently chosen policy sets are observable,

we have θ(htS) = θ(htW ). For simple notation, we write θ(htS) = θ(htW ) = θ
(
ht
)
. By Theorem 3,

there exists vi,t
(
θ
(
ht
))

such that wit
(
σ, hti

)
= vi,t

(
θ
(
ht
))

in any PBE σ.

From Lemma 1, the following statements are true:

• If θ(ht) = ({x}, {0, 1}) with x ∈ {0, 1} and if W can move, then W is indifferent between

entering at x′ ∈ {0, 1} with x′ 6= x and announcing {0, 1}. S wins if and only if the median

voter is located at x.

• If θ(ht) = ({0, 1}, {x}) with x ∈ {0, 1} and if S can move, then S enters at x and wins.

Hence, we have

vS,t
(
θ
(
ht
))

= 1− (1− p) e−λt if θ(ht) = ({0, 1}, {1})

vW,t
(
θ
(
ht
))

= (1− p) e−λt if θ(ht) = ({0, 1}, {1}) .

Similarly, we have

vS,t
(
θ
(
ht
))

= 1− p if θ
(
ht
)

= ({1}, {0, 1})

vW,t
(
θ
(
ht
))

= p if θ
(
ht
)

= ({1}, {0, 1}) .

When −t is sufficiently close to the deadline 0, then at any ht with θ(ht) = ({0, 1}, {0, 1}), the

following are true:
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• If W can move, then W enters at 1. Note that, since −t is sufficiently close to zero, with a

probability close to 1, there is no more opportunity to announce a policy. Hence, {1} gives

W the payoff close to 1− p, {0} gives W the payoff close to p, and {0, 1} gives W the payoff

close to zero. S wins if and only if the median voter is located at 0.

• If S can move, then S does not enter. Note that, since −t is sufficiently close to zero, with a

probability close to 1, there is no more opportunity to announce a policy. Hence, {1} gives S

the payoff close to 1− p, {0} gives S the payoff close to p, and {0, 1} gives S the payoff close

to 1.

Hence, we are in Case 3 for Theorem 1 (with candidate A being S), and using the notation of

Section 4.1, we have

v̄SS,t(not) = 1− (1− p)λte−λt;

vS,t(enter) = 1− p;

and

v̄SW,t(not) = (1− p)λte−λt;

vW,t(enter) = (1− p)λte−λt.

Hence, t̂S and t̂W , whose notation is introduced in Section 4.1, are characterized, respectively,

by

1− (1− p)λt̂Se−λt̂S = 1− p⇔ 1 >
p

1− p
= λt̂Se

−λt̂S (23)

and

(1− p)λte−λt̂W = (1− p) e−λt̂W ⇔ t̂W =
1

λ
. (24)

To fully characterize the candidates’ strategies, we examine the following three possible cases.

Case (1): p
1−p > e−1. In this case, we have 1

λ = t̂W < t̂S . Hence, Proposition 12 ensures that

both S and W announce {0, 1} for all time in (−t,−t∗) with t∗ := t̂W . By Lemma 5, we have

shown the claims.
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Case (2): p
1−p < e−1. In this case, we have 1

λ = t̂W > t̂S . Moreover, by the implicit function

theorem, we have

dt̂S
dp

= −
dλt̂Se

−λt̂S

dt̂S

d
(

p
1−p

)
dp

= − (1− p)2 λe−λt̂S
(
1− λt̂S

)
< 0. (25)

Recall that the definition of −t̂S implies that, at time −t̂S , S becomes indifferent between entering

at 1 and announcing {0, 1} given the continuation play in which S does not enter and W enters

at times in (−t̂S , 0]. The definition implies that this indifference holds in any PBE. By part 1 of

Proposition 12, there exists ε̄ > 0 such that both S and W strictly prefer entering at 1 for each

−t ∈ [−t̂S − ε̄, t̂S). Therefore, we are in Case 2 for Theorem 1 with t0 = −t̂S − ε̄.

We will show that candidate S always enters at 1 for −t < −t̂S . Suppose S always enters at 1

for all time in (−t,−t̂S). If S announces {0, 1} at −t, there are following three subcases to consider.

1. If W can move next by −t̂S , then one strategy that W can take is to announce {0, 1}. The

following two cases are possible: If S enters at {1} by −t̂S , W gets p. If S does not enter by

−t̂S , by the definition of −t̂S (that is, S is indifferent between {1} and {0, 1} at −t̂S), S gets

1 − p and W gets p. In both cases, W gets at least p. Furthermore, if W can get the first

revision opportunity sufficiently close to −t̂S , W gets strictly more than p since W strictly

prefers entering at 1 to announcing {0, 1}. Overall, W gets strictly more than p, which means

S gets strictly less than 1− p.

2. If S can move next by −t̂S , S enters and gets 1− p.

3. If no candidate can move by −t̂S , then by definition, S gets 1− p.

Therefore, the payoff from announcing {0, 1} is strictly less than 1 − p. This implies that it is

uniquely optimal for S to enter at 1, as desired. Hence, tS =∞ in Proposition 10.

We will now examine candidate W ’s incentives. Since first-mover disadvantage for W holds,

there exists

t∗W > t̂S (26)

such that it is uniquely optimal for W not to enter at −t < −t∗W and uniquely optimal for W to

enter at −t ∈ (−t∗W , 0].6

6This notation of t∗W is introduced in Section 4.1.
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Moreover, t∗W ≡ inf {t > t0 : v̄W,t(not) ≥ vW,t(enter)} implies

(1− p) e−λt =

∫ t−t̂S

0
e−2λτλ (1− p) e−λ(t−τ)dτ + p

(
1−

∫ t−t̂S

0
λe−2λτdτ

)

⇔

e−λ(2t∗W−t̂S) =
p

1− p
1

2

(
1 + e−2λ(t∗W−t̂S)

)
.

Since p
1−p = λt̂Se

−λt̂S by the definition of t̂S , this inequality is equivalent to

e−λ(2t∗W−t̂S) = λt̂Se
−λt̂S 1

2

(
1 + e−2λ(t∗W−t̂S)

)
⇔ e−2λt∗W =

1
2λt̂S

1− 1
2λt̂S

e−2λt̂S .

Taking the log of both sides and rearranging, we obtain

t∗W = t̂S −
1

2λ
log

(
1
2λt̂S

1− 1
2λt̂S

)
.

Hence, we have

dtW
dp

=
dt∗W
dt̂S

dt̂S
dp

=

(
1− 1

λt̂S
(
2− λt̂S

)) dt̂S
dp

.

Recalling that λt̂S ∈ (0, 1), we have

√
λt̂S

(
2− λt̂S

)
<

1

2

(
λt̂S +

(
2− λt̂S

))
= 1,

and so
1

λt̂S
(
2− λt̂S

) > 1.

Therefore, together with (25), we have

sign
dtW
dp

= sign

(
1− 1

λt̂S
(
2− λt̂S

)) sign
dt̂S
dp

= 1. (27)

The inequalities (25), (26), and (27) prove part 2(c) of Proposition 2.

Case (3): p
1−p = e−1. At time −t∗ = 1

λ , for each ht
∗

with θ(ht
∗
) = ({0, 1}, {0, 1}), S is indifferent

between “announcing {1} and thereby ensuring 1−p,” and “announcing {0, 1}.” At the same time,
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W is indifferent between announcing {1} and {0, 1}.

For −t < −t∗, on the one hand, when W can move, his payoff from not entering is at least p

since he gets p if S enters at 1 by −t∗. If S does not enter by −t∗, by the definition of −t∗, S gets

1−p and W gets p. On the other hand, entering at 1 gives W a payoff of 1−p times the probability

of S not having any future revision opportunity, which is equal to (1− p)e−λt < (1− p)e−λt∗ = p.

Therefore, W strictly prefers not entering.

Given this, S is always indifferent between “announcing {1} and thereby ensuring 1− p,” and

“announcing {0, 1}.”

I.2 Empirical Implications

In this section, we derive empirical implications of the results from the model of valence election

campaign. We see these implications as only suggestive, but as will be seen in Appendix I.4, it is

possible to enrich the model by incorporating various features (such as heterogenous arrival rates

and general utilities from the outcomes). This suggests that, if one wants to conduct empirical

research, then it will be possible to extend the model to incorporate more characteristics and to

derive testable implications from such a general model, as we do here for the base model.

First, we show that ambiguity is likely when the probability distribution of the median voter’s

position is close to uniform, that is, when p is close to 1
2 . Specifically, fix a horizon length T ∈ ( 1

λ ,∞).

Let pW be the p such that tW = T .7 By definition, pW < 1
1+e . Proposition 2 implies the following:

1. For p ∈ (0, 1
2) \ { 1

1+e}, the probabilities of W and S announcing the ambiguous policy are

both nondecreasing in p.

2. For p ∈ (0, pW ), the probability of W announcing the ambiguous policy is constant in p, and

that of S announcing the ambiguous policy is strictly increasing in p.

3. For p ∈ (pW , 1
1+e), the probabilities of W and S announcing the ambiguous policy are both

strictly increasing in p.

4. For p ∈ ( 1
1+e ,

1
2), the probabilities of W and S announcing the ambiguous policy are constant

in p.

7Such pW exists and is unique due to Proposition 2 2(c) and t∗ = 1
λ

.
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Hence, roughly, as the position of the median voter becomes more unpredictable, the proba-

bility of ambiguous policy announcement at the election date increases. This is consistent with

Campbell (1983) who suggests that opinion dispersion has a strong positive effect on the ambiguity

in candidates’ language.8

Next, suppose that there are two candidates A and B, and outside researchers know p > 1
1+e

but do not know which candidate is strong and which candidate is weak. They have a prior that

assigns a positive probability to both candidate A’s being strong and candidate B’s being strong.

If the researchers can observe the campaign phase, the first entrant can be inferred to be weak (and

if there is no entrance, then the posterior about valence is the same as the prior). In contrast, if

they cannot observe the campaign phase but only the final policy choices by the candidates, then

if only one candidate enters, such a candidate can be inferred to be weak. Otherwise, the posterior

about valence is the same as the prior.

I.3 Welfare Comparison with the Static Model

As mentioned in Remark 3, conducting a welfare analysis necessitates us to impose some specific

assumption about the voter distribution. Here, we assume that there is a single voter. It is then

necessary that this voter’s ideal policy is 0 with probability p and 1 with probability 1 − p. we

focus on the case in which p > 1
1+e . Normalize the voter’s payoff so that u(0) − u(1) = 1. With

this normalization, if a candidate i ∈ {S,W} with the ideal policy y ∈ {0, 1} wins and implements

a policy x ∈ {0, 1}, the voter’s payoff can be written as Ix=y + δ · Ii=S .

Aragonès and Palfrey (2002) consider the one-shot game where each of candidates S and W

simultaneously chooses a policy. Here we consider a version of their model adopted to our environ-

ment in which the policy space is {0, 1}. That is, each candidate chooses either 0 or 1, and there

is no choice of {0, 1}.

Since their expected payoffs are represented by the following payoff matrix, the unique mixed-

strategy Nash equilibrium is that S takes 0 and 1 with probabilities p and 1− p, respectively; and

W takes 0 and 1 with probabilities 1− p and p, respectively:

8As discussed in footnote 33 of the main text, we have in mind a situation where n voters are independently
distributed over {0, 1} where the probability on the policy 0 is q < 1

2
. A higher q suggests more option dispersion

(a higher standard deviation of the preferred policies among the voters. Campbell (1983) also considers standard
deviation), and corresponds to a higher p.
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S’s payoff \W ’s payoff 0 1

0 1, 0 p, 1− p

1 1− p, p 1, 0

Given this equilibrium strategy, the expected welfare of the voter is

p︸︷︷︸
y=0

 p︸︷︷︸
xS=0

(1 + δ) + (1− p)2︸ ︷︷ ︸
xS=1 and xW=0

+ p (1− p)︸ ︷︷ ︸ δ
xS=1 and xW=1


+(1− p)︸ ︷︷ ︸

y=1

(1− p)︸ ︷︷ ︸
xS=1

(1 + δ) + p2︸︷︷︸
xS=0 and xW=1

+ (1− p) p︸ ︷︷ ︸ δ
xS=0 and xW=0


= (1 + δ)

(
1− p+ p2

)
,

where xi for i = S,W denotes the realized policy choice by candidate i. This expected payoff

converges to W (p) := 1− p+ p2 in the limit as δ goes to 0.

Next, consider our model of valence election campaign. Since p > 1
1+e , given Proposition 2, in

any PBE, W does not enter for each −t < −tW = − 1
λ , and enters at x = 1 for each −t > − 1

λ ,

while S never enters unless W enters. Hence, (i) with probability e−λ·
1
λ = e−1, no candidate enters;

(ii) with probability
∫ 1
λ

0 λe−λse−λ(
1
λ
−s)ds = e−1, W enters at policy 1 but S does not enter; and

(iii) with probability 1 − 2e−1, both candidate enter at policy 1. In the respective cases, (i) if no

candidate enters, then the voter’s expected payoff is 1
2 + δ (recall that we assume that a candidate

without specifying her policy takes each policy with probability 1
2); (ii) if W enters at 1 while S

does not enter, then the expected payoff is 1− p+ p (1 + δ); and (iii) if both candidates enter at 1,

then the expected payoff is 1− p+ δ. In total, the expected payoff is

e−1

(
1

2
+ δ

)
+ e−1 (1− p+ p (1 + δ)) +

(
1− 2e−1

)
(1− p+ δ)

= 1− 1

2
e−1 − p+ 2pe−1 + δ − (1− p) δe−1.

This expected payoff converges to V (p) := 1− 1
2e
−1 −

(
1− 2e−1

)
p in the limit as δ goes to 0.
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Finally, we compare the two expected payoffs.

W (p) > V (p) ⇐⇒ 1− p+ p2 > 1− 1

2
e−1 −

(
1− 2e−1

)
p

⇐⇒ p2 + 2pe−1 +
1

2
e−1 > 0,

which holds for any p. Hence, in particular, we obtain W (p) > V (p) for p > 1
1+e .

Hence, the voter’s expected payoff in our model is smaller than under a unique mixed Nash

equilibrium model in which each candidate chooses between 0 and 1 as in Aragonès and Palfrey

(2002) when p > 1
1+e , δ > 0 is sufficiently small, and T is sufficiently large.

I.4 A Generalized Model with Valence Candidates

I.4.1 Heterogeneous Arrival Rates

This section discusses the effect of heterogeneous arrival rates. Let the arrival rate for candidate i

be λi > 0, and allow for the possibility that λS 6= λW . We define r = λS
λW

as the relative frequency

of the opportunities to enter between the candidates.

First, it is straightforward to show that the basic structure of the equilibrium does not change

even if λS 6= λW : The equilibrium behaviors after some candidate has already entered are the same

as before. When both candidates are announcing the ambiguous policy, there exist p∗ and t∗ such

that if p > p∗, then W enters if −t < −t∗, he does not if −t > −t∗, and S never enters in any PBE.

If p < p∗, then W enters after some cutoff and S enters as soon as possible until another cutoff.

The former cutoff for W to start entering precedes in time the latter for S to stop entering.

When r 6= 1, the cutoff p∗ can be calculated as p∗ = r
r

1−r /(1 + r
r

1−r ), and the expected payoff

profile for S and W when p > p∗ is
(

1− r
r

1−r , r
r

1−r
)

. Note that these values converge to the ones

in the base model as r → 1.

Since r
r

1−r is decreasing in r = λS
λW

, it follows that p∗ is decreasing in r and S’s payoff is

increasing in r. Thus, having a relatively higher arrival rate makes the candidate better off. This is

intuitive. With W ’s strategy being fixed, if S has a higher arrival rate, she has a greater chance to

copy W ’s position. In contrast, with S’s strategy being fixed, if W has a higher arrival rate, then he

can wait longer at the policy profile {0, 1} to reduce the probability of being copied afterward. Of

course W ’s strategy is not constant in the former case and S’s is not in the latter, so determination
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of the equilibrium strategy profile is more complicated, but these are the main driving forces of the

comparative statics.

Note that Calcagno et al. (2014) show that having a higher arrival rate makes the player worse

off in their analysis of battle-of-the-sexes games. This follows because having a higher arrival rate

decreases his/her commitment power. The difference from our result is due to the nature of the

stage game being analyzed. In a battle of the sexes, player i’s ability to commit to an action ai

can help induce his or her opponent to take aj such that (ai, aj) constitutes player i’s favorite

Nash equilibrium. In contrast, in the valence election campaign, the game is a constant-sum game,

so being unable to change an action over a longer time means that the player can react to the

opponent less quickly and suffers a low payoff with a larger probability.

I.4.2 Model with General Payoff Functions

Model

The simple model of “valence election campaign” presented in Section 3.1.1 was intended to

provide a basic intuition for the dynamic incentive problems faced by candidates. This section

extends this base model to more general cases. The policy space is X, and available policy

sets are X = {X} ∪
(⋃

x∈X {{x}}
)

for each i. The two candidates, S and W , correspond to

the strong and the weak candidates, respectively. The candidates are purely office-motivated, so

vS(XS , XW ) + vW (XW , XS) = 1 for any (XS , XW ) ∈ XS × XW . The strong candidate’s payoff

when only the weak candidate enters is minx∈X vS(X, {x}) =: α.9 We assume that the policy

to which the strong candidate enters does not depend on the time of the entry. Formally, we

assume: arg maxx∈X vS({x}, X) ∩ arg maxx∈X miny∈X vS({x}, {y}) 6= ∅, and let an (arbitrary) el-

ement of this intersection be x∗. With this assumption, we let the weak candidate’s payoff when

only the strong candidate enters be vW (X, {x∗}) =: β. Also, the weak candidate’s payoff when

the strong candidate enters and then the weak candidate enters is maxy∈X vW ({y}, {x∗}) =: γ.

Finally, the strong candidate wins for sure if the two candidates announce the same policy set, so

9As will be seen, we assume that W loses for sure if S enters after W enters. Hence, when W chooses his policy
to enter, he maximizes his payoff from his entry, that is, he minimizes S’s payoff, conditional on the event that S will
not enter afterward.
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vS(XS , XW ) = 1 if XS = XW . To summarize, the payoffs are represented as follows:

(S’s payoff,W ’s payoff) =



(α, 1− α) if only W enters;

(1− β, β) if only S enters;

(1− γ, γ) if S enters and then W enters;

(1, 0) if W enters and then S enters, or if neither enters.

We assume α ∈ [0, 1) and β, γ ∈ [0, 1].10,11 We let S’s arrival rate and W ’s arrival rate be λS > 0 and

λW > 0, respectively. Call this model the generalized valence election campaign. It is characterized

by a tuple (α, β, γ, λS , λW ).

Note that the crucial assumptions that we make here are (i) the payoff from the game is

determined solely by the policy sets at the election, (ii) S wins for sure if S and W choose the

same policy, and (iii) the position in the policy space that S enters does not depend on the timing

of entry.12 These are the only restrictions that we impose. These assumptions are satisfied in our

base model, with λS = λW = λ and α = β = γ = p.

Moreover, the specification fits other cases as well. For example, this general model can be

applied to the case of a continuous policy space, the model that the literature on elections often

considers. Specifically, Xi = {x}x∈[0,1] ∪ [0, 1] for each i = A,B, i.e., we allow the candidates to

announce either a specific policy x ∈ [0, 1] or an ambiguous policy [0, 1]. Analogous to the base

model, the policy set at time −T is [0, 1]. If candidate i wins the election and implements policy

x ∈ [0, 1], then the voter’s utility with position y ∈ [0, 1] is defined as u(x, y) + δ · Ii=S , where

the utility function u is strictly concave with respect to x (i.e., the voters are risk-averse). If a

candidate with the ambiguous policy [0, 1] wins, then the voter believes that the candidate will

implement the policies in [0, 1] according to the uniform distribution. Hence, the expected payoff

10We assume α 6= 1 because otherwise W obtains a payoff of 0 in any equilibrium.
11It is not crucial that S receives the payoff exactly equal to 1 when W enters and then S enters. Specifically, with

all other parameters fixed, there exists ε̄ > 0 such that for all ε < ε̄, all the cutoffs characterizing the equilibrium
behavior change continuously if the payoff profile from W entering and then S entering is (1 − ε, ε) and if all those
cutoffs are distinct from each other at such a payoff profile.

12Note that (i) and (ii) imply that the position that W enters is also independent of the timing of his entry. This
is because since W loses if S enters afterward by (ii), when W chooses his policy to enter, he can condition on the
event that S will not enter afterward. Under such an event, by (i), W ’s payoff is determined solely by his policy
announcement. Hence, the position that W enters is independent of his entry time.

22



is
∫ 1

0 u(x, y)dx + δ · Ii=S .13 The probability distribution of the median voter is uniform over the

policy space [0, 1]. Again, we assume that the valence term is δ > 0, but is sufficiently small so

that W at policy 1
2 beats S with the ambiguous policy.14,15

In this model with the continuous policy space, if S enters before W does, she enters at policy 1
2

regardless of the timing of her entry. This is because (i) this policy uniquely maximizes her payoff

if W enters afterward, and (ii) it guarantees a payoff of 1 if W does not enter. If W enters before

S does, he enters at a policy around 1
2 regardless of the timing of her entry. This is because (i)

if S enters afterward then S copies W ’s policy so W loses for sure, and (ii) if S does not enter

afterward, policies around 1
2 guarantee a payoff of 1 since voters are risk-averse.

Since the payoffs are constant-sum, Theorem 3 implies that the model with private monitoring

is outcome-equivalent to the one with public monitoring. For simple notation, for the rest of this

section, we assume public monitoring. That is, we assume that ht =
((
tkS , x

k
S

)kS
k=1

,
(
tkW , x

k
W

)kW
k=1

, t
)

is public and analyze SPE.

Analysis and Equilibrium Dynamics

To state our result, we define three pieces of notation. First, write Qt = (E,N) if in all SPE,

(i) S enters if she receives an opportunity at time −t when W has not entered, and (ii) W does

not enter if he receives an opportunity at −t when S has not entered. That is, the first element Qt

denotes S’s action at time −t and the second element denotes W ’s action at the same time. The

symbol E stands for “entering” and the symbol N stands for “not entering.” Define Qt = (E,E),

Qt = (N,E), and Qt = (N,N) analogously.

Second, we define functions

fS(t) : =


1

1−r
(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{γ−β,0}

1−α if r 6= 1;

λW te
−λW t − β+(1−e−λW t) max{γ−β,0}

1−α if r = 1,

fW (t) : =


1

1−r
(
e−λSt − e−λW t

)
− e−λSt if r 6= 1;

λW te
−λW t − e−λW t if r = 1,

13The integral is well defined because u is concave and thus it is measurable.
14Specifically,

∫ 1

0
u(x, y)dx+ δ < u( 1

2
, y) for all y. Note that such a δ > 0 exists by the strict concavity of u.

15As we mentioned in the literature review, if we assume convexity, ambiguity does not need valence: If candidates
are symmetric, it is optimal for a candidate to announce [0, 1] when the opponent is announcing { 1

2
}.
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where r = λS
λW

.16

Finally, let tS be the smallest positive solution for fS(t) = 0 (if there is no solution, then define

tS = ∞); and let tW be the smallest positive solution for fW (t) = 0 (since fW (t) is negative for

sufficiently small t > 0, positive for sufficiently large t, and continuous, there always exists a positive

solution).17

The equilibrium behavior is characterized as follows:

Proposition 14 For the generalized valence election campaign with (α, β, γ, λS , λW ), in any SPE,

S enters at the same position as W once W has entered but S has not. In addition, the following

hold.

1. If β ≥ γ, then the following are true.

(a) If −tS < −tW , then Qt = (N,E) for all −t ∈ (−tW , 0]; and Qt = (N,N) for all

−t ∈ (∞,−tW ).

(b) If −tS > −tW , then there exists t∗W ∈ (tS ,∞) such that Qt = (N,E) for all −t ∈ (−tS , 0];

Qt = (E,E) for all −t ∈ (−t∗W ,−tS); and Qt = (E,N) for all −t ∈ (−∞,−t∗W ).18

2. If β < γ, then the following are true.

(a) If −tS < −tW , then Qt = (N,E) for all −t ∈ (−tW , 0]; and Qt = (N,N) for all

−t ∈ (∞,−tW ).

(b) If −tS > −tW , then there exists ε > 0 such that Qt = (N,E) for all −t ∈ (−tS , 0];

Qt = (E,E) for −t ∈ (−tS − ε,−tS). The equilibrium behavior for −t < −tS depends

on the details of the parameters, but the following properties hold:

i. There exists t∗∗W ∈ (tS ,∞) such that W does not enter for all −t ∈ (−∞,−t∗∗W ); and

ii. There exists r̄ ≤ 1 such that r ≥ r̄ if and only if there exists t∗∗S ∈ (tS ,∞) such that

S does not enter for all −t ∈ (−∞,−tS).

3. All the time-cutoffs described above can be taken independent of T .
16One can show that fS (t) and fW (t) are continuous in r at r = 1.
17The smallest positive solutions always exist because fS and fW are both continuous. We note that the notation

for tS and tW defined here is different from the one we introduced in Section 4.1.
18t∗W in the statement is the same as t∗W in Section 4.1.
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This means that, for a sufficiently long election campaign phase, W uses ambiguous language

(and for many cases S uses such language as well) for a long time during the early stages of the

election campaign, but the candidates’ incentive to do so changes as the election date approaches.

This basic pattern is common across a wide range of parameter specifications, although the exact

way the incentives change varies across different specifications. Notice that in the base model, the

parameters satisfy β = γ. In this case, if p is sufficiently small, then S enters as soon as possible.

Thus, Proposition 14 claims that, if S expects even the slightest cost of W entering after her own

entry (i.e., β < γ), then she will not enter when the election date is far away.19

Recall that the model includes the case of a continuous policy space with a concave payoff

function. Thus, the proposition implies that the essence of our result is orthogonal to the convexity

of payoff functions. This is in contrast to the models of Shepsle (1972) and Aragonès and Postlewaite

(2002) in which the convexity of payoff functions is essential to the ambiguous policy announcement.

We now offer comparative statics of the cutoff times with respect to the parameter values:

Proposition 15 In the generalized valence election campaign with (α, β, γ, λS , λW ), the following

comparative statics hold:

1. For each (α, β, γ), there exists r∗ ∈ (0,∞) such that −tS < −tW if and only if r∗ < r.

2. For each (β, γ, λS , λW ), there exists α∗ ∈ [0, 1) such that −tS < −tW if and only if α∗ < α.

3. For each (α, γ, λS , λW ), there exists β∗ ∈ [0, 1) such that −tS < −tW if and only if β∗ < β.

4. For each (α, β, λS , λW ), there exists γ∗ ∈ [0, 1] such that −tS < −tW if and only if γ∗ < γ.

5. For each (α, β, λS , λW ), there exists γ̄ ∈ [0, 1) such that, for each γ̄ < γ, there exists −t̄ such

that S does not enter at all −t < −t̄.

Part 1 of this proposition implies that, for sufficiently large r, Case 1(a) or 2(a) in Proposition

14 applies. Intuitively, since S can move quickly compared to W , W enters only if the deadline is

very close (−tW is close to 0).

Parts 2 and 3 imply that for sufficiently large α or β, Case 1(a) or 2(a) in Proposition 14 applies.

To see the intuition, notice that high α implies that S gets a high payoff when only W enters, and

19Note that β < γ implies that S’s payoff when she is the only one who enters, 1 − β, is strictly greater than her
payoff when W enters afterward, which is 1− γ.
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high β implies that S gets a low payoff when only S enters. Hence, in these situations, S has only

a small incentive to enter.

If β ≥ γ, since W never enters after S enters, the value of γ does not affect the cutoff times. On

the other hand, if β < γ, Part 4 implies that for sufficiently large γ, Case 1(a) or 2(a) in Proposition

14 applies. Intuitively, high γ implies that S gets a small payoff when W enters after S’s entry. In

such a situation, S has only a small incentive to enter.

Part 5 implies that, if γ is sufficiently large, then S does not enter if the election is sufficiently

far away. To see this, consider the extreme case with γ = 1. In this case, S’s payoff is zero if S

enters first and then W enters afterward. Hence, if S enters when the election is far away, then

with a high probability W will enter and S’s payoff is close to zero. Therefore, in equilibrium, S

does not enter when the election is far away.

Remark 7 (Sufficient condition for −tS < −tW ) The numbers tS and tW that appear in Propo-

sition 14 are only implicitly defined as the smallest solutions of fS(t) = 0 and fW (t) = 0, respec-

tively. There is a sufficient condition to ensure that −tS < −tW . The sufficient condition is that

φ < 0, where20

φ :=


− γ

1−α if γ > β and r < 1− 1−α
γ−β

emax{ γ−β1−α ,0}−1 − max{β,γ}
1−α if r = 1(

1
r −

1−r
r max

{
γ−β
1−α , 0

}) r
r−1 − max{β,γ}

1−α otherwise

.

In fact, we use the condition in Remark 7 to show that r∗ is finite and α∗ and β∗ are strictly less

than 1 in Proposition 15. Moreover, Part 5 of Proposition 15 ensures the existence of γ̄ such that

γ > γ̄ implies S does not enter if the deadline is far. In total, if at least one of these parameters is

sufficiently high, then there is a long period of no entry by any candidate.

Recall that in the base model, r = 1 and α = β = γ = p. Proposition 2 implies that for

sufficiently large p, there is a cutoff time −t∗ such that no candidate enters for all −t < −t∗. The

specification of the base model implies that the three parameters α, β, and γ move simultaneously

as p varies, so it is not possible in the base model to examine the effects of individual parameters.

20One can show that φ is continuous in r at r = 1.
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Proposition 15 ensures that if at least one of these parameters is sufficiently high, then no candidate

enters when the deadline is far, as in the case of high p’s. In addition, in Section I.4.1, we define

p∗ to be a cutoff of p such that p > p∗ implies the existence of t∗ with which, in any equilibrium,

(i) no candidate enters for all −t < −t∗ and (ii) W enters and S does not for all −t > −t∗. Part 1

of Proposition 15 generalizes the claim that p∗ is decreasing in r (and it converges to 0 as r →∞).

Overall, the insight from the base model carries over to the general setting.

I.5 Synchronous Policy Announcements

So far, we have assumed that candidates’ policy announcements are asynchronous. In practice, not

all the announcements are asynchronous; for example, televised political debates would be better

modeled as synchronous policy announcements. To understand the role of the move structure on our

ambiguity result, in this section we consider the case in which all the opportunities are synchronous.

That is, time flows from −T to 0 and, according to the Poisson process with arrival rate λ, both

of the candidates receive opportunities to announce their policy platforms simultaneously. We

will show that the ambiguous policy announcements are robust to this setting. The very basic

intuition— S wants to wait for W who does not want to be copied, which makes both candidates

announce ambiguous policies when the election date is still far away— is the same as in the base

model, but the detailed equilibrium structure is different. In particular, candidates use mixed

strategies at any time point close to the election date.

We assume the same voter’s utility and the same distribution of the median voter as in the

original model explained in Section 2. For sufficiently small valence, the payoffs at the deadline 0

are given by the payoff matrix in Figure 2 with t = 0.

In this model, it is straightforward to see that parts 1 and 2 of Lemma 1 continue to hold.

Therefore, the only relevant state is the state in which no player has entered so far. Assume

for now that a Markov perfect equilibrium exists, and fix one of them.21 Let V i
t be the value of

candidate i when no one has yet entered at −t and an opportunity to enter arrives at −t but actions

have not been taken. Note that this value is independent of the other histories since we consider

a Markov equilibrium. Suppose neither candidate enters at −t. Then, if they have an opportunity

at −τ > −t, they will then get (V S
τ , V

W
τ ). Otherwise, {0, 1}, {0, 1} will be realized at time 0 and

21We will show in Proposition 16 that a subgame perfect equilibrium exists, all subgame perfect equilibria are
essentially Markov, and they have a unique continuation payoff at each time.
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S \W {0} {1} {0, 1}
{0} 1 p p

{1} 1− p 1 1− p
{0, 1} 1− pe−λt 1− (1− p) e−λt

∫ t
0 e
−λτλV S

t−τdτ + e−λt

Figure 2: The payoff matrix at time −t

they will get (1, 0). Hence, the value profile of choosing {0, 1}, {0, 1} at time −t is22

(∫ t

0
λe−λτV S

t−τdτ + e−λt,

∫ t

0
λe−λτV W

t−τdτ

)
.

For other action profiles, parts 1 and 2 of Lemma 1 determine the value profile. As in the

base model, the game has a constant sum since the winning probabilities must sum up to 1, so it

suffices to keep track of S’s payoffs. Specifically, when the candidates have an opportunity at −t,

S’s payoffs for the choices of policy platforms are given by the payoff matrix in Figure 2. and V S
t

is the unique minimax value of this constant-sum game.

Unfortunately, a complete characterization of the equilibria for all parameter values is hard to

obtain. However, we can show that a Markov perfect equilibrium exists (and so does a subgame

perfect equilibrium), and the Markov perfect equilibrium value V S
t is unique. Moreover, all the sub-

game perfect equilibria are essentially Markov, meaning that for each subgame perfect equilibrium

σ, there exists σ′ such that the following two conditions are satisfied:

1. For each i ∈ {S,W} and ht, candidate i’s continuation payoff at ht given strategy profile σ

coincides with the one given σ′.

2. For each ht, if the minimax strategy profile is unique in the payoff matrix represented by

Figure 2, then (σS(ht), σW (ht)) = (σ′S(ht), σ
′
W (ht)).

Moreover, we provide two analytical results on the basic dynamics of the equilibrium behaviors.

22The integration is well-defined because V it is continuous in t for each i ∈ {S,W} for the following reason: Let
WS
t be S’s continuation payoff at time −t when no opportunity arrives. Since expected payoffs are continuous in

probability, WS
t is continuous in t.

In Markov equilibria, the continuation play after taking ({0, 1}, {0, 1}) at −t and that after not receiving an
opportunity are the same. Hence, we can replace the right-bottom entry of the payoff matrix with WS

t in Figure 2.
Since the minimax value of a constant-sum normal-form game is continuous in its payoff function, this means that
the expected payoff from the Nash equilibrium of the game in Figure 2 is also continuous in t. Since by definition
V St is the expected payoff from the Nash equilibrium of the game, V St is continuous in t. Since VWt = 1− V St , both
integrations in these payoffs are well-defined.
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Proposition 16 A Markov perfect equilibrium exists and the Markov perfect equilibrium value V S
t

is unique. Moreover, all the subgame perfect equilibria are essentially Markov. In addition, in each

subgame perfect equilibrium, the following are true:

1. There exists t∗ > 0 such that for all time −t ∈ (−t∗, 0], both candidates use completely mixed

strategies conditional on the event that the opponent has not entered.

2. There exists t∗∗ < ∞ such that for all −t < −t∗∗, the probability with which a candidate

enters at {0} or {1}, conditional on the event that the opponent has not entered, is zero.

Part 1 of the proposition states that if the election date is close, both candidates have to

mix. This is in stark contrast to the asynchronous case, but is a natural consequence of the game

representation above. The continuation payoff matrix approaches the original payoff matrix in the

one-shot game whose unique equilibrium is completely mixed, and by the upper hemi-continuity of

the set of Nash equilibria, the result holds.

Part 2 of the proposition shows the robustness of our ambiguity result with respect to the move

structure. The intuition is the same as before. If W enters at −t sufficiently far from the election

date with positive probability, then it is optimal for S to wait and try to copy W ’s policy later.

Given this, W does not enter. S gains a lot by copying W ’s policy, so she has an option value of

waiting. Thus S does not enter either, when the election date is sufficiently far away.

As part 1 shows, the equilibrium involves mixing when the election date is close if opportunities

arrive simultaneously. The mixing probabilities have to change over time, since the Nash equilibrium

of the game matrix above changes as t changes. The transition of mixing probabilities is complicated

and the incentive problems faced by the two candidates are subtle. We illustrate its complexity

with an example with specific p and λ in Section I.5.2 in the appendix.
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I.5.1 Proof of Proposition 16

We first show the result that will be useful for the following proof. Fix t arbitrarily. Suppose that

the candidates play the one-shot constant-sum game, where S’s payoff is given by

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λτ 1− (1− p) e−λτ w

Let V (w) be the unique minimax value given w. We will show that

∣∣V (w)− V
(
w′
)∣∣ ≤ ∣∣w − w′∣∣ (28)

for each w and w′. Without loss, we can assume w ≥ w′.

We first derive an upper bound for V (w) − V (w′). By the minimax theorem, we can assume

that W moves first to minimize S’s payoff and then S moves to maximize S’s payoff. Let σW (w)

be an optimal strategy for W given w. When W takes the same strategy σW (w) given w′, then S

can improve her payoff compared to V (w) at most by w − w′. Hence, V (w)− V (w′) ≤ w − w′.

We second derive a lower bound for V (w)− V (w′). By the minimax theorem, we can assume

that S moves first to maximize S’s payoff and then W moves to minimize S’s payoff. Let σS(w)

be an optimal strategy for S given w. When S takes the same strategy σS(w) given w′, then W

can improve his payoff at most by w − w′. Hence, V (w)− V (w′) ≥ − (w − w′). In total, we have

shown (28).

We now show that Markov equilibria exist for each T . Consider the following functional equation

f : Given vS : [0, T ]→ [0, 1] such that vS is continuous in t, f(vS)(t) is equal to the unique minimax

value of the following payoff matrix

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λt 1− (1− p) e−λt
∫ t

0 e
−λτλvS(t− τ)dτ + e−λt

30



If vS is continuous, then each element of the payoff matrix is continuous in t, and f(vS)(t) is

also continuous in t. Hence, f is the mapping from the set of continuous functions such that

vS : [0, T ]→ [0, 1] to itself.

Consider the sup norm:
∥∥vS − v̂S∥∥ ≡ supt∈[0,T ]

∣∣vS(t)− v̂S(t)
∣∣. Given this norm, the mapping

f is contraction. To see why, note that, for each t ∈ [0, T ], we have

∣∣f(vS)(t)− f(v̂S)(t)
∣∣ ≤ ∣∣∣∣∫ t

0
e−λτλ

(
vS(t− τ)− v̂S(t− τ)

)
dτ

∣∣∣∣
≤ sup

t∈[0,1]

∣∣vS(t)− v̂S(t)
∣∣ ∫ t

0
e−λτλdτ

=
(

1− e−λT
)∥∥vS − v̂S∥∥ .

The first inequality follows from (28). Hence, there exists a unique fixed point v̄S for the mapping

f . When we define V S
t = v̄S(t) for each t, such V S

t is the equilibrium value. Moreover, taking the

minimax strategy of the game

S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−λt 1− (1− p) e−λt
∫ t

0 e
−λτλV S

t−τdτ + e−λt

(29)

in each period t is an equilibrium. Therefore, the existence is proven.

Next, we will prove that the equilibrium value in the subgame perfect equilibrium is unique.

Let h<−t be the history before time −t:

h<−t =

((
tk, xkS , x

k
W

)K
k=0

)
,

where −T < −t1 < ... < −tk < −t and xki ∈ 2X \ {∅} for all k and i = S,W . The interpretation is

that −tk is the time at which the candidates receive their k’th revision opportunity, and xki is the

policy set that i has chosen at time −tki .

Intuitively, the same proof as in the proof of Proposition 14 establishes the uniqueness, with

ht replaced with h<−t. In addition, since the opportunity arrives synchronously, we consider the

event such that the candidates receive an opportunity at −t and both of them take {0, 1}, instead
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of zi = yes (that is, candidate i receives an opportunity) and i taking N .

The formal proof proceeds as follows. Let W̃S
t (σ, h<−t) be S’s payoff when both candidates

take {0, 1} at −t and take a strategy σ such that σ|h<−t,yes,{0,1},{0,1} is subgame perfect in the game

after (h<−t, yes, {0, 1}, {0, 1}), where σ|h<−t,yes,{0,1},{0,1} denotes a continuation strategy defined

for such a subgame given by restriction of σ on such a subgame. That is, h<−t is the record of

what has been observed before −t, yes means that the candidates receive an opportunity at −t,

and both of them take {0, 1} at −t. Moreover, let W̄S
t be the supremum of S’s continuation payoff:

W̄S
t ≡ supσ,h<−t W̃

S
t (σ, h<−t), where the supremum is taken over all the possible histories and

strategies such that h<−t is the history at −t, the candidates receive an opportunity at −t, and

both of them take {0, 1}, and σ|h<−t,yes,{0,1},{0,1} is subgame perfect after (h<−t, yes, {0, 1}, {0, 1}).

Similarly, let WS
t be the infimum of S’s continuation payoff: WS

t ≡ infσ,h<−t W̃
S
t (σ, h<−t). Let

wSt be the difference between the supremum and infimum: wSt ≡ W̄S
t −WS

t . Note that wS0 = 0

since the game that the candidates play at time 0 has a unique equilibrium payoff because it is a

constant-sum game.

We first show that wSt is continuous in t. To this end, as we do in footnote 22, let WS
t (σ, h<−t)

be S’s payoff when there is no opportunity at −t and the candidate takes a strategy σ such that

σ|h<−t,no is subgame perfect in the game after (h<−t, no) (that is, h<−t is what has been observed

before −t and no means that the candidates do not receive an opportunity at −t). As seen in

footnote 22, WS
t (σ, h<−t) is continuous in t given σ. Hence, W̄S,no

t ≡ supσ,h<−tW
S
t (σ, h<−t) and

WS,no
t ≡ infσ,h<−tW

S
t (σ, h<−t) are continuous, where supremum and infimum are taken over all the

possible histories and strategies such that there is no opportunity at −t and σ|h<−t,no is subgame

perfect.

To show wSt is continuous in t, it suffices to show that W̄S
t = W̄S,no

t and WS
t = WS,no

t . Let

us define σ̃ as the strategy such that, after (h<−t, no), the candidates at time −τ follows the

strategy σ|h<−t,yes,{0,1},{0,1}. That is, they take actions as if there were an opportunity at −t and

both of them took {0, 1} at −t. Since the strategic environment is the same between (h<−t, no)

and (h<−t, yes, {0, 1}, {0, 1}), this continuation strategy is subgame perfect after (h<−t, no) if

σ|h<−t,yes,{0,1},{0,1},ht,τ is subgame perfect after (h<−t, yes, {0, 1}, {0, 1}, ht,τ ). Therefore, for each

W̃S
t (σ, h<−t) such that σ|h<−t,yes,{0,1},{0,1} is subgame perfect, there exists σ̃ such that W̃S

t (σ, h<−t) =

WS
t (σ̃, h<−t) and σ̃|h<−t,no is subgame perfect. Therefore, we have W̄S

t = W̄S,no
t and WS

t = WS,no
t .
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We will now show that wSt = 0 for each t ≥ 0. To this end, fix −τ ∈ (−t, 0] arbitrarily. Suppose

that the candidates receive an opportunity at −τ for the first time after −t, that is, zτ ′ = no for

each −τ ′ ∈ (−t,−τ) and zτ = yes. Here, zt ∈ {yes, no} represents whether the candidates receive

an opportunity at −t. Let WS
t (σ, ht | τ) be S’s continuation payoff from −τ , conditional on that

zτ ′ = no for each −τ ′ ∈ (−t,−τ) and zτ = yes. This S’s continuation payoff from −τ , denoted by

WS
t (σ, ht | τ), varies at most by wSτ by (28).

On the other hand, let WS
t (σ, ht | no) be candidate S’s continuation payoff at 0 given σ and

ht, conditional on that no opportunity comes after −t (that is, zτ = no for each −τ ∈ (−t, 0]). By

definition, this difference is equal to wS0 = 0.

Since the probability that the candidates receive the first opportunity after −t at −τ ∈ (−t, 0]

is 1− exp(−λt) (that is, zτ ′ = no for each −τ ′ ∈ (−t,−τ) and zτ = yes for some −τ ∈ (−τ, 0]), we

have

wSt ≤ (1− exp(−λt))× max
τ≤t

wSτ︸ ︷︷ ︸
Supremum difference

in WS
τ (σ,h<τ |τ)

+ exp(−λt)× 0

= (1− exp(−λt)) max
τ≤t

wSτ .

The same proof as in (17) with λS +λW replaced with λ establishes the uniqueness. Let V S
t be

the unique value. Given V S
t , the candidates at −t play the constant-sum game with payoff matrix

(29). Hence, as long as the minimax strategy for (29) is unique, the strategies for the candidates

are unique. Hence, the equilibrium is essentially Markov.

Now we prove parts 1 and 2. Part 1 holds since (i) each candidate takes a completely mixed

strategy at −t = 0 and (ii) the payoff function is continuous in t. Hence, we focus on proving part

2.

In equilibrium, there are following three possibilities:

1. S takes a pure strategy {x} at −t. W then takes {x′} or {0, 1}, with x′ = {0, 1} \ {x}. For x

to be optimal, it must be the case that x = 1. Consider the following two possible subcases:

(a) If W takes a pure strategy {x′}, then S takes {x′}. This is a contradiction.

(b) If W takes {0, 1} with positive probability, then the payoff of S’s taking {0, 1} is 1 − p
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if W enters at x′ = 0, and strictly greater than 1 − p if W takes {0, 1}. To see this,

we calculate S’s payoff for taking each action when W takes {0, 1}. Conditional on W

taking {0, 1}, S’s payoffs are given by the following table:

S \W {0, 1}

{0} p

{1} 1− p

{0, 1}
∫ t

0 e
−λτλV S

t−τdτ + e−λt

Since S can always enter at {1} and thereby guarantee payoff 1−p, it follows that V S
t−τ ≥

1 − p for all τ . Therefore,
∫ t

0 e
−λτλV S

t−τdτ + e−λt ≥
(
1− e−λt

)
(1− p) + e−λt > 1 − p.

This means it is a strict best response for S to announce {0, 1}. This is a contradiction.

2. S takes a mixed strategy only over {0} and {1} at −t. It is then a strict best response for W

to take {0, 1} since the probability of S and W entering at the same platform would then be

zero. This means it is a strict best response for S to announce {0, 1} by the same argument

as above. This is a contradiction.

3. S takes {0, 1} with positive probability. In order to show that it is a strict best response for

W to take {0, 1}, we compare W ’s payoff for entering at {x} at −t and that of taking {0, 1}

in the following three possible subcases:

(a) Conditional on the event that S enters at {x} at −t, W gets zero if W enters at {x}.

Compared to this, announcing {0, 1} is strictly better for W since that gives him at least

1− p.

(b) Conditional on the event that S enters at {x′} at −t, W gets p by entering at {x} if

x = 0, and gets 1− p if x = 1. Announcing {0, 1} also gives W the same payoff.

(c) Conditional on the event that S does not enter, W gets at most pPr (S will not have an opportunity) =

p exp (−λt) by entering at {x}. On the other hand, consider the strategy in which W

announces {0, 1} until −t̄ = − 1
λ . If player S has entered by −t̄, W will get at least 1−p.

Otherwise, when the candidates have an opportunity to enter at −s ≥ −t̄, then the value

for S should be less than the minimax value of the following constant-sum game.
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S \W {0} {1} {0, 1}

{0} 1 p p

{1} 1− p 1 1− p

{0, 1} 1− pe−1 1− (1− p) e−1 1

This is because this payoff matrix is the same as the original payoff matrix except that

we replace the payoffs when S takes {0, 1} with higher payoffs. The value is bounded

away from 1, which means the payoff for W is bounded away from 0. Let v be this

lower bound. When we take into account the probability of the candidates having an

opportunity between −t̄ and 0, the expected payoff is no less than
(
1− e−1

)
v. For

sufficiently large t, p exp (−λt) < min
{

1− p,
(
1− e−1

)
v
}

, which means taking {0, 1} is

strictly better.

To summarize Case 3, since we assume that S takes {0, 1} with a positive probability, it

follows that {0, 1} is a strict best response for W for sufficiently large t.

Let us consider S’s incentive, given that W takes {0, 1}. Recall that S’s payoffs given that W

takes {0, 1} for sure are given by the following table:

S \W {0, 1}

{0} p

{1} 1− p

{0, 1}
∫ t

0 e
−λτλV S

t−τdτ + e−λt

For the same reason as in Case 1(b) above, S should take {0, 1} with probability 1.

I.5.2 An Example of Equilibrium Dynamics with Simultaneous Arrivals

As part 1 of Proposition 16 shows, equilibria in the synchronous announcement model involve

mixing when the election date is close. The mixing probabilities have to change over time, since

the Nash equilibrium of the game matrix in Figure 2 changes as t changes. The transition of mixing

probabilities is complicated. We illustrate its complexity in the numerical results for p = 0.45 and

λ = 1. This example illuminates the subtle incentive problems faced by the two candidates.
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Figure 3: S’s value V S
t in the synchronous model when the candidates do not receive an opportunity

at −t given W ’s most recent announcement, given that S has been taking {0, 1}. For example, the
blue line corresponds to S’s value given that W has taken {0} and S has been taking {0, 1}.

The values of S when she takes {0, 1} against various announcements of W are as depicted in

Figure 3 as a function of −t. Note that S’s payoffs at policy profiles ({0, 1}, {0}) and ({0, 1}, {1})

at −t increase as −t decreases since the probability with which S can enter afterwards and copy

W ’s policy increases. On the other hand, S’s payoff at ({0, 1}, {0, 1}) at −t decreases since the

weight for the highest payoff 1 decreases.

Figure 4 depicts S’s and W ’s strategies as functions of −t. When −t is sufficiently close to zero,

each candidate mixes over all the announcements, as we stated in part 1 of Proposition 16. Now

we consider the strategies of the candidates one by one for time −t close to the deadline.

(α) Consider the transition of S’s strategy. Since S’s mixing probability is determined in order

to make W indifferent between his actions, we hypothetically fix S’s mixing probability over

time and examine how W ’s incentive changes over time; we then use this transition of W ’s

incentive to determine how S’s mixing probability should change over time.

To this end, suppose that S enters at x ∈ {0, 1} with the same probability at time 0 and
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Figure 4: Strategies in the synchronous model

time −t < 0. Then, it must be the case that W ’s incentive to enter at x is weaker at time −t

than at time 0. To show this, we compare W ’s payoff for taking each action at time 0 with

his payoff at time −t < 0. At time 0, entering at x gives W a positive payoff if and only if

S either enters at the other point or takes {0, 1}; but taking {0, 1} gives W a positive payoff

if and only if S does not take {0, 1}. On the other hand, at time −t, entering at x gives W

a positive payoff if and only if S either enters at the other point at −t or “takes {0, 1} and

cannot enter until the deadline”; but taking {0, 1} gives W a positive payoff if S does not take

{0, 1}. Furthermore, if both take {0, 1} at −t, then the payoff depends on the continuation

play after −t but is weakly higher than the payoff for both candidates taking {0, 1} at time

0.

To summarize, W ’s payoff for entering at x is smaller at time −t < 0 than at time 0 while

W ’s payoff for taking {0, 1} is no less at time −t < 0 than at time 0, if S entered at x with

the same probability over time. Hence, to incentivize W to enter at x, S should reduce the

probability of her taking x ∈ {0, 1} over time.

(β) Consider the transition of W ’s strategy. In an approach similar to Argument (α) with the

roles of S and W reversed, suppose that W enters at x ∈ {0, 1} with the same probability

over time [−t, 0]. Given this assumption about W ’s strategy, we will show that S’s incentive
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to enter at x is stronger at time 0 than at time −t.

To compare S’s payoff for each action at time 0 with her payoff at time −t, we first show

that S’s payoff for entering at x ∈ {0, 1} is the same between time −t and time 0. At time

0, entering at x gives S a positive payoff if and only if either W takes x or the median voter

is at x. At time −t, entering at x gives S a positive payoff if and only if either W takes x or

the median voter is at x. Since we assume that W enters at x with the same probability at

both times 0 and −t, the two payoffs are the same.

Next, we show that S’s payoff for taking {0, 1} is lower at time 0 than at time −t. Playing

{0, 1} at time 0 gives S the mixed-strategy equilibrium payoff in the one-shot game. If there

is no opportunity after time −t, then since we assume that W enters at x ∈ {0, 1} with the

same probability between time 0 and time −t, S’s expected payoff for taking {0, 1} is the

same as this mixed-strategy equilibrium payoff. If there is an opportunity to enter, S’s payoff

for taking {0, 1} depends on W ’s realized action at time −t. If W takes {0, 1} at time −t,

then S’s payoff again corresponds to the mixed-strategy equilibrium payoff at time 0.23 On

the other hand, if W specifies his policy, then S’s payoff is 1. Since W ’s strategy assigns a

strictly positive probability to specifying his policy, S’s expected payoff for taking {0, 1} is

lower at time 0 than at time −t.

The above comparison implies that S’s payoff for entering at x would be constant but S’s

payoff for taking {0, 1} would increase as −t becomes smaller, if W took each action with the

same probability between time 0 and time −t. Hence, in order to incentivize S to enter at x,

W should increase the probability of his taking x as −t becomes smaller, so that both S and

W enter at x with a higher probability. Therefore, W puts higher probabilities on {0} and

{1} as −t becomes smaller.

Now we consider the candidates’ strategies for times further away from the deadline.

Around −t = −0.7, the constraint that the probability of {0, 1} is nonnegative binds for W .

As −t becomes further away from the deadline than such a cutoff time, W cannot increase the

probability of entering both at {0} and {1}. Then, as seen in the comparison of S’s payoff above

23Here, we assume that this another opportunity to enter is the last opportunity until the deadline because the
probability to have one more opportunity is small for −t close to 0.
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(Argument (β)), entering becomes less attractive for S. Since the median voter is located with a

lower probability at {0}, S stops entering at {0}.

Now let us consider the transition of the mixing probabilities in the time interval (−1,−0.7).

Again, as seen in the comparison of S’s payoff above, W increases the probability of entering at

{1} as −t becomes smaller in order to incentivize S to enter at {1}. On the other hand, as seen in

the comparison of W ’s payoff above (Argument (α)), S reduces the probability of taking {1} as −t

becomes smaller in order to incentivize W to enter at {1}.

Consider the incentive at −t < −1. For each time −t ∈ (−1, 0], W is indifferent between

{0} and {0, 1}. As in the comparison of W ’s payoff above, if S took each action with the same

probability between times −1 and −t < −1, W ’s incentive to enter at x ∈ {0, 1} would decrease

as −t becomes smaller. As −t gets smaller, this incentive gets even weaker since if S has not yet

specified her policy, then S can enter with a higher probability later and W ’s risk of being copied

by S later goes up. In general, entering at {0} is less attractive for W than entering at {1} since the

median voter is less likely to be at policy 0. Hence, there is a time −t̄ such that for each −t < −t̄,

W strictly prefers {0, 1} to {0}.

Again, as seen in Argument (α) (that is, the comparison of W ’s payoff), as −t becomes smaller,

S reduces the probability of taking {1} in order to incentivize W to enter at {1}. Finally, the

probability of S taking {0, 1} hits 1. If −t gets further away from the deadline, then no player

enters.

To wrap up the discussion, although the exact transition of incentives is complicated, the basic

reason for the ambiguous policy announcements with synchronous arrivals is the same as in the

case with asynchronous arrivals— S wants to wait for W who does not want to be copied, which

makes both candidates announce ambiguous policies when the election date is still far away.

I.6 Partial Commitment

In this section, we extend our baseline model, allowing candidates to gradually clarify their policy

announcements. To this end, we extend our baseline valence model to the two dimensional policy

space and allow candidates to clarify policies, dimension by dimension. The policy space is X =
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{0, 1}2. The voter is located at (x1, x2) ∈ {0, 1}2 with probability

x2 = 0 x2 = 1

x1 = 0 p2 p (1− p)

x1 = 1 p (1− p) (1− p)2

When she is located at (x1, x2), the voter’s utility from a candidate i with policy (y1, y2) winning

is

− |y1 − x1| − |y2 − x2|+ δ{i=S}.

We allow candidates to gradually clarify their policy announcements. In particular, when a

candidate’s most recent policy announcement is (Xi,1, Xi,2) with Xi,1, Xi,2 ∈ {{1}, {0}, {1, 0}}, she

can announce a policy
(
X̃i,1, X̃i,2

)
with X̃i,1 ⊆ Xi,1 and X̃i,2 ⊆ Xi,2.

Given the policy set
(
X̃i,1, X̃i,2

)
announced in the last opportunity before the deadline, the

voter believes that the candidate takes a policy in
(
X̃i,1, X̃i,2

)
according to uniform distribution,

and vote for the candidate who brings the higher expected utility. In particular, with X̄ ≡ {1, 0},

candidate S’s payoff matrix of the component game (here, we omit W ’s payoff since the game is

constant sum) is given by

S\W 1, 1 1, 0 0, 1 0, 0 1, X̄ X̄, 1

X̄, 0 p p p 1− p 1− (1− p)2 p

X̄, 1 p 1− p 1− p 1− p 1− (1− p) p 1

X̄, X̄ 1− (1− p)2 1− p (1− p) 1− p (1− p) 1− p2 p p

1, 0 p 1 1− p (1− p) 1− p p p

1, 1 1 1− p 1− p 1− p2 1− p 1− p

1, X̄ p 1− p 1− p 1− p 1 1− (1− p) p

0, 0 1− (1− p)2 p p 1 p p

0, 1 p 1− p (1− p) 1 1− p p p

0, X̄ p p p 1− p p 1− (1− p)2
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S\W X̄, X̄ 0, X̄ X̄, 0

X̄, 0 p 1− p (1− p) 1

X̄, 1 1− p 1− (1− p)2 1− p

X̄, X̄ 1 1− p 1− p

1, 0 1− p (1− p) 1− p 1− p

1, 1 1− p2 1− p 1− p

1, X̄ 1− p 1− p 1− (1− p)2

0, 0 1− (1− p)2 p p

0, 1 1− p (1− p) 1− p 1− p

0, X̄ p 1 1− p (1− p)

For example, when S’s policy choice is
(
X̄, X̄

)
and W ’s choice is (1, 1), when the voter is located

at (0, 0), the voter’s payoff from S is

−1

4
(0 + 1 + 1 + 2) + δ{i=S} = −1 + δ,

and that from W is −2. The similar calculation shows that S wins if the voter is located at (1, 1),

(0, 1), or (1, 0), which happens with probability 1− (1− p)2.

We first narrow down the set of policies that candidates announce when the opponent’s current

policy is
(
X̄, X̄

)
. For W , entering at (x1, x2) is suboptimal. To see why, observe that, for each

policy (x1, x2), either
(
x1, X̄

)
or
(
X̄, x2

)
guarantees the same payoff to W if S does not enter until

the deadline; and
(
x1, X̄

)
and

(
X̄, x2

)
allow W more flexibility in the continuation play in case S

enters.

Lemma 13 Given XS =
(
X̄, X̄

)
, at each −t ∈ (−∞, 0], if he enters, W enters at

(
x1, X̄

)
or(

X̄, x2

)
.

Proof. It is suboptimal to enter at (x1, x2) with x1 ∈ {0, 1} and x2 ∈ {0, 1}. To see why, we

compare the strategy of entering at (x1, x2) at −t and entering at
(
1, X̄

)
given XS =

(
X̄, X̄

)
(and

take a best response against S’s strategy if XS 6=
(
X̄, X̄

)
at each −t′ ∈ [−t, 0].

If S does not obtain any opportunity in (−t, 0], then entering at
(
x1, X̄

)
is at least as good as

entering at (x1, x2) since the former obtains the payoff of 1− p, which is the highest payoff W can
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obtain after entering at (x1, x2) ∈ {0, 1} × {0, 1}.

Otherwise, let −τ > −t be the first opportunity that S obtains after −t. Conditional on

the event that S obtains the first opportunity at −τ , if W enters at (x1, x2) at −t, his expected

continuation payoff is 0. If W keeps entering at
(
1, X̄

)
in the interval [−t,−τ ], his continuation

payoff is strictly positive since (i) if S does not enter at
(
1, X̄

)
at −τ , then he can win with a

positive probability if S does not have further opportunities and (ii) if S enters at
(
1, X̄

)
at −τ ,

then he can still win with a positive probability (for example, entering at (1, 1) at each −τ ′ > −τ

allows him to win if S does not have further opportunities and the voter is located at (1, 1)).

In both cases, entering at
(
1, X̄

)
is better than entering at (x1, x2).

For S, she enters at (1, 1):

Lemma 14 Given XW =
(
X̄, X̄

)
, S’s payoff of entering is given by

e−λW t
(
1− p2

)
+
(

1− e−λW t
)

(1− p) . (30)

Proof. By entering at (1, 1), S obtains the payoff of 1− p2 if W cannot move and 1− p if he can.

It is straightforward to show that all the other policy announcement gives her the payoff less than

(30): If S enters at
(
X̄, 0

)
, then S obtains the payoff of p if W cannot move. If he can, since S’s

feasible announcement in the continuation play is
(
X̄, 0

)
, (1, 0) , (0, 0), W can ensure the payoff of

p by entering at (0, 1). Hence, S’s payoff is at most

e−λW tp+
(

1− e−λW t
)

(1− p) < e−λW t
(
1− p2

)
+
(

1− e−λW t
)

(1− p) .

The verification of other announcements is the same, so is omitted.

Next, we pin down the continuation play after W entering at
(
1, X̄

)
and at

(
0, X̄

)
, given S’s

current policy announcement
(
X̄, X̄

)
.

Subgame after W enters at
(
1, X̄

)
Given XW =

(
1, X̄

)
, if S always take

(
1, X̄

)
, then she

obtains the payoff at least

e−λW t +
(

1− e−λW t
)
p. (31)

This lower bound will turn out to be useful.
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Lemma 15 Suppose the current policy announcement is XW =
(
1, X̄

)
and XS = (X̄, X̄) at −t ∈

(−∞, 0]. Then, S’s policy announcement at −τ ≥ −t satisfies XS 6∈ {(0, 1), (0, 0), (0, X̄)}.

Intuitively, for each x2 ∈ {0, 1}, the voter located in (0, x2) will vote for S if S’s policy is(
X̄, X̄

)
if XW ∈ {

(
1, X̄

)
, (1, 1) , (1, 0)}. Hence, S does not have incentive to make a commitment

for x1 = 0.

Proof. Suppose S enters at XS ∈ {(0, 1), (0, 0), (0, X̄)}. Given the final realization of the policy

announcement at time 0, the payoff matrix is

S\W (1, 1) (1, 0)
(
1, X̄

)
(0, 1) p 1− (1− p) p p

(0, 0) 1− (1− p)2 p p(
0, X̄

)
p p p

Here, we omit infeasible actions given XW =
(
1, X̄

)
and XS ∈ {(0, 1), (0, 0), (0, X̄)}.

W can guarantee S’s payoff is bounded by p by always taking
(
1, X̄

)
, which is smaller than

(31). Hence, taking XS ∈ {(0, 1), (0, 0), (0, X̄)} is suboptimal.

We can also show that entering at (1, 0),
(
X̄, 0

)
,
(
X̄, X̄

)
, or

(
X̄, 1

)
is suboptimal.

1. S does not enter at (1, 0) given XW =
(
1, X̄

)
: Given this policy announcement, S’s payoff

becomes p, which is dominated by (31).

2. S does not enter at
(
X̄, 0

)
given XW =

(
1, X̄

)
. Given this policy announcement, W can

guarantee that S’s payoff is no more than

e−λW t
(

1− (1− p)2
)

+
(

1− e−λW t
)
p,

which is dominated by (31).

3. It is suboptimal for S to stay at
(
X̄, X̄

)
. To see why, suppose S strictly prefers

(
1, X̄

)
to(

X̄, X̄
)

given XW =
(
1, X̄

)
for each −τ ∈ (−t, 0]. At timing −t, there are following three

possible events in the continuation play:
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(a) The next opportunity comes to S: In this case, S’s payoff is the same between her

entering at
(
1, X̄

)
and staying at

(
X̄, X̄

)
.

(b) The next opportunity comes to W at some −τ ∈ (−t, 0]. (i) If W ’s best response

to XS =
(
1, X̄

)
at −τ is (1, 1), then S’s payoff of entering at

(
1, X̄

)
at time −t is

e−λStp +
(
1− e−λSt

)
. If S stays at

(
X̄, X̄

)
at −t, then W ’s continuation payoff at −τ

is at least e−λSt (1− p) (for example, he can always stay at
(
1, X̄

)
), and S’s payoff is

bounded by e−λStp. Hence, S strictly prefers entering at
(
1, X̄

)
at −t conditional on

this event. (ii) If W ’s best response to XS =
(
1, X̄

)
at −τ is

(
1, X̄

)
, then by inductive

hypothesis, S strictly prefers
(
1, X̄

)
to
(
X̄, X̄

)
at −t conditional on this event.

(c) No opportunity arrives to any candidate: In this case, S strictly prefers
(
1, X̄

)
to
(
X̄, X̄

)
at −t conditional on this event by inductive hypothesis.

Since the payoff is continuous in time and the events (b) and (c) happen with a positive

probability, by continuous time backward induction, we can conclude that S prefers at
(
1, X̄

)
to
(
X̄, X̄

)
given XW =

(
1, X̄

)
.

4. S prefers
(
1, X̄

)
to
(
X̄, 1

)
. Given XS =

(
1, X̄

)
, the component game with relevant policies is

S\W 1, 1 1, 0 1, X̄

1, X̄ p 1− p 1

1, 0 p 1 p

1, 1 1 1− p 1− p

and given XS =
(
X̄, 1

)
, we have

S\W 1, 1 1, 0 1, X̄

X̄, 1 p 1− p 1− p2, p2

0, 1 p 1− p (1− p) p

1, 1 1 1− p 1− p
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If we re-label (0, 1) as (1, 0) in the second matrix, we obtain

S\W 1, 1 1, 0 1, X̄

X̄, 1 p 1− p 1− p2, p2

1, 0 p 1− p (1− p) p

1, 1 1 1− p 1− p

This re-labelling does not affect the strategic incentive, and each element of the payoff matrix

is (weakly) smaller for XS =
(
X̄, 1

)
. Since the game is constant sum, S’s payoff is (weakly)

larger with XS =
(
1, X̄

)
. Moreover, by backward induction, we can also show that S’s payoff

is strictly larger with XS =
(
1, X̄

)
.24 Hence, we can assume that S enters at

(
1, X̄

)
.

Hence, the relevant choices for S at XW =
(
1, X̄

)
is (1, 1) and

(
1, X̄

)
. We now figure out

S’s payoff of entering at XW =
(
1, X̄

)
. To streamline the analysis, we focus on the case with

p > r
r

1−r /(1 + r
r

1−r ) with r = λS/λW .

Given XS = XW =
(
1, X̄

)
, both candidates select the policy in the second dimension, and the

strategic incentive is the same as the baseline model. Hence, with t∗ = log(λS/λW )/(λS − λW ),25

1. S announces
(
1, X̄

)
for each −t ∈ (−∞, 0].

2. W announces
(
1, X̄

)
for each −t ∈ (−∞,−t∗) and (1, 1) for each −t ∈ (−t∗, 0].

S’s payoff at
((

1, X̄
)
,
(
1, X̄

))
at time −t is

vSt
((

1, X̄
)
,
(
1, X̄

))
=


eλS(−t)(λW−λW p+λW (p−1)et(λS−λW )+(λS−λW )eλSt)

λS−λW if t ≤ t∗,

1− (1− p)
(
λS
λW

) λS
λW−λS if t ≥ t∗.

Note that S announcing
(
1, X̄

)
all the time implies that S prefers entering at

(
1, X̄

)
to (1, 1) for

each −t given XW =
(
1, X̄

)
.

Given Lemma 13, W stays at
(
1, X̄

)
as long as S stays at

(
X̄, X̄

)
. Therefore, S’s payoff of

24We can also show that S strictly prefers
(
1, X̄

)
to
(
X̄, 1

)
. The details are available upon request.

25If we consider p < r
r

1−r /(1 + r
r

1−r ), then we use part 2 of Proposition 2 instead of part 1 to characterize the
candidates’ behavior.
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(XS , XW ) =
((
X̄, X̄

)
,
(
1, X̄

))
is

vSt
((
X̄, X̄

)
,
(
1, X̄

))
=

∫ t

τ=0
λSe

−λSτvSt−τ
((

1, X̄
)
,
(
1, X̄

))
dτ +

(
1− e−λSt

)
p.

Subgame after W enters at
(
0, X̄

)
The symmetric analysis implies that entering at

(
0, X̄

)
is

always worse than entering at
(
1, X̄

)
. Intuition is simple: The voter is less likely to be located at

(0, x2) than at (1, x2) for each x2.

On-Path Outcome at XW = XS =
(
X̄, X̄

)
If t is sufficiently close to 0, W enters at

(
1, X̄

)
and S stays at

(
X̄, X̄

)
at time −t. Let wSt be S’s value at time −t given the current policy

announcements XS =
(
X̄, X̄

)
, XW =

(
X̄, X̄

)
and given that W enters at

(
1, X̄

)
and S stays at(

X̄, X̄
)

at all time −τ ∈ (−t, 0]:

wSt =

∫ t

τ=0
λW e

−λW τvSt−τ
((
X̄, X̄

)
,
(
1, X̄

))
dτ +

(
1− e−λW t

)
.

Given this continuation payoff, compare S’s payoff of entering, (30), with wSt . There exists r̄

such that, for each r < r̄, there exists t̄S such that wSt is greater than (30) for each t ∈ [0, t̄S)

and smaller for each t ∈ (t̄S ,∞); and for each r > r̄, wSt is greater than (30) for each t ∈ [0,∞).

Intuitively, if S cannot move fast (compared to W ), S incurs the cost when S skips the current

opportunity and then W enters at
(
1, X̄

)
.

In contrast, compare W ’s payoff of entering, 1− vSt
((
X̄, X̄

)
,
(
1, X̄

))
, with 1−wSt . For each r,

there exists t̄W such that 1 − vSt
((
X̄, X̄

)
,
(
1, X̄

))
is greater than 1 − wSt for each t ∈ [0, t̄W ) and

smaller for each t ∈ (t̄W ,∞). Intuitively, since W incurs the cost if S copies his policy, W does not

want to reduce the flexibility if the remaining time is long.

There are two cases: t̄S > t̄W . In this case, on equilibrium path at XW = XS =
(
X̄, X̄

)
, we

have the following:

1. S announces
(
X̄, X̄

)
for each −t ∈ (−∞, 0].

2. W announces
(
X̄, X̄

)
for each −t ∈ (−∞,−t̄W ) and

(
1, X̄

)
for each −t ∈ (−t̄W , 0].

The proof of S not entering once W stops entering is analogous to that of Proposition 2, so is

omitted.
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In contrast, if t̄S < t̄W , then there exists t̃W > t̄S such that, on equilibrium path at XW =

XS =
(
X̄, X̄

)
, we have the following:

1. S announces (1, 1) for each −t ∈ (−∞,−t̄S) and
(
1, X̄

)
for each −t ∈ (−t̄S , 0].

2. W announces
(
X̄, X̄

)
for each −t ∈ (−∞,−t̃W ) and

(
1, X̄

)
for each −t ∈ (−t̃W , 0].

The proof of the existence of such t̃W is analogous to that of Proposition 2, so is omitted.

J Proofs for Section 3.2

J.1 Proof of Proposition 3

Part 1: Policy x∗(X,µ) is a Condorcet winner. To see why, we have vi ({x∗(X,µ)} , X) = 1 by

assumption. Moreover, given the definition of M, Theorem 7.2 of Roemer (2001) implies that

x∗(X,µ) is a best response to x∗(X,µ), and for each x′i 6= x∗(X,µ), vi (x∗(X,µ), xj) > vi(x
′
i, x
′
j)

for each xj ∈ BRj(xi) and each x′j ∈ BRj(x′i).

Since the game is symmetric and constant-sum, Theorem 2 implies that, in any PBE, each

candidate enters at xi ∈ X∗i as soon as possible.

Part 2: There exists a function y : X → X such that Pi (x, y (x)) < 1
2 for each x ∈ X for

each i = A,B. If candidate i has not entered and j has already entered at x, then it is optimal

for i to enter at y(x), which gives the highest feasible payoff. If a candidate enters while the other

candidate has not yet entered, then she is indifferent among any policy x with vi({x} , X) = 1

(which exists by assumption) since once the other candidate enters later, she will lose for sure.

Therefore, Assumptions 1-3 and first-mover disadvantage for i in Section 4.1 are satisfied for each

i ∈ {A,B}. Moreover, each candidate has a strict incentive to enter at t = 0. Hence, we have Case

2 with t0 = 0 for Theorem 1. Hence, Theorem 1 implies that, for each i, there exists ti such that

candidate i enters at all times −t ∈ (−ti, 0] and does not enter at all times −t ∈ (−∞,−ti).

In addition, t∗i in Section 4.1 is calculated as follows: On the one hand, i’s expected payoff of

entering is the probability that the other candidate will not have an opportunity to enter. That is,

vi,t (enter) = e−λjt. On the other hand, supposing that each player enters at every time−τ ∈ (−t, 0],
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we have

v̄i,t (not) =

∫ t

0
e−(λi+λj)τ︸ ︷︷ ︸

no one moves until time −(t− τ)

( λidτ︸︷︷︸
i moves at time −(t− τ)

) e−λj(t−τ)︸ ︷︷ ︸
j does not move in (−(t− τ), 0]



+

∫ t

0
e−(λi+λj)τ︸ ︷︷ ︸

no one moves until time −(t− τ)

( λjdτ︸︷︷︸
j moves at time −(t− τ)

)( 1− e−λi(t−τ)︸ ︷︷ ︸
i can move in (−(t− τ), 0]

)

+ e−(λi+λj)t︸ ︷︷ ︸
no one moves until time 0

1

2
.

Hence, t∗i is characterized by fi (t∗i ) = 0 with

fi(t) := −e−λit +
λj

λi + λj
(1− e−(λi+λj)t) + e−(λi+λj)t

1

2
. (32)

Differentiating fi(t), we get

f ′i(t) = λi(e
−λit − e−(λi+λj)t

1

2
) + λje

−(λi+λj)t
1

2
> 0.

Since fi(t) is −1
2 at t = 0, continuous and strictly increasing in t, and approaches

λj
λi+λj

> 0 as

t→∞, there exists a unique t such that fi(t) = 0. The cutoff t∗i is such t.

J.2 Proof of Proposition 4

Equation (32) implies that e−λAt
∗
B is strictly more than 1/2. The reason is that, letting i = A, the

sum of the second and the third terms is a strict convex combination of λB
λA+λB

< 1
2 and 1

2 . Hence,

fB (t∗B) = 0 implies that e−λAtB < 1
2 . Since this is B’s continuation payoff from entering at time

−t∗B and B is indifferent between entering and not entering at time −t∗B, B’s continuation payoff

from not entering at time −t∗B is also strictly less than 1/2. Hence, A’s continuation payoff from

not entering at time −t∗B is strictly greater than 1/2. One strategy A can take is not to enter until

time −t∗B and then enter for all the times in (−t∗B, 0]. This gives a lower bound of A’s PBE payoff

that is strictly greater than 1/2 because B does not enter for times in (−∞,−t∗B) in any PBE. This

implies that A’s payoff is strictly greater than B’s.
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K A Proof and Additional Discussions for Section 3.3

K.1 Proof of Proposition 5

First, we compute a lower bound of the probability of candidate i winning conditional on her

being able to move at time −t. To calculate such a bound, suppose candidate i does not enter for

each time in the time interval (−t,−τ), and then enters for each time in the time interval [−τ, 0].

A lower bound of the probability of winning when i uses this strategy, denoted by p̄τ , is given

by the following consideration: Since the second entrant can win for sure, the minimum winning

probability is given by the assumption that the opponent will not enter until a candidate enters.

The bound can be computed as follows:

p̄τ =

∫ τ

0
λie
−λis︸ ︷︷ ︸

i enters at −(τ−s)

× e−λj(τ−s)︸ ︷︷ ︸
j cannot enter after i enters

ds =


λi

[
e−λiτ−e−λjτ

]
λj−λi > 0 if λi 6= λi

λiτe
−λiτ if λi = λj

.

Another lower bound can be calculated by assuming that i enters at time −t, and it is given by

e−λjt. Hence, in total, we obtain a bound of max{e−λjt,maxτ∈[0,t] p̄τ}. This implies that, if we take

ε <
mint∈[0,∞) max{e−λjt,maxτ∈[0,t] p̄τ}

maxx,y∈X |ui(x)−ui(y)| , then at every time −t, there exists a strictly better strategy for

candidate i than entering at a policy with which i will lose for sure.

These bounds can be used to derive an explicit expression of ε̄:

ε̄ = min

{
1, min
i∈{L,R}

mint∈[0,∞) max{e−λjt,maxτ∈[0,t] p̄τ}
maxx,y∈X |ui (x)− ui (y)|

}
. (33)

Given this definition of ε̄, ε < ε̄ ensures that it is a dominated strategy for candidate i to enter

at a policy x such that i loses at a policy set profile ({x}, X).

We next derive the set of policies with which candidate i can win given that candidate j has

entered at x, which we denote by X (i, x). If candidate j’s policy is x ∈ X, candidate i can win

if and only if her policy is x′ (including the case where she picks X and her ideal policy is x′)

satisfying one of the following three conditions:

1. x1 ≤ x′1 and x2 ≤ x′2 (voters at (1, 0) and (0, 1) vote for her);

2. x1 ≤ x′1 and x′1 + x′2 ≤ x1 + x2 (voters at (1, 0) and (0, 0) vote for her); or
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3. x2 ≤ x′2 and x′1 + x′2 ≤ x1 + x2 (voters at (0, 1) and (0, 0) vote for her).

Second, we derive the set of policies with which candidate L can win if candidate R does not

enter. Since the voters believe that candidate R implements
(

1
2 ,

1
2

)
if she does not enter, the set is

the same as X
(
L,
(

1
2 ,

1
2

))
. Similarly, candidate R can win with policies in X (R, (0, 0)) if candidate

L does not enter.

We now consider each candidate’s best response to the opponent’s entry to x. First, suppose

that R has entered at x. Candidate L enters at (x1, x
′
2) with x′2 ≤ x1 if x1 ≤ x2, and (x′1, x2)

with x′1 ≤ x2 if x1 ≥ x2. Given the tie breaking rule, we conclude that candidate L enters at

(min {x1, x2} ,min {x1, x2}).

Second, suppose that L has entered at x. Given this, suppose that R’s entry to x′ is a best

response.

1. If x1 ≤ x′1 and x2 ≤ x′2, then the following hold.

(a) If x1 ≤ 1
2 and x2 ≤ 1

2 , then x′ =
(

1
2 ,

1
2

)
. In this case, she receives uR (x′) = 1

2 .

(b) Otherwise, given the tie breaking rule, x′ is on the line segment connecting (0, 1) and

(1, 0). In particular, x′1 = x1 and x′2 = 1− x1 if x1 >
1
2 ; and x′1 = 1− x2 and x′2 = x2 if

x2 >
1
2 . In this case, she receives uR (x′) = 1−max {x1, x2}.

2. If x′1 + x′2 ≤ x1 + x2, then x′ =
(
x1+x2

2 , x1+x2
2

)
and she receives uR (x′) = x1+x2

2 .

Hence, for x ∈ X
(
L,
(

1
2 ,

1
2

))
(L never enters outside of X

(
L,
(

1
2 ,

1
2

))
), R enters at

(
1
2 ,

1
2

)
if

x =
(

1
2 , 0
)
,
(
0, 1

2

)
; she enters at x′ with x1 ≤ x′1 and x2 ≤ x′2 if x satisfies x1 ≤ 1

2 and x2 ≤ 1
2 or x

satisfies
x1 + x2

2
≤ 1−max {x1, x2} ; (34)

and she enters at
(
x1+x2

2 , x1+x2
2

)
if x satisfies x1+x2

2 ≥ 1−max {x1, x2} and x 6=
(

1
2 , 0
)
,
(
0, 1

2

)
. Since

x1 + x2 = max {x1, x2}+ min {x1, x2}, (34) is equivalent to

min {x1, x2} ≤ 2− 3 max {x1, x2} .

Given this response of the other candidate, the following property holds for L. To formalize, let

XL
t ⊆ X be the set of policies such that x ∈ XL

t if and only if L’s continuation payoff is maximized
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if he enters at x at time −t conditional on the event that R has not entered and L enters at −t.

Let t1L be the solution for

e−λRt =
1

2
. (35)

Lemma 16 XL
t =

{(
1
2 ,

1
2

)}
for −t ∈ (−t1L, 0], and XL

t =
{(

2
3 , 0
)
,
(
0, 2

3

)}
for −t ∈

(
−∞,−t1L

)
.

Proof. First, note that candidate L does not enter at a policy x 6∈ X
(
L,
(

1
2 ,

1
2

))
since R’s best

response against such x guarantees L to get payoff εuL(1
2 ,

1
2), which is dominated by a payoff from

a strategy of entering at (1
2 ,

1
2) ∈ X

(
L,
(

1
2 ,

1
2

))
. Second, X

(
L,
(

1
2 ,

1
2

))
= {x ∈ X|max{x1, x2} ≥ 1

2}

holds. Third, we consider the following three exhaustive cases depending on which policy among

X
(
L,
(

1
2 ,

1
2

))
candidate L enters at:

1. If L enters at
(

1
2 , 0
)

or
(
0, 1

2

)
, then R will win and implement

(
1
2 ,

1
2

)
if she enters afterward.

Hence, L’s payoff is

e−λRt︸ ︷︷ ︸
Probability of R not

receiving an opportunity

+ ε

(
−1

2

)
︸ ︷︷ ︸

Utility from the policy is − 1
2

anyway

.

2. If L enters at x with min {x1, x2} ≤ 2 − 3 max {x1, x2}, then R, if she enters afterward, will

win and implement (x′1, x
′
2) such that x′1 = x1 and x′2 = 1 − x1 if x1 >

1
2 , and x′1 = 1 − x2

and x′2 = x2 if x2 >
1
2 . Hence, L’s payoff is

e−λRt︸ ︷︷ ︸
Probability of R not

receiving an opportunity

− ε (−max {x1, x2})︸ ︷︷ ︸
Utility from the policy is −max{x1,x2} anyway

since max{x1,x2}=max{x′1,x′2}

.

Thus, among all x’s in this case, L’s payoff is maximized if and only if he enters at
(

1
2 , 0
)
,(

0, 1
2

)
,
(

1
2 ,

1
2

)
, or any convex combination of them, and his payoff is then

e−λRt + ε

(
−1

2

)
.

3. If L enters at x with min {x1, x2} ≥ 2 − 3 max {x1, x2}, then R will win and implement
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(
x1+x2

2 , x1+x2
2

)
. Hence, L’s payoff is

e−λRt − εe−λRt (max {x1, x2})− ε
(

1− e−λRt
)(
−x1 + x2

2

)
.

If (x1, x2) is the optimal policy for L under this case, then the constraint min {x1, x2} ≥

2 − 3 max {x1, x2} has to bind, since otherwise L wants to reduce max {x1, x2}. The set of

x’s satisfying min {x1, x2} = 2− 3 max {x1, x2} is expressed as

{(
2

3
− θ, 3θ

)
∪
(

3θ,
2

3
− θ
)

: there exists θ ≥ 0 and
2

3
− θ ≥ 3θ

}
.

Given θ, L’s payoff is equal to

e−λRt − εe−λRt
(

2

3
− θ
)
− ε

(
1− e−λRt

)( 2
3 − θ + 3θ

2

)

= e−λRt − εe−λRt
(

2

3
− θ
)
− ε

(
1− e−λRt

)(1

3
+ θ

)
.

Hence, if e−λRt ≥ 1
2 , then it is the best for L to enter at

(
1
2 ,

1
2

)
; and if e−λRt ≤ 1

2 , then it is

the best for him to enter at
(

2
3 , 0
)

or
(
0, 2

3

)
.

In total, for −t ∈ (−t1L, 0], candidate L enters at
(

1
2 , 0
)
,
(
0, 1

2

)
,
(

1
2 ,

1
2

)
, or any convex combi-

nation of them, and obtains a payoff of e−λRt − ε1
2 . Again, by the tie breaking rule, L enters

at
(

1
2 ,

1
2

)
.

In addition, the following property holds for R:

Lemma 17 For all −t ∈ (−∞, 0], if L enters at (1
2 ,

1
2) for all times in (−t, 0], then R’s unique

best response at −t is not to enter.

Proof. Let σ∗R be the strategy of R such that R does not enter unless L enters, and best-responds

to L’s policy once L enters. Consider the following two cases:

1. Conditional on the event under which L will have an opportunity at some −τ ∈ (−t, 0], (i) if

R enters at −t, her payoff will be at most ε1
2 , but (ii) σ∗R gives her a payoff strictly greater

than ε1
2 (since L enters at

(
1
2 ,

1
2

)
and R can win if she can enter after L enters).
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2. Conditional on the event under which L will not enter, both entering at
(

1
2 ,

1
2

)
and σ∗R are

optimal for R.

Since the first event happens with strictly positive probability, the proof is complete.

We now pin down the candidates’ strategies at −t sufficiently close to 0. Let t2L be the unique

t satisfying the following.


λRe

−λRt−λLe−λLt
λL−λR = 0 if λL 6= λR,

t = 1
λ if λL = λR = λ.

(36)

For each t < min{t1L, t2L}, suppose that candidates take the following continuation play for each

−τ ∈ (−t, 0]: R does not enter unless L enters (and takes a static best-response once L enters) and

L enters at
(

1
2 ,

1
2

)
. Then, we show that, at time −t, it is optimal for R not to enter at −t and for

L to enter at
(

1
2 ,

1
2

)
.

Given this continuation play, Lemma 17 ensures that R has a strict incentive not to enter at

−t. Hence, we consider L’s incentive. L’s payoff when he does not enter at time −t is

∫ t

0
λLe

−λLτ
(
e−λR(t−τ) − ε1

2

)
dτ − e−λLt

(
−ε1

2

)
=

 λL
e−λRt−e−λLt

λL−λR − ε1
2 if λL 6= λR

e−λtλt− ε1
2 if λL = λR = λ

.

Hence, L strictly prefers to enter at
(

1
2 ,

1
2

)
at time −t if the following holds: t < t1L and


λL

e−λRt−e−λLt
λL−λR − ε1

2 > e−λRt − ε1
2 if λL 6= λR,

λt > 1 if λL = λR = λ

⇔ t < t2L.

Moreover, if t2L ≤ t1L, then L is indifferent between entering and not entering at time −t2L.

Therefore, by continuity of the continuation payoffs in time and the continuous-time backward

induction, for each t < min{t1L, t2L}, at time −t, it is uniquely optimal for R not to enter and for L to

enter at
(

1
2 ,

1
2

)
. In what follows, we consider candidates’ incentives at time −t with t > min{t1L, t2L}.

If time −t2L is after the time at which L’s optimal entering policy switches from
(

1
2 ,

1
2

)
to
(
0, 2

3

)
,

that is, if t2L < t1L, then neither L nor R enters for −t < −t2L. To see why, suppose this claim holds

for −τ ∈ [−t,−t2L). Note that, on the one hand, L’s payoff from entering at time −t is strictly
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decreasing in t since the probability of candidate R entering afterward increases. On the other

hand, given that R does not enter for each −τ with τ ≤ t, L can secure a payoff of


λL

e−λRt
2
L−e−λLt

2
L

λL−λR − ε1
2 if λL 6= λR

e−λt
2
Lλt2L − ε

1
2 if λL = λR = λ

by not entering in the time interval [−t,−t2L). Since candidate L is indifferent between entering

and not entering at −t = −t2L, he strictly prefers not entering for each −t < −t2L. With the

same reasoning, one can show that R strictly prefers not entering for each −t < −t2L. Hence, by

continuity of the continuation payoffs in time and the continuous-time backward induction, neither

L nor R enters at any −t < −t2L in any PBE.

Hence, we are left to consider the case in which t2L > t1L. By continuity of the continuation

payoff in time, there exists ε > 0 such that candidate L enters at
(

2
3 , 0
)

or
(
0, 2

3

)
for each −t ∈(

−t1L − ε,−t1L
)
. Given this behavior of candidate L, candidate R faces the following trade-off:

1. Conditional on the event under which L will enter after R, either entering at
(

1
2 ,

1
2

)
or not

entering (or both) is optimal for R. After R’s entry to
(

1
2 ,

1
2

)
, L’s unique best response is to

enter at
(

1
2 ,

1
2

)
, and in particular entering at

(
2
3 , 0
)

and entering at
(
0, 2

3

)
are both suboptimal.

2. Conditional on the event under which L will not enter, both entering at
(

1
2 ,

1
2

)
and not

entering are the best for R.

Note that the advantage for R to enter at
(

1
2 ,

1
2

)
is to change L’s policy from

(
2
3 , 0
)

or
(
0, 2

3

)
to(

1
2 ,

1
2

)
(R’s ideal policy). However, such an advantage is only valid when L enters after R enters.

Since L will win for sure in such a case, we will prove that, for sufficiently small policy preference

ε > 0, it is uniquely optimal for R not to enter:

Lemma 18 Suppose t1L < t2L. Fix −t < −t1L and L’s strategy such that he enters at
(

2
3 , 0
)

or
(
0, 2

3

)
for all times in

(
−t,−t1L

)
, and enters at

(
1
2 ,

1
2

)
for all times in (−t1L, 0]. Then, conditional on any

history at time −t at which no candidate has entered and R receives an opportunity, not entering

is R’s unique best response.

Proof. Fix time −t < −t1L. Since R not entering at all in the time interval [−t,−t1L) is one of the
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feasible continuation strategies, it suffices to show that, for each −t, this strategy is strictly better

for R than her entering at −t. Consider the following two cases:

1. L obtains an opportunity in the time interval (−t,−t1L). Conditional on this event, if R enters

at x ∈ X at time −t, then L enters at y (L, x) and wins for sure. Hence, assuming that R

enters, the optimal policy for her to enter is
(

1
2 ,

1
2

)
and it gives R a payoff of ε1

2 . Meanwhile,

if R does not enter until −t1L, then R obtains

(
1− e−λRt1L

)
︸ ︷︷ ︸

R can enter by the deadline after t1L

·
(

1 + ε
1

3

)
+ e−λRt

1
Lε · 0 ≥ 1− e−λRt1L .

Since (35) implies that t1L =
ln 1

2
−λR = ln 2

λR
and (33) implies ε < 1, straightforward algebra shows

that not entering is uniquely optimal for R at −t.

2. L does not obtain an opportunity in the time interval (−t,−t1L). Conditional on this event,

since R’s unique best response is not to enter at time −t1L (note that, conditional on the event

that L does not obtain an opportunity in (−t,−t1L), R wants to enter at −t if and only if she

wants to enter at −t1L), it is uniquely optimal for R not to enter at −t.

Therefore, conditional on both events, it is uniquely optimal for R not to enter at time −t.

Let σ̄L be candidate L’s strategy such that, if R has not entered, L enters at
(

2
3 , 0
)

or
(
0, 2

3

)
for

each −t ∈
(
−∞,−t1L

)
and at

(
1
2 ,

1
2

)
for each −t ∈ (−t1L, 0] (and L chooses a static best response

once R enters); and let σ̄R be candidate R’s strategy such that R never enters if L has not entered

(and R chooses a static best response once L enters). By tL1 < tL2 and Lemma 18, there exists ε > 0

such that σ̄i is optimal for each −t ≥ −t1L − ε and i ∈ {L,R}.

For t < t1L, suppose that the candidates take σ̄ for each time −τ with τ < t. Given that R

never enters after −t, given t < t1L, we must have XL
t =

{(
2
3 , 0
)
,
(
0, 2

3

)}
. Note that the probability

that L wins by entering at
(

2
3 , 0
)

or
(
0, 2

3

)
—equivalently, the probability that R cannot enter after

L enters—is decreasing in t and converges to 0 as t→∞. Hence, the payoff of entering converges

to −ε1
3 . By (33), for sufficiently large t, there exists τ ′ ∈ [0, t] such that L can obtain a payoff

greater than −ε1
3 by instead not entering until −τ ′. Hence, given the bound of ε we imposed and

continuity of the continuation payoff in time given σ̄, there exists the smallest t such that L is

55



indifferent between entering and not entering at −t. Let t3L be such t.

By continuity of the continuation payoff in t and the continuous-time backward induction, σ̄i

is optimal for any −t > −t3L in any PBE. Hence, we are left to show that no candidate enters at

−t < −t3L. Let σ∗ be a pair of strategies such that neither L nor R enters at −t < −t3L and both

of them take σ̄ for any −t > −t3L. One can show that R chooses a best response in the same way

as in Lemma 18 given the continuation play σ∗. L’s incentive can be checked as follows: Let v3
L

be L’s payoff of entering at time −t3L given the continuation play σ̄. Entering at −t < −t3L gives

him a payoff strictly lower than v3
L since the probability that R can enter after L enters increases

monotonically in t. Not entering until −t3L guarantees a payoff of v3
L since L is indifferent between

entering and not entering at −t3L given the continuation play σ∗. Hence, by continuity of the

continuation payoffs in time and the continuous-time backward induction, both candidates take σ∗

in any PBE.

Finally, we examine the conditions under which we have t1L < t2L and t1L > t2L, respectively. Note

that (35) implies that t1L =
ln 1

2
−λR = ln 2

λR
. Since the left-hand side of (36) is negative for t ∈

(
0, t2L

)
,

and positive for t > t2L, we have t1L < t2L if and only if the left-hand side of (36) is negative for

t = t1L. Substituting t = t1L = ln 2
λR

, the left-hand side of (36) is equal to

λRe
−λR ln 2

λR − λLe
−λL ln 2

λR

λL − λR
=

1
2 −

λL
λR

(
1
2

) λL
λR

λL
λR
− 1

.

Letting l = λL
λR

, this is equal to
1
2
−l( 1

2)
l

l−1 . Taking the derivative of the numerator with respect to l

yields

−
(

1

2

)l
+ l

(
1

2

)l
ln 2 =

(
1

2

)l
(1− l ln 2) .

Hence, the numerator is decreasing for l ≤ 1
ln 2 and increasing for l ≥ 1

ln 2 .

Note that the numerator is zero at l = 1 < 1
ln 2 and at l = 2 > 1

ln 2 . Hence, 1
2 − l

(
1
2

)l
is positive

for l < 1, 0 for l = 1, negative for l ∈ (1, 2), 0 for l = 2, and positive for l > 2. Together with the
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denominator (and using l’Hopital rule at l = 1), we have

1
2 − l

(
1
2

)l
l − 1


< 0 for l ∈ (0, 2)

= 0 for l = 2

> 0 for l > 2

.

Therefore, t1L < t2L if and only if λL
λR

< 2. In a similar vein, one can show that t1L > t2L if and only

if λL
λR

> 2.

K.2 Persuasion-Cost Election Campaign

In the policy-motivated election campaign in Section 3.3, L enters at suboptimal policies
(

2
3 , 0
)

or(
0, 2

3

)
since, when R enters after L, this suboptimal policy will lead R to enter at a more favorable

policy for L. Such a consideration does not occur if L does not care about what policy R picks

when R wins. In such a case, the equilibrium dynamics are simpler than in the model in Section

3.3, while we can still conduct comparative statics with respect to the distribution of voters and

the ideal points of the candidates more easily, keeping the advantage of the policy-motivated model

over the purely office-motivated model as in Section 3.2.

Let X be an arbitrary policy space that is a full-dimensional compact subset of Rn for some

n, and recall that |·| denotes the Euclidian distance. A unit mass of voters are distributed over

X according to the distribution µ (x) over X. The voter located at x has utility of − |x− y| from

policy y.

There are two candidates L and R, and we let Xi = {X} ∪
(⋃

x∈X {{x}}
)

for each i = L,R.

Given a profile of policies (xL, xR) ∈ X × X, we define candidate i’s vote share Si(xL, xR) and

probability of i’s winning Pi(xL, xR) as in Section 3.2. The definition of Pi(Xi, Xj) when Xi = X

or Xj = X holds is given later. We assume that (X,µ) 6∈ M.

The ideal policies of candidates L and R are x∗L and x∗R, respectively. The ideal policies are

common knowledge among voters and candidates. The utility for candidate i is equal to


I i wins − ε |x∗i − x| if Xi = {x} ⊆ X

I i wins if Xi = X

,
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where ε > 0. That is, the candidate incurs a cost |x∗i − x| associated with the policy to which she

commits, regardless of whether she wins the election. For example, if the voters believe that x∗i is

i’s ideal policy, committing to x far from x∗i requires the cost of persuading the voters. Without

specifying the policy—with Xi = X—, in contrast, she does not have to pay such a cost. We

assume that

ε <
1

maxi∈{R,L},x∈X |x∗i − x|
. (37)

This condition implies that, the minimum (with respect to x ∈ X) of the payoffs from entering

at some x and winning exceeds the payoff from not entering and losing. The denominator of the

right-hand side of (37) is strictly positive because X is a full-dimensional subset of Rn and it is

finite because X is compact.

Suppose that the voters believe that the candidates will implement their ideal policies once

they get elected without specifying a policy. That is, we assume Si(X,xj) = Si(x
∗
i , xj), Si(xi, X) =

Si(xi, x
∗
j ), Si(X,X) = Si(x

∗
i , x
∗
j ), and the probability of winning Pi is accordingly defined when X

is chosen by at least one candidate. They vote for the candidate whose policy implementation gives

them the higher expected payoff. The candidate who attracts more votes will win the election.

Given this, we assume that PR(x∗R, x
∗
L) = 1, that is, R will win if neither candidate specifies their

policies.26 The payoff function vi for each i = L,R is specified accordingly. As in the policy-

motivated election campaign in Section 3.3, we assume that the tie is broken in favor of the last

candidate to specify the policy if the candidates enter at different times.27

Call this game a persuasion-cost election campaign. It is characterized by a tuple (X,µ, ε, T, λL, λR).

Let X∗ be the set of policies with which L attracts weakly more votes than R if R does not

specify a policy:

X∗ =

{
x̂ :

∫
x

1{|x−x∗R|≥|x−x̂|}µ (x) dx ≥ 1

2

}
.

In addition, given x ∈ X, let X∗ (x) be the set of policies such that R attracts weakly more votes

than L given that L enters at x:

X∗ (x) =

{
x̂ :

∫
x̃

1{|x̃−x|≤|x̃−x̂|}µ (x̃) dx̃ ≥ 1

2

}
.

26The case in which PR(x∗L, x
∗
R) = 0 can be analyzed in a symmetric manner, so its analysis is omitted.

27We assume such a tie-breaking rule because (X,µ) 6∈ M and thus there is no best response once the opponent
enters. As in footnote 39 of the main text, the assumption corresponds to taking a limit of unique PBEs in the
models with discrete policy spaces.
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Given X∗ and X∗ (x), we can characterize PBE:

Proposition 17 The persuasion-cost election campaign with (X,µ, ε, T, λL, λR) has a PBE. More-

over, there exists t∗L <∞ such that for any PBE, the following hold:

1. L enters at x ∈ arg minx∈X∗ |x∗L − x| for −t > −t∗L, while he does not enter for −t < −t∗L.

2. R never enters unless L enters. Once L enters at x, R enters as soon as possible at x′ ∈

arg minx′∈X∗(x) |x∗R − x′|.

Candidate R does not have an incentive to enter before L enters since (i) R can win without

entering if L cannot obtain an opportunity and (ii) R will lose by entering if L can obtain an

opportunity afterward. Given this strategy of R, since L cannot win without entering, he enters if

the deadline is near. If the deadline is far, then the probability that R can enter afterward is very

large. Hence, entering gives L the payoff close to 0 (or negative if he pays the persuasion cost).

Therefore, L does not enter when the deadline is far.

Once we specify x∗R, x∗L, and µ, it is straightforward to derive the distribution of the announced

policies at the deadline. Thus, we can conduct the comparative statics about observable variables.28

K.2.1 Proof of Proposition 17

Consider a PBE. Given (37), there exists t̄ > 0 such that for all time −t ∈ (t̄, 0], L enters at some

policy with which he can win. In addition, for each −t, if R has already entered, L takes a static

best response.

Since R can win without incurring the persuasion cost if L does not enter, we can show that,

for each −t, R does not enter:

Lemma 19 Fix candidate L’s strategy in which he takes a static best response after R enters.

Then, conditional on any history at time −t at which no candidate has entered and R receives an

opportunity, not entering is R’s unique best response.

Proof. Since R’s not entering until L enters is one of the feasible continuation strategies, it suffices

to show that this strategy, denoted by σ̄R, is strictly better for R than her entering at −t for each

t ≥ 0.

28The policy to which candidates enter is generically unique in Proposition 17.
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Fix time −t and a history at time −t such that no candidate has entered. Consider the following

two cases:

1. L obtains an opportunity in the time interval (−t, 0]. Fix time t̄ > 0 such that L enters

for each [−t̄, 0] if no candidate enters. Conditional on this event, let p be the probability

that L obtains an opportunity at some −t̃ ∈ [−t̄, 0), and then R has an opportunity in some

−t̂ ∈ (−t̃, 0].

Conditional on this event, entering at x gives R a payoff of −ε |x− xR| ≤ 0 while σ̄R gives R

a payoff no less than p (1−maxx∈X |x∗R − x|) > 0 (strict inequality follows from (37)) since

(i) if L has an opportunity at −t̃ ∈ [−t̄, 0), then either L will have entered by −t̃ or he enters

at −t̃, and (ii) if R has an opportunity at some −t̂ ∈ (−t̃, 0], then she wins for sure by σ̄R.

2. L does not obtain an opportunity in the time interval (−t, 0]. Conditional on this event, σ̄R

gives R a payoff of 1, which is her largest feasible payoff.

Since σ̄R is optimal conditional on each of these two events and the incentive is strict in the

first case, it is uniquely optimal for R not to enter given the conditions in the statement of the

lemma.

After L’s entry, candidate R enters at the policy x′ with which R can win with the lowest

persuasion cost:

x′ ∈ arg min
x′∈X∗(x)

∣∣xR − x′∣∣ .
Given this reaction of R, L’s payoff of entering at x at time −t is e−λRt − ε |xL − x|. Hence,

if he enters, then he enters at the policy with which L can win with the lowest persuasion cost

assuming that R will not enter. His payoff of entering at −t is, therefore,

e−λRt − min
x∈X∗

ε |xL − x| .

In contrast, his payoff of not entering at −t, given that he will enter as soon as possible in the

60



interval (−t, 0], is

∫ t

0
λLe

−λLτ
(
e−λR(t−τ) − min

x∈X∗
ε |xL − x|

)
dτ

=
e−λLt − λLe−λRt

λL − λR
− (1− e−λLt) min

x∈X∗
ε |xL − x| .

Let

t∗L =
log

λL−(λL−λR) minx∈X∗ ε|xL−x|
λR

λL − λR
∈ (0,∞)

be the smallest t such that L is indifferent between entering and not entering. By the continuous-

time backward induction, for (−t∗L, 0], L enters at x ∈ arg minx∈X∗ ε |xL − x|. We are left to show

that L does not enter at any time −t < −t∗L. Let σ∗L be L’s strategy such that, at any time

−t, if R has not entered before −t, (i) L does not enter if t > t∗L and (ii) he enters at some

x ∈ arg minx∈X∗ ε |xL − x| if t < t∗L.

Consider the following two cases:

1. R obtains an opportunity in the time interval (−t,−t∗L). Conditional on this event, if L

enters at x at time −t, then L’s payoff is −ε |xL − x|, while σ∗L gives him a payoff of e−λRtL −

minx∈X∗ ε |xL − x| since no candidate will enter before −t∗L and L is indifferent between

entering and not entering at −t∗L. Hence it is uniquely optimal not to enter at −t.

2. R does not obtain an opportunity in the time interval (−t,−t∗L). Conditional on this event,

L is indifferent between entering and not entering since he is indifferent between entering and

not entering at −t∗L.

Hence, it is uniquely optimal not to enter at −t with t > t∗L.

Overall, we have identified the equilibrium dynamics described in the statement of the propo-

sition.

L Proofs for Section 3.4

Our convention throughout the paper is that, when we write fi(x, y) for a function fi where i ∈

{A,B}, x is associated with candidate i and y is associated with candidate j. However, in this

section of the appendix, we have that x is associated with candidate A and y is associated with
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candidate B. We use this alternative convention to avoid confusion about which candidate spends

how much money to the campaign.

L.1 Proof of Part 1 of Proposition 6

Fix a PBE σ and an associated belief β. For any history hi at time −t at which i does not have

an opportunity at −t, let vi,t (hi) be i’s continuation payoff given strategy profile σ and belief

β. Let Hi,t(xA, xB) be the set of i’s histories such that the current time is −t and the minimum

spending amounts that are currently available are xA for candidate A and xB for candidate B.

Since candidates A and B are symmetric, it is sufficient to consider the incentives in the histories

in HA,t(0, 0), HA,t(0, L), HB,t(0, L), HA,t(0, H), HB,t(0, H), HA,t(L,L), HA,t(L,H), and HB,t(L,H)

(there is no choice to be made in histories in Hi (H,H) for each i = A,B).

The simplest case is that a candidate has already spent H. In this case, the opponent spends

H as soon as possible.

Lemma 20 For any t and hA ∈ HA,t (0, H)∪HA,t (L,H), candidate A spends H as soon as possible

under σ, and the following hold.

vA,t (hA) =


vA,t (H,H) := α

2 if hA ∈ HA,t (H,H)

vA,t (L,H) := e−λt
[
α L
H+L + (1− α) (H − L)

]
+
(
1− e−λt

)
α
2 if hA ∈ HA,t (L,H)

vA,t (0, H) := e−λt (1− α)H +
(
1− e−λt

)
α
2 if hA ∈ HA,t (0, H)

.

vB,t (hB) =


vB,t (H,H) := α

2 if hB ∈ HB,t (H,H)

vB,t (L,H) := e−λtα H
H+L +

(
1− e−λt

)
α
2 if hB ∈ HB,t (L,H)

vB,t (0, H) := e−λtα+
(
1− e−λt

)
α
2 if hB ∈ HB,t (0, H)

.

Proof. This follows from the fact that {H} is a unique static best response against {H}.

The next simple case is that both candidates have spent L, that is, the current profile of policy

sets (XA, XB) satisfies XA = XB = {L,H}. Each candidate spends H as soon as possible in this

case as well:
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Lemma 21 For any time −t and hi ∈ Hi,t (L,L), each candidate i spends H as soon as possible

under σ. Moreover, for each i = A,B, we have

vi,t (hi) = vi,t (L,L) :=
α

2
+ e−λt

(
1− α 1

2 (H + L)

)
(H − L)

if hi ∈ Hi,t (L,L).

Proof. At histories in Hi,t (L,L) for each i = A,B, the available policy sets for each candidate are

{L,H} and {H}. The payoff matrix of the relevant policy sets (that is, the payoffs of taking these

policy sets at the deadline) is as follows.

{L,H} {H}

{L,H} α1
2 + (1− α) (H − L) , α1

2 + (1− α) (H − L) α L
H+L + (1− α) (H − L) , α H

H+L

{H} α H
H+L , α

L
H+L + (1− α) (H − L) α1

2 , α
1
2

Note that H is a strictly dominant policy in this normal-form game. Hence, by part 3 of

Theorem 4, spending H is uniquely optimal.

Given Lemma 20, for each hA ∈ HA,t (L,L), we have

vA,t (hA) =

∫ t

0
2λe−2λt vA,t (H,L) + vA,t (L,H)

2
+ e−2λt︸ ︷︷ ︸×(α2 + α (H − L)

)
No candidate has an opportunity until the deadline

.

Straightforward algebra shows that

vA,t (hA) =
α

2
+ e−λt

(
1− α 1

2 (H + L)

)
(H − L) .

By symmetry, we have

vB,t (hB) =
α

2
+ e−λt

(
1− α 1

2 (H + L)

)
(H − L) .

We are left to analyze histories in HA,t (0, L), HB,t (0, L), HA,t (0, 0), and HB,t (0, 0). Suppose

now that HA,t (0, L) is reached. Note that {H} strictly dominates {L,H} for each hA ∈ HA,t (0, L)

for candidate A since vA,t (L,L) < vA,t (H,L) for each t given Lemma 21. Hence, the remaining
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questions are (i) given hA ∈ HA,t (0, L), whether candidate A wants to spend 0 or H; and (ii) given

hB ∈ HB,t (0, L), whether candidate B wants to stay at L or spend H.

At the deadline, the payoff matrix for the relevant policy sets is as follows.

{L,H} {H}

{0, L,H} (1− α)H,α+ (1− α) (H − L) (1− α)H,α

{H} α H
H+L , α

L
H+L + (1− α) (H − L) α

2 ,
α
2

Note that candidate A’s {H} is a unique best response to candidate B’s {L,H}, and candidate

B’s {L,H} is a unique best response to candidate A’s {0, L,H}. Hence, by continuity of the

continuation payoffs in time, there exists t̄ > 0 such that for all t ∈ [0, t̄), in any PBE, candidate

A takes {H} while candidate B stays at {L,H} at histories hA ∈ HA,t (0, L) and hB ∈ HB,t (0, L),

respectively.

Let σ′ be a strategy profile such that candidate A takes {H} while candidate B stays at {L,H}

at histories hA ∈ HA,t (0, L) and hB ∈ HB,t (0, L) for any t ≥ 0, respectively, and each candidate i

follows σi if hi 6∈ Hi,t (0, L). Given the original β, let v̄i,t(hi) be candidate i’s payoff at history hi

under σ′ and β:

v̄A,t (hA) = vA,t (0, L) :=

∫ t

0
λe−λtvA,τ (H,L) dτ + e−λt (1− α)H

= e−λt
(
H + α

(
eλt

1

2
− 1

2
−H +

H − L
2 (H + L)

λt

))
,

v̄B,t (hB) = vB,t (0, L) :=

∫ t

0
λe−λtvB,τ (H,L) dτ + e−λt [α+ (1− α) (H − L)]

= e−λt

(H − L) (1 + λt) + α

 H
2(H+L)

(
1 + eλt − λt

)
− H2

(H+L) (1 + λt)

+ L
2(H+L)

(
eλt + (1 + 2L) (1 + λt)

)
 . (38)

Since there exists t̄ > 0 such that σ and σ′ coincide for all t ∈ [0, t̄), candidate A takes {H} and

candidate B takes {L,H} at time −t under σ if

vA,t (0, L) < vA,t (H,L) and vB,t (0, L) > vB,t (0, H) .
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By straightforward algebra, we have

vA,t (0, L) ≤ vA,t (H,L)⇔ t ≤ t∗ :=
1

λ
(39)

and

vB,t (0, L) ≥ vB,t (0, H)⇔ t ≤ t∗∗ :=


1

α
2(1−α)(H+L)

−1
1
λ if α

2(1−α)(H+L) − 1 > 0

+∞ otherwise
. (40)

In both (39) and (40), the first inequality holds with equality if and only if the second holds with

equality. Intuitively, near the deadline, since {H} is a static best response against {L,H}, candidate

A chooses {H} as soon as possible. Since {H} is a static best response to {H} and candidate A

enters at H regardless of candidate B staying at {L,H} or choosing {H}, candidate B wants to

spend H if the deadline is far (−t < −t∗∗) and hence it is sufficiently likely that candidate A enters

at H.

By (2), we have t∗∗ < t∗. Hence, for t ≤ t∗∗, we have vA,t (hA) = v̄A,t (hA) and vB,t (hB) =

v̄B,t (hB), and under σ, candidate A takes {H} as a unique best response at any history hA ∈

HA,t (0, L) for all time −t ≤ −t∗∗ while candidate B stays at {L,H} as a unique best response at

any history hB ∈ HB,t (0, L) for all time −t < −t∗∗. By continuity of the continuation payoff in

time, the following result holds:

Lemma 22 Under σ, there exists ε > 0 such that, for each −t ∈ (− (t∗∗ + ε) , 0], candidate A takes

{H} at any hA ∈ HA,t (0, L).

Proof. The result follows from (39), t∗∗ < t∗, and the continuity of the continuation payoff in time.

Before analyzing the candidates’ incentives at hA ∈ HA,t (0, L) and hB ∈ HB,t (0, L) such that

−t < −t∗∗, we consider their incentives when no candidate has spent anything during −t > −t∗∗.

Lemma 23 Under σ, for any −t ∈ (−t∗∗, 0], candidates A and B take {L,H} at any hA ∈

HA,t (0, 0) and hB ∈ HB,t (0, 0), respectively, and we have

vA,t (hA) = vA,t (0, 0) :=
1

2
α+ (1− α) (H + (H − L)λt) e−λt,

vB,t (hB) = vB,t (0, 0) :=
1

2
α+ (1− α) (H + (H − L)λt) e−λt.
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Proof. At the deadline, taking {L,H} is a static best response against {0, L,H}. Hence, by

continuity of the continuation payoffs in time, there exists t̄ > 0 such that for all t ∈ [0, t̄),

candidates A and B take {L,H} at histories hA ∈ HA,t (0, 0) and hB ∈ HB,t (0, 0), respectively.

Let σ′′ be a strategy profile such that candidates A and B take {L,H} at histories hA ∈

HA,t (0, 0) and hB ∈ HB,t (0, 0), respectively, and follow σ if hi 6∈ Hi,t (0, 0). Given the original β,

let v̂i,t(hi) be candidate i’s payoff at history hi under σ′′ and β:

v̂i,t(hi) =

∫ t

0
2λe−2λτ vA,τ (L, 0) + vA,τ (0, L)

2
dτ + e−2λt

(α
2

+ (1− α)H
)

=
1

2
α+ (1− α) (H + (H − L)λt) e−λt.

Since there exists t̄ > 0 such that σ and σ′′ coincide for t ∈ [0, t̄), both candidates A and B take

{L,H} at histories hA ∈ HA,t (0, 0) and hB ∈ HB,t (0, 0) in σ if

vA,t (L, 0) > max {vA,t (H, 0) , vA,t (0, 0)} , and

vB,t (0, L) > max {vB,t (0, H) , vB,t (0, 0)} .

By symmetry, we focus on the case vB,t (0, L) > max {vB,t (0, H) , vB,t (0, 0)}. By continuity of the

continuation payoff in time, it suffices to show that vB,t (0, L) > max {vB,t (0, H) , vB,t (0, 0)} for

each t < t∗∗.

Since vB,t′ (0, L) > vB,t′ (0, H) for t′ < t∗∗ by (40), it suffices to show that, for each t ≤ t∗∗,

vB,t (0, L) > vB,t (0, 0)⇔ (H + L) (α− 2L (1− α))− (H − L)αtλ > 0. (41)

The right hand side of (41) holds because, for each t ≤ t∗∗,

(H + L) (α− 2L (1− α))− (H − L)αtλ

≥ (H + L) (α− 2L (1− α))− (H − L)αt∗λ (since t ≤ t∗∗ < t∗)

= (H + L) (α− 2L (1− α))− (H − L)α

> 0
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because α ≥ H+L
H+L+ 1

2

≥ H+L
H+L+1 .

A similar proof shows that neither candidate A nor B stays at {0, L,H} at any hA ∈ HA,t (0, 0)

and hB ∈ HB,t (0, 0), respectively.

Lemma 24 Under σ, there exists ε′ > 0 such that, for any −t ∈ (− (t∗∗ + ε′) , 0], no candidate

chooses {0, L,H} at any hA ∈ HA,t (0, 0) and hB ∈ HB,t (0, 0), respectively.

Proof. By continuity of the continuation payoff in time and symmetry, it suffices to show that

max {vB,t∗∗ (0, L) , vB,t∗∗ (0, H)} > vB,t∗∗ (0, 0). In particular, it is sufficient to have vB,t∗∗ (0, L) >

vB,t∗∗ (0, 0). This inequality follows from (41).

Given this lemma, we have the following result:

Lemma 25 Under σ, there exists ε′′ > 0 such that, for each −t ∈ (− (t∗∗ + ε′′) ,−t∗∗), both can-

didates A and B take {H} at any hA ∈ HA,t (0, 0) ∪HA,t (L, 0) and hB ∈ HB,t (0, 0) ∪HB,t (0, L),

respectively.

Proof. Fix ε > 0 such that Lemma 22 holds, and fix ε′ > 0 such that Lemma 24 holds. Take

ε′′ ∈ (0,min{ε, ε′}), and suppose candidate i obtains an opportunity at −t ∈ (− (t∗∗ + ε′′) ,−t∗∗).

Let xi be i’s optimal policy at −t. By Lemma 24, we have xi ∈ {{L,H}, {H}}. Consider the

following three scenarios that can happen after −t: For each i ∈ {A,B},

1. The probability that the two candidates have opportunities in the time interval (−t,−t∗∗) is

equal to
(

1− e−λε′
)2

.

2. The probability that only candidate j has an opportunity in the time interval (−t,−t∗∗)

is equal to e−λε
′
(

1− e−λε′
)

. Then, since xi ∈ {{L,H}, {H}}, Lemmas 20 and 22 (and

symmetry) imply that candidate j takes {H}. Hence, hA ∈ HA,t∗∗ (xi,t∗∗ , xj,t∗∗) and hB ∈

HB,t∗∗ (xi,t∗∗ , xj,t∗∗) with (xi,t∗∗ , xj,t∗∗) = (xi, H) will be realized at −t∗∗. Candidate i strictly

prefers {H} to {L,H} by Lemma 20:

vi,t∗∗ (H,H)− vi,t∗∗ (L,H) > 0.

Note that this inequality holds independently from the choice of ε′.
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3. Candidate j does not have an opportunity in the time interval (−t,−t∗∗). Conditional on

this event, candidate i prefers {L,H} to {H} at −t if and only if she prefers {L,H} to {H}

at −t∗∗. Hence, both {H} and {L,H} are optimal by the definition of t∗∗.

Since the likelihood ratio of case 2 against case 1 goes to ∞ as ε′ → 0, there exists ε′ ∈ (0, ε)

such that for each −t ∈ (− (t∗∗ + ε′) ,−t∗∗), {H} is the unique optimal policy set at −t.

Fix t > t∗∗ arbitrarily, and fix the continuation play such that both candidates A and B strictly

prefer {H} to {L,H} and {0, L,H} at any hA ∈ HA,t′ (0, 0) ∪HA,t′ (L, 0) and hB ∈ HB,t′ (0, 0) ∪

HB,t′ (0, L) for any −t′ ∈ (−t,−t∗∗). Then both candidates A and B take {H} at any hA ∈

HA,t (0, 0) ∪HA,t (L, 0) and hB ∈ HB,t (0, 0) ∪HB,t (0, L). To see why, consider the following four

scenarios for each i ∈ {A,B}:

1. If the two candidates have opportunities in the time interval (−t,−t∗∗), then regardless of

the strategy at −t, hA ∈ HA,t∗∗ (H,H) and hB ∈ HB,t∗∗ (H,H) will be realized. In this case,

candidate A’s spending at −t does not affect i’s payoff.

2. If only candidate j has an opportunity in the time interval (−t,−t∗∗), then hA ∈ HA,t∗∗ (xi,t∗∗ , xj,t∗∗)

and hB ∈ HB,t∗∗ (xi,t∗∗ , xj,t∗∗) with (xi,t∗∗ , xj,t∗∗) = (xi, H) will be realized at −t∗∗, where xi

is i’s spending at −t. In this case, candidate i strictly prefers {H} to {L,H} and {0, L,H}.

3. If only candidate i has an opportunity in the time interval (−t,−t∗∗), then hA ∈ HA,t∗∗ (xi,t∗∗ , xj,t∗∗)

and hB ∈ HB,t∗∗ (xi,t∗∗ , xj,t∗∗) with (xi,t∗∗ , xj,t∗∗) = (H,xj) will be realized, where xj is j’s

spending at −t. In this case, candidate i’s spending at −t does not affect i’s payoff.

4. If no candidate has an opportunity in the time interval (−t,−t∗∗), then hA ∈ HA,t∗∗ (xi,t∗∗ , xj,t∗∗)

and hB ∈ HB,t∗∗ (xi,t∗∗ , xj,t∗∗) with (xi,t∗∗ , xj,t∗∗) = (xi, xj) will be realized, where (xi, xj) is

the spending profile at −t. In this case, both {H} and {L,H} are optimal by the definition

of t∗∗.

In total, spending H is uniquely optimal, as desired.

Finally, together with Lemma 25, under σ, both candidates A and B strictly prefer {H} to

{L,H} and {0, L,H} at any hA ∈ HA,t (0, 0) ∪ HA,t (L, 0) and hB ∈ HB,t (0, 0) ∪ HB,t (0, L),

respectively, for any −t ∈ (−∞,−t∗∗).
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L.2 Proof of Part 2 of Proposition 6

Fix a PBE σ and an associated belief β. As in part 1 of Proposition 6, it is sufficient to consider

the incentives in HA,t(0, 0), HA,t(0, L), HB,t(0, L), HA,t(0, H), HB,t(0, H), HA,t(L,L), HA,t(L,H),

and HB,t(L,H). Lemmas 20 and 21 still hold. In particular, for hA ∈ HA,t (0, L), candidate A

always prefers {H} to {L,H}.

Moreover, by the same calculation as (39) and (40), we derive the following: Let σ′ be a

strategy profile such that candidate A takes {H} while candidate B stays at {L,H} at histories

hA ∈ HA,t (0, L) and hB ∈ HB,t (0, L) for any t ≥ 0, respectively. Given the original β, the

candidates’ payoffs under σ′ and β satisfy v̄A,t (hA) = vA,t (0, L) and v̄B,t (hB) = vB,t (0, L).

Since there exists t̄ > 0 such that σ and σ′ coincide for t ∈ [0, t̄) as in the proof of part 1,

candidate A takes {H} and candidate B takes {L,H} in σ if

vA,t (0, L) < vA,t (H,L) and vB,t (0, L) > vB,t (0, H) .

Again, we have

vA,t (0, L) ≤ vA,t (H,L)⇔ t ≤ t∗, and

vB,t (0, L) ≥ vB,t (0, H)⇔ t ≤ t∗∗. (42)

In both of these equivalence relationships, the first inequality holds with equality if and only if the

second holds with equality.

By (3), we have t∗∗ > t∗. Hence, under σ, candidate A takes {H} as a unique best response at

any history hA ∈ HA,t (0, L) for all time −t < −t∗ while candidate B stays at {L,H} as a unique

best response at any history hB ∈ HB,t (0, L) for all time −t ≤ −t∗.

For −t < −t∗, we show that candidate A stays at {0, L,H} for hA ∈ HA,t (0, L) and candidate

B stays at {L,H} for hB ∈ HB,t (0, L). First, we show that this is true for −t close to −t∗:

Lemma 26 Under σ, there exists ε > 0 such that, for any −t ∈ (− (t∗ + ε) ,−t∗), candidate A

chooses {0, L,H} for each hA ∈ HA,t (0, L) and candidate B chooses {L,H} for hB ∈ HB,t (0, L).

Proof. Since t∗∗ > t∗ and vB,t (0, L) > vB,t (0, H) if t < t∗∗, by the continuity of the continuation

payoff in time, there exists εB > 0 such that, for hB ∈ HB,t (0, L) for any −t ∈ (− (t∗ + εB) ,−t∗),

candidate B strictly prefers staying at {L,H} at −t.
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Given this incentive, we consider candidate A’s incentive for each hA ∈ HA,t (0, L) at −t ∈

(− (t∗ + εB) ,−t∗). There are the following four cases:

1. Suppose that each of the two candidates receives an opportunity in the time interval [−t,−t∗).

In this case, if candidate A always stays at {0, L,H} at −t, then hA ∈ HA,t∗ (0, L) will be

realized at−t∗ because candidateB stays at {L,H}. Otherwise, hA ∈ HA,t∗ (H,H) is realized.

Since vA,t∗ (0, L) = vA,t∗ (H,L) > vA,t∗ (H,H), she strictly prefers staying at {0, L,H}.

2. Suppose only candidate B has an opportunity in the time interval [−t,−t∗). In this case,

if candidate A stays at {0, L,H} at −t, hA ∈ HA,t∗ (0, L) will be realized at −t∗ because

candidate B stays at {L,H}. Otherwise, hA ∈ HA,t∗ (H,H) is realized. Again, she strictly

prefers staying at {0, L,H}.

3. Suppose only candidate A has an opportunity in the time interval [−t,−t∗). In this case, if

candidate A always stays at {0, L,H}, then hA ∈ HA,t∗ (0, L) will be realized at −t∗ because

candidate B stays at {L,H}. Otherwise, hA ∈ HA,t∗ (H,L) is realized. Since vA,t∗ (0, L) =

vA,t∗ (H,L), she weakly prefers staying at {0, L,H} all the time.

4. Suppose no candidate receives an opportunity in the time interval [−t,−t∗). In this case, if

candidate A stays at {0, L,H} at−t, then hA ∈ HA,t∗ (0, L) will be realized at−t∗. Otherwise,

hA ∈ HA,t∗ (H,L) is realized. Since vA,t∗ (0, L) = vA,t∗ (H,L), she weakly prefers staying at

{0, L,H}.

In total, candidate A strictly prefers to choose {0, L,H} for each hA ∈ HA,t (0, L) at −t ∈

(− (t∗ + εB) ,−t∗).

Given this lemma, we can show the following result:

Lemma 27 Under σ, for each −t < −t∗, candidate A stays at {0, L,H} for hA ∈ HA,t (0, L) and

candidate B stays at {L,H} for hB ∈ HB,t (0, L). Hence, for −t < −t∗, we have

vA,t (hA) = vA,t∗ (0, L) for hA ∈ HA,t (0, L) ;

vB,t (hB) = vB,t∗ (0, L) for hB ∈ HB,t (0, L) .
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Together with (38), defining

ṽi,t (0, L) :=

 vi,t (0, L) for t ∈ [0, t∗]

vi,t∗ (0, L) for t ∈ [t∗,∞)
,

we have

vi,t (hi) = ṽi,t (0, L) for each i = A,B, t ∈ [0,∞), and hi ∈ Hi,t (0, L) . (43)

Proof. Given Lemma 26, it suffices to prove the following claim: For each −t < −t∗, given the

continuation strategy that candidate A stays at {0, L,H} for hA ∈ HA,t′ (0, L) with −t′ ∈ (−t,−t∗)

and candidate B stays at {L,H} for hB ∈ HB,t′ (0, L) with −t′ ∈ (−t,−t∗), candidate A stays at

{0, L,H} for hA ∈ HA,t (0, L) and candidate B stays at {L,H} for hB ∈ HB,t (0, L). To see why this

claim is true, for candidate A, consider the following four scenarios: Since vA,t (H,L) > vA,t (L,L)

for each t, she strictly prefers {H} to {0, L} under the given history. Hence, below we compare

{0, L,H} and {H}.

1. Suppose each of the two candidates receives an opportunity in the time interval (−t,−t∗). In

this case, if candidate A stays at {0, L,H} at −t, then hA ∈ HA,t∗ (0, L) will be realized at −t∗.

Otherwise, hA ∈ HA,t∗ (H,H) is realized. Since vA,t∗ (0, L) = vA,t∗ (H,L) > vA,t∗ (H,H), she

strictly prefers staying at {0, L,H}.

2. Suppose only candidate B has an opportunity in the time interval (−t,−t∗). In this case, if

candidate A stays at {0, L,H} at −t, hA ∈ HA,t∗ (0, L) will be realized at −t∗. Otherwise,

hA ∈ HA,t∗ (H,H) is realized. Again, she strictly prefers staying at {0, L,H}.

3. Suppose only candidate A has an opportunity in the time interval (−t,−t∗). In this case,

if candidate A always stays at {0, L,H}, then hA ∈ HA,t∗ (0, L) will be realized at −t∗.

Otherwise, hA ∈ HA,t∗ (H,L) is realized. Since vA,t∗ (0, L) = vA,t∗ (H,L), she weakly prefers

staying at {0, L,H}.

4. Suppose no candidate receives an opportunity in the time interval (−t,−t∗). In this case, if

candidate A stays at {0, L,H} at−t, then hA ∈ HA,t∗ (0, L) will be realized at−t∗. Otherwise,

hA ∈ HA,t∗ (H,L) is realized. Since vA,t∗ (0, L) = vA,t∗ (H,L), she weakly prefers staying at

{0, L,H}.
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In total, staying at {0, L,H} is uniquely optimal, as desired.

Similarly, for candidate B, consider the following four scenarios:

1. Suppose each of the two candidates has an opportunity in the time interval (−t,−t∗). In

this case, if candidate B stays at {L,H} at −t, then hB ∈ HB,t∗ (0, L) will be realized

at −t∗. Otherwise, hB ∈ HB,t∗ (H,H) is realized. Since vB,t∗ (0, H) > vB,t∗ (H,H) and

vB,t∗ (0, L) > vB,t∗ (0, H) at −t∗ (recall that t∗ < t∗∗ and vB,τ (0, L) > vB,τ (0, H) if τ < t∗∗,

and hence vB,t∗ (0, L) > vB,t∗ (0, H)), she strictly prefers staying at {L,H}.

2. Suppose only candidate A has an opportunity in the time interval (−t,−t∗). In this case, if

candidate B stays at {L,H} at −t, then hB ∈ HB,t∗ (0, L) will be realized at −t∗. Otherwise,

hB ∈ HB,t∗ (H,H) is realized. Again, she strictly prefers staying at {L,H}.

3. Suppose only candidate B has an opportunity in the time interval (−t,−t∗). In this case,

if candidate B always stays at {L,H} at −t, then hB ∈ HB,t∗ (0, L) will be realized at −t∗.

Otherwise, hB ∈ HB,t∗ (0, H) is realized. She strictly prefers staying at {L,H} due to (42)

and t∗ < t∗∗.

4. Suppose no candidate receives an opportunity in the time interval (−t,−t∗). In this case, if

candidate B stays at {L,H} at −t, then hB ∈ HB,t∗ (0, L) will be realized at −t∗. Otherwise,

hB ∈ HB,t∗ (0, H) is realized. She strictly prefers staying at {L,H} due to (42).

In total, staying at {L,H} is uniquely optimal.

Finally, consider hA ∈ HA,t (0, 0) and hB ∈ HB,t (0, 0):

Lemma 28 Under σ, for each −t, candidates A and B take {L,H} for hA ∈ HA,t (0, 0) and

hB ∈ HB,t (0, 0), respectively.

Proof. Let σ′′ be a strategy profile such that, for each candidate i = A,B, if the history for i is

hi, i chooses {L,H} if hi ∈ Hi,t (0, 0), and follow σ if hi 6∈ Hi,t (0, 0). Given the original β, for each

i = A,B, the candidates’ payoffs under σ′′ and β can be written as:

vi,t (0, 0) :=

 1
2α+ (1− α) (H + (H − L)λt) e−λt for t ∈ [0, t∗]

1
2α+ (1− α) e−1

[
2H − L+

(
1− e−2(λt−1)

)
(H − L)

]
for t ∈ [t∗,∞)
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for each hi ∈ Hi (0, 0). Here, vi,t (0, 0) is calculated as follows: For each t ≤ t∗,

vi,t (0, 0) =

∫ t

0
2λe−2λτ vA,τ (L, 0) + VA,τ (0, L)

2
dτ + e−2λt

(α
2

+ (1− α)H
)
.

For t > t∗, by Lemma 27, we have

vA,t (0, 0) = e−2λ(t−t∗)vA,t∗ (0, 0) +
(

1− e−2λ(t−t∗)
)[1

2
vA,t∗ (L, 0) +

1

2
vA,t∗ (0, L)

]
.

As in part 1, there exists t̄ > 0 such that, for each t ∈ [0, t̄), at any histories in HA,t(0, 0) and

HB,t(0, 0), σ and σ′′ coincide. Together with Lemma 20 and (43), both candidates A and B take

{L,H} at histories hA ∈ HA,t (0, 0) and hB ∈ HB,t (0, 0) under σ if

ṽA,t (L, 0) > max {vA,t (H, 0) , vA,t (0, 0)} , and

ṽB,t (0, L) > max {vB,t (0, H) , vB,t (0, 0)} .

By symmetry, we focus on ṽB,t (0, L) > max {vB,t (0, H) , vB,t (0, 0)}. By Lemma 27, (40), and

t∗ < t∗∗, we have ṽB,t (0, L) > vB,t (0, H) for each t ≥ 0. Hence we are left to show that, for each

t ≥ 0, ṽB,t (0, L) > vB,t (0, 0).

For −t ≥ −t∗, since ṽB,t (0, L) = vB,t (0, 0), the same proof as (41) implies that candidate B

strictly prefers {L,H} to {0, L,H} for hB ∈ HB,t (0, 0).

Moreover, vB,t (0, 0) is strictly increasing in t and we have

vB,t (0, 0) < lim
t→∞

vB,t (0, 0) =
1

2
α+ (1− α) e−1 (2H − L) .

Thus, for each −t < −t∗, we have

ṽB,t (0, L)− vB,t (0, 0)

> vB,t∗ (0, L)− lim
t→∞

vB,t (0, 0)

=
L (2α (L+ 1)− (H + L) (1− α))

H + L
e−1 ≥ 0.

Therefore, candidates B and A (by symmetry) prefer {L,H} to {0, L,H} for each time −t and for
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each hB ∈ HB,t (0, 0) and hA ∈ HA,t (0, 0), respectively.

M Proofs for Section 3.5

M.1 Proof of Proposition 7

[The “if” part] We will show that the following is a PBE: each candidate i takes some strategy

σ∗i that satisfies the properties described in the statement of the proposition. After the opponent

has entered, then σ∗i is optimal given (4). Hence, we focus on the history in which the opponent

has not entered. We consider the continuation payoff of entering and not entering at each −t (given

that each candidate follows σ∗ in the continuation play). By symmetry, we only consider candidate

R’s incentive.

Under (σ∗i , σ
∗
j ), the payoff from entering at −t is

max
x

{
−xR + exp (−λt)x+ (1− exp (−λt)) (−x)

}
= max

x

{
−xR − (1− 2 exp (−λt))x

}
=

 −xR if t ≥ 1
λ ln 2

−xR − (1− 2 exp (−λt))xR if t ≤ 1
λ ln 2

.

Note that the set of maximizers is {0} if t < 1
λ ln 2, [0, xR] if t = 1

λ ln 2, and {xR} if t > 1
λ ln 2.

In contrast, the continuation payoff of not entering at −t under (σ∗i , σ
∗
j ) is −xR because the

following three cases are exhaustive:

1. If candidate L enters next by − 1
λ ln 2, then R obtains a payoff of −xR since L enters at 0.

2. If candidate R enters next by − 1
λ ln 2, then R obtains a payoff of −xR since R enters at 0.

3. If no candidate enters by − 1
λ ln 2, then R obtains a payoff of −xR since, under σ∗, the

candidates take symmetric strategies for t ∈
(
− 1
λ ln 2, 0

]
and they never enter at a policy not

in [−xR, xR].29

Hence, for each −t < − 1
λ ln 2, both entering at 0 and not entering are optimal; for −t = − 1

λ ln 2,

entering at any policy in [0, xR] and not entering are optimal; and for −t > − 1
λ ln 2, entering at xi

is optimal. Hence, (σ∗i , σ
∗
j ) is a PBE.

29If the current time −t satisfies t ≤ 1
λ

ln 2, then this is the only case that happens.
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[The “only if” part] First we show that, under the assumption of p = 1, (vA, vB) is constant-

sum. To see this, note that, under any PBE, at any history, each candidate enters at a policy in

[−xR, xR]. This is because, if candidate i enters outside of this interval when the opponent j has not

entered, then i will lose for sure since the median voter will prefer j’s ideal policy than i’s committed

policy, and j’s best responses are not to enter and to enter at xj . Candidate i can do strictly better

by not entering, which with some strictly positive probability leads i to implement xi. Therefore,

the implemented policy is included in [−xR, xR]. Restricting our attention to x ∈ [−xR, xR], the

game is constant-sum because the sum of two candidates’ payoffs when the implemented policy is

x is −
∣∣x+ xR

∣∣− ∣∣x− xR∣∣ = −2xR.

Now, Theorem 3 implies that, at any time −t under any PBE, the continuation payoff of not

entering under (σ∗i , σ
∗
j ) that we computed in the “if” part is the continuation payoff of entering,

and −xR is the continuation payoff of not entering. Hence, in any PBE, for each −t < − 1
λ ln 2,

both entering at 0 and not entering are the only optimal actions; for −t = − 1
λ ln 2, entering at

any policy in [0, xR] and not entering are the only optimal actions; and for −t > − 1
λ ln 2, entering

at xi is uniquely optimal. Hence, any PBE satisfies the conditions given in the statement of the

proposition.

M.2 Proof of Lemma 3

We prove Lemma 3 as well as compute the payoff vi(p̃, enter).

Since entering at x = 0 ensures that the winning policy is 0, candidate R, when she enters,

enters at x ≥ 0. In addition, given the best response function in (4), we can show that it is

suboptimal for R to enter at x with p̃xR < x:

Claim 1 For each x > p̃xR, we have x 6∈ arg maxx̃ vt (p̃, x̃).

Proof. Suppose that R receives an opportunity at time −t and enters at x, while L still has

not entered. Note that, conditional on this event, if L does not enter until time 0, the median

voter votes for candidate R if and only if it is better to vote for candidate R with known policy

commitment x than unknown type L:

pL0
(
−
∣∣xL∣∣)+

(
1− pL0

)
(−0) ≤ −x,
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where pL0 is the voters’ posterior about L being extreme at −t = 0. Since in equilibrium each type

of candidate L will enter after candidate R enters, if candidate L does not enter, then the voters

know that L did not receive an opportunity. Thus, pL0 = pLt . Hence, candidate R does not win

with a policy x ≥ 0 with p̃xR < x.

Therefore, R’s payoff from entering at such x is

(
1− e−λt

)
︸ ︷︷ ︸

Pr(L has an opportunity)

×
[
(1− p̃)

(
−xR

)
+ p̃

(
−
∣∣BRL (x)− xR

∣∣)]︸ ︷︷ ︸
R’s utility when L has an opportunity after R enters at x

+ e−λt︸︷︷︸
Pr(L does not have an opportunity)

×
[
p̃
(
−xR − xR

)
+ (1− p̃)

(
−xR

)]︸ ︷︷ ︸
R’s utility when L does not enter after R enters at x

(note that we consider the case in which L wins)

.

Note that

0 ∈ arg max
x

[
(1− p̃)

(
−xR

)
+ p̃

(
−
∣∣BRL (x)− xR

∣∣)]
since, once L has an opportunity after R enters at x > 0, he enters at 0 if he is normal while he

enters at a best response to x given by (4) if he is extreme. Since

(1− p̃)
(
−xR

)
+ p̃

(
−2xR

)
< −xR,

R’s payoff from entering at 0 is:

(
1− e−λt

)
︸ ︷︷ ︸

Pr(L has an opportunity)

×
[
(1− p̃)

(
−xR

)
+ p̃

(
−xR

)]︸ ︷︷ ︸
R’s utility when L has an opportunity after R enters at 0

+ e−λt︸︷︷︸
Pr(L does not have an opportunity)

×
(
−xR

)︸ ︷︷ ︸
By entering at 0, R ensure −xR. Note that the winning policy is guaranteed to be 0

>
(

1− e−λt
)

︸ ︷︷ ︸
Pr(L has an opportunity)

×
[
(1− p̃)

(
−xR

)
+ p̃

(
−xR

)]︸ ︷︷ ︸
An upper bound of R’s utility when L has an opportunity after R enters at x

since L enters at BRL(x)≤0

+ e−λt︸︷︷︸
Pr(L does not have an opportunity)

×
[
p̃
(
−xR − xR

)
+ (1− p̃)

(
−xR

)]︸ ︷︷ ︸
R’s utility when L does not enter after R enters at x

(note that we consider the case in which L wins)

,

which is the payoff of entering at x. Hence, it is better to enter at 0 rather than x with p̃xR < x.
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Given this claim, we focus on R’s entering at x ∈
[
0, p̃xR

]
. When candidate R enters at

x ∈
[
0, p̃xR

]
at −t, the following two cases can happen:

1. Candidate L receives an opportunity in the time interval (−t, 0].

(a) If he is extreme, then he will enter at −x and candidate R receives −x − xR. This

happens with probability p̃
(
1− e−λt

)
.

(b) If he is normal, then he will enter at 0 and candidate R receives −xR. This happens

with probability (1− p̃)
(
1− e−λt

)
.

2. Candidate L does not receive any opportunity in the time interval (−t, 0]. This happens with

probability e−λt. In such a case, the median voter votes for candidate R given x ∈
[
0, p̃xR

]
.

Therefore, the payoff from entering at x at time −t is

p̃
(

1− e−λt
) (
−x− xR

)
+ (1− p̃)

(
1− e−λt

) (
−xR

)
− e−λt

(
xR − x

)
= −xR +

(
e−λt − p̃

(
1− e−λt

))
x. (44)

If e−λt > p̃
(
1− e−λt

)
, then R wants to maximize x, so x = p̃xR is uniquely optimal; if e−λt <

p̃
(
1− e−λt

)
, then R wants to minimize x, so x = 0 is uniquely optimal; if e−λt = p̃

(
1− e−λt

)
, then

R is indifferent among all x ∈
[
0, p̃xR

]
.

M.3 Proof of Lemma 2

Suppose that normal candidate i has an opportunity at −t when the opponent j has not entered.

Since there is a positive probability that j is extreme and he has not received any opportunity, for

any strategy of j, there is a positive probability that he is extreme.

If i enters at 0, then she obtains a payoff of 0, which is the maximum feasible payoff of this

game. If she enters at x 6= 0, then her payoff is strictly less than 0 since, if j is extreme and obtains

an opportunity in −τ ∈ (−t, 0],then he will enter at a policy that is not 0 and win. If she does not

enter, then again her payoff is strictly less than 0 since, if no candidate obtains an opportunity in

−τ ∈ (−t, 0], then j will win with probability 1
2 and implement her ideal policy which may not be

0. In total, entering at 0 is the unique optimal strategy for i.
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M.4 Proof of Lemma 4

Given e−λt

1−e−λt ≤ p (t), Lemma 3 implies that R’s payoff from entering is −xR. Hence, we are left to

show that R’s payoff from not entering is greater than −xR.

Since we focus on symmetric PBE and the implemented policy is in
[
−xR, xR

]
, if L is extreme,

then the extreme candidate R obtains −xR by symmetry. Hence R’s payoff from not entering at

−t given p (t) = p̃ is given by

vt (p̃,not) = p̃︸︷︷︸
L is extreme

(
−xR

)

+ (1− p̃)︸ ︷︷ ︸
L is normal



(
1− e−λt

)
︸ ︷︷ ︸

L has an opportunity

(
−xR

)

+ e−λt︸︷︷︸
L does not have an opportunity

 qtṽ
R

+ (1− qt)
(
−1

2x
R
)


 ,

where qt is the conditional probability that R enters at some time in (−t, 0] given that L is normal

and does not have an opportunity to enter in the time interval [−t, 0], given the equilibrium strategy

σ, and ṽR is candidate R’s expected payoff conditional on the event that R enters at some timing

(−t, 0] and L is normal and does not have an opportunity to enter in the time interval (−t, 0].

Since R enters in
[
0, xR

]
if she enters, we have ṽR ≥ −xR. Moreover, 1− qt ≥ e−λt (note that

e−λt is the probability that R does not obtain any opportunity in (−t, 0]) under any σ, we have

vt (p̃,not) > −xR.

M.5 Proof of Proposition 8

For each p and T , fix a symmetric PBE. In the following proof, we consider properties of this

symmetric PBE. In fact, there exists a unique strategy profile satisfying such properties, and one

can show that it is indeed a PBE, which shows the existence of a PBE.
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M.5.1 Equilibrium behavior near the deadline

If the deadline is close, then the probability that candidate L will receive an opportunity is close

to zero. By (44), if candidate R enters, then she receives

−xR + max
{(
e−λt − p̃

(
1− e−λt

))
p̃xR, 0

}∣∣∣
t=0

= − (1− p̃)xR,

where p̃ is R’s posterior probability with which L is extreme.

If candidate R does not enter, then since she wins with probability 1
2 at −t = 0, she receives

1

2

{
p̃
(
−xR − xR

)
+ (1− p̃)

(
−xR

)}
+

1

2
× 0

= − (1− p̃)xR +
1

2
(1− 3p̃)xR.

Therefore, candidate R enters at x with x = p̃xR if her posterior p̃ about L being extreme

is greater than 1
3 . She does not enter if the belief is less than 1

3 at −t = 0. Intuitively, if the

probability that candidate L is extreme is very high, then (i) R’s payoff when L wins when L has

not entered at time 0 is low since L will pick xL after the election with a higher probability, and

(ii) the median voter votes for R even if R takes a large x < xR. Hence, it is more attractive to

enter x > 0 so that R can win.

For each p and λ, for sufficient large T , we have e−λt

1−e−λt ≤ p ≤ p (t) for −t ∈
[
−T

2 ,−T
]

and

p
(
T
2

)
> 1

3 . Since p (0) ≥ p
(
T
2

)
> 1

3 , candidate R enters at x with x = p (t)xR for sufficiently small

t.

M.5.2 Backward Induction

Suppose that candidates enter in the time interval (−t, 0]. Then we have p (τ) = p (t) for each

−τ ∈ [−t, 0]. Hence, if p (t) = p̃ and the candidates enter in the time interval (−t, 0], then R’s

payoff from entering at −t is

−xR +
(
e−λt − p̃

(
1− e−λt

))
p̃xR,
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while the payoff from not entering at −t is

vt (p̃,not) = p̃︸︷︷︸
L is extreme

(
−xR

)

+ (1− p̃)︸ ︷︷ ︸
L is normal



(
1− e−λt

)
︸ ︷︷ ︸

L has an opportunity

(
−xR

)

+ e−λt︸︷︷︸
L does not have an opportunity

 (
1− e−λt

)
︸ ︷︷ ︸
R enters at p̃xR

(
p̃xR − xR

)
+ e−λt

(
−1

2x
R
)


= −xR + (1− p̃)

(
e−λtp̃xR − e−2λt

(
1− p̃+

1

2

)
xR
)
.

Candidate R enters if

−xR +
(
e−λt − p̃

(
1− e−λt

))
p̃xR ≥ −xR + (1− p̃)

(
e−λtp̃xR − e−2λt

(
1− p̃+

1

2

)
xR
)

⇔ e−λt = 2
p̃−

√
4p̃2+3−5p̃

2

5p̃− 2p̃2 − 3
p̃, (45)

where the right-hand side is well defined for any p̃ ∈ (0, 1) because 4p̃2+3−5p̃
2 ≥ 23

32 and 5p̃−2p̃2−3 < 0

for p̃ ∈ (0, 1).

Note that, if t satisfies (45), we have e−λt

1−e−λt − p̃ ≥ 0 (and this holds with equality if and only if

p̃ = 0).

For each p, fix the smallest t such that candidate R weakly prefers not entering at −t given p,

and denote it by t∗ (p):

e−λt
∗(p) = 2

p−
√

4p2+3−5p
2

5p− 2p2 − 3
p. (46)

Then, for each p, −t < −t∗ (p) and each htR such that p (t) = p and no candidate has entered at −t,

candidate R’s unique best reply is not to enter. To see why, consider the following two scenarios:

1. If L has an opportunity by −t∗(p), then R’s action does not affect R’s payoff if L is normal.

If L is extreme, R is worse off by entering at px than not entering. In particular, if R enters,

then her payoff is −xR − pxR. Suppose next that she does not enter until −t∗(p). Then, if

L has not entered by −t∗(p), her payoff is −xR by symmetry. If he enters, in contrast, her
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payoff is −xR + (1− e−λt̃)p
(
t̃
)
xR − e−λt̃p

(
t̃
)
xR, where L enters at −t̃ ∈ (−t,−t∗(p)]. Note

that

−xR + (1− e−λt̃)p
(
t̃
)
xR − e−λt̃p

(
t̃
)
xR ≥ −xR + p

(
t̃
)
xR − 2e−λt̃p

(
t̃
)
xR

≥ −xR + pxR − 2e−λt
∗(p)xR

> −xR − pxR.

The last line holds for the following reason: Straightforward algebra shows that
p−
√

4p2+3−5p
2

5p−2p2−3
<

1
4 , so by (46), we have 2e−λt

∗(p) < p. Hence, R is strictly better off not entering.

2. If L does not have an opportunity until −t∗(p), candidate R is indifferent between entering

and not entering (conditional on the event that L does not have an opportunity until −t∗(p),

the belief that L is extreme is constant in the time interval [−t,−t∗(p)]).

Since there is a positive probability that L is extreme and has an opportunity to enter, it is

uniquely optimal for R not to enter at −t.

M.5.3 Equilibrium Dynamics

Fix p ∈ (0, 1) arbitrarily. There exists T̄1 < ∞ such that for all T ≥ T̄1, we have that at any

−t ∈
[
−T

2 ,−T
]
, e−λt

1−e−λt ≤ p ≤ p (t) holds and so candidate R does not enter. For such T , in

any symmetric PBE, p (t) evolves according to d
dtp (t) = −λp (t) (1− p (t)) for t ∈ [T2 , T ] with the

initial condition p(T ) = p since the normal type always enters. Define p̄T : [0, T ] → [0, 1] by the

differential equation d
dt p̄T (t) = −λp̄T (t) (1− p̄T (t)) with the initial condition p̄T (T ) = p ∈ (0, 1).

We will show that there exists T̄ < ∞ such that for all T ≥ T̄ , there exists a unique t ∈ [0, T ]

such that

e−λt = 2
p̄T (t)−

√
4p̄T (t)2+3−5p̄T (t)

2

5p̄T (t)− 2p̄T (t)2 − 3
p̄T (t) . (47)

It will be useful to define f(q) := 2
q−
√

4q2+3−5q
2

5q−2q2−3
q for q ∈ [0, 1), where we note that this is well

defined for q = 0 as well.

Proof of Existence:

We first show that the right-hand side of (47) is strictly decreasing in t. Since p̄T (t) is strictly
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decreasing in t, it suffices to show that f(q) is strictly increasing in q ∈ [0, 1). Note that

d

dq
f(q) =

√
2

2

6− 5q

(2q2 − 5q + 3)2
√

4q2 − 5q + 3

(
6q2 − 5q − 2

√
2q
√

4q2 − 5q + 3 + 3
)
. (48)

Since straightforward algebra implies that, for each q ∈ [0, 1),

6q2 − 5q − 2
√

2q
√

4q2 − 5q + 3 + 3 ∈ (0, 3) ,

f(q) is strictly increasing in q ∈ [0, 1).

Second, we show that there exists T̄2 <∞ such that, for each T ≥ T̄2, e−λT < f(p̄T (T )) holds.

This follows since the left-hand side is strictly decreasing in T and converges to 0 as T goes to

infinity, while the right-hand side is fixed at f(p) because p̄T (T ) = p, and f(p) > 0 because f is

strictly increasing and f(0) = 0.

Third, we show that, at t = 0, e−λ×0 = 1 > f(p̄T (0)). This follows since, given that f(q) is

strictly increasing in q ∈ [0, 1), an upper bound of the right-hand side is calculated as limq→1 f(q) =

1
2 .

These three observations establish the existence of t ∈ [0, T ] satisfying (47) for each T ≥

max
{
T̄1, T̄2

}
.

Proof of Uniqueness:

Given the existence, for each T > max
{
T̄1, T̄2

}
, let t∗∗(T ) be the largest t ∈ [0, T ] satisfying

(47). To show that the solution is unique, it suffices to show that there exists T̄ ∈
[
max

{
T̄1, T̄2

}
,∞
)

such that for all T ≥ T̄ , for each t < t∗∗(T ),

d

dt
e−λt <

d

dt
f (p̄T (t)) .

On the one hand, since t∗∗(T ) ≤ T
2 for each T ≥ max

{
T̄1, T̄2

}
, for each ε > 0, there exists

T̄3 ∈
[
max

{
T̄1, T̄2

}
,∞
)

such that for all T ≥ T̄3, |p̄T (t∗∗(T ))− 1| < ε. Hence, there exists

T̄4 ∈
[
max

{
T̄1, T̄2

}
,∞
)

such that for all T ≥ T̄4,

∣∣∣∣f (p̄T (t∗∗(T )))− lim
q→1

f (q)

∣∣∣∣ < ε.

Noting that limq→1 f(q) = 1
2 , this implies that for each T ≥ T̄4, we have e−λt ≥ 1

2 − ε for each
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t ≤ t∗∗(T ) that is a solution to (47). Since d
dte
−λt = −λe−λt and d2

dt2
e−λt = λ2e−λt, for each T ≥ T̄4

and each t < t∗∗(T ), we have

d

dt
e−λt ≤ d

dt
e−λt

∣∣∣∣
t=t∗∗(T )

= −λe−λt∗∗(T ) ≤ −λ
(

1

2
− ε
)
.

On the other hand, the right-hand side of (47) is decreasing in t. Its derivative is

d

dt
f(p̄T (T )) =

(
d

dq
f(q)

∣∣∣∣
q=p̄T (t)

)
·
(
d

dt
p̄T (t)

)
= −

(
d

dq
f(q)

∣∣∣∣
q=p̄T (t)

)
· λp̄T (t) (1− p̄T (t)) .

Given (48), straightforward algebra yields limq→1
d
dqf(q) = 1

16 < ∞. Recall that, for each ε > 0,

there exists T̄3 <∞ such that, for each T ≥ T̄3 and each t ≤ t∗∗(T ), we have p̄T (t) ≥ 1− ε. Hence,

for each ε > 0, there exists T̄5 <∞ such that, for each T ≥ T̄5, we have d
dtf(p̄T (T )) > −ε.

In total, there exists T̄ <∞ such that, for each T ≥ T̄ and each t < t∗∗(T ), we have

d

dt
e−λt <

d

dt
f(p̄T (T )).

Equilibrium Dynamics:

Since the solution to (47) is unique, together with (46), we have the following: For a sufficiently

large T such that the solution for (47) is unique, let t∗ (p, λ, T ) be this unique solution. In any

symmetric PBE, for each −t < −t∗ (p, λ, T ), extreme candidates do not enter and p (t) = p̄T (t);

and for each −t ≥ −t∗ (p, λ, T ), extreme candidate R (or L) enters at p̄T (t∗ (p, λ, T ))xR (or

p̄T (t∗ (p, λ, T ))xL) and p (t) = p̄T (t∗ (p, λ, T )) for each t with −t ≥ −t∗ (p, λ, T ).

Finally, note that, for any p ∈ (0, 1), for sufficiently large T < ∞, in any symmetric PBE,

extreme candidates do not enter for any −t ∈ [−T, T2 ]. Hence, p(T2 ) = p̄T (T2 )→ 1 as T →∞. Since

limq→1 f(q) = 1
2 , for any p ∈ (0, 1) and λ > 0, we have

lim
T→∞

|λt∗ (p, λ, T )− ln 2| = 0.
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N Proofs for Appendix I.4

N.1 Proof of Proposition 14

Note that, in any PBE, S enters and receives a payoff of 1 if S can move after W enters. In addition,

by the same proof as the one for Proposition 2, there exists t̄ > 0 such that for all time −t ∈ (−t̄, 0],

Qt = (N,E). Below, we consider the transition of Qt in the following two cases: β ≥ γ and β < γ.

Since we assume that the positions that S and W enter do not depend on the timing of entry,

Assumption 1 of Section 4.1 is satisfied. In addition, Assumption 2 is satisfied. Also, Assumption

3 holds because v
BRj
i < supxi∈Xi vi (xi, X) for each i. Finally, first-mover disadvantage for i = W

holds. Moreover, since S does not enter and W enters near the deadline in any PBE, we are in

Case 3 for Theorem 1.

N.1.1 Case 1: β ≥ γ

Fix a PBE. For all −t, W does not enter after S enters if β > γ. If β = γ, then W is indifferent.

The following analysis goes through when β = γ regardless of W ’s strategy after S enters.

First, let us consider S’s incentive. At time −t, if W has not entered, S’s payoff is 1 − β if S

enters; if S does not enter, then her payoff is 1−(1− α)
∫ t

0 e
−λSτλW e

−λW (t−τ)dτ , given Qτ = (N,E)

for all −τ ∈ (−t, 0). Hence, t̂S in the notation of Section 4.1 is characterized by the smallest t

satisfying the following equation.

1− β = 1− (1− α)

∫ t

0
e−λSτλW e

−λW (t−τ)dτ.

Defining

fS(t) :=

 1
1−r

(
e−λSt − e−λW t

)
− β

1−α if r 6= 1

λW te
−λW t − β

1−α if r = 1
, (49)

t̂S is the smallest positive solution for fS(t) = 0. Recall that we have defined tS to be such a

solution for fS(t) = 0 in Section I.4. Hence, t̂S = tS . If there is no solution, then we define tS =∞.

Note that the function fS is continuous, so the smallest positive solution always exists or there is

no solution.

Second, let us consider W ’s incentive. At time −t, if S has not entered, W ’s payoff is
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(1− α) e−λSt if W enters; if W does not enter, then his payoff is (1− α)
∫ t

0 e
−λSτλe−λW (t−τ)dτ ,

given Qτ = (N,E) for −τ ∈ (−t, 0). Hence, t̂W is characterized by the smallest t > 0 satisfying the

following equation.

(1− α) e−λSt = (1− α)

∫ t

0
e−λSτλW e

−λW (t−τ)dτ

⇔

fW (t) = 0, where fW (t) :=

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1

λW te
−λW t − e−λW t if r = 1

.

Recall that we define tW as the smallest solution for fW (t) = 0 in Section I.4:

 1
1−r

(
e−λStW − e−λW tW

)
− e−λStW = 0 if r 6= 1

λW te
−λW tW − e−λW tW = 0 if r = 1

. (50)

Hence, t̂W = tW . Since fW (t) is continuous, negative for sufficiently small t > 0, and positive for

sufficiently large t, the smallest positive t such that fW (t) = 0 exists.

The transition of Qt depends on the relationship between tS and tW .

Case 1(a): −tS < −tW . This inequality means that W ’s cutoff −tW is closer to the deadline

than S’s cutoff (if any), −tS . Since Assumption 4 is satisfied, part 1 of Proposition 12 implies that,

under the fixed PBE, S does not enter and W enters for −t ∈ (−tW , 0], and no candidate enters

for −t ∈ (−∞,−tW ). Since this argument holds for any PBE, we have the following:

• Qt = (N,E) for −t ∈ (−tW , 0].

• Qt = (N,N) for −t ∈ (−∞,−tW ).

Hence, part 1(a) of Proposition 14 holds.

Case (1)(b): −tS > −tW . This inequality means that S’s cutoff −tS is closer to the deadline

than W ’s cutoff −tW . By part 2 of Proposition 12, we are in Case 2 for Theorem 1 with t0 = tS +ε

for small ε > 0.

Since first-mover disadvantage for W holds, there exists t∗W < ∞ such that v̄W,t∗W (not) =
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vW,t∗W (enter).30 In particular, since

vW,t∗W (enter) = (1− α) e−λSt,

v̄W,t∗W (not) =

∫ t−tS

0
e−(λS+λW )τ

(
λSβ + λW (1− α) e−λS(t−τ)

)
dτ + e−(λS+λW )(t−tS)β,

t∗W is the smallest t > 0 satisfying the following equation.

gW (t) := e−(λS+λW )(t−tS)

(
1

1 + r
β − (1− α) e−λStS

)
+

r

1 + r
β = 0.

Here, we use the fact that S is indifferent between entering and not entering at −tS , which implies

that her payoff at −tS is 1 − β if no candidates have entered by −tS , and thus W ’s payoff is β if

no candidates have entered by −tS .

In contrast, S always prefers entering at −t < −tS for the following reason. Suppose W enters

at all times −t ∈ (−t∗, 0] and does not enter at all times −t ∈ (−∞,−t∗).

For −t ≥ −t∗, since S (weakly) prefers entering at −tS , if W has not entered by −tS , S’s payoff

at −tS is no more than 1 − β. Even if S enters by −tS , S gets at most 1 − β. That is, W can

guarantee β if W does not enter until −tS . The fact that W (strictly) prefers entering implies that

W ’s payoff when W can enter before S is more than β. Therefore, S’s payoff when W can enter

before S is less than 1 − β. In contrast, by entering, S can guarantee a payoff of 1 − β. Hence,

entering is S’s strict best response at −t ≥ −t∗.

Moreover, since (i) W does not enter before S enters for −t ∈ (−∞,−t∗W ) and (ii) W does not

enter after S enters, entering is S’s strict best response at all times −t (even if W does not enter).

Given the above characterization, under the fixed PBE, S does not enter for −t ∈ (−tS , 0]

and enters for −t ∈ (−∞,−tS), while W enters for −t ∈ (−t∗W , 0] and does not enter for −t ∈

(−∞,−t∗W ). Since this argument holds for any PBE, we have the following transition of Qt:

• Qt = (N,E) for −t ∈ (−tS , 0].

• Qt = (E,E) for −t ∈ (−t∗W ,−tS).

• Qt = (E,N) for −t ∈ (−∞,−t∗W ).

30This notation of t∗W is introduced in t∗W in Section 4.1.
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Hence, part 1(b) of Proposition 14 holds.

N.1.2 Case 2: γ > β

Fix a PBE. For all −t, W enters after S enters. The continuation payoff profile when only S enters

at −t is given by (1− βt, βt) with

βt = β +
(

1− e−λW t
)

(γ − β) . (51)

When we replace β with βt in (49), the analysis for the case with β ≥ γ implies the following: t̂S

in the notation of Section 4.1 is characterized by the smallest solution for fS(t) = 0, where

fS (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− βt

1−α if r 6= 1

λW te
−λW t − βt

1−α if r = 1
. (52)

Recall that we define tS as the smaller positive solution for fS(t) = 0 in Section I.4. If there is no

solution, then we define tS =∞.

In contrast, t̂W is characterized by the smallest positive solution for fW (t) = 0, where

fW (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1

λW te
−λW t − e−λW t if r = 1

.

Recall that we define tW as the smallest solution for fW (t) = 0 in Section I.4:

 1
1−r

(
e−λStW − e−λW tW

)
− e−λStW = 0 if r 6= 1,

λW te
−λW tW − e−λW tW = 0 if r = 1.

Since fW (t) is continuous, negative for sufficiently small t, and positive for sufficiently large t, there

exists the smallest t such that fW (t) = 0.

The equilibrium dynamics depend on the relationship between tS and tW .

Case 2(a): −tS < −tW . By the same proof as Case 1(a), we can show that, under the fixed PBE,

S does not enter and W enters for −t ∈ (−tW , 0], and no candidate enters for −t ∈ (−∞,−tW ).

Since this argument holds for any PBE, we have the following transition of Qt:
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• Qt = (N,E) for −t ∈ (−tW , 0].

• Qt = (N,N) for −t ∈ (−∞,−tW ).

Hence, part 2(a) of Proposition 14 holds.

Case 2(b): −tS > −tW . This inequality means that S’s cutoff −tS is closer to the deadline than

W ’s cutoff −tW . By part 2 of Proposition 12, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄), we

are in Case 2 for Theorem 1 with t0 = tS + ε. Moreover, since first-mover disadvantage for i = W

holds, Proposition 10 pins down the dynamics under the fixed PBE, and since the argument holds

for any PBE, we have that the transition of Qt can be one of the following:

Case 2(b)(i)

• Qt = (N,E) for −t ∈ (−tS , 0].

• Qt = (E,E) for −t ∈ (−t∗W ,−tS).31

• Qt = (E,N) for −t ∈ (−∞,−t∗W ).

Case 2(b)(ii)

• Qt = (N,E) for −t ∈ (−tS , 0].

• Qt = (E,E) for −t ∈ (−t∗W ,−tS).

• Qt = (E,N) for −t ∈ (−t∗∗S ,−t∗W ).

• Qt = (N,N) for −t ∈ (−∞,−t∗∗S ).

Case 2(b)(iii)

• Qt = (N,E) for −t ∈ (−tS , 0].

• Qt = (E,E) for −t ∈ (−t∗S ,−tS).32

• Qt = (N,E) for −t ∈ (−t∗∗W ,−t∗S).

31This notation of t∗W is introduced in Section 4.1.
32This notation of t∗S is introduced in Section 4.1.
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• Qt = (N,N) for −t ∈ (−∞,−t∗∗W ).

We can show that there exists r̄ ≤ 1 such that Case 2(b)(i) is not the case if and only if r ≥ r̄.

To see why, we derive the differential equation that characterizes the transition. Let xt be W ’s

continuation payoff at time −t when W has entered and S has not entered at −t; let yt be W ’s

continuation payoff at time −t when W has not entered and S has entered at −t; and let zt be W ’s

continuation payoff at time −t when no candidate has entered at −t.

Suppose xt, yt, and zt satisfy the following differential equations:

dxt
dt

= λS (0− xt) , (53)

dyt
dt

= λW max {γ − yt, 0} , (54)

dzt
dt

= λW max {xt − zt, 0}+ λS min {yt − zt, 0} , (55)

with the following condition:

x0 = 1− α, y0 = β, z0 = 0.

Since this system of ordinary differential equations satisfies Lipschitz continuity, there exists a

solution. Such a solution is equilibrium payoffs for the following reasons: Equation (53) means that

whenever S can enter after W enters, W ’s payoff is 0. Equation (54) means that when W can enter

after S enters, W enters if and only if his payoff for entering, γ, is greater than the payoff for not

entering, yt. In addition, the first term of (55) means that when W can enter, W enters if and only

if his payoff for entering, xt, is greater than the payoff for not entering, zt. The second term of

(55) means that when S can enter, S enters if and only if her payoff for entering, 1− yt, is greater

than her payoff for not entering, 1 − zt (that is, yt is smaller than zt). Since we have shown the

uniqueness of the value function in Proposition 10, the solution for the system of (53), (54), and

(55) is the unique equilibrium payoffs.

To show that there exists r̄ ≤ 1 such that r ≥ r̄ if and only if there exists t∗∗S ∈ (tS ,∞) such

that S does not enter for all −t ∈ (−∞,−t∗∗S ), we prove the following three claims:

1. [r̄ ≤ 1] For r ≥ 1, there exists t∗∗S ∈ (tS ,∞) such that S does not enter for all −t ∈ (−∞,−t∗∗S ).

2. [cutoff from below] If there does not exist t∗∗S ∈ (tS ,∞) such that S does not enter for all
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−t ∈ (−∞,−t∗∗S ) for (λS , λW ), then such t∗∗S does not exist for (λ′S , λW ) with λ′S < λS .

3. [cutoff from above] If there exists t∗∗S ∈ (tS ,∞) such that S does not enter for all −t ∈

(−∞,−t∗∗S ) for (λS , λW ), then such t∗∗S exists for (λ′S , λW ) with λ′S > λS .

[Proof of “r̄ ≤ 1”] To analyze the conditions under which there exists t∗∗S ∈ (tS ,∞) such that S

does not enter for all −t ∈ (−∞,−t∗∗S ), let us consider a sufficiently large t ≥ t∗∗W . Since xt ≥ zt if

and only if t ≤ t∗∗W , as long as yt ≤ zt, we have dzt
dt = λS (yt − zt). Since dzt

dt + λSzt = λSyt, we have

eλStzt = C +

∫ t

a
eλSτλsyτdτ, (56)

where a is the supremum of τ with xτ ≥ zτ , and C is determined by the condition xa = za. As we

have shown above, a is finite, and so is C.

To show that we have zt < yt for sufficiently large t for each (λS , λW ) with λS ≥ λW , we

consider the following two cases: r > 1 and r = 1. Suppose first that r > 1. The second term of

(56) can be explicitly written as follows:

∫ t

a
eλSτλsyτdτ =

∫
eλSτλs

(
β +

(
1− e−λW τ

)
(γ − β)

)
dτ

=
r

1− r
(γ − β) e(λS−λW )t + γeλSt

− r

1− r
(γ − β) e(λS−λW )a − γeλSa.

Hence, the payoff zt is characterized as follows:

zt = Cae
−λSt + γ +

r

1− r
(γ − β) e−λW t, (57)

with

Ca = C − r

1− r
(γ − β) e(λS−λW )a − γeλSa.

In contrast, the payoff yt is characterized as follows:

yt = β +
(

1− e−λW t
)

(γ − β) .
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Therefore, the difference between zt and yt (as long as yt ≤ zt) is:

zt − yt = Cae
−λSt +

1

1− r
(γ − β) e−λW t.

As a result, whether there exists t∗∗S ∈ (tS ,∞) such that S does not enter for all −t ∈ (−∞,−t∗∗S )

or not depends on

lim
t→∞

(
Cae

−λSt +
1

1− r
(γ − β) e−λW t

)
. (58)

If r > 1, there exists t̄ < ∞ such that for all t > t̄, the second term of (58) dominates. Since

r > 1 for this case, there exists t̂ <∞ such that for all t > t̂, (58) is negative. That is, there exists

−t∗∗S such that S does not enter for −t ∈ (−∞,−t∗∗S ).

We now consider the case with r = 1. In this case, we can write λS = λW = λ. On the one

hand, the second term of (56) can be explicitly written as follows:

∫ t

a
eλSτλsyτdτ = −λ (t− a) (γ − β) + γ

(
eλt − eλa

)
.

Hence, the payoff zt is characterized as

zt = γ + e−λt
(
C − λ (t− a) (γ − β)− γe−λa

)
.

On the other hand, again, the payoff yt is characterized as

yt = γ + e−λt (β − γ) .

Therefore, the difference between zt and yt (as long as yt ≤ zt) is:

zt − yt = e−λt
(
C − λ (t− a) (γ − β)− γe−λa − (β − γ)

)
.

There exists t̄ < ∞ such that for all t > t̄, the term −λ (t− a) (γ − β) dominates the other terms

in the parentheses, and so zt − yt < 0. That is, there exists −t∗∗S such that S does not enter for

−t ∈ (−∞,−t∗∗S ), as stated in part 2(b)ii of Proposition 14.

[Proof of “cutoff from below”] We show that, if there does not exist t∗∗S ∈ (tS ,∞) such that S

does not enter for all −t ∈ (−∞,−t∗∗S ) for (λS , λW ), then such t∗∗S does not exist for (λ′S , λW ) with
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λ′S < λS .

To show this monotonicity, we first arbitrarily fix λW . Note that yt is independent of λS . Let

xt(λS) and zt(λS) be the values of xt and zt respectively, given λS for the fixed λW . There exists

t̄ > 0 such that for all t ∈ (0, t̄), zt(λS) < zt(λ
′
S). Define t∗ ≡ inft {zt(λS) ≥ zt(λ′S), t > 0} ∈

R++ ∪ {+∞}.

If t∗ = +∞, then we have zt(λS) ≤ zt(λ
′
S) for all λ′S < λS . Since yt is independent of λS , the

proof is complete in this case. Hence, we concentrate on the case with t∗ < ∞ and will derive a

contradiction.

At −t∗, it must be the case that zt∗(λS) = zt∗(λ
′
S) and żt∗(λS) ≥ żt∗(λ

′
S).33 From zt∗(λS) =

zt∗(λ
′
S), we have

żt∗(λS) = λW max {xt∗(λS)− zt∗(λS), 0}+ λS min {yt∗ − zt∗(λS), 0} ,

żt∗(λ
′
S) = λW max

{
xt∗(λ

′
S)− zt∗(λ′S), 0

}
+ λ′S min

{
yt∗ − zt∗(λ′S), 0

}
= λW max

{
xt∗(λ

′
S)− zt∗(λS), 0

}
+ λ′S min {yt∗ − zt∗(λS), 0} .

Note that, by definition, we have xt∗(λ
′
S) > xt∗(λS). Given this inequality, the following two cases

are possible:

1. If xt∗(λS) ≥ zt∗(λS), then we have λW max {xt∗(λS)− zt∗(λS), 0} < λW max {xt∗(λ′S)− zt∗(λS), 0}.

In addition, we have λS min {yt∗ − zt∗(λS), 0} ≤ λ′S min {yt∗ − zt∗(λS), 0}. Hence, we have

żt∗(λ
′
S) > żt∗(λS). This is a contradiction.

2. If xt∗(λS) < zt∗(λS), then we consider the following two subcases:

(a) If yt∗ > zt∗(λS), then we have

λS min {yt∗ − zt∗(λS), 0} < λ′S min {yt∗ − zt∗(λS), 0} .
33The first equality follows from the continuity of zt with respect to t. The second inequality follows from the first

equality and the definition of the derivative: For sufficiently small ε > 0,

żt∗(λS) ≈ zt∗(λS)− zt∗−ε(λS)

ε
,

żt∗(λ′S) ≈ zt∗(λ′S)− zt∗−ε(λ′S)

ε
=
zt∗(λS)− zt∗−ε(λ′S)

ε
.

Since zt∗−ε(λ
′
S) > zt∗−ε(λS), it follows that żt∗(λS) ≥ żt∗(λ′S).
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Since we have

λW max {xt∗(λS)− zt∗(λS), 0} ≤ λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
,

we have żt∗(λ
′
S) > żt∗(λS). This is a contradiction.

(b) If yt∗ ≤ zt∗(λS), then we have

λW max {xt∗(λS)− zt∗(λS), 0} = 0

and

λS min {yt∗ − zt∗(λS), 0} = 0.

Therefore, żt∗(λS) = 0. For t > t∗, since xt(λS) is decreasing in t and yt is increasing

in t, we have żt(λS) = 0. Together with yt∗ ≤ zt∗(λS), we have yt < zt(λS) so S does

not enter for −t < −t∗. This contradicts the assumption that there does not exist

t∗∗S ∈ (tS ,∞) such that S does not enter for all −t ∈ (−∞,−t∗∗S ) for λS .

[Proof of “cutoff from above”] We prove that, if there exists T̄ <∞ such that S does not enter

for any t > T̄ for a pair (λS , λW ), then for any pair (λ′S , λW ) with λ′S > λS , there exists T̄ ′ < ∞

such that S does not enter for any t > T̄ ′.

This proof is symmetric to the one for “cutoff from below.” We first arbitrarily fix λW . Again,

yt is independent of λS . Let xt(λS) and zt(λS) be the value of xt and zt, respectively, given

λS for the fixed λW . There exists t̄ > 0 such that for all t ∈ (0, t̄), zt(λS) > zt(λ
′
S). Define

t∗ ≡ inft {zt(λS) ≤ zt(λ′S), t > 0} ∈ R++ ∪ {+∞}.

If t∗ = +∞, then we have zt(λS) ≥ zt(λ
′
S) for all λ′S < λS . Since yt is independent of λS , the

proof is complete in this case. Hence, we concentrate on the case with t∗ <∞.

At −t∗, it must be the case that zt∗(λS) = zt∗(λ
′
S) and żt∗(λS) ≤ żt∗(λ

′
S) by an argument

analogous to footnote 33 in the Online Appendix. From zt∗(λS) = zt∗(λ
′
S), we have

żt∗(λS) = λW max {xt∗(λS)− zt∗(λS), 0}+ λS min {yt∗ − zt∗(λS), 0}

żt∗(λ
′
S) = λW max

{
xt∗(λ

′
S)− zt∗(λ′S), 0

}
+ λ′S min

{
yt∗ − zt∗(λ′S), 0

}
= λW max

{
xt∗(λ

′
S)− zt∗(λS), 0

}
+ λ′S min {yt∗ − zt∗(λS), 0} .
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Note that, by definition, we have xt∗(λ
′
S) < xt∗(λS). Given this inequality, the following two cases

are possible:

1. If xt∗(λS) > zt∗(λS), then we have λW max {xt∗(λS)− zt∗(λS), 0} > λW max {xt∗(λ′S)− zt∗(λS), 0}.

In addition, we have λS min {yt∗ − zt∗(λS), 0} ≥ λ′S min {yt∗ − zt∗(λS), 0}. Hence, we have

żt∗(λ
′
S) < żt∗(λS). This is a contradiction.

2. If xt∗(λS) ≤ zt∗(λS), then we have

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
≤ λW max {xt∗(λS)− zt∗(λS), 0} = 0

and so

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
= λW max {xt∗(λS)− zt∗(λS), 0} = 0.

We consider the following subcases:

(a) If yt∗ > zt∗(λS), then we have

λS min {yt∗ − zt∗(λS), 0} > λ′S min {yt∗ − zt∗(λS), 0} .

Hence, we have żt∗(λ
′
S) < żt∗(λS). This is a contradiction.

(b) If yt∗ ≤ zt∗(λS), then we have

λW max
{
xt∗(λ

′
S)− zt∗(λS), 0

}
= 0

and

λ′S min
{
yt∗ − zt∗(λ′S), 0

}
= λ′S min {yt∗ − zt∗(λS), 0} = 0.

Therefore, żt∗(λ
′
S) = 0. For t > t∗, since xt(λ

′
S) is decreasing in t and yt is increasing in

t, we have żt(λ
′
S) = 0. Hence, S does not enter for −t < −t∗ with λ′S , as desired.

In the proof above, all the time-cutoffs described are finite and independent of T , as stated in

part 3 of Proposition 14.

94



N.2 Proof of Remark 7

Before proving Proposition 15, we prove Remark 7. It suffices to show that φ < 0 implies tS =∞.

By definition, we can write

fS (t) =

 1
1−r

(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{(γ−β),0}

1−α if r 6= 1

λW te
−λW t − β+(1−e−λW t) max{(γ−β),0}

1−α if r = 1
.

If 1
r −

1−r
r

max{(γ−β),0}
1−α ≤ 0, then

fS (t) =
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

=
1

1− r
e−λSt +

(
max {(γ − β) , 0}

1− α
− 1

1− r

)
e−λW t − β + {max (γ − β) , 0}

1− α

is always decreasing in t. Since fS (0) = − β
1−α , we have fS (t) < 0 for all t. Therefore, we have

tS =∞ as desired.

Hence, for the rest of the proof, we focus on the case in which 1
r −

1−r
r

max{(γ−β),0}
1−α > 0. Then,

the first- and second- order conditions for fS(t) imply that fS(t) is single-peaked at

tpeak =


log
(

1
r
− 1−r

r
max{(γ−β),0}

1−α

)
λW−λS if r 6= 1

1
λW

(
1− max{(γ−β),0}

1−α

)
if r = 1

.

For r 6= 1, since

fS (t) =
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

=

(
1

1− r

(
re−λSt − e−λW t

)
+
e−λW t max {(γ − β) , 0}

1− α

)
− 1

1− r
(r − 1) e−λSt − β + max {(γ − β) , 0}

1− α

= − 1

λW
f ′S (t) + e−λSt − max {β, γ}

1− α
,
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substituting f ′S(tpeak) = 0 and tpeak =
log( 1

r
− 1−r

r
γ−β
1−α )

λW−λS into fS(t) yields

fS(tpeak) = e
−λS

log

(
1
r−

1−r
r

max{(γ−β),0}
1−α

)
λW−λS − max {β, γ}

1− α

= e−r
log

(
1
r−

1−r
r

max{(γ−β),0}
1−α

)
1−r − max {β, γ}

1− α

= e
log
(

1
r
− 1−r

r
max{(γ−β),0}

1−α

) r
r−1

− max {β, γ}
1− α

=

(
1

r
− 1− r

r

max {(γ − β) , 0}
1− α

) r
r−1

− max {β, γ}
1− α

= φ.

Therefore, if φ < 0, then there is no solution for fS (t) = 0 and so tS =∞, as desired.

For r = 1, since

fS (t) = λW te
−λW t −

β +
(
1− e−λW t

)
max {(γ − β) , 0}

1− α

= − 1

λW
f ′S (t) + e−λW t − max {β, γ}

1− α
,

substituting f ′S(tpeak) = 0 and tpeak = 1
λ

(
1− max{(γ−β),0}

1−α

)
into fS(t) yields

fS(tpeak) = e
−λW 1

λW

(
1−max{(γ−β),0}

1−α

)
− max {β, γ}

1− α

= e
max{(γ−β),0}

1−α −1 − max {β, γ}
1− α

= φ.

Therefore, if φ < 0, then there is no solution for fS (t) = 0 and so tS =∞ holds, as desired.

N.3 Proof of Proposition 15

Recall that tS is the smallest positive solution for fS(t) = 0 where

fS(t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− β+(1−e−λW t) max{(γ−β),0}

1−α if r 6= 1

λW te
−λW t − β

1−α if r = 1
, (59)
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while tW is the smallest solution for fW (t) = 0 where

fW (t) ≡

 1
1−r

(
e−λSt − e−λW t

)
− e−λSt if r 6= 1

λW te
−λW t − e−λW t if r = 1

. (60)

We prove each part of the proposition in what follows.

N.3.1 Proof of Part 1 of Proposition 15

When we change r, without loss, we keep λW fixed and vary λS . First, note that, for sufficiently

large r, φ is negative:

lim
r→∞

(
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

}) r
r−1

− max {β, γ}
1− α

= −max

(
γ − β
α− 1

, 0

)
− max {β, γ}

1− α
< 0.

Hence, for sufficiently large r, we have −tW > −tS .

Second, since

lim
r→0

(
1

1− r

(
e−λSt − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

)

= lim
r→0

1

1− r

(
e−rλW t − e−λW t

)
−
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

= 1− e−λW t −
β +

(
1− e−λW t

)
max {(γ − β) , 0}

1− α

and

lim
r→0

(
1

1− r

(
e−λSt − e−λW t

)
− e−λSt

)
= lim

r→0

(
1

1− r

(
e−rλW t − e−λW t

)
− e−rλW t

)
= −e−tλW

hold for each t, limr→0 tS < ∞ and limr→0 tW = ∞. Thus, for sufficiently small r, we have

−tW < −tS .
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Therefore, we are left to show that

∂ (−tW )

∂r
− ∂ (−tS)

∂r
> 0.

To this end, in (59) and (60), when λS goes up with λW fixed, the first terms in fS(t) and fW (t)

move in the same way while the second terms (−β+(1−e−λW t) max{(γ−β),0}
1−α in fS (t) and −e−λSt in

fW (t)) become larger only in fW (t). Hence, we have ∂(−tW )
∂r − ∂(−tS)

∂r > 0, as desired.

N.3.2 Proof of Part 2 of Proposition 15

First, note that, for sufficiently large α, φ is negative for the following reason: If r 6= 1, since

lim
α→1

(
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

})
< 0,

φ < 0 in the limit as α→ 1. If r = 1, since

lim
α→1

(
e−max{ γ−β1−α ,0} − max{β, γ}

1− α

)
< 0,

φ < 0 in the limit as α→ 1. Hence, for sufficiently large α, we have −tW > −tS .

Therefore, we are left to show that

∂ (−tW )

∂α
− ∂ (−tS)

∂α
> 0.

In (59) and (60), when α goes up, fW (t) is unchanged. Hence, we are left to show that ∂(−tS)
∂α <

0, that is, the smallest positive t such that 1
1−r

(
e−λSt − e−λW t

)
=

β+(1−e−λW t) max{(γ−β),0}
1−α (or

1
1−r

(
e−λSt − e−λW t

)
= β

1−α if r = 1) increases. Notice that 1
1−r

(
e−λSt − e−λW t

)
is single-peaked

at log λW−log λS
λW−λS . Since

β+(1−e−λW t) max{(γ−β),0}
1−α and β

1−α become larger, the smallest positive t

such that 1
1−r

(
e−λSt − e−λW t

)
=

β+(1−e−λW t) max{(γ−β),0}
1−α (or 1

1−r
(
e−λSt − e−λW t

)
= β

1−α if r = 1)

increases.
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N.3.3 Proof of Part 3 of Proposition 15

First, note that, for sufficiently large β, φ is negative: If r 6= 1, since

lim
β→1

((
1

r
− 1− r

r
max

{
γ − β
1− α

, 0

}) r
r−1

− max {β, γ}
1− α

)
=

(
1

r

) r
r−1

− 1

1− α

≤ max
r

(
1

r

) r
r−1

− 1

1− α

= 1− 1

1− α
< 0,

φ < 0 in the limit as β → 1. If r = 1, since

lim
β→1

(
e−max{ γ−β1−α ,0} − max{β, γ}

1− α

)
= 1− 1

1− α
< 0,

φ < 0 in the limit as β → 1. Hence, for sufficiently large β, we have −tW > −tS .

Therefore, we are left to show that

∂ (−tW )

∂β
− ∂ (−tS)

∂β
< 0.

In (59) and (60), when β goes up, the second terms −β+(1−e−λW t) max{(γ−β),0}
1−α and − β

1−α in fS(t)

become smaller while fW (t) is unchanged. Hence, by the same proof as in the case where α

increases, −tW − (−tS) increases. Hence, we have ∂(−tW )
∂β − ∂(−tS)

∂β > 0, as desired.

N.3.4 Proof of Part 4 of Proposition 15

It suffices to show that

∂ (−tW )

∂γ
− ∂ (−tS)

∂γ
= 0 if γ ≤ β,

∂ (−tW )

∂γ
− ∂ (−tS)

∂γ
> 0 if γ > β.

In (59) and (60), if β ≥ γ, then neither fS(t) nor fW (t) depends on γ. Hence, we have ∂(−tW )
∂γ −

∂(−tS)
∂γ = 0. Hence, let us focus on the case γ > β. If γ goes up in (59) and (60), then the second

term −β+(1−e−λW t) max{(γ−β),0}
1−α in fS(t) becomes smaller while fW (t) is unchanged. Hence, by the
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same proof as in part 3 of Proposition 15, −tW −(−tS) increases, which means ∂(−tW )
∂γ − ∂(−tS)

∂γ > 0,

as desired.
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