
Online Supplementary Appendix to: “Optimal Timing of Policy
Announcements in Dynamic Election Campaigns”

Yuichiro Kamada† Takuo Sugaya‡

February 23, 2020

I Definition of Bayes Rule

Fix candidate i’s history hti =

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
arbitrarily. If t = T , then candidate

i believes that htj = (∅, ∅, T, no) with probability one. Hence, we focus on t < T . Define
(
tli, X

l
i

)li
l=1

as follows: Let t1i be the smallest time t ∈ {t1i , ..., t
ki
i } such that, for k with t = tki , X

k
i 6= X0

i holds

(that is, −t1i is the first time for candidate i to change her policy set); given t1i , let t2i be the smallest

time t ∈ {t1i , ..., t
ki
i } such that t > t1i and for k with t = tki , X

k
i 6= Xk−1

i holds (that is, −t2i is the

second time for candidate i to change her policy set), and so on.

When those conditions are met, we say that
(
tli, X

l
i

)li
l=1

is compatible with
(
tki , X

k
i

)ki
k=1

.

Given hti, let ~θ(hti) :=

((
tli, X

l
i

)li
l=1

,
(
tlj , X

l
j

)lj
l=1

)
.

Fix
(
tli, X

l
i

)li
l=1

. Suppose that there exists
(
tkj , X

k
j

)kj
k=1

with which
(
tlj , X

l
j

)lj
l=1

is compatible,

such that

htj =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)

happens with a positive probability by σ∗j conditional on the realization of
(
tkj

)kj
k=1

,
(
tli, X

l
i

)li
l=1

, and

t:1 At each time tkj for k = 1, ..., kj , given candidate j’s history h
tkj
j =

((
tli, X

l
i

)l(tkj )
l=1 ,

(
tk
′
j , X

k′
j

)k−1

k′=1
, tkj , yes

)
with l

(
tkj

)
being the largest l with tli < tkj (that is,

(
tli, X

l
i

)l(tkj )
l=1 is compatible with

(
tli, X

l
i

)li
l=1

),

σ∗j (h
tkj
j )
(
Xk
j

)
> 0. Let H

σ∗j
j

(
hti
)

be the set of candidate j’s history satisfying this condition.
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1Given candidate i’s history, she believes that candidate j receives an opportunity at −t with probability 0 when

candidate i receives an opportunity. Hence, we require that the last element is no.
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Suppose first that H
σ∗j
j

(
hti
)
6= ∅. Given a history hti (note that this determines

(
tli, X

l
i

)li
l=1

and(
tlj , X

l
j

)lj
l=1

) and a set Ĥj

(
hti
)
⊆ H

σ∗j
j

(
hti
)
, we can classify htj ∈ Ĥj

(
hti
)

into the following subsets:

Given hti and Ĥj

(
hti
)
, let KXj be the set of kj and

(
Xk
j

)kj
k=1

such that there exists (tkj )
kj
k=1 such that((

tli, X
l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ Ĥj

(
hti
)
. Given hti, Ĥj

(
hti
)
, and (kj ,

(
Xk
j

)kj
k=1

) ∈ KXj , let T 1
j ,

T 2
j

(
t1j

)
, ..., T

kj
j (t1j , ..., t

kj−1
j ) be, respectively, the set of t1j such that there exists (t2j , ..., t

kj
j ) such that(

tlj , X
l
j

)lj
l=1

is compatible with
(
tkj , X

k
j

)kj
k=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ Ĥj

(
hti
)
; the set

of t2j such that, given t1j , there exists (t3j , ..., t
kj
j ) such that

(
tlj , X

l
j

)lj
l=1

is compatible with
(
tkj , X

k
j

)kj
k=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈ Ĥj

(
hti
)
; and so on, up to the set of t

kj
j such that, given

t1j , t
2
j , . . . , t

k−1
j ,

(
tlj , X

l
j

)lj
l=1

is compatible with
(
tkj , X

k
j

)kj
k=1

and

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
∈

Ĥj

(
hti
)
.2 Given hti and H

σ∗j
j

(
hti
)
, define KX∗j , T 1,∗

j , T 2,∗
j

(
t1j

)
, ..., T

kj ,∗
j (t1j , ..., t

kj−1
j ) in a similar

manner, where we replace Ĥj

(
hti
)

with H
σ∗j
j

(
hti
)
. Define ḡ = g(htj) where htj has no opportunity

for j and hence j’s preparation is X, and (tli, X
l
i) is equal to the part of (tki , X

k
i )kik=1 in hti where

there is a change of i’s policy set. Then, given hti and Ĥj

(
hti
)
, for any g

(
htj

)
, we define

∫
htj∈Ĥj(hti)

g
(
htj
)
dβi
(
htj |hti

)
:=

A

B
, (18)

where

A = e−λt · I(0,·)∈KXj ḡ

+
∑

(
kj ,(Xk

j )
kj
k=1

)
∈KXj

∫
t1j∈T 1

j

∫
t2j∈T 2

j (t1j )
· · ·
∫
t
kj
j ∈T

kj
j (t1j ,...,t

kj−1

j )

 g
(
htj

)
e−(T−t)λ ((T−t)λ)kj

kj !

×
∏kj
k=1 σ

∗
j (h

tkj
j )
(
Xk
j

)
 dt

kj
j · · · dt

1
j ,

and

B = e−λt · I(0,·)∈KX∗j

+
∑

(
kj ,(Xk

j )
kj
k=1

)
∈KX∗j

∫
t1j∈T

1,∗
j

∫
t2j∈T

2,∗
j (t1j )

· · ·
∫
t
kj
j ∈T

kj,∗
j (t1j ,...,t

kj−1

j )

 e−(T−t)λ ((T−t)λ)kj

kj !

×
∏kj
k=1 σ

∗
j (h

tkj
j )
(
Xk
j

)
 dt

kj
j · · · dt

1
j .

2For simpler notation, we suppress the dependence of KXj on hti and Ĥj
(
hti
)

and the dependence of T 1
j , T 2

j

(
t1j
)
,

..., T
kj
j (t1j , ..., t

kj−1

j ) on hti, Ĥj
(
hti
)
, and (kj ,

(
Xk
j

)kj
k=1

).
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For example, given a fixed continuation strategy profile σ and hti, the function g
(
htj

)
can be

candidate i’s continuation payoff ui

(
σ|hti, htj

)
.

If H
σ∗j
j

(
hti
)

= ∅ (hti cannot be explained without j’s deviation), then dβi

(
htj |hti

)
is arbitrary, as

long as the following three conditions are satisfied. To state the first condition, let Hj(h
t
i) be the

set of candidate j’s histories of the form

htj =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)

such that
(
tlj , X

l
j

)lj
l=1

is compatible with
(
tkj , X

k
j

)kj
k=1

. The first condition is that
∫
htj∈Hj(hti)

dβi

(
htj |hti

)
=

1.

The remaining two conditions constitute an analogue of the “no signaling what you don’t know”

condition.3

Specifically, the second condition is that, for each pair of histories for candidate i, hti, h̃
t
i ∈ Hi

with ~θ(hti) = ~θ(h̃ti) := ~θ, we have that for each htj ∈ Hj ,

βi
(
htj |hti

)
= βi

(
htj |h̃ti

)
:= βi

(
htj |~θ

)
. (19)

Note that this condition automatically holds if H
σ∗j
j

(
hti
)
6= ∅. Thus, what we are additionally

requiring here is condition (19) for off the path of equilibrium play. Intuitively, candidate i believes

that candidate j’s deviation is not correlated with hti beyond what is observable to candidate j,

i.e., beyond ~θ.

The third condition is that, for each i, t,
(
tli, X

l
i

)li
l=1

, X li+1
i , and

(
tkj , X

k
j

)kj
k=1

, for three histories

hti =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, no

)
,

ĥti =

((
tli, X

l
i

)li
l=1

,
(
tkj , X

k
j

)kj
k=1

, t, yes

)
, and

h̃t
′
i =

((
tli, X

l
i

)li+1

l=1
,
(
tkj , X

k
j

)kj
k=1

, t′, no

)
with tli+1

i = t,

3An analogue of Kreps and Wilson’s (1982) structural consistency, Fudenberg and Tirole’s (1991) reasonableness,
and Watson’s (2017) “plain PBE” would imply these two conditions.
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we require that for each htj ∈ Hj ,

βi
(
htj |hti

)
= βi

(
htj |ĥti

)
= lim

t′↘t
βi

(
htj |h̃t

′
i

)
. (20)

That is, candidate i’s belief at a history at time −t does not change depending on the arrival of

the Poisson process or her own action Xi at time −t. Again, this condition automatically holds if

H
σ∗j
j

(
hti
)
6= ∅, and so the additional requirement here is about off the path of equilibrium play.

J Proofs Omitted in Appendix C

J.1 Proof of Proposition 6

Fix any t ∈ (−∞, 0], and suppose that no candidate enters at any −τ ∈ (−t, 0]. On the one hand,

if candidate i enters at −t, her payoff is vi,t(enter). By Assumption 2, vi,t(enter) ≤ vi,0(enter).

Since vi,0(enter) = vi (x∗i , X) by definition and vi (x∗i , X) < vi (X,X) as we are in Case 1, we have

vi,t(enter) < vi (X,X). On the other hand, if she does not enter, then her payoff is vi (X,X).

Hence, it is uniquely optimal not to enter at −t. Since the payoffs are continuous in time due to the

continuity of probabilities in time and the boundedness of vi for each i = A,B, there exists ε > 0

such that no candidate enters for any time in (−t − ε,−t]. Hence the continuous-time backward

induction implies the desired result.

J.2 The Formal Definition of v̄i,t(not)

Fix t0 that is defined in Remark 13. For t > t0, define v̄i,t(not) as candidate i’s expected continuation

payoff at time −t when she does not enter, assuming that each candidate will enter at times in

(−t,−t0) upon receiving an opportunity. Such a payoff is well defined due to Assumption 1. It is

formally defined by the following:

v̄i,t(not) = e−(λi+λj)(t−t0)vi,t0(X,X) + e−λi(t−t0)(1− e−λj(t−t0))vi(X,x
∗
j ) + (1− e−λi(t−t0))e−λj(t−t0)vi(x

∗
i , X)

+
(

1− e−λi(t−t0)
)(

1− e−λj(t−t0)
)( λi

λi + λj
v
BRj
i +

λj
λi + λj

max
Xi∈Xi

vi(Xi, x
∗
j )

)
.

Let

t∗i ≡ inf {t > t0 : v̄i,t(not) ≥ vi,t(enter)} .
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Assumption 3 can be stated in the same way as in the main text.

J.3 Proof of Proposition 7

By the definition of t0, there exists ε > 0 such that for all time in (−t0 − ε,−t0], each candidate

i enters under any PBE. Hence, if t∗i = t∗j = ∞, each candidate enters at all times in (−∞,−t0].

For the rest of the proof, we focus on the case in which at least one of t∗A and t∗B is less than ∞.

Without loss, we assume t∗A ≤ t∗B.

The following lemma shows that, for any PBE, candidate A does not enter at any time−t < −t∗A:

Lemma 6. Fix any σB such that (i) σB(htB) = x∗B for any htB with θB(htB) = X for each −t ∈

(−t∗A,−t0] and (ii) σB(ht) = BRB(xA) for any htB with θA(htB) = xA for each −t ∈ [−T, 0].4 If σA

is a best response to σB, then for any ht ∈ (X,X) with −t < −t∗A, we have σA(ht)(X) = 1.5

The proof of the lemma is complicated, so we first assume that the lemma holds and show the

proposition, and then prove the lemma. If t∗A = t∗B, then Lemma 6 implies Proposition 7 with

ti = t∗i for each i. Hence, we assume t∗A < t∗B.

Fix a PBE and, for each i = A,B, let vi,t(not) be candidate i’s continuation payoff at time

−t when i does not enter. Given Lemma 6, for t ∈ [t∗A, t
∗∗
B ] with t∗∗B defined below, we calculate

vi,t(not) assuming that only candidate B enters in the time interval (−t,−t∗A) and both candidates

enter in the time interval [−t∗A,−t0]. For τ ≥ t, Lemma 6 implies that candidate A does not enter

at times in (−τ,−t). Hence, we have vB,τ (not) ≥ vB,t(not) for τ ≥ t because candidate B at −τ

can receive vB,t(not) by committing to a strategy in which he keeps skipping opportunities from

−τ to −t. Let

t∗∗B ≡ inf {t > t0 : vB,t(not) ≥ vB,t(enter)} .

There are the following two cases: t∗∗B <∞ or t∗∗B =∞. The following lemma is useful:

Lemma 7. If t∗∗B <∞, then vB (x∗B, X) > vBRAB .

Proof. Suppose otherwise. Then, Assumption 2 implies vB (x∗B, X) = vBRAB . Then, vB,t(enter) is

constant in t ∈ [t0,∞). At time −t∗∗B < −t∗A, there are the following three cases:

4Recall the definition of θi(·) from Section 4.3.
5Recall that “(X,X)” denotes the set of histories at which no candidates have entered.
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1. Candidate A has the next opportunity at time −t ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

candidate B obtains a payoff of vBRAB = vB (x∗B, X) = vB,t(enter) when he enters at −t

and a payoff of vB,t(not) when he does not. Since t∗∗B is the infimum of t > t0 such that

vB,t(not) ≥ vB,t(enter), candidate B prefers to enter in this event.

2. Candidate B has the next opportunity at time −t ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

since candidate B receives vB,t(enter) at any −t upon entering, candidate B is indifferent

between entering and not entering.

3. No candidate has an opportunity at any time −t̄ ∈ (−t∗∗B ,−t∗A]. Conditional on this event,

candidate B strictly prefers to enter since vB,t∗A(enter) > vB,t∗A (X,X).

Hence, it is uniquely optimal to enter at −t∗∗B , which is a contradiction.

Given this lemma, consider the following two cases:

1. t∗∗B <∞: In this case, we are left to prove Lemma 6. To see why, once we have shown Lemma

6, then for t > t∗∗B , vB,t(not) ≥ vB,t∗∗B (not) holds since candidate B can skip opportunities

until −t∗∗B without the opponent entering. Together with the fact that vB,t(enter) is strictly

decreasing in t by Lemma 7, we can conclude that candidate B does not enter at times in

(−∞,−t∗∗B ) in any PBE.

2. t∗∗B =∞: This means that candidate B enters at times in (−∞, 0] in any PBE given Lemma

6.

The argument so far proves that the proposition holds given Lemma 6. We now prove Lemma

6:

Proof of Lemma 6. Fix σ̄A, which is candidate A’s strategy such that (i) if the current policy set

profile is (X,X), then candidate A takes X for each −t ∈ [−t̄,−t∗A) and takes x∗A ∈ X∗A for each

−t ∈ (−t∗A, 0], and (ii) if the current policy choice is (X,xB) for some xB ∈ X, then A takes a

static best response against xB.

Fix candidate A’s history ht̄A ∈ (X,X) such that −t̄ < −t∗A and zA,t̄ = yes.
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We compare candidate A’s payoff from entering at xA ∈ X∗A and her payoff from taking σ̄A

under history ht̄A. From candidate A’s perspective at the history ht̄A, there are two possibilities

when candidate B takes σB that is fixed in the statement of Lemma 6, as follows:

1. Consider the realization of the Poisson process such that candidate B would not enter in

(−t̄,−t∗A] if (σ̄A, σB) were taken.

On the one hand, if A takes σ̄A, she obtains the value of vA,t∗A(not) by taking σ̄A.

On the other hand, candidate A’s payoff of entering at time −t̄ is at most

max
{
vA,t∗A(enter), vBRBA

}
= vA,t∗A(enter).

The payoff vBRBA corresponds to the case where candidate B has an opportunity in (−t̄,−t∗A].6

Since vA,t∗A(not) = vA,t∗A(enter), it is weakly better for candidate A to take σ̄A than entering

at time −t̄.

2. Consider the realization of the Poisson process such that candidate B would enter in (−t̄,−t∗A]

if (σ̄A, σB) were taken. Let ť be the time at which candidate B would enter.

On the one hand, A’s continuation payoff from taking σ̄A is v̂A,ť, where

v̂A,t := (1− e−λAt)
(

max
XA∈X

vA(XA, x
∗
B)

)
+ e−λAtvA(X,x∗B).

On the other hand, her continuation payoff from entering at −t̄ is vBRBA .

To compare these two values, it is instructive to examine why candidate A at −t∗A is indifferent

between entering and not entering at histories in (X,X). Suppose now that candidate B has

not entered at −t∗A. There are following three events that can happen with positive probability

until the deadline:

(a) Candidate A receives the next opportunity at −τ > −t∗A: In this case, candidate A

receives vA,τ (enter) at −τ regardless of candidate A’s choice at −t∗A. Note that, even if

candidate A has entered before −τ , since we assume that candidate A enters at some

6Note that we only assume that candidate B would not enter in (−t̄,−t∗A] if candidates took (σ̄A, σB) but we do
not assume that B would not enter given that A entered at −t̄.
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policy in X∗A, the situation is that candidate A enters at some policy in X∗A and candidate

B has not at −τ (note that all the policies in X∗A give rise to the same payoff).

(b) Candidate B receives the next opportunity at −τ > −t∗A: Candidate A receives a payoff

of vBRBA (candidate B best-responds to x∗A at −τ) if she enters before −t∗A; and v̂A,τ

(candidate B enters while candidate A has not at −τ) if she does not enter before −t∗A.

(c) No candidate receives any opportunity in the time interval (−t∗A,−t0]: Candidate A

receives vA,t0(enter) if she enters at −t∗1; and vA,t0(not) if she does not at −t∗A. We have

assumed that vA,t0(enter) > vA,t0(not).

Note that candidate A is indifferent between entering and not entering at −t∗A in case (2a)

and strictly prefers entering in case (2c). Since case (2c) happens with positive probability,

it must be the case that candidate A strictly prefers not entering to entering in case (2b), in

order for her to be indifferent between entering and not entering at −t∗A. This implies that

there exists −t̃ ∈ (−t∗A,−t0] such that vBRBA < v̂A,t̃. Now, note that v̂A,t is nondecreasing in

t and −ť ≤ −t∗A < −t̃ must hold. Hence, we have v̂A,t̃ ≤ v̂A,ť, implying vBRBA < v̂A,ť.

Now we prove that candidate A does not enter at any history in (X,X) at any time before −t∗A
in any PBE. Consider the two possibilities as defined above again.

1. Consider the first possibility.

If “v
BRj
i < sup{xi}∈X vi (xi, X) for each i” holds in Assumption 3, then vA,t(enter) is strictly

decreasing in t. Hence, candidate A obtains

vA,t̄(enter) < vA,t∗A(enter)

if she enters, and she obtains vA,t∗A(not) if she takes σ̄A. Given that vA,t∗A(enter) = vA,t∗A(not),

candidate A at −t̄ strictly prefers σ̄A to entering.

2. Under the second possibility, (i) given that candidate B does not enter, candidate A weakly

prefers not entering and (ii) conditional on the event that candidate B has an opportunity and

enters at −t, candidate A at −t̄ strictly prefers not entering to entering since vBRBA < v̂A,ť.

Hence, candidate A at −t̄ strictly prefers σ̄A to entering.
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Finally, if t∗A 6= t∗B holds in Assumption 3, then since t∗A 6= t∗B implies t∗A < t∗B, by the continuity

of the continuation payoff in time, there exists ε > 0 such that candidate B enters for each time

in ∈ (−t∗A − ε,−t∗A] given σ̄B. Hence, if t∗A 6= t∗B holds in Assumption 3, then candidate B enters

with a positive probability in (−t̄,−t∗A), which implies that the second possibility happens with

positive probability. Therefore, candidate A at −t̄ strictly prefers σ̄A to entering. This completes

the proof.

J.4 Proof of Part 1 of Proposition 9

By the continuity of the continuation payoff in time, for times −t < −t̂A sufficiently close to −t̂A,

candidate B enters, and thus we focus on candidate A’s incentive at those times. Let

v̂A,t := (1− e−λAt)
(

max
XA∈X

vA(XA, x
∗
B)

)
+ e−λAtvA(X,x∗B)

be candidate A’s payoff when she has not entered and candidate B has at time −t. The straight-

forward algebra shows that v̄AA,t(not) satisfies

v̄AA,t(not) =

∫ t

0
λBe

−λBτ v̂A,t−τdτ

=
(
e−λAt − e−(λ1+λ2)t

)
vA (X,x∗B) +

(
1− e−2λBt − 2e−λBt

)
max
XA∈X

vA (XA, x
∗
B) .

In contrast, we have

vA,t(enter) = e−λBtvA (x∗A, X) +
(

1− e−λBt
)
vBRBA .

Hence, vA,t(enter) and v̄AA,t(not) are differentiable in t. Since t̂A is the infimum of t with v̄AA,t(not) ≤

vA,t(enter), we have
d

dt
v̄AA,t(not)

∣∣∣∣
t=t̂A

<
d

dt
vA,t(enter)

∣∣∣∣
t=t̂A

.

Consider candidate A’s incentive at time −t̂A. For any ε > 0, there are the following three cases

(assuming that candidate B enters as soon as she obtains an opportunity):

1. Candidate A has the next opportunity at time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

since we fix candidate B’s strategy at histories in (X,X), candidate A is indifferent between

9



entering and not entering.

2. Candidate B has the next opportunity at time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

candidate A obtains a payoff of vBRBA when she enters at −t and a payoff of v̂A,t̄ when she

does not.

3. No candidate has an opportunity at any time −t̄ ∈ (−t,− (t− ε)]. Conditional on this event,

candidate A obtains a payoff of vA,t−ε(enter) when she enters at −t and a payoff of v̄AA,t−ε(not)

when she does not.

Since candidate A is indifferent between entering and not entering at time −t̂A, for any ε > 0,

we have

∫ ε

τ=0
λBe

−(λA+λB)τ︸ ︷︷ ︸
Candidate B has the next opportunity at time −t+τ

(
vBRBA − v̂A,t−τ

)
dτ

= e−(λA+λB)ε
(
v̄AA,t−ε(not)− vA,t−ε(enter)

)
.

Dividing both sides by ε and taking the limit as ε ↓ 0, we have

vBRBA − v̂A,t̂A =

(
d

dt
v̄AA,t(not)

∣∣∣∣
t=t̂A

− d

dt
vA,t(enter)

∣∣∣∣
t=t̂A

)
< 0.

By the continuity of the continuation payoff in time, there exists η̄ > 0 such that, for each η ∈ [0, η̄),

we have

vBRBA − v̂A,t̂A+η < 0. (21)

We now consider candidate A’s incentive at −t < −t̂A. Similarly to before, there are the

following three cases:

1. Candidate A has the next opportunity at time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

since we fix candidate B’s strategy at histories in (X,X), candidate A is indifferent between

entering and not entering.

2. Candidate B has the next opportunity at time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

candidate A obtains a payoff of vBRBA when she enters at −t and a payoff of v̂A,t̄ when she

does not.
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3. No candidate has an opportunity at any time −t̄ ∈ (−t,−t̂A]. Conditional on this event,

candidate A is indifferent between entering and not entering.

Hence, (21) implies that, for −t ∈ (−t̂A − η̄,−t̂A), candidate A strictly prefers to enter in any

PBE, as desired.

J.5 Proof of Part 2 of Proposition 9

Since candidate A does not enter for each −t ∈
[
−t̂B, 0

]
, the fact that candidate B strictly prefers

to enter at time 0 and becomes indifferent between entering and not entering at −t̂B implies that

he is strictly worse off if candidate A enters than if she does not enter, after candidate B enters:

Lemma 8. t̂B ≤ t̂A implies vB (x∗B, X) > vBRAB .

Proof. Suppose otherwise. Then, by Assumption 2, we have vB (x∗B, X) = vBRAB and so we have

vB,t(enter) = vB (x∗B, X) .

At time −t̂B, consider the following three cases:

1. Candidate A has the next opportunity at time −t ∈ (−t̂B, 0]. Conditional on this event,

candidate B obtains a payoff of vBRAB = vB (x∗B, X) when he enters at −t and a payoff of

v̄AB,t(not) when he does not.

2. Candidate B has the next opportunity at time −t ∈ (−t̂B, 0]. Conditional on this event,

since we fix candidate A’s strategy at histories in (X,X), candidate B is indifferent between

entering and not entering.

3. No candidate has an opportunity at any time −t̄ ∈ (−t̂B, 0]. Conditional on this event,

candidate B strictly prefers to enter since vB (x∗B, X) > vB (X,X).

Hence, candidate B strictly prefers to enter at −t̂B, which is a contradiction.

Given this lemma, we are left to show that, at each −t ∈ (−∞,−t̂B], given that no candidate

enters for −τ ∈ (−t,−t̂B), each candidate strictly prefers not to enter at −t < −tB.
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On the one hand, if candidate i enters at −t, her payoff is vi,t(enter). By Lemma 8, vi,t(enter) <

vi,t̂B (enter). On the other hand, if she does not enter, then her payoff is v̄A
i,t̂B

(not). Hence, it is

indeed uniquely optimal not to enter at −t.

K A Proof and Additional Discussions for Section 2.1

This section provides discussions of the valence election campaign model. First, Section K.1 provides

a proof of Proposition 2. Next, Section K.2 derives empirical implications of our model. Then,

Section K.3 conducts a welfare analysis, comparing our model with that of Aragonès and Palfrey

(2002).

K.1 Proof of Proposition 2

Note that Assumptions 1 and 2 in Appendix F are satisfied given X∗i = {1}. Moreover, we have

v
BRj
i < supxi∈X vi(xi, X) (Assumption 3) and first-mover disadvantage∗ is satisfied for i = W .

Fix a PBE σ arbitrarily. Given candidate i’s history hti =

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
at

−t, let wit
(
σ, hti

)
be candidate i’s continuation payoff at time −t given σ and hti. In addition, let

θ(hti) = (Xki
i , X

lj
j ) be the profile of policy sets that are chosen most recently, where we always write

S’s current policy set first in this proof. Since the most recently chosen policy sets are observable,

we have θ(htS) = θ(htW ). For simpler notation, we write θ(htS) = θ(htW ) = θ
(
ht
)
. By Theorem 3,

there exists vi,t
(
θ
(
ht
))

such that wit
(
σ, hti

)
= vi,t

(
θ
(
ht
))

in any PBE σ.

From Lemma 1, the following statements are true:

• If θ(ht) = ({x}, {0, 1}) with x ∈ {0, 1} and if W can move, then W is indifferent between

entering at x′ ∈ {0, 1} with x′ 6= x and announcing {0, 1}. S wins if and only if the median

voter is located at x.

• If θ(ht) = ({0, 1}, {x}) with x ∈ {0, 1} and if S can move, then S enters at x and wins.

Hence, we have

vS,t
(
θ
(
ht
))

= 1− (1− p) e−λt if θ(ht) = ({0, 1}, {1}) ;

vW,t
(
θ
(
ht
))

= (1− p) e−λt if θ(ht) = ({0, 1}, {1}) .
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Similarly, we have

vS,t
(
θ
(
ht
))

= 1− p if θ
(
ht
)

= ({1}, {0, 1}) ;

vW,t
(
θ
(
ht
))

= p if θ
(
ht
)

= ({1}, {0, 1}) .

When −t is sufficiently close to the deadline 0, then at any ht with θ(ht) = ({0, 1}, {0, 1}), the

following are true:

• If W can move, then W enters at 1. Note that, since −t is sufficiently close to zero, with a

probability close to 1, there is no more opportunity to announce a policy. Hence, {1} gives

W the payoff close to 1− p, {0} gives W the payoff close to p, and {0, 1} gives W the payoff

close to zero. S wins if and only if the median voter is located at 0.

• If S can move, then S does not enter. Note that, since −t is sufficiently close to zero, with a

probability close to 1, there is no more opportunity to announce a policy. Hence, {1} gives S

the payoff close to 1− p, {0} gives S the payoff close to p, and {0, 1} gives S the payoff close

to 1.

Hence, we are in Case 3 for Theorem 4 (with candidate A being S), and using the notation of

Section F.3, we have

v̄SS,t(not) = 1− (1− p)λte−λt;

vS,t(enter) = 1− p;

and

v̄SW,t(not) = (1− p)λte−λt;

vW,t(enter) = (1− p) e−λt.

Hence, t̂S and t̂W , whose notation is introduced in Appendix F, are characterized, respectively,

by the infimum of t̂′S and t̂′W such that the following inequalities hold:

1− (1− p)λt̂′Se−λt̂
′
S ≤ 1− p⇔ p

1− p
≤ λt̂′Se−λt̂

′
S (22)
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and

(1− p)λt̂′W e−λt̂
′
W ≥ (1− p) e−λt̂′W ⇔ t̂′W ≥

1

λ
. (23)

To fully characterize the candidates’ strategies, we examine the following three possible cases.

Case (1): p
1−p > e−1. In this case, we have 1

λ = t̂W < t̂S . Hence, Proposition 9 ensures that both

S and W announce {0, 1} for all time in (−t,−t∗) with t∗ := t̂W . By Lemma 2, we have shown the

claims.

Case (2): p
1−p < e−1. In this case, we have 1

λ = t̂W > t̂S . Moreover, by the implicit function

theorem, we have

dt̂S
dp

=

d
(

p
1−p

)
dp

dλt̂Se
−λt̂S

dt̂S

=
1

(1− p)2 λe−λt̂S
(
1− λt̂S

) > 0. (24)

Recall that the definition of −t̂S implies that, at time −t̂S , S becomes indifferent between entering

at 1 and announcing {0, 1} given the continuation play in which S does not enter and W enters

at times in (−t̂S , 0]. The definition implies that this indifference holds in any PBE. By part 1 of

Proposition 9, there exists ε̄ > 0 such that both S and W strictly prefer entering at 1 for each

−t ∈ [−t̂S − ε̄, t̂S). Therefore, we are in Case 2 for Theorem 4 with t0 = −t̂S − ε̄.

We will show that candidate S always enters at 1 for −t < −t̂S . Suppose S always enters at

1 for all time in (−t,−t̂S). If S announces {0, 1} at −t, there are the following three subcases to

consider.

1. If W can move next by −t̂S , then one strategy that W can take is to announce {0, 1}. The

following two cases are possible: If S enters at {1} by −t̂S , W gets p. If S does not enter by

−t̂S , by the definition of −t̂S (that is, S is indifferent between {1} and {0, 1} at −t̂S), S gets

1 − p and W gets p. In both cases, W gets at least p. Furthermore, if W can get the first

revision opportunity sufficiently close to −t̂S , W gets strictly more than p since W strictly

prefers entering at 1 to announcing {0, 1}. Overall, W gets strictly more than p, which means

S gets strictly less than 1− p.

2. If S can move next by −t̂S , S enters and gets 1− p.

3. If no candidate can move by −t̂S , then by definition, S gets 1− p.
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Therefore, the payoff from announcing {0, 1} is strictly less than 1 − p. This implies that it is

uniquely optimal for S to enter at 1, as desired. Hence, tS =∞ in Proposition 7.

We will now examine candidate W ’s incentives. Since first-mover disadvantage∗ for W holds,

there exists

t∗W > t̂S (25)

such that it is uniquely optimal for W not to enter at −t < −t∗W and uniquely optimal for W to

enter at −t ∈ (−t∗W , 0].7

Moreover, t∗W = inf {t > t0 : v̄W,t(not) ≥ vW,t(enter)} implies8

(1− p) e−λt =

∫ t−t̂S

0
e−2λτλ (1− p) e−λ(t−τ)dτ + p

(
1−

∫ t−t̂S

0
λe−2λτdτ

)

⇔

e−λ(2t∗W−t̂S) =
p

1− p
1

2

(
1 + e−2λ(t∗W−t̂S)

)
.

Since p
1−p = λt̂Se

−λt̂S by the definition of t̂S , this inequality is equivalent to

e−λ(2t∗W−t̂S) = λt̂Se
−λt̂S 1

2

(
1 + e−2λ(t∗W−t̂S)

)
⇔ e−2λt∗W =

1
2λt̂S

1− 1
2λt̂S

e−2λt̂S .

Taking the log of both sides and rearranging, we obtain

t∗W = t̂S −
1

2λ
log

(
1
2λt̂S

1− 1
2λt̂S

)
.

Hence, we have

dtW
dp

=
dt∗W
dt̂S

dt̂S
dp

=

(
1− 1

λt̂S
(
2− λt̂S

)) dt̂S
dp

.

Recalling that λt̂S ∈ (0, 1), we have

√
λt̂S

(
2− λt̂S

)
<

1

2

(
λt̂S +

(
2− λt̂S

))
= 1,

7This notation of t∗W is introduced in Appendix J.2 .
8Recall that v̄W,t(not) denotes W ’s expected continuation payoff at time −t when he does not enter, assuming

that each candidate will enter at times in (−t, t0] upon receiving an opportunity (see Appendix J.2 for the formal
definition).
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and so
1

λt̂S
(
2− λt̂S

) > 1.

Therefore, together with (24), we have

sign
dtW
dp

= sign

(
1− 1

λt̂S
(
2− λt̂S

)) sign
dt̂S
dp

= −1. (26)

The inequalities (24), (25), and (26) prove part 2(c) of Proposition 2.

Case (3): p
1−p = e−1. At time −t∗ = 1

λ , for each ht
∗

with θ(ht
∗
) = ({0, 1}, {0, 1}), S is indifferent

between “announcing {1} and thereby ensuring 1−p,” and “announcing {0, 1}.” At the same time,

W is indifferent between announcing {1} and {0, 1}.

For −t < −t∗, on the one hand, when W can move, his payoff from not entering is at least p

since he gets p if S enters at 1 by −t∗. If S does not enter by −t∗, by the definition of −t∗, S gets

1−p and W gets p. On the other hand, entering at 1 gives W a payoff of 1−p times the probability

of S not having any future revision opportunity, which is equal to (1− p)e−λt < (1− p)e−λt∗ = p.

Therefore, W strictly prefers not entering.

Given this, S is always indifferent between “announcing {1} and thereby ensuring 1− p,” and

“announcing {0, 1}.”

K.2 Empirical Implications

In this section, we derive empirical implications of the results from the model of valence election

campaign. We see these implications as only suggestive, but as will be seen in the working paper

version of this paper (Kamada and Sugaya [2019]), it is possible to enrich the model by incorporating

various features (such as heterogenous arrival rates and general utilities from the outcomes). This

suggests that, if one wants to conduct empirical research, then it will be possible to extend the

model to incorporate more characteristics and to derive testable implications from such a general

model, as we do here for the base model.

First, we show that ambiguity is likely when the probability distribution of the median voter’s

position is close to uniform, that is, when p is close to 1
2 . Specifically, fix a horizon length T ∈ ( 1

λ ,∞).
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Let pW be the p such that tW = T .9 By definition, pW < 1
1+e . Proposition 2 implies the following:

1. For p ∈ (0, 1
2) \ { 1

1+e}, the probabilities of W and S announcing the ambiguous policy are

both nondecreasing in p.

2. For p ∈ (0, pW ), the probability of W announcing the ambiguous policy is constant in p, and

that of S announcing the ambiguous policy is strictly increasing in p.

3. For p ∈ (pW , 1
1+e), the probabilities of W and S announcing the ambiguous policy are both

strictly increasing in p.

4. For p ∈ ( 1
1+e ,

1
2), the probabilities of W and S announcing the ambiguous policy are constant

in p.

Hence, roughly, as the position of the median voter becomes more unpredictable, the probability

of ambiguous policy announcement at the election date increases. This is consistent with Camp-

bell (1983), who suggests that opinion dispersion has a strong positive effect on the ambiguity in

candidates’ language.10

Next, suppose that there are two candidates A and B, and outside researchers know p > 1
1+e

but do not know which candidate is strong and which candidate is weak. They have a prior that

assigns a positive probability to both candidate A’s being strong and candidate B’s being strong.

If the researchers can observe the campaign phase, the first entrant can be inferred to be weak (and

if there is no entrance, then the posterior about valence is the same as the prior). In contrast, if

they cannot observe the campaign phase but only the final policy choices by the candidates, then

if only one candidate enters, such a candidate can be inferred to be weak. Otherwise, the posterior

about valence is the same as the prior.

K.3 Welfare Comparison with the Static Model

As mentioned in Remark 4, conducting a welfare analysis necessitates us to impose some specific

assumption about the voter distribution. Here, we assume that there is a single voter. It is then

9Such pW exists and is unique due to Proposition 2 2(c) and t∗ = 1
λ

.
10As discussed in footnote 29 of the main text, we have in mind a situation where n voters are independently

distributed over {0, 1} where the probability on the policy 0 is q < 1
2
. A higher q suggests more option dispersion

(a higher standard deviation of the preferred policies among the voters. Campbell (1983) also considers standard
deviation), and corresponds to a higher p.
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necessary that this voter’s ideal policy is 0 with probability p and 1 with probability 1 − p. We

focus on the case in which p > 1
1+e . Normalize the voter’s payoff so that u(0) − u(1) = 1. With

this normalization, if a candidate i ∈ {S,W} wins and implements a policy x ∈ {0, 1}, the payoff

of the voter with the ideal policy y ∈ {0, 1} can be written as Ix=y + δ · Ii=S .

Aragonès and Palfrey (2002) consider the one-shot game where each of candidates S and W

simultaneously chooses a policy. Here we consider a version of their model adopted to our environ-

ment in which the policy space is {0, 1}. That is, each candidate chooses either 0 or 1, and there

is no choice of {0, 1}.

Since their expected payoffs are represented by the following payoff matrix, the unique mixed-

strategy Nash equilibrium is that S takes 0 and 1 with probabilities p and 1− p, respectively; and

W takes 0 and 1 with probabilities 1− p and p, respectively:

S’s policy \W ’s policy 0 1

0 1, 0 p, 1− p

1 1− p, p 1, 0

Given this equilibrium strategy, the expected welfare of the voter is

p︸︷︷︸
y=0

 p︸︷︷︸
xS=0

(1 + δ) + (1− p)2︸ ︷︷ ︸
xS=1 and xW=0

+ p (1− p)︸ ︷︷ ︸ δ
xS=1 and xW=1


+(1− p)︸ ︷︷ ︸

y=1

(1− p)︸ ︷︷ ︸
xS=1

(1 + δ) + p2︸︷︷︸
xS=0 and xW=1

+ (1− p) p︸ ︷︷ ︸ δ
xS=0 and xW=0


= (1 + δ)

(
1− p+ p2

)
,

where xi for i = S,W denotes the realized policy choice by candidate i. This expected payoff

converges to V̄ (p) := 1− p+ p2 in the limit as δ goes to 0.

Next, consider our model of valence election campaign, supposing that T is sufficiently large

(T ≥ 1
λ). Since p > 1

1+e , given Proposition 2, in any PBE, W does not enter for each −t < −tW =

− 1
λ , and enters at x = 1 for each −t > − 1

λ , while S never enters unless W enters. Hence, (i) with

probability e−λ·
1
λ = e−1, no candidate enters; (ii) with probability

∫ 1
λ

0 λe−λse−λ(
1
λ
−s)ds = e−1,

W enters at policy 1 but S does not enter; and (iii) with probability 1 − 2e−1, both candidate
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enter at policy 1. In the respective cases, (i) if no candidate enters, then the voter’s expected

payoff is 1
2 + δ (recall that we assume that a candidate without specifying her policy takes each

policy with probability 1
2); (ii) if W enters at 1 while S does not enter, then the expected payoff is

1− p+ p
(

1
2 + δ

)
; and (iii) if both candidates enter at 1, then the expected payoff is 1− p+ δ. In

total, the expected payoff is

e−1

(
1

2
+ δ

)
+ e−1

(
1− p+ p

(
1

2
+ δ

))
+
(
1− 2e−1

)
(1− p+ δ)

= 1− 1

2
e−1 − p+

3

2
pe−1 + δ − (1− p) δe−1.

This expected payoff converges to Ṽ (p) := 1− 1
2e
−1 −

(
1− 5

2e
−1
)
p in the limit as δ goes to 0.

Finally, we compare the two expected payoffs.

V̄ (p) > Ṽ (p) ⇐⇒ 1− p+ p2 > 1− 1

2
e−1 −

(
1− 5

2
e−1

)
p

⇐⇒ p2 +
5

2
pe−1 +

1

2
e−1 > 0,

which holds for any p > 0. Hence, in particular, we obtain V̄ (p) > Ṽ (p) for p > 1
1+e .

The above calculation implies that the voter’s expected payoff in our model is smaller than

under a unique mixed Nash equilibrium model in which each candidate chooses between 0 and 1 as

in Aragonès and Palfrey (2002) when p > 1
1+e , δ > 0 is sufficiently small, and T is sufficiently large.

The intuition is that the policy announcement timing game results in a positive correlation between

candidates’ positions due to S’s motive to copy W ’s policy. This is ex ante not desirable for the

median voter who would like to choose a candidate depending on the realization of the median

voter’s position. In other words, the presence of such correlation implies that the probability that

there is a candidate at the median voter’s bliss point is small. In contrast, the Nash equilibrium in

the static model entails independence of the probability distributions of the candidates’ positions

(by definition), so it is more likely that the candidates’ positions differ, which enables the median

voter to pick the candidate with the same position as the bliss point.
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K.4 The Calculation of the Cost of the Commitment for Remark 6

The cost of the commitment can be computed as follows. First, S’s payoff from the policy an-

nouncement timing game, which we calculate by subtracting W ’s payoff from 1, is:

1− (1− p)
∫ 1

λ

0
λe−λteλ(

1
λ
−t)dt = 1− (1− p)e−1.

Next, S’s payoff from the commitment scenario is 1 − p. Subtracting the latter from the former,

we obtain p− (1− p)e−1.

L Proofs for Section 2.2

L.1 Proof of Proposition 3

Part 1: Policy x∗(X,µ) is a Condorcet winner. To see why, first note that, given the definition of

M, Si(y, x
∗(X,µ)) < 1

2 for any y 6= x∗(X,µ) because X is the support of µ and is connected. This

implies that vi(y, x
∗(X,µ)) = 0 for any y 6= x∗(X,µ). This and vi(x

∗(X,µ), x∗(X,µ)) = 1
2 (which

holds by assumption) imply that x∗(X,µ) is a unique best response to x∗(X,µ). Second, we have

vi (x∗(X,µ), X) = 1 by assumption. Hence, vi (x∗(X,µ), X) ≥ vi (Xi, X) for any Xi ∈ X .

Since the game is constant-sum, Theorem 2 implies that, in any PBE, each candidate enters at

x∗(X,µ) as soon as possible.

Part 2: There exists a function y : X → X such that Pi (x, y (x)) < 1
2 for each x ∈ X for

each i = A,B. If candidate i has not entered and j has already entered at x, then it is optimal

for i to enter at y(x), which gives the highest feasible payoff. If a candidate enters while the other

candidate has not yet entered, then she is indifferent among any policy x with vi({x} , X) = 1

(which exists by assumption) since once the other candidate enters later, she will lose for sure.

Therefore, Assumptions 1-3 and first-mover disadvantage∗ for i in Appendix F are satisfied for

each i ∈ {A,B}. Moreover, each candidate has a strict incentive to enter at t = 0. Hence, we have

Case 2 with t0 = 0 for Theorem 4. Hence, Theorem 4 implies that, for each i, there exists ti such

that candidate i enters at all times −t ∈ (−ti, 0] and does not enter at all times −t ∈ (−∞,−ti).

In addition, t∗i in Appendix F is calculated as follows: On the one hand, i’s expected payoff of

entering is the probability that the other candidate will not have an opportunity to enter. That is,
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vi,t (enter) = e−λjt. On the other hand, supposing that each player enters at every time−τ ∈ (−t, 0],

we have

v̄i,t (not) =

∫ t

0
e−(λi+λj)τ︸ ︷︷ ︸

no one moves until time −(t− τ)

( λidτ︸︷︷︸
i moves at time −(t− τ)

) e−λj(t−τ)︸ ︷︷ ︸
j does not move in (−(t− τ), 0]



+

∫ t

0
e−(λi+λj)τ︸ ︷︷ ︸

no one moves until time −(t− τ)

( λjdτ︸︷︷︸
j moves at time −(t− τ)

)( 1− e−λi(t−τ)︸ ︷︷ ︸
i can move in (−(t− τ), 0]

)

+ e−(λi+λj)t︸ ︷︷ ︸
no one moves until time 0

1

2
.

Hence, t∗i is characterized by fi (t∗i ) = 0 with

fi(t) := −e−λit +
λj

λi + λj
(1− e−(λi+λj)t) + e−(λi+λj)t

1

2
. (27)

Differentiating fi(t), we get

f ′i(t) = λi(e
−λit − e−(λi+λj)t

1

2
) + λje

−(λi+λj)t
1

2
> 0.

Since fi(t) is −1
2 at t = 0, continuous and strictly increasing in t, and approaches

λj
λi+λj

> 0 as

t→∞, there exists a unique t such that fi(t) = 0. The cutoff t∗i is such t.

To prove that sign
(
t∗i − t∗j

)
= sign (λi − λj), we first show that fi(t) < fj(t) for each t > 0. To

see this, suppose λi > λj . Given

fi(t) := −e−λit +
λj

λi + λj
(1− e−(λi+λj)t) + e−(λi+λj)t

1

2
,

we have
∂ (fi(t)− fj(t))

∂t
=
e−t(λi+λj)

(
−λi + λj + λie

λjt − λjeλit
)

2(λi + λj)2
.

Hence, the sign of
∂(fi(t)−fj(t))

∂t is equal to the sign of

g (t) = −λi + λj + λie
λjt − λjeλit.

Since
∂g (t)

∂t
= λiλj

(
−eλit + eλjt

)
< 0 given λi > λj ,
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we have

g (t) < g (0) = 0 for each t > 0.

Hence,
∂(fi(t)−fj(t))

∂t < 0 for each t > 0. Since fi (0) = fj(0), we have fi(t) < fj(t) for each t > 0.

Now, given that fi(t) < fj(t) for each t > 0, at time −t∗j such that fj(t
∗
j ) = 0, we have fi(t

∗
j ) < 0.

This inequality implies that t∗i > t∗j given λi > λj because f ′(t) > 0.

L.2 Proof of Proposition 4

Fix a PBE σ and consider A’s deviation to σ′A, defined as follows:

1. At any time in (−∞, 0], under histories such that B has announced a policy x′, A announces

a policy x′′ such that PA(x′′, x′) = 1 with probability one.11

2. Under the histories such that B has only announced X, the following holds.

(a) At times in (−∞,−t∗B), A keeps being ambiguous (announces X).

(b) At times in (−t∗B, 0], she uses a mixed action as follows. With probability λB
λA

(which

is strictly between 0 and 1 as 0 < λB < λA), she announces a policy x̄ such that

PA(x̄, X) = 1.12 With the remaining probability, she keeps being ambiguous (announces

X).

First, we show that candidate A obtains a strictly higher payoff than candidate B under (σ′A, σB).

To see this, notice that the probability that A enters when B is still announcing X and the proba-

bility that B enters when A is still announcing X are the same under this strategy profile. However,

the conditional probability that B enters after A’s entry is strictly lower than the conditional prob-

ability that A enters after B’s entry. This is because, as specified in item 1 above, A can move

“more quickly” than B can.

Formally, candidate i obtains payoff 1 if and only if either (i) she is the only candidate who

enters, or (ii) −i enters first and then i enters. She obtains payoff 1
2 if no candidate enters. In all

other cases, she obtains payoff 0. Hence, the payoff difference between A and B arises solely from

the probability of the event in which payoff 1 is obtained. As explained above, this probability is

11Such x′′ exists by assumption.
12Such x̄ exists by assumption.
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strictly higher for candidate A than candidate B. Therefore, A’s payoff is strictly greater than B’s

payoff under (σ′A, σB), i.e.,

uA(σ′A, σB) > uB(σ′A, σB), (28)

where the notation is from Section 3 and we drop references to the belief and the initial history (on

which the payoffs condition).

Second, notice that candidate A’s payoff under σ is no less than her payoff under (σ′A, σB).

Since the election is constant-sum, this means that candidate B’s payoff under σ is no more than

his payoff under (σ′A, σB). Hence we have the following relationships:

uA(σ) ≥ uA(σ′A, σB) and uB(σ′A, σB) ≥ uB(σ). (29)

Combining (28) and (29) implies uA(σ) > uB(σ), i.e., under σ, candidate A receives a strictly

higher payoff than candidate B does.

M Proofs for Section 2.3

M.1 Payoff Matrix

Defining X̄ ≡ {1, 0}, candidate S’s payoff matrix of the election (we omit candidate W ’s payoff

since the game is constant-sum) is given by

S\W X̄, 0 X̄, 1 X̄, X̄ 1, 0 1, 1

X̄, 0 1 p2 p2 p1 p2

X̄, 1 1− p2 1 1− p2 1− p2 p1

X̄, X̄ 1− p2 p2 1 1− (1− p1) p2 1− (1− p1) (1− p2)

1, 0 1− p1 p2 (1− p1) p2 1 p2

1, 1 1− p2 1− p1 (1− p1) (1− p2) 1− p2 1

1, X̄ 1− p1p2 1− p1 (1− p2) 1− p1 1− p2 p2

0, 0 p1 p2 p1p2 p1 1− (1− p1) (1− p2)

0, 1 1− p2 p1 p1 (1− p2) 1− (1− p1) p2 p1

0, X̄ 1− (1− p1) p2 1− (1− p1) (1− p2) p1 p1 p1
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S\W 1, X̄ 0, 0 0, 1 0, X̄

X̄, 0 1− (1− p1) (1− p2) 1− p1 p2 1− p1 (1− p2)

X̄, 1 1− (1− p1) p2 1− p2 1− p1 1− p1p2

X̄, X̄ p1 1− p1p2 1− p1 (1− p2) 1− p1

1, 0 p2 1− p1 1− p1 (1− p2) 1− p1

1, 1 1− p2 1− p1p2 1− p1 1− p1

1, X̄ 1 1− p1 1− p1 1− p1

0, 0 p1 1 p2 p2

0, 1 p1 1− p2 1 1− p2

0, X̄ p1 1− p2 p2 1

M.2 Proofs

We first derive properties that hold in a general constant-sum game.

Definition 7. Let vi be a utility function of the election. Given θj , announcement θi dominates

announcement θ̃i both in payoffs and flexibility if the following conditions hold:

1. θi is strictly better than θ̃i if j stays at θj , i.e., vi (θi, θj) > vi

(
θ̃i, θj

)
.

2. θi is weakly better than θ̃i if j moves, i.e., the following hold.

(a) If θ̃i is not a singleton, vi

(
θi, θ̃j

)
≥ vi

(
θ̃i, θ̃j

)
for each θ̃j ⊆ θj .

(b) If θ̃i is a singleton, inf θ̃j⊆θj vi

(
θi, θ̃j

)
≥ inf θ̂j⊆θj vi(θ̃i, θ̂j).

3. (iii) θi has more flexibility than θ̃i, i.e., θ̃i ⊆ θi.

We say announcement θi weakly dominates announcement θ̃i both in payoffs and flexi-

bility given θj if the strict inequality in (i) of Definition 7 is replaced with the weak inequality.

Given that (vi, vj) is constant-sum, player i’s value at time −t given the current policy an-

nouncement (θi, θj), which we denote by vi,t (θi, θj), is well defined (i..e, constant across all PBE)

by the minimax theorem and Theorem 3.13 The following lemma uses the constant-sum nature to

13Gensbittel et al. (2017) show that the minimax theorem extends to revision games with finite actions and payoffs.
Since their proof uses results proven in a more general environment of stochastic games (Lovo and Tomala [2015]), it
can be easily extended to our case in which the set of available actions can vary depending on the history of play.
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show that announcing a policy that is weakly dominated both in payoffs and flexibility does not

increase a candidate’s payoff.

Lemma 9. For each i, j, θj, θi, and θ̃i, suppose candidate j currently takes θj, and given

θj, announcement θi weakly dominates announcement θ̃i both in payoffs and flexibility. Then,

vi,t (θi, θj) ≥ vi,t
(
θ̃i, θj

)
for each −t ∈ (∞, 0].

Proof. Fix θj , θi, and θ̃i. Let Σk be the set of all strategies of candidate k. Given the minimax

theorem, for each (θ̂i, θ̂j) ∈ Xi ×Xj , we have

vi,t(θ̂i, θ̂j) = min
σj∈Σj

max
σi∈Σi

E
[
vi(θi,0, θj,0)|T = t, θi,T = θ̂i, θj,T = θ̂j

]
= max

σi∈Σi
min
σj∈Σj

E
[
vi(θi,0, θj,0)|T = t, θi,T = θ̂i, θj,T = θ̂j

]
.

Let Σ̄i be the set of strategies such that player i never enters at θ̂i such that θ̂i 6= θi and

θ̂i 6⊆ θ̃i. Intuitively, candidate i commits not to use the advantage of θi in flexibility compared to

θ̃i. Moreover, let v̂i : Xi×Xj be the utility function such that v̂i(θi, θ̂j) = vi(θ̃i, θ̂j) for each θ̂j , and

v̂i(θ̂i, θ̃j) = vi(θ̂i, θ̃j) for each θ̃j and θ̂i 6= θi. Intuitively, we cancel out the payoff advantage of θi

compared to θ̃i.

Restricting candidate i’s strategy to Σ̄i does not increase candidate i’s minimax payoff. Given

that candidate i takes a strategy in Σ̄i, replacing vi with v̂i reduces candidate i’s minimax payoff.

Hence,

vi,t (θi, θj) ≥ min
σj∈Σj

max
σi∈Σ̄i

E [v̂i(θi,0, θj,0)|T = t, θi,T = θi, θj,T = θj ]

= max
σi∈Σ̄i

min
σj∈Σj

E [v̂i(θi,0, θj,0)|T = t, θi,T = θi, θj,T = θj ] .

Given v̂i, for each θ̂j , player i’s final payoff v̂i given (θ̃i, θ̂j) and that given (θi, θ̂j) are the same.

Moreover, given Σ̄i, player i never takes θ̂i 6⊆ θ̃i given θi. Hence, the situation is as if the current

announcement is (θ̃i, θj) and the utility function is vi. That is,

max
σi∈Σ̄i

min
σj∈Σj

E [v̂i(θi,0, θj,0)|T = t, θi,T = θi, θj,T = θj ]

= max
σi∈Σi

min
σj∈Σj

E
[
vi(θi,0, θj,0)|T = t, θi,T = θ̃i, θj,T = θj

]
.
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Combining the two displayed equations implies the result.

Similarly, we can show that taking a strictly dominated announcement (both in payoffs and

flexibility) reduces a candidate’s payoff.

Lemma 10. For each i, j, θj, θi, and θ̃i, suppose candidate j currently takes θj, and given θj,

announcement θi dominates announcement θ̃i both in payoffs and flexibility. Then, vi,t (θi, θj) >

vi,t

(
θ̃i, θj

)
for each t.

Proof. Suppose the result holds for all t′ < t. Fix ε > 0 arbitrarily. Suppose that at time −t̃ ∈

(−t− ε,−t], i obtains an opportunity. Consider the following four events:

1. Between (−t̃,−t], only candidate i has an opportunity. In this case, the inductive hypothesis

implies that announcing θi is strictly better.

2. Between (−t̃,−t], only candidate j has an opportunity. Let −t′ be the timing at which

candidate j obtains an opportunity. If i entered at θi at time −t̃, candidate j takes θ̂j to

achieve minθ̂j⊆θj vi,t
′(θi, θ̂j), and if i entered at θ̃i at time −t̃, candidate j takes θ̂j to achieve

minθ̂j⊆θj vi,t
′(θ̃i, θ̂j).

Note that (ii) and (iii) of the definition of the domination given θj implies that, when-

ever θi weakly dominates θ̃i given each θj , then θi weakly dominates θ̃i given each θ̂j ⊆

θj . Hence, Lemma 9 implies vi,t′(θ̃i, θ̂j) ≤ vi,t′(θi, θ̂j) for each θ̂j ⊆ θj . Hence, we have

minθ̂j⊆θj vi,t
′(θi, θ̂j) ≥ minθ̂j⊆θj vi,t

′(θ̃i, θ̂j).

3. No candidate obtains an opportunity. In this case, the inductive hypothesis implies that

announcing θi is strictly better.

4. Other cases. The likelihood of this event compared to the first three converges to zero as

ε→ 0.

Hence, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄), for each t̃ ∈ [t, t+ ε), we have vi,t̃ (θi, θj) >

vi,t̃

(
θ̃i, θj

)
. By continuous-time backward induction, the result follows.
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M.3 Game with Valence: Proof of Proposition 5

We first note that the weak candidate never fully specifies his policy if the strong candidate’s

current policy is
(
X̄, X̄

)
:

Lemma 11. Under any PBE, candidate W never enters at any (x1, x2) ∈ {0, 1} × {0, 1} when

the current policy set profile is (θS , θW ) with θS =
(
X̄, X̄

)
and θW ⊆ {0, 1} × {0, 1} satisfying

θW 6∈ {0, 1} × {0, 1}.

Proof. For candidate W ,
(
x1, X̄

)
and

(
X̄, x2

)
dominate (x1, x2) both in payoffs and flexibility.

M.3.1 Values after Some Candidate Enters

We first narrow down the set of policies to which S may enter when W has not entered:

Lemma 12. Under any PBE, candidate S enters at
(
1, X̄

)
or stays at

(
X̄, X̄

)
when the current

policy set profile is
(
(X̄, X̄), (X̄, X̄)

)
. Moreover, her value of entering at

(
1, X̄

)
is given by

vS,t
(
(1, X̄), (X̄, X̄)

)
=

 1− e−λt (p1 + (1− p2)λt) if t ≤ 1
λ

1−p1−p2

1−p2

1− (1− p2) e
−1+

p1
1−p2 if t ≥ 1

λ
1−p1−p2

1−p2

. (30)

The continuation play after S’s entering at
(
1, X̄

)
is such that (i) candidate S stays at

(
1, X̄

)
for each −t ∈ (−∞, 0] if W stays at

(
X̄, X̄

)
; (ii) candidate W stays at

(
X̄, X̄

)
for each −t ∈

(−∞,− 1
λ

1−p1−p2

1−p2
) and enters at (1, 1) for each −t ∈ (− 1

λ
1−p1−p2

1−p2
, 0]; and (iii) candidate S enters

at (1, 1) as soon as possible after candidate W enters at (1, 1).

Proof. Fix a PBE. First, for each policy x ∈ {0, 1}, given θS =
(
x, X̄

)
and θW =

(
X̄, X̄

)
, S does

not enter at (x, 0) or (x, 1) since
(
x, X̄

)
strictly dominates (x, 0) and (x, 1) both in payoffs and

flexibility. Similarly, for each policy x ∈ {0, 1}, given θS =
(
X̄, x

)
and θW =

(
X̄, X̄

)
, S does not

enter at (0, x) or (1, x).

Second, for each policy x ∈ {0, 1}, given θS =
(
x, X̄

)
and θW =

(
X̄, X̄

)
, candidate W does

not enter at
(
x, X̄

)
,
(
X̄, 0

)
,
(
X̄, 1

)
, (1− x, 0), or (1− x, 1) since they are dominated by

(
X̄, X̄

)
both in payoffs and flexibility. Similarly, given θS =

(
x, X̄

)
and θW =

(
X̄, X̄

)
, candidate W does

not enter at (x, 0) since entering at (x, 1) gives him a strictly better payoff if candidate S cannot

move and both give him 0 if candidate S has another opportunity. In addition, S’s value given
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θS =
(
x, X̄

)
and θW =

(
X̄, X̄

)
is calculated by assuming that W never enters at

(
1− x, X̄

)
as long

as S stays at
(
x, X̄

)
since

(
1− x, X̄

)
is weakly dominated by

(
X̄, X̄

)
both in payoffs and flexibility.

For the same reasons as the case given θS =
(
x, X̄

)
and θW =

(
X̄, X̄

)
, for each policy x ∈ {0, 1},

given θS =
(
X̄, x

)
and θW =

(
X̄, X̄

)
, candidate W does not enter at

(
X̄, x

)
, (0, 1− x), (1, 1− x),(

0, X̄
)
,
(
1, X̄

)
, or (0, x). In addition, S’s value given θS =

(
X̄, x

)
and θW =

(
X̄, X̄

)
is calculated

by assuming that W never enters at
(
X̄, 1− x

)
as long as S stays at

(
X̄, x

)
.

Given these results, once candidate S enters at
(
1, X̄

)
, on the path of play of the fixed PBE,

there are four possibilities for the policy set profile at time 0, where the associated payoff for

candidate S can be computed as follows:

S\W (X̄, X̄) (1, 1)

(1, X̄) 1− p1 p2

(1, 1) (1− p1) (1− p2) 1

Given this payoff matrix, near the deadline, candidate W enters at (1, 1) and candidate S stays

at
(
1, X̄

)
. Given this continuation strategy, candidate S weakly prefers staying at (1, X̄) to entering

at (1, 1) if

e−λt (1− p1) +

∫
λe−λx

(
e−λ(t−x)p2 +

(
1− e−λ(t−x)

)
1
)
dx ≥ (1− p1) (1− p2) (31)

⇔

p1 + p2 − p1p2 − e−λt (p1 + λt (1 + p2)) ≥ 0, (32)

and candidate W weakly prefers entering at (1, 1) to staying at
(
X̄, X̄

)
if

e−λt (1− p2) ≥ e−λtp1 +

∫
λe−λx

(
e−λ(t−x) (1− p2)

)
dx

⇔

(1− λt) (1− q2)− q1 ≥ 0. (33)

Solving (33) for t (the solution is 1
λ

1−p1−p2

1−p2
) and substituting the solution into (32), we can

show that the left-hand side of (32) is strictly positive.

With this, as in the one-issue case, we can show that candidate S stays at
(
1, X̄

)
for each
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−t ∈ (−∞, 0] and W stays at
(
X̄, X̄

)
for each −t ∈ (−∞,− 1

λ
1−p1−p2

1−p2
) and enters at (1, 1) for each

−t ∈ (− 1
λ

1−p1−p2

1−p2
, 0]. Therefore, when the current policy set profile is

(
(X̄, X̄), (X̄, X̄)

)
, the value

of entering at
(
1, X̄

)
for candidate S is given by (30). The fact that candidate S strictly prefers

staying at
(
1, X̄

)
given

((
1, X̄

)
,
(
X̄, X̄

))
implies that it is suboptimal to enter at (1, 1) or (1, 0)

given
(
(X̄, X̄), (X̄, X̄)

)
.

So far, we have assumed that W never enters at
(
0, X̄

)
given θS =

(
1, X̄

)
and θW =

(
X̄, X̄

)
.

This is without loss when calculating the candidates’ values since such behavior is weakly dominated

both in payoffs and flexibility. Now we verify that this is the unique behavior in any PBE. For each

XS ∈ {0, 1, X̄} and XW ∈ {0, 1, X̄}, the payoff profile from ((1, XS) , (0, XW )) is (1− p1, p1). Note

that W ’s equilibrium value is strictly greater than p1 since p1 is the payoff that W can obtain by

simply staying at
(
X̄, X̄

)
given S’s strategy and in equilibrium W takes a strictly better strategy

than just staying at
(
X̄, X̄

)
when −t is close to 0. Hence, given θS =

(
1, X̄

)
and θW =

(
X̄, X̄

)
, W

never enters at
(
0, X̄

)
.

We follow the same procedure to calculate S’s values when she enters at
(
0, X̄

)
,
(
X̄, 1

)
, or(

X̄, 0
)
. A straightforward algebra implies that entering at

(
1, X̄

)
achieves the uniquely highest

payoff for S.

We next narrow down the set of policies to which W may enter when S has not entered. To

this end, we first specify the continuation play after W enters at
(
1, X̄

)
:

Lemma 13. On the path of play of any PBE, candidate S enters at
(
1, X̄

)
at the history such

that the current policy set profile is ((X̄, X̄), (1, X̄)) and the current time is −t ∈ (−∞, 0]. Once

candidate S enters at
(
1, X̄

)
, the following hold.

1. Candidate W stays at
(
1, X̄

)
for each −t ∈ (−∞,− 1

λ) and enters at (1, 1) for each −t ∈

(− 1
λ , 0].

2. Candidate S stays at
(
1, X̄

)
until candidate W enters at (1, 1), and enters at (1, 1) as soon

as possible once W enters at (1, 1).
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Given this continuation play, candidate S’s value of candidate W entering at
(
1, X̄

)
is

vS,t
(
(X̄, X̄), (1, X̄)

)
=


e−λtp1 + 1− e−λt + 1

2 (1− p2) t2λ2e−λt t ≤ 1
λ ,

e−λtp1 +
(

1− e−λ(t−
1
λ)
) (

1− e−1 (1− p2)
)

+e−λ(t−
1
λ) (1− e−1 + 1

2 (1− p2) e−1
) t ≥ 1

λ .
(34)

Proof. Given θW =
(
1, X̄

)
and θS =

(
X̄, X̄

)
, candidate W stays until candidate S moves by the

proof of Lemma 11.

In addition, S’s value given θW =
(
1, X̄

)
and θS =

(
X̄, X̄

)
can be calculated by assuming that

S never enters at
(
0, X̄

)
, (0, 0), or (0, 1) as long as W stays at

(
1, X̄

)
. This is because

(
0, X̄

)
is

weakly dominated by
(
X̄, X̄

)
both in payoffs and flexibility, and (0, 0) and (0, 1) are dominated

by
(
X̄, X̄

)
both in payoffs and flexibility. Similarly, given θW =

(
1, X̄

)
, candidate S never enters

at (1, 0) since entering at (1, 1) gives her a better payoff given candidate W ’s best response in the

continuation play.

If candidate S enters at
(
1, X̄

)
, she obtains the same payoff as in the one-issue valence election

with p = p2. Since we assume p2 ≥ 1
1+e , candidate S’s payoff of entering at

(
1, X̄

)
is

 1− λte−λt (1− p2) if t ≤ 1
λ ,

1− e−1 (1− p2) otherwise.

Hence, there exists t̄ > 0 such that, for all times −t ∈ (−t̄, 0], it is optimal to enter at
(
1, X̄

)
.14

Given this continuation strategy, the payoff of staying at
(
X̄, X̄

)
at −t ≥ − 1

λ is

e−λtp1 +

∫
λe−λx

(
1− λ (t− x) e−λ(t−x) (1− p2)

)
dx.

The incentive for S to entering at
(
1, X̄

)
at −t ≥ − 1

λ is

1− λte−λt (1− p2) ≥ e−λtp1 +

∫
λe−λx

(
1− λ (t− x) e−λ(t−x) (1− p2)

)
dx,

or

2− 2p1 − (1− p2) (2− λt)λt ≥ 0.

14In fact, the following proof shows that we can take t̄ =∞.
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Since

2− 2p1 − (1− p2) (2− λt)λt ≥ 2− 2p1 − (1− p2) = 1− 2p1 + p2 > 0,

candidate S enters at
(
1, X̄

)
at −t ∈ [− 1

λ , 0]. Since candidate W does not move from
(
1, X̄

)
given

θS =
(
1, X̄

)
and θW =

(
1, X̄

)
or given θS =

(
X̄, X̄

)
and θW =

(
1, X̄

)
for each −t ∈ (−∞,− 1

λ),

this inequality also implies that it is optimal for candidate S to enter at
(
1, X̄

)
as soon as possible

for each −t ∈ (−∞,− 1
λ). Hence, candidate S’s payoff of candidate W entering at

(
1, X̄

)
is given

by (34).

Finally, we show that S will not enter at
(
0, X̄

)
. To see this, note that once S enters at

(
0, X̄

)
,

since the candidates are taking a static strict best response to each other (among feasible actions

given the current announcements), by continuous time backward induction, no candidate moves

further (W stays at (1, X̄) and S stays at (0, X̄)). Hence, S’s payoff is p1 if she enters at (0, X̄).

Since the value characterized by (34) is strictly greater than p1, S does not enter at
(
0, X̄

)
.

The next lemma characterizes the continuation play after W enters at
(
X̄, 1

)
.

Lemma 14. On the path of play of any PBE, candidate S enters at
(
X̄, 1

)
at any history such that

the current policy set profile is ((X̄, X̄), (X̄, 1)). Once candidate S enters at
(
X̄, 1

)
, the following

hold:

1. Candidate W stays at
(
X̄, 1

)
for each −t ∈ (−∞,− 1

λ) and enters at (1, 1) for each −t ∈

(− 1
λ , 0].

2. Candidate S stays at
(
X̄, 1

)
for each −t ∈ (−∞, 0] until candidate W enters at (1, 1). Once

W enters at (1, 1), S enters at (1, 1) as soon as possible.

Given this continuation play, candidate S’s value of candidate W entering at
(
1, X̄

)
is

vS,t
(
X̄, X̄, X̄, 1

)
=


e−λtp2 + 1− e−λt − 1

2 (1− p1) t2λ2e−λt t ≤ 1
λ ,

e−λtp2 +
(

1− e−λ(t−
1
λ)
) (

1− e−1 (1− p1)
)

+e−λ(t−
1
λ) (1− e−1 − 1

2 (1− p1) e−1
) t ≥ 1

λ ,
(35)

Proof. Symmetric to Lemma 13.
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Given Lemmas 13 and 14, we have the following lemma:

Lemma 15. There exists t̂W := 1
λ

(
1− ln 2

3

)
such that, given the current policy set profile (θS , θW )

such that θS = θW =
(
X̄, X̄

)
, candidate W enters at

(
1, X̄

)
or
(
X̄, X̄

)
for each −t ∈ (−t̂W , 0]

and he enters at
(
X̄, 1

)
or
(
X̄, X̄

)
for each −t ∈ (−∞,−t̂W ). Moreover, candidate S’s value of

candidate W entering at
(
1, X̄

)
is given by (34) and her value of him entering at

(
X̄, 1

)
is given

by (35).

Candidate S copies candidate W ’s policy as soon as possible after he enters at
(
1, X̄

)
or
(
X̄, 1

)
.

The probability that S can copy W ’s policy position approaches 1 as the current time tends to

−∞. If S can copy W ’s policy before timing − 1
λ , then W ’s payoff is e−1 (1− pk), where k is the

issue for which W does not specify his policy. Hence, far from the deadline, it is optimal to enter

at
(
X̄, 1

)
(being ambiguous in the issue for which pk is low) if he ever enters.

In contrast, if the deadline is close and S is unlikely to be able to copy, then entering at
(
1, X̄

)
(being clear in the issue for which pk is low) is optimal.

Proof. Given Lemmas 13 and 14, candidate W becomes indifferent between entering at
(
1, X̄

)
and(

X̄, 1
)

at −t̂W where t̂W is the unique solution for

e−λtp1 +
(

1− e−λ(t−
1
λ)
) (

1− e−1 (1− p2)
)

+ e−λ(t−
1
λ)
(

1− e−1 − 1

2
(1− p2) e−1

)
= e−λtp2 +

(
1− e−λ(t−

1
λ)
) (

1− e−1 (1− p1)
)

+ e−λ(t−
1
λ)
(

1− e−1 − 1

2
(1− p1) e−1

)
.

Equivalently,

λt̂W = 1− ln
2

3
> 1.

We now prove that entering at
(
0, X̄

)
is strictly worse than

(
1, X̄

)
for candidate W for each

−t ∈ (−∞, 0]. To this end, we calculate an upper bound of W ’s payoff when he enters at
(
0, X̄

)
.

Since the game is constant-sum, an upper bound can be calculated by assuming that (i) S will

enter at
(
0, X̄

)
as soon as possible when W ’s current policy is

(
0, X̄

)
and (ii) S will follow the

equilibrium strategy of the one-issue case once (θS , θW ) =
((

0, X̄
)
,
(
0, X̄

))
is realized. By Lemma

11, W does not enter at (0, 0) or (0, 1) after W enters at
(
0, X̄

)
, as long as S stays at

(
X̄, X̄

)
.

Moreover, once (θS , θW ) =
((

0, X̄
)
,
(
0, X̄

))
is realized, W ’s best response against S’s continuation

strategy described in (ii) above is to follow the equilibrium strategy of the one-issue case. Hence,
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the upper bound is characterized by the following dynamics: (i) S will enter at
(
0, X̄

)
as soon as

possible, (ii) W does not enter as long as S is at
(
X̄, X̄

)
, and (iii) both candidates will follow the

equilibrium strategy of the one-issue case once (θS , θW ) =
((

0, X̄
)
,
(
0, X̄

))
is realized.

In contrast, given Lemma 13, W ’s payoff of entering at
(
1, X̄

)
is characterized by the following

dynamics: (i) S will enter at
(
1, X̄

)
as soon as possible, (ii) W does not enter as long as S is at(

X̄, X̄
)
, and (iii) both candidates will follow the equilibrium strategy of the one-issue case once

(θS , θW ) =
((

1, X̄
)
,
(
1, X̄

))
is realized.

Note that once S has an opportunity to enter after W ’s entry, W ’s continuation payoff does not

depend on whether he enters at
(
0, X̄

)
or
(
1, X̄

)
. This implies that the difference of the continuation

payoff given W ’s entering at (0, X̄) and his entering at (1, X̄) is solely due to the event in which S

does not have an opportunity after W ’s entry. Under such an event, however, W ’s payoff is strictly

greater under (1, X̄) than under (0, X̄). Therefore, entering at
(
0, X̄

)
is strictly worse than

(
1, X̄

)
for candidate W for each −t ∈ (−∞, 0].

Moreover, an argument analogous to the above (where we use Lemma 14 instead of Lemma

13) implies that entering at
(
X̄, 0

)
is strictly worse than

(
X̄, 1

)
for candidate W for each −t ∈

(−∞, 0].

M.3.2 Incentive to Enter

Define

t∗W =
1

λ

5− 6p1 − p2

3 (1− 2p1 + p2)
∈
(

1

λ
, t̂W

)
.

Let σ̄ be a strategy profile such that candidate W stays at
(
X̄, X̄

)
for each −t ∈ (−∞,−t∗W ) and

enters at
(
1, X̄

)
for each −t ∈ (−t∗W , 0] and candidate S stays at

(
X̄, X̄

)
for each −t ∈ (−∞, 0] (and

both candidates follow the equilibrium strategy specified in Lemmas 12–15 once some candidate

enters).

We first show that candidate W prefers not to enter if and only if the deadline is sufficiently

far:

Lemma 16. Candidate W strictly prefers to enter at
(
1, X̄

)
for each −t ∈ (−t∗W , 0] and strictly

prefers to stay at
(
X̄, X̄

)
for each −t ∈ (−∞,−t∗W ) given that both candidates will follow σ̄ in the

continuation play and given θS,t =
(
X̄, X̄

)
and θW,t =

(
X̄, X̄

)
.
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Proof. Given strategy profile σ̄, let v̂W,t
(
(X̄, X̄), (X̄, X̄)

)
be candidate W ’s value:

v̂W,t
(
(X̄, X̄), (X̄, X̄)

)
=


∫ t

0 λe
−λxvW,t−x

(
(X̄, X̄), (1, X̄)

)
dx for t ≤ t∗W ,

vW,t∗W
(
(X̄, X̄), (1, X̄)

)
for t ≥ t∗W .

In contrast, by (34) and the constant-sum assumption, we have

vW,t
(
(X̄, X̄), (1, X̄)

)
=


e−λt (1− p1) + 1

2 t
2λ2e−λt (1− p2) t ≤ 1

λ ,(
1− e−λ(t−

1
λ)
)
e−1 (1− p2)

+e−λ(t−
1
λ) (e−1 (1− p1) + 1

2e
−1 (1− p2)

) t ≥ 1
λ .

By algebra, we can show that the smallest solution to

vW,t
(
(X̄, X̄), (1, X̄)

)
− v̂W,t

(
(X̄, X̄), (X̄, X̄)

)
= 0

is in fact t∗W . Hence, candidate W strictly prefers to enter at
(
1, X̄

)
for each −t ∈ (−t∗W , 0].

The values vW,t
(
(X̄, X̄), (1, X̄)

)
and vW,t

(
(X̄, X̄), (X̄, 1)

)
are decreasing in t. Hence, W strictly

prefers not to enter for each −t ∈ (−∞,−t∗W ).

We next show that candidate S never enters given σ̄W :

Lemma 17. For each −t ∈ (−∞, 0], given that both candidates follow the continuation strategy

profile σ̄ for each −τ ∈ (−t, 0], candidate S strictly prefers to stay at
(
X̄, X̄

)
given θS,t =

(
X̄, X̄

)
and θW,t =

(
X̄, X̄

)
.

Proof. Define v̂S,t
(
(X̄, X̄), (X̄, X̄)

)
to be S’s value at time −t given the strategy profile σ̄.

For −t ∈ [− 1
λ , 0], given the continuation strategy σ̄, staying at

(
X̄, X̄

)
is a best response for

candidate S if and only if

1− v̂W,t
(
(X̄, X̄), (X̄, X̄)

)︸ ︷︷ ︸
=v̂S,t((X̄,X̄),(X̄,X̄)) by constant-sum

≥ vS,t
(
(1, X̄), (X̄, X̄)

)
.
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By algebra, this is equivalent to e−λt
(
p1 − (p2 − p1)λt− (1− p2) 1

6λ
3t3
)
≥ 0 for λt ≤ 1−p1−p2

1−p2

(1− p2) e
− 1−p1−p2

1−p2 + e−λt
(
− (1− p1)λt− (1− p2) 1

6λ
3t3
)
≥ 0 for 1 ≥ λt ≥ 1−p1−p2

1−p2

Since

min
0<p1<p2<

1
2
,λt≤ 1−p1−p2

1−p2

p1 − (p2 − p1)λt− (1− p2)
1

6
λ3t3 =

7 + 27e+ 21e2 − 7e3

6 (2 + 6e+ 6e2 + 2e3)
≥ 0.154,

and

min
0<p2<p2<

1
2
,
1−p1−p2

1−p2
≤λt≤1

(1− p2) e
− 1−p1−p2

1−p2 + e−λt
(
− (1− p1)λt− (1− p2)

1

6
λ3t3

)

=
−13

2 + 3e
2

1+e + 6
1+e

62
≥ 0.004,

candidate S strictly prefers not to enter at each −t ∈ [− 1
λ , 0].

For −t ∈ [−t∗W ,−
1
λ ], candidate S prefers

(
X̄, X̄

)
if

v̂S,t
(
(X̄, X̄), (X̄, X̄)

)
≥ vS,t

(
(1, X̄), (X̄, X̄)

)
.

Define

f(t, p1, p2) = v̂S,t
(
(X̄, X̄), (X̄, X̄)

)
− vS,t

(
(1, X̄), (X̄, X̄)

)
.

By algebra, we can show that

∂2f

∂t2
(t, p1, p2) = 3 + 3p1 − 6p2 ≥ 0,

lim
t→∞

∂f

∂t
(t, p1, p2) = 0,

lim
t→∞

f(t, p1, p2) =
−1 + p1 + e

p1
1−p2 (1− p2)

e
.
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The first two lines imply ∂f
∂t (t, p1, p2) ≤ 0. Hence, we have

f(t, p1, p2) ≥ min
1

1+e
≤p1≤p2≤ 1

2

lim
t→∞

f(t, p1, p2) = min
1

1+e
≤p1≤p2≤ 1

2

−1 + p1 + e
p1

1−p2 (1− p2)

e

=
−1 + 1

1+e + 1
2e

2 e
1+e

e
= 0.047.

Hence, S strictly prefers to stay at
(
X̄, X̄

)
for each −t ∈ [−t∗W ,−

1
λ ].

For−t < −t∗W , if candidate S enters, she obtains the payoff of vS,t
(
(1, X̄), (X̄, X̄)

)
= vS,t∗W

(
(1, X̄), (X̄, X̄)

)
given t∗W > 1

λ and Lemma 12. In contrast, not entering for all times in [−t,−t∗W ] gives her the

payoff of vS,t∗W
(
(X̄, X̄), (X̄, X̄)

)
. Hence, given W ’s strict incentive to stay at (X̄, X̄) at time −t∗W ,

S strictly prefers to stay at
(
X̄, X̄

)
for each −t ∈ (−∞,−t∗W ].

In total, we have shown that S prefers to stay at
(
X̄, X̄

)
, as desired.

Note that the unique optimal strategy given that candidates will take σ̄ in the continuation

play is in fact σ̄ by Lemmas 16 and 17. Hence, by continuous-time backward induction, in any

PBE must have properties required for σ̄.

M.4 Comparative Statics

By algebra, we have

∂t∗W
∂p1

=
∂

∂p1

(
1

λ

5− 6p1 − p2

3 (1− 2p1 + p2)

)
=

4

3λ

1− 2p2

(p2 − 2p1 + 1)2 > 0,

∂t∗W
∂p2

=
∂

∂p2

(
1

λ

5− 6p1 − p2

3 (1− 2p1 + p2)

)
=

2

3λ

4p1 − 3

(p2 − 2p1 + 1)2 < 0.

Let us provide the intuition for those results.

To see the effect of increasing p1, take the partial derivative of W ’s value of entering and his

value of not entering with respect to p1. If he enters, he obtains the payoff that depends on p1

(namely, 1− p1) only if S cannot move. Hence, we have

∂

∂p1
vW,t∗W

(
(X̄, X̄), (1, X̄)

)
= −e−λt∗W .

If he does not enter, he obtains the payoff that depends on p1 (again, 1− p1) only if W enters and

36



S cannot enter afterwards:

∂

∂p1
v̂W,t∗W

(
(X̄, X̄), (X̄, X̄)

)
= −

∫ t∗W

0
λe−λxe−λ(t

∗
W−x)dx = −λte−λt∗W < −e−λt∗W because λt∗W > 1.

Hence, compared to the payoff of entering, the payoff of not entering decreases more in p1. Since

t∗W is the smallest of the t’s such that vW,t
(
(X̄, X̄), (1, X̄)

)
= v̂W,t

(
(X̄, X̄), (X̄, X̄)

)
, this implies

that candidate W is willing to enter earlier as p1 becomes larger (that is, ∂t∗W /∂p1 > 0).

Similarly, we take the partial derivative of W ’s value of entering and his value of not entering

with respect to p2. If he enters, he obtains the payoff that depends on p2 (namely, 1 − p2) only if

S enters, then W enters, and then S cannot move after that. Hence, we have

∂

∂p2
vW,t∗W

(
(X̄, X̄), (1, X̄)

)
= −

∫ t∗W

0
λe−λx

∫ t∗W−x

0
e−λye−λ(t

∗
W−x−y)dydx = −λ2(t∗W )2e−λt

∗
W .

If he does not enter, he obtains the payoff that depends on p2 (again, 1−p2) only if W enters, then

S enters, then W enters, and then S cannot enter after that:

∂

∂p2
v̂W,t∗W

(
(X̄, X̄), (X̄, X̄)

)
= −

∫ t∗W

0
λe−λx

∫ t∗W−x

0
e−λy

∫ t∗W−x−y

0
e−λze−λ(t

∗
W−x−y−z)dydx = −1

6
λ3(t∗W )3e−λt

∗
W .

Since 1
6λ

3(t∗W )3 < λ2(t∗W )2, this implies that, compared to the payoff of entering, the payoff of not

entering decreases less in p2. Hence, since t∗W is the smallest of the t’s such that vW,t
(
(X̄, X̄), (1, X̄)

)
=

v̂W,t
(
(X̄, X̄), (X̄, X̄)

)
, candidate W postpones his entering time as p2 becomes larger (that is,

∂t∗W /∂p2 < 0).

N Analysis for Remark 11

N.1 When S is an Incumbent with a Pre-Specified Policy

Suppose that S is an incumbent, who has already specified her policy for the first issue during her

term in the office. Suppose she has picked x1 = 1. In contrast, W is a challenger who has not

specified any policy. In this game, the following result holds:

Proposition 12. Suppose pk ≥ 1
1+e for each k ∈ {1, 2}. In any PBE, the following hold:

1. Given
((

1, X̄
)
,
(
X̄, X̄

))
, (i) candidate S stays at

(
1, X̄

)
for each −t ∈ (−∞, 0] and (ii)
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candidate W stays at
(
X̄, X̄

)
for each −t ∈ (−∞,− 1

λ
1−p1−p2

1−p2
) and enters at (1, 1) for each

−t ∈ (− 1
λ

1−p1−p2

1−p2
, 0].

2. Given
((

1, X̄
)
, (1, 1)

)
, (i) candidate S enters at (1, 1) as soon as possible.

Moreover, the ex ante payoff of candidate S when the game starts at time −t is given by 1− e−λt (p1 + (1− p2)λt) if t ≤ 1
λ

1−p1−p2

1−p2
,

1− (1− p2) e
−1+

p1
1−p2 if t ≥ 1

λ
1−p1−p2

1−p2
.

Proof. Since Lemma 12 shows there is a unique Markov equilibrium (except for measure-zero cutoff

times) in the subgame after (1, X̄), (X̄, X̄), this proposition is a direct corollary of Lemma 12.

For issue 2 (where S has not specified her policy), as in the case with the one-issue case,

candidate W waits until a cutoff time and then enters at {1}; and S waits until W enters. However,

for issue 1, when W enters, his policy is matched with candidate S’s. The reason is as follows: The

most likely event is that the voter will be located at ({1} , {1}). In this case, if candidate W does

not enter or enters at {0} in issue 1 (and he enters at {1} for issue 2), then the voter’s utility from

W is at most

max

{
1

2
× (−1) +

1

2
× 0,−1

}
= −1

2
,

while the voter’s utility from S (given that S does not move after W enters) is

1

2
× (−1) +

1

2
× 0 + δ = −1

2
+ δ.

Hence, W cannot win. In contrast, if W enters at ({1} , {1}), the voter’s utility from W is 0 and

W can win.

Intuitively, if S cannot move after W enters, entering at {1} for issue 2 gives W an advantage

to overcome the valence (in a likely event that the voter prefers policy {1} for issue 2) if W enters

at {1} for issue 1 and only difference between S and W is the policy for issue 2. In contrast, if W

does not enter or enters at {0} for issue 1, in a likely event that the voter prefers the policy {1} for

issue 1, it gives advantage to S. To avoid this, W in fact should enter at {1} for both issues.
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N.2 Cost of the Commitment

In order to calculate the cost of the commitment, let us first calculate S’s payoff from the policy

announcement timing game: Recall that, in any PBE, W enters at
(
1, X̄

)
for (−t∗W , 0], and S

copies it as soon as possible. Once S copies, then the analysis is the same as the one-issue case

with p = p2.

In the one-issue case, the equilibrium payoff for S at time −t is

vt = f(t) ≡
∫ t

x=0
λe−λx

(
e−λ(t−x)p2 +

(
1− e−λ(t−x)

))
dx+ e−λt = 1− (1− p2)λte−λt if t <

1

λ
,

vt = f

(
1

λ

)
= 1− (1− p2) e−1 if t ≥ 1

λ
.

Given this value, the equilibrium payoff for S at time −t ≤ t∗W in the one-issue case is

∫ t∗W−
1
λ

x=0
λe−λx

(∫ t∗W−x−
1
λ

y=0
λe−λyf

(
1

λ

)
+ e−λ(t

∗
W−x−

1
λ)
∫ 1

λ

y=0
λe−λyf

(
1

λ
− y
)
dy + e−λ(t

∗
W−x)p1

)
dx

+e−λ(t
∗
W−

1
λ)
∫ 1

λ

x=0
λe−λx

(∫ 1
λ
−x

y=0
λe−λyf

(
1

λ
− x− y

)
+ e−λ(

1
λ
−x)p1

)
dx+ e−λt

∗
W

=
e

6p1+p2−5
−6p1+3p2+3

(
−8p1p2 + 12(p1 − 1)p1 − 3 (p2)2 + 10p2 + 1

)
12p1 − 6(p2 + 1)

+
p2 − 1

e
+ 1

if t∗W ≤ t.

Thus, fo any sufficiently large t, the difference is

f(p1, p2) ≡
e

6p1+p2−5
−6p1+3p2+3

(
−8p1p2 + 12(p1 − 1)p1 − 3 (p2)2 + 10p2 + 1

)
12p1 − 6(p2 + 1)

+
p2 − 1

e
+ 1

−
(

1− (1− p2) e
−1+

p1
1−p2

)
.

By algebra, we can show that, for p1 ≥ 1
1+e , p2 ≥ 1

1+e , and p1 ≤ p2, we have ∂f(p1, p2)/∂p1 > 0

and ∂f(p1, p2)/∂p2 < 0. The intuition for those comparative statics are explained in Remark 11.
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O Proofs and Additional Discussions for Appendix G

O.1 Proof of Proposition 11

First, we compute a lower bound of the probability of candidate i winning conditional on her being

able to move at time −t. To calculate such a bound, suppose candidate i does not enter for each

time in the time interval (−t,−τ), and then enters for each time in the time interval [−τ, 0]. A

lower bound of the probability of winning when i uses this strategy, denoted by p̄τ , is given by the

following consideration: Since the second entrant can win for sure, i’s minimum winning probability

is given by the assumption that her opponent j will not enter until i enters. The bound can be

computed as follows:

p̄τ =

∫ τ

0
λie
−λis︸ ︷︷ ︸

i enters at −(τ−s)

× e−λj(τ−s)︸ ︷︷ ︸
j cannot enter after i enters

ds =


λi

[
e−λiτ−e−λjτ

]
λj−λi > 0 if λi 6= λi

λiτe
−λiτ if λi = λj

.

Another lower bound can be calculated by assuming that i enters at time −t, and it is given by

e−λjt. Hence, in total, we obtain a bound of max{e−λjt,maxτ∈[0,t] p̄τ}. This implies that, if we take

ε <
mint∈[0,∞) max{e−λjt,maxτ∈[0,t] p̄τ}

maxx,y∈X |ui(x)−ui(y)| , then at every time −t, there exists a strictly better strategy for

candidate i than entering at a policy with which i will lose for sure.

These bounds can be used to derive an explicit expression of ε̄:

ε̄ = min

{
1, min
i∈{L,R}

mint∈[0,∞) max{e−λjt,maxτ∈[0,t] p̄τ}
maxx,y∈X |ui (x)− ui (y)|

}
. (36)

Given this definition of ε̄, ε < ε̄ ensures that it is a dominated strategy for candidate i to enter

at a policy x such that i loses at a policy set profile ({x}, X).

We next derive the set of policies with which candidate i can win given that candidate j has

entered at x, which we denote by X (i, x). If candidate j’s policy is x ∈ X, candidate i can win

if and only if her policy is x′ (including the case where she picks X and her ideal policy is x′)

satisfying one of the following three conditions:

1. x1 ≤ x′1 and x2 ≤ x′2 (voters at (1, 0) and (0, 1) vote for her);

2. x1 ≤ x′1 and x′1 + x′2 ≤ x1 + x2 (voters at (1, 0) and (0, 0) vote for her); or
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3. x2 ≤ x′2 and x′1 + x′2 ≤ x1 + x2 (voters at (0, 1) and (0, 0) vote for her).

Second, we derive the set of policies with which candidate L can win if candidate R does not

enter. Since the voters believe that candidate R implements
(

1
2 ,

1
2

)
if she does not enter, the set is

the same as X
(
L,
(

1
2 ,

1
2

))
. Similarly, candidate R can win with policies in X (R, (0, 0)) if candidate

L does not enter.

We now consider each candidate’s best response to the opponent’s entry to x. First, suppose

that R has entered at x. Candidate L enters at (x1, x
′
2) with x′2 ≤ x1 if x1 ≤ x2, and (x′1, x2)

with x′1 ≤ x2 if x1 ≥ x2. Given the tie breaking rule, we conclude that candidate L enters at

(min {x1, x2} ,min {x1, x2}).

Second, suppose that L has entered at x. Given this, suppose that R’s entry to x′ is a best

response.

1. If x1 ≤ x′1 and x2 ≤ x′2, then the following hold.

(a) If x1 ≤ 1
2 and x2 ≤ 1

2 , then x′ =
(

1
2 ,

1
2

)
. In this case, she receives uR (x′) = 1

2 .

(b) Otherwise, given the tie breaking rule, x′ is on the line segment connecting (0, 1) and

(1, 0). In particular, x′1 = x1 and x′2 = 1− x1 if x1 >
1
2 ; and x′1 = 1− x2 and x′2 = x2 if

x2 >
1
2 . In this case, she receives uR (x′) = 1−max {x1, x2}.

2. If x′1 + x′2 ≤ x1 + x2, then x′ =
(
x1+x2

2 , x1+x2
2

)
and she receives uR (x′) = x1+x2

2 .

Hence, for x ∈ X
(
L,
(

1
2 ,

1
2

))
(L never enters outside of X

(
L,
(

1
2 ,

1
2

))
), R enters at

(
1
2 ,

1
2

)
if

x =
(

1
2 , 0
)
,
(
0, 1

2

)
; she enters at x′ with x1 ≤ x′1 and x2 ≤ x′2 if x satisfies x1 ≤ 1

2 and x2 ≤ 1
2 or x

satisfies
x1 + x2

2
≤ 1−max {x1, x2} ; (37)

and she enters at
(
x1+x2

2 , x1+x2
2

)
if x satisfies x1+x2

2 ≥ 1−max {x1, x2} and x 6=
(

1
2 , 0
)
,
(
0, 1

2

)
. Since

x1 + x2 = max {x1, x2}+ min {x1, x2}, (37) is equivalent to

min {x1, x2} ≤ 2− 3 max {x1, x2} .

Given this response of the other candidate, the following property holds for L. To formalize, let

XL
t ⊆ X be the set of policies such that x ∈ XL

t if and only if L’s continuation payoff is maximized
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if he enters at x at time −t conditional on the event that R has not entered and L enters at −t.

Let t1L be the solution for

e−λRt =
1

2
. (38)

Lemma 18. XL
t =

{(
1
2 ,

1
2

)}
for −t ∈ (−t1L, 0], and XL

t =
{(

2
3 , 0
)
,
(
0, 2

3

)}
for −t ∈

(
−∞,−t1L

)
.

Proof. First, note that candidate L does not enter at any policy x 6∈ X
(
L,
(

1
2 ,

1
2

))
since R’s

best response against such x guarantees L to get a payoff of εuL(1
2 ,

1
2), which is dominated by

the payoff from a strategy of entering at (1
2 ,

1
2) ∈ X

(
L,
(

1
2 ,

1
2

))
. Second, X

(
L,
(

1
2 ,

1
2

))
= {x ∈

X|max{x1, x2} ≥ 1
2} holds. Third, we consider the following three exhaustive cases, where cases

are defined depending on which policy among X
(
L,
(

1
2 ,

1
2

))
candidate L enters at:

1. If L enters at
(

1
2 , 0
)

or
(
0, 1

2

)
, then R will win and implement

(
1
2 ,

1
2

)
if she enters afterward.

Hence, L’s payoff is

e−λRt︸ ︷︷ ︸
Probability of R not

receiving an opportunity

+ ε

(
−1

2

)
︸ ︷︷ ︸

Utility from the policy is − 1
2

anyway

.

2. If L enters at x with min {x1, x2} ≤ 2 − 3 max {x1, x2}, then R, if she enters afterward, will

win and implement (x′1, x
′
2) such that x′1 = x1 and x′2 = 1 − x1 if x1 >

1
2 , and x′1 = 1 − x2

and x′2 = x2 if x2 >
1
2 . Hence, L’s payoff is

e−λRt︸ ︷︷ ︸
Probability of R not

receiving an opportunity

+ ε (−max {x1, x2})︸ ︷︷ ︸
Utility from the policy is −max{x1,x2} anyway

since max{x1,x2}=max{x′1,x′2}

.

Thus, among all x’s in this case, L’s payoff is maximized if and only if he enters at
(

1
2 , 0
)
,(

0, 1
2

)
,
(

1
2 ,

1
2

)
, or any convex combination of them, and his payoff is then

e−λRt + ε

(
−1

2

)
.

3. If L enters at x with min {x1, x2} ≥ 2 − 3 max {x1, x2}, then R will win and implement
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(
x1+x2

2 , x1+x2
2

)
. Hence, L’s payoff is

e−λRt − εe−λRt (max {x1, x2}) + ε
(

1− e−λRt
)(
−x1 + x2

2

)
.

If (x1, x2) is the optimal policy for L under this case, then the constraint min {x1, x2} ≥

2 − 3 max {x1, x2} has to bind, since otherwise L wants to reduce max {x1, x2}. The set of

x’s satisfying min {x1, x2} = 2− 3 max {x1, x2} is expressed as

{(
2

3
− θ, 3θ

)
∪
(

3θ,
2

3
− θ
)

: there exists θ ≥ 0 and
2

3
− θ ≥ 3θ

}
.

Given θ, L’s payoff is equal to

e−λRt − εe−λRt
(

2

3
− θ
)
− ε

(
1− e−λRt

)( 2
3 − θ + 3θ

2

)

= e−λRt − εe−λRt
(

2

3
− θ
)
− ε

(
1− e−λRt

)(1

3
+ θ

)
.

Hence, if e−λRt ≥ 1
2 , then it is the best for L to enter at

(
1
2 ,

1
2

)
; and if e−λRt ≤ 1

2 , then it is

the best for him to enter at
(

2
3 , 0
)

or
(
0, 2

3

)
.

In total, for −t ∈ (−t1L, 0], candidate L enters at
(

1
2 , 0
)
,
(
0, 1

2

)
,
(

1
2 ,

1
2

)
, or any convex combi-

nation of them, and obtains a payoff of e−λRt − ε1
2 . Again, by the tie breaking rule, L enters

at
(

1
2 ,

1
2

)
.

In addition, the following property holds for R:

Lemma 19. For all −t ∈ (−∞, 0], if L’s strategy is such that he enters at (1
2 ,

1
2) for all times in

(−t, 0], then under any best response by R to such a strategy, R does not enter at −t.

Proof. Fix −t. Let σ∗R be a strategy of R such that, conditional on there being no entry by any

candidate no later than time −t, R does not enter unless L enters, and best-responds to L’s policy

once L enters. Consider the following two cases:
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1. Conditional on the event under which L will have an opportunity at some −τ ∈ (−t, 0], (i) if

R enters at −t, her payoff will be at most ε1
2 , but (ii) σ∗R gives her a payoff strictly greater

than ε1
2 (since L enters at

(
1
2 ,

1
2

)
and R can win if she can enter after L enters).

2. Conditional on the event under which L will not enter, at −t, both entering at
(

1
2 ,

1
2

)
and

following σ∗R are optimal for R while entering at any other policy is strictly worse.

Since the first event happens with strictly positive probability, the proof is complete.

We now pin down the candidates’ strategies at −t sufficiently close to 0. Let t2L be the unique

t satisfying the following.


λRe

−λRt−λLe−λLt
λL−λR = 0 if λL 6= λR,

t = 1
λ if λL = λR = λ.

(39)

For each t ∈ [0,min{t1L, t2L}), suppose that candidates take the following continuation play for each

−τ ∈ (−t, 0]: R does not enter unless L enters (and takes a static best-response once L enters) and

L enters at
(

1
2 ,

1
2

)
. Then, we show that, at time −t, it is optimal for R not to enter at −t and for

L to enter at
(

1
2 ,

1
2

)
.

Given this continuation play, Lemma 19 ensures that R has a strict incentive not to enter at

−t. Hence, we consider L’s incentive. L’s payoff when he does not enter at time −t is

∫ t

0
λLe

−λLτ
(
e−λR(t−τ) − ε1

2

)
dτ − e−λLt

(
−ε1

2

)
=

 λL
e−λRt−e−λLt

λL−λR − ε1
2 if λL 6= λR

e−λtλt− ε1
2 if λL = λR = λ

.

Hence, L strictly prefers to enter at
(

1
2 ,

1
2

)
at time −t if the following holds: t < t1L and


λL

e−λRt−e−λLt
λL−λR − ε1

2 > e−λRt − ε1
2 if λL 6= λR,

λt > 1 if λL = λR = λ

⇔ t < t2L.

Moreover, if t2L ≤ t1L, then L is indifferent between entering and not entering at time −t2L.

Therefore, by the continuity of probabilities in time and boundedness of payoffs, the continuous-

time backward induction implies that for each t ∈ [0,min{t1L, t2L}), at time −t, it is uniquely optimal

44



for R not to enter and for L to enter at
(

1
2 ,

1
2

)
. In what follows, we consider candidates’ incentives

at time −t with t > min{t1L, t2L}.

If time −t2L is after the time at which L’s optimal entering policy switches from
(

1
2 ,

1
2

)
to
(
0, 2

3

)
,

that is, if t2L < t1L, then neither L nor R enters for −t < −t2L. To see why, suppose this claim holds

for −τ ∈ [−t,−t2L). Note that, on the one hand, L’s payoff from entering at time −t is strictly

decreasing in t since the probability of candidate R entering afterward increases. On the other

hand, given that R does not enter for each −τ with τ ≤ t, L can secure a payoff of


λL

e−λRt
2
L−e−λLt

2
L

λL−λR − ε1
2 if λL 6= λR

e−λt
2
Lλt2L − ε

1
2 if λL = λR = λ

by not entering in the time interval [−t,−t2L). Since candidate L is indifferent between entering

and not entering at −t = −t2L, he strictly prefers not entering for each −t < −t2L. With the same

reasoning as Lemma 19, one can show that R strictly prefers not entering for each −t < −t2L.

Hence, by the continuity of probabilities in time and boundedness of payoffs, the continuous-time

backward induction implies that neither L nor R enters at any −t < −t2L in any PBE.

Hence, we are left to consider the case in which t2L > t1L. By the continuity of the continuation

payoff in time, there exists ε > 0 such that candidate L enters at
(

2
3 , 0
)

or
(
0, 2

3

)
for each −t ∈(

−t1L − ε,−t1L
)
. Given this behavior of candidate L, candidate R faces the following trade-off:

1. Conditional on the event under which L will enter after R, the only possibilities for best

responses are entering at
(

1
2 ,

1
2

)
and not entering. This is because entering at x 6= (1

2 ,
1
2) is

not optimal, as after R’s entry to
(

1
2 ,

1
2

)
, L’s unique best response is to enter at

(
1
2 ,

1
2

)
, which

is R’s ideal policy. Since R always loses if L enters after R enters, if R enters, R should enter

at (1
2 ,

1
2). In particular, entering at

(
2
3 , 0
)

and entering at
(
0, 2

3

)
are both suboptimal. In

contrast, if R does not enter, then L enters at (2
3 , 0) or (0, 2

3) for (−t,−t1L).

2. Conditional on the event under which L will not enter, both entering at
(

1
2 ,

1
2

)
and not

entering are the best responses for R.

Note that the advantage for R to enter at
(

1
2 ,

1
2

)
is to change L’s policy from

(
2
3 , 0
)

or
(
0, 2

3

)
to(

1
2 ,

1
2

)
(R’s ideal policy). However, such an advantage is only valid when L enters after R enters.
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Since L will win for sure in such a case, we will prove that, for sufficiently small policy preference

ε > 0, it is uniquely optimal for R not to enter:

Lemma 20. Suppose t1L < t2L. Fix −t < −t1L and L’s strategy such that he enters at
(

2
3 , 0
)

or(
0, 2

3

)
for all times in

(
−t,−t1L

)
, and enters at

(
1
2 ,

1
2

)
for all times in (−t1L, 0]. Then, conditional

on any history at time −t at which no candidate has entered and R receives an opportunity, not

entering is R’s unique best response.

Proof. Fix time −t < −t1L. Since R not entering at all in the time interval [−t,−t1L) is one of the

feasible continuation strategies, it suffices to show that, for each −t, this strategy is strictly better

for R than her entering at −t. Consider the following two cases:

1. L obtains an opportunity in the time interval (−t,−t1L). Conditional on this event, if R enters

at x ∈ X at time −t, then L enters at y (L, x) and wins for sure. Hence, assuming that R

enters, the optimal policy for her to enter is
(

1
2 ,

1
2

)
and it gives R a payoff of ε1

2 . Meanwhile,

if R does not enter until −t1L, then R obtains

(
1− e−λRt1L

)
︸ ︷︷ ︸

R can enter by the deadline after t1L

·
(

1 + ε
1

3

)
+ e−λRt

1
Lε · 0 ≥ 1− e−λRt1L .

Since (38) implies that t1L =
ln 1

2
−λR = ln 2

λR
and (36) implies ε < 1, straightforward algebra shows

that not entering is uniquely optimal for R at −t.

2. L does not obtain an opportunity in the time interval (−t,−t1L). Conditional on this event,

since R’s unique best response is not to enter at time −t1L by Lemma 19 (note that, conditional

on the event that L does not obtain an opportunity in (−t,−t1L), R wants to enter at −t if

and only if she wants to enter at −t1L), it is uniquely optimal for R not to enter at −t.

Therefore, conditional on both events, it is uniquely optimal for R not to enter at time −t.

Let σ̄L be candidate L’s strategy such that, if R has not entered, L enters at
(

2
3 , 0
)

or
(
0, 2

3

)
for

each −t ∈
(
−∞,−t1L

)
and at

(
1
2 ,

1
2

)
for each −t ∈ (−t1L, 0] (and L chooses a static best response

once R enters); and let σ̄R be candidate R’s strategy such that R never enters if L has not entered
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(and R chooses a static best response once L enters). By tL1 < tL2 and Lemma 20, there exists ε > 0

such that σ̄i is optimal for each −t ≥ −t1L − ε and i ∈ {L,R}.

For t > t1L, suppose that the candidates take σ̄ for each time −τ with τ < t. Given that R

never enters after −t, given t > t1L, we must have XL
t =

{(
2
3 , 0
)
,
(
0, 2

3

)}
. Note that the probability

that L wins by entering at
(

2
3 , 0
)

or
(
0, 2

3

)
—equivalently, the probability that R cannot enter after

L enters—is decreasing in t and converges to 0 as t→∞. Hence, the payoff of entering converges

to −ε1
3 . By (36), for sufficiently large t, there exists τ ′ ∈ [0, t] such that L can obtain a payoff

greater than −ε1
3 by instead not entering until −τ ′. Hence, given the bound of ε we imposed and

the continuity of the continuation payoff in time given σ̄, there exists the smallest t such that L is

indifferent between entering and not entering at −t. Let t3L be such t.

By the continuity of probabilities in t and boundedness of the payoffs, the continuous-time

backward induction implies that σ̄i is optimal for any −t > −t3L in any PBE. Hence, it remans for

us to show that no candidate enters at −t < −t3L. Let σ∗ be a pair of strategies such that neither L

nor R enters at −t < −t3L and both of them take σ̄ for any −t > −t3L. One can show that R chooses

a best response in the same way as in Lemma 20 given the continuation play σ∗. L’s incentive can

be checked as follows: Let v3
L be L’s payoff of entering at time −t3L given the continuation play σ̄.

Entering at −t < −t3L gives him a payoff strictly lower than v3
L since the probability that R can

enter after L enters increases monotonically in t. Not entering until −t3L guarantees a payoff of

v3
L since L is indifferent between entering and not entering at −t3L given the continuation play σ∗.

Hence, by the continuity of probabilities in time and boundedness of payoffs, the continuous-time

backward induction implies that both candidates take σ∗ in any PBE.

Finally, we examine the conditions under which we have t1L < t2L and t1L > t2L, respectively. Note

that (38) implies that t1L =
ln 1

2
−λR = ln 2

λR
. Since the left-hand side of (39) is negative for t ∈

(
0, t2L

)
,

and positive for t > t2L, we have t1L < t2L if and only if the left-hand side of (39) is negative for

t = t1L. Substituting t = t1L = ln 2
λR

, the left-hand side of (39) is equal to

λRe
−λR ln 2

λR − λLe
−λL ln 2

λR

λL − λR
=

1
2 −

λL
λR

(
1
2

) λL
λR

λL
λR
− 1

.

Letting l = λL
λR

, this is equal to
1
2
−l( 1

2)
l

l−1 . Taking the derivative of the numerator with respect to l
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yields

−
(

1

2

)l
+ l

(
1

2

)l
ln 2 =

(
1

2

)l
(1− l ln 2) .

Hence, the numerator is decreasing for l ≤ 1
ln 2 and increasing for l ≥ 1

ln 2 .

Note that the numerator is zero at l = 1 < 1
ln 2 and at l = 2 > 1

ln 2 . Hence, 1
2 − l

(
1
2

)l
is positive

for l < 1, 0 for l = 1, negative for l ∈ (1, 2), 0 for l = 2, and positive for l > 2. Together with the

denominator (and using l’Hopital rule at l = 1), we have

1
2 − l

(
1
2

)l
l − 1


< 0 for l ∈ (0, 2)

= 0 for l = 2

> 0 for l > 2

.

Therefore, t1L < t2L if and only if λL
λR

< 2. In a similar vein, one can show that t1L > t2L if and only

if λL
λR

> 2.

O.2 Persuasion-Cost Election Campaign

In the policy-motivated election campaign in Section G, L enters at suboptimal policies
(

2
3 , 0
)

or(
0, 2

3

)
since, when R enters after L, this suboptimal policy will lead R to enter at a more favorable

policy for L. Such a consideration does not occur if L does not care about what policy R picks

when R wins. In such a case, the equilibrium dynamics are simpler than in the model in Section

G, while we can still conduct comparative statics with respect to the distribution of voters and the

ideal points of the candidates more easily, keeping the advantage of the policy-motivated model

over the purely office-motivated model as in Section 2.2.

Let X be an arbitrary policy space that is a full-dimensional compact subset of Rn for some

n, and recall that |·| denotes the Euclidian distance. A unit mass of voters are distributed over

X according to the distribution µ (x) over X. The voter located at x has utility of − |x− y| from

policy y.

There are two candidates L and R. Given a profile of policies (xL, xR) ∈ X × X, we define

candidate i’s vote share Si(xL, xR) and probability of i’s winning Pi(xL, xR) as in Section 2.2. The

definition of Pi(Xi, Xj) when Xi = X or Xj = X holds is given later. We assume that (X,µ) 6∈ M.

The ideal policies of candidates L and R are x∗L and x∗R, respectively. The ideal policies are
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common knowledge among voters and candidates. The utility for candidate i is equal to


I i wins − ε |x∗i − x| if Xi = {x} ⊆ X

I i wins if Xi = X

,

where ε > 0. That is, each candidate incurs a cost |x∗i − x| associated with the policy to which she

commits, regardless of whether she wins the election. For example, if the voters believe that x∗i is

i’s ideal policy, committing to x far from x∗i requires the cost of persuading the voters. Without

specifying the policy—with Xi = X—, in contrast, she does not have to pay such a cost. We

assume that

ε <
1

maxi∈{R,L},x∈X |x∗i − x|
. (40)

This condition implies that, the minimum (with respect to x ∈ X) of the payoffs from entering

at some x and winning exceeds the payoff from not entering and losing. The denominator of the

right-hand side of (40) is strictly positive because X is a full-dimensional subset of Rn, and it is

finite because X is compact.

Suppose that the voters believe that the candidates will implement their ideal policies once

they get elected without specifying a policy. That is, we assume Si(X,xj) = Si(x
∗
i , xj), Si(xi, X) =

Si(xi, x
∗
j ), Si(X,X) = Si(x

∗
i , x
∗
j ), and the probability of winning Pi is accordingly defined when X

is chosen by at least one candidate. They vote for the candidate whose policy implementation gives

them the higher expected payoff. The candidate who attracts more votes will win the election.

Given this, we assume that PR(x∗R, x
∗
L) = 1, that is, R will win if neither candidate specifies their

policies.15 The payoff function vi for each i = L,R is specified accordingly. As in the policy-

motivated election campaign in Section G, we assume that the tie is broken in favor of the last

candidate to specify the policy if the candidates enter at different times.16

Call this game a persuasion-cost election campaign. It is characterized by a tuple (X,µ, ε, T, λL, λR).

Let X∗ be the set of policies with which L attracts weakly more votes than R if R does not

15The case in which PR(x∗L, x
∗
R) = 0 can be analyzed in a symmetric manner, so its analysis is omitted.

16We assume such a tie-breaking rule because (X,µ) 6∈ M and thus there is no best response once the opponent
enters. As in footnote 80 of the main text, the assumption corresponds to taking a limit of unique PBEs in the
models with discrete policy spaces.
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specify a policy:

X∗ =

{
x̂ :

∫
x

1{|x−x∗R|≥|x−x̂|}µ (x) dx ≥ 1

2

}
.

In addition, given x ∈ X, let X∗ (x) be the set of policies such that R attracts weakly more votes

than L given that L enters at x:

X∗ (x) =

{
x̂ :

∫
x̃

1{|x̃−x|≤|x̃−x̂|}µ (x̃) dx̃ ≥ 1

2

}
.

Given X∗ and X∗ (x), we can characterize PBE:

Proposition 13. The persuasion-cost election campaign with (X,µ, ε, T, λL, λR) has a PBE. More-

over, there exists t∗L <∞ such that for any PBE, the following hold:

1. L enters at x ∈ arg minx∈X∗ |x∗L − x| for −t > −t∗L, while he does not enter for −t < −t∗L.

2. R never enters unless L enters. Once L enters at x, R enters as soon as possible at x′ ∈

arg minx′∈X∗(x) |x∗R − x′|.

Candidate R does not have an incentive to enter before L enters since (i) R can win without

entering if L cannot obtain an opportunity and (ii) R will lose by entering if L can obtain an

opportunity afterward. Given this strategy of R, since L cannot win without entering, he enters if

the deadline is near. If the deadline is far, then the probability that R can enter afterward is very

large. Hence, entering gives L the payoff close to 0 (or negative if he pays the persuasion cost).

Therefore, L does not enter when the deadline is far.

We note that the result that the candidates choose the ambiguous policy can be derived as a

corollary of the long ambiguity theorem (Theorem 4). However, we are in “Case 3” of that result,

and thus the theorem does not perfectly pin down the equilibrium dynamics for times not too far

away from the deadline. Proposition 13 further pins down the equilibrium dynamics for those times

as well.

Once we specify x∗R, x∗L, and µ, it is straightforward to derive the distribution of the announced

policies at the deadline. Thus, we can conduct comparative statics about observable variables.17

17The policy to which each candidate enters is generically unique in Proposition 13.
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O.2.1 Proof of Proposition 13

Consider a PBE. Given (40), there exists t̄ > 0 such that for all time −t ∈ (t̄, 0], L enters at some

policy with which he can win. In addition, for each −t, if R has already entered, L takes a static

best response.

Since R can win without incurring the persuasion cost if L does not enter, we can show that,

for each −t, R does not enter:

Lemma 21. Fix candidate L’s strategy in which he takes a static best response after R enters.

Then, conditional on any history at time −t at which no candidate has entered and R receives an

opportunity, not entering is R’s unique best response.

Proof. Since R’s not entering until L enters is one of the feasible continuation strategies, it suffices

to show that this strategy, denoted by σ̄R, is strictly better for R than her entering at −t for each

t ≥ 0.

Fix time −t and a history at time −t such that no candidate has entered. Consider the following

two cases:

1. L obtains an opportunity in the time interval (−t, 0]. Fix time t̄ > 0 such that L enters

for each [−t̄, 0] if no candidate enters. Conditional on this event, let p be the probability

that L obtains an opportunity at some −t̃ ∈ [−t̄, 0), and then R has an opportunity in some

−t̂ ∈ (−t̃, 0].

Conditional on this event, entering at x gives R a payoff of −ε |x− xR| ≤ 0 while σ̄R gives

R a payoff no less than p (1− ε×maxx∈X |x∗R − x|) > 0 (strict inequality follows from (40))

since (i) if L has an opportunity at −t̃ ∈ [−t̄, 0), then either L will have entered by −t̃ or he

enters at −t̃, and (ii) if R has an opportunity at some −t̂ ∈ (−t̃, 0], then she wins for sure by

σ̄R.

2. L does not obtain an opportunity in the time interval (−t, 0]. Conditional on this event, σ̄R

gives R a payoff of 1, which is her largest feasible payoff.

Since σ̄R is optimal conditional on each of these two events and the incentive is strict in the

first case, it is uniquely optimal for R not to enter given the conditions in the statement of the

lemma.
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After L’s entry, candidate R enters at the policy x′ with which R can win with the lowest

persuasion cost:

x′ ∈ arg min
x′∈X∗(x)

∣∣xR − x′∣∣ .
Given this reaction of R, L’s payoff of entering at x at time −t is e−λRt − ε |xL − x|. Hence,

if he enters, then he enters at the policy with which L can win with the lowest persuasion cost

assuming that R will not enter. His payoff of entering at −t is, therefore,

e−λRt − min
x∈X∗

ε |xL − x| .

In contrast, his payoff of not entering at −t, given that he will enter as soon as possible in the

interval (−t, 0], is

∫ t

0
λLe

−λLτ
(
e−λR(t−τ) − min

x∈X∗
ε |xL − x|

)
dτ

=
e−λLt − λLe−λRt

λL − λR
− (1− e−λLt) min

x∈X∗
ε |xL − x| .

Let

t∗L =
log

λL−(λL−λR) minx∈X∗ ε|xL−x|
λR

λL − λR
∈ (0,∞)

be the smallest t such that L is indifferent between entering and not entering. By the continuity of

probabilities in time and boundedness of payoffs, the continuous-time backward induction implies

that for (−t∗L, 0], L enters at x ∈ arg minx∈X∗ ε |xL − x|. It remains for us to show that L does not

enter at any time −t < −t∗L. Let σ∗L be L’s strategy such that, at any time −t, if R has not entered

before −t, (i) L does not enter if t > t∗L and (ii) he enters at some x ∈ arg minx∈X∗ ε |xL − x| if

t < t∗L.

Consider the following two cases:

1. R obtains an opportunity in the time interval (−t,−t∗L). Conditional on this event, if L

enters at x at time −t, then L’s payoff is −ε |xL − x|, while σ∗L gives him a payoff of e−λRtL −

minx∈X∗ ε |xL − x| since no candidate will enter before −t∗L and L is indifferent between

entering and not entering at −t∗L. Hence, it is uniquely optimal not to enter at −t.

2. R does not obtain an opportunity in the time interval (−t,−t∗L). Conditional on this event,
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L is indifferent between entering and not entering since he is indifferent between entering and

not entering at −t∗L.

Hence, it is uniquely optimal not to enter at −t with t > t∗L.

Overall, we have identified the equilibrium dynamics described in the statement of the propo-

sition.
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