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Abstract
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leads to rich and subtle campaign dynamics. We first demonstrate these effects in a series of
canonical static models of elections that we extend to dynamic settings, including models with
valence and a multi-dimensional policy space. We then present general principles that underlie
the results from those models. In particular, we establish that candidates spend a long time
using ambiguous language during the election campaign in equilibrium.
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“Timing is Everything”

—Joe Slade White, the 2014 National Democratic Strategist of the Year

1 Introduction

For every election, there is a campaign. The campaigns last from a few weeks to well over a

year in the United States and they seem to be an important determinant of the election outcome.

The campaigns themselves are inherently dynamic, with candidates trying to time their policy

positioning to outmaneuver their opponent. Joe Slate White, a National Democratic Strategist of

the Year, states that “timing makes the difference between winning and losing,” in one of his “9

Principles of Winning Campaigns” (White, 2012).

Despite the apparent importance of campaigns on election outcomes, and the fact that the

campaigns are dynamic in nature, the literature has so far not provided theoretical models to

understand the incentives and forces at work in dynamic election campaigns.1 The objective of

this paper is to fill this gap by proposing a model in which candidates face dynamic strategic

considerations and obtain predictions about timing of policy announcements.2

The paper proposes a “policy announcement timing game” in which candidates strategically

choose the optimal timing of their policy announcements over a campaign period. To capture why

timing matters, we introduce a novel yet simple friction: opportunities for policy announcements

are limited and arrive stochastically. Specifically, we assume that opportunities arrive according

to a Poisson process over a continuous-time campaign period.3 The process continues until the

predetermined deadline (the election day) is reached, and the final policy announcements before

the deadline determine the result of the election. When an opportunity arrives in a campaign,

a candidate must decide whether to take a position (and thereby commit to it) now or to wait

for a better time, at the risk that another opportunity may not arise. This stochastic arrival of

opportunities may reflect the inattention of voters, the vagaries of the media spotlight, or any other

1By a model of a dynamic election campaign, we mean a model with a single election; in particular, when we speak
of “models of dynamic election campaigns,” we are excluding models that have primaries and the general election.

2The empirical research shows that candidates do react to each other during election campaigns (cf. Banda [2013,
2015]).

3The time being continuous is not essential to our results because any “limit” of the equilibria as the discrete-
time models “approach” the continuous-time model must be an equilibrium in the continuous-time model (Moroni
[2019]). A discrete-time setting, however, is intractable and the resulting comparative statics would be messier, so
the empirical usefulness of the framework would be questionable.
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number of campaign variables that candidates cannot control.

It turns out that this framework allows us to obtain predictions about the timing of policy

announcements, which would not be possible in the standard static election models. Through a

number of applications, we demonstrate that such predictions can be made not only for standard

Hotelling models, but also for a wide variety of election models that the literature often rules out.

Our first such application of the framework is to an election model with valence candidates (Sec-

tion 2.1). The underlying election model is the standard Hotelling one, except that one candidate

is stronger than the other, so the stronger wins if the two candidates take the same policy position.

The strong candidate always wants to copy the weak candidate’s policy—as her valence advantage

will determine the election—while the weak candidate does not want to be copied, just as in the

“matching pennies” game. If there is no asymmetry across candidates, that is, if the dynamic

framework is applied to the standard Hotelling election model, then such “matching pennies”-like

feature disappears, and we show that candidates position themselves at the Condorcet winner as

soon as they obtain an opportunity to do so. With the asymmetric valence, however, the incentives

are more complicated and we obtain a distinct prediction about the timing of policy announcement.

Specifically, it is suboptimal for the weak candidate to announce his policy too early since the strong

candidate would then have enough time to copy that policy afterward. At the same time, if both

candidates do not announce their policies, then the weak candidate will lose the election due to

his valence disadvantage. Hence, waiting until the last moment is too risky given the possibility

of not having another opportunity. This tradeoff leads him to taking a simple cutoff strategy in

equilibrium: He does not clarify his policy position until a time threshold is passed, after which

the risk of not obtaining another opportunity outweighs the risk of being outmaneuvered, and he

announces his policy when an opportunity arrives. The key logic here is that the weak candidate

has what we call the “first-mover disadvantage”: If he fixes his location, the other candidate can

always find a position that beats it (in this specific setting with valence candidates, such a position

is the same position as the weak candidate’s).4

The result may explain the dynamics of the election campaign in the 2014 gubernatorial election

for Tokyo, Japan, in which Yoichi Masuzoe won against Morihiro Hosokawa. Although Masuzoe

had been seen as the stronger candidate from the outset of the campaign, Hosokawa became popular

4The strong candidate’s strategy depends on the parameter value. For some parameter region, she would not
clarify her policy until the weak candidate does so.
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near the election day when he clarified his stance by announcing opposition to the restart of nuclear

power generation in the wake of Fukushima. After that, Masuzoe, who originally had not specified

his policy about nuclear power generation, clarified his position to aim for a gradual phase-out of

nuclear power. He then became more popular again and won the election.5,6

Our second application of the framework shows that the first-mover disadvantage is not limited

to the weak candidate in the election with valence. It concerns election campaigns with a multi-

dimensional policy space (Section 2.2), for which it has long been known that a Condorcet winner

generically does not exist. In contrast to the case of the standard uni-dimensional Hotelling model,

the nonexistence of a Condorcet winner implies that there does not exist a pure-strategy Nash

equilibrium in the static environment, which has been a major obstacle in conducting an analysis

with a multi-dimensional policy space in the static world.7 In our dynamic framework, however,

we can derive an empirically testable prediction in such an environment. More specifically, when

there is no Condorcet winner, if one candidate fixes her location, then the other can always find a

position to beat it. Therefore, each candidate, upon making an announcement, “becomes a weak

candidate” in the sense that being best-responded afterward will bring about the worst outcome.

Hence, no candidate clarifies their policy when the election day is far ahead. At the same time,

if a candidate knew that the current opportunity is the last one, she would prefer to clarify her

policy (we assume voters prefer candidates with a clear policy announcement). As in the weak

candidate of the model with valence, this leads each candidate to taking a simple cutoff strategy

in equilibrium.

In these two applications, we assume that a candidate either clarifies all details of the policy

position or clarifies nothing. Such a model specification rules out the possibility of progressive

commitment. To obtain predictions about the timing of progressive commitment, we introduce

a third application (Section 2.3). We extend the model with valence candidates to a model with

two policy issues and allow candidates to announce a policy for each issue. We show that the

weak candidate has an incentive to partially commit, i.e., clarify a policy for one issue while not

5Sankei News (2013) argued on December 24, 2013, that Masuzoe was seen as the strongest among the candidates,
Asahi Shimbun Digital (2014a) reported on January 9, 2014, that Hosokawa clarified his policy about nuclear power,
and Asahi Shimbun (2014b) reported on January 15, 2014, that Masuzoe showed support to the opposition to nuclear
power.

6See Remark 5 in Section 2.1 for a further real-life example to which our model fits.
7The past approach in the literature of multi-dimensional policy space has been to change the rule of the election

game in the static context. See, e.g., Lindback and Weibull (1987), Coughlin (1992) and Roemer (2001).
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announcing a policy for the other issue. The intuition for such partial commitments can be explained

by the following “option value” argument: A partial commitment enables the weak candidate to

differentiate from the strong candidate, yet at the same time retain the flexibility to maneuver

around the strong candidate should she copy his policy. We show that the weak candidate’s

equilibrium strategy has a simple cutoff structure when the strong candidate has yet to clarify her

policy positions: he does not clarify his policy position in any issue before the cutoff is passed, while

he clarifies his position for one issue after the cutoff. Once the strong candidate copies the weak

candidate’s policy for one issue, the situation becomes the same as the one-issue case: The weak

candidate waits until another threshold is passed and then clarifies his policy for the remaining

issue. This progressive commitment shows more generally how the first-mover disadvantage affects

incentives over a long campaign, and corresponds to the reality that candidates convey their policy

intent about some issues to voters but not about all issues at once.

In each of the three applications we present, we obtain a unique prediction about the timing of

policy announcement, which we show to be characterized by cutoff strategies. This tractability al-

lows us to pin down both the equilibrium probability distribution of times at which candidates make

policy announcements and winning probabilities. This enables us to conduct comparative statics,

which would be helpful in empirically testing the model.8 Given that our policy announcement

timing game is the first to analyze the dynamics of election campaigns, we view those comparative

statics as novel kinds in the literature.

After discussing the three applications, we consider a general model of election campaign and

present general principles that underlie the results from those settings. One of the robust predictions

about announcement timing in all three applications of our framework is that candidates spend

a long time not clarifying their policy position—using what we call ambiguous language—in face

of first-mover disadvantage. We present a general result that formalizes the intuition that the

first-mover disadvantage incentivizes a candidate to delay their policy announcement. Section

4.1 presents a result that we call the long ambiguity theorem. We formally define a “first-mover

disadvantage” condition and show that, under that condition, candidates spend most of the time

not announcing any specific policy in equilibrium, provided the campaign period is long enough.

When there is a Condorcet winner, candidates do not face first-mover disadvantage. In the

8Those comparative statics are discussed in Remark 2 in Section 2.1, Remark 8 in Section 2.2, and Remark 10 in
Section 2.3.
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applications, we show that in such an environment, candidates clarify their policies early in the

campaign. Section 4.2 generalizes this insight. We show the dynamic median-voter theorem, which

generalizes the celebrated median-voter theorem to our dynamic setting. Specifically, we suppose

that there is a Condorcet winner in the static version of the model and show that each candidate

makes an announcement corresponding to the Condorcet winner as soon as possible. This theorem

implies that candidates announce their policies as soon as possible in the absence of valence and

when the policy space satisfies a certain symmetry condition.

Our election models feature purely office-motivated candidates, hence they are constant-sum

games. We present a general result in Section 4.3 for dynamic campaigns for such elections. Specif-

ically, we prove that any perfect Bayesian equilibrium has the Markov property when the election

features constant-sum (as in all of our three applications). We call this the constant-sum Markov

theorem. This theorem guarantees that, in order to calculate the candidate’s payoff—and hence to

calculate the probability of winning, it suffices to focus on Markov perfect equilibria, which is a

simpler task than considering all (possibly non-Markov) equilibria.

Our long ambiguity theorem serves as a novel explanation for ambiguity in campaigns. Ambi-

guity in our model is due to dynamic strategic consideration: Candidates seek to move after their

opponent does. In contrast, the literature on ambiguity has focused on the standard static model

of elections and seeks to explain why candidates may choose not to take a precise policy position.

For example, it is due to voters’ preferences such as risk-loving preferences (Shepsle [1972] and

Aragonès and Postlewaite [2002]), context dependent preferences (Callander and Wilson [2008]),

or due to the fact that ambiguous policy statements make the candidate appealing to many voters

(Glazer [1990]). Another explanation is candidates’ limited resources or voters’ limited capacity

(Page [1976, 1978], Polborn and Yi [2006], Egorov [2015], and Dragu and Fan [2016]), candidates’

incentive to reserve freedom to choose a policy after being elected or in a next election (Alesina

and Cukierman [1990], Aragonès and Neeman [2000], and Meirowitz [2005]), or interaction with

policy-motivated donors (Alesina and Holden [2008]).

We assume that opportunities to take policy positions arrive only intermittently, and this as-

sumption is substantive. Election campaigns are buffeted and upended by all sort of forces and

actors. For example, administrative procedures to obtain internal approval for a change of what

policy a candidate announces may not always be successful. Adopting a policy position requires
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that the voting public hears the announcement and is able to digest it. The difficulty of these tasks,

and the necessity of conveying the information through media, suggests that opportunities to suc-

cessfully transmit the messages are limited and arrive at unpredictable times. It is this controlled

chaos that our model hopes to capture in a simple way.

Ultimately, our interest is not in the source of these communication difficulties but in their

impact on strategic candidates and election outcomes. As such, we take as given that opportunities

to take policy positions are limited and arrive stochastically, and explore the consequences. An

analogy to the macroeconomics literature may help: Calvo (1983) uses a Poisson process to model

uncertainty about future opportunities of changing prices. This approach offers a tractable way of

modeling sticky prices and analyzing the effect of fiscal and monetary policies. At the same time,

the literature goes forward to offer a micro-foundation of Calvo (1983).9 In the present paper,

we also show that this Poisson approach is useful to analyze campaign dynamics. We hope a

micro-foundation is investigated in future research.10,11

Moreover, the specific way by which we model frictions—using Poisson processes— is proven to

be fruitful in other contexts. The assumption of Poisson opportunities has been extensively studied

recently in the model called “revision games” (Kamada and Kandori [2019] and Calcagno et al.

[2014]).12 Recent applications using Poisson processes to analyze dynamics include bargaining

(Ambrus and Lu [2015]), eBay-like auctions (Ambrus et al. [2014], Kapor and Moroni [2016], and

Hopenhayn and Saeedi [2016]). Its validity is examined in experiments by Roy (2014) and Avoyan

and Ramos (2018).

The Appendix provides the main proofs for the general results presented in Section 4 as well as

additional discussions. All the proofs not provided in the main text or the Appendix are provided

in the Online Appendix.

9See Klenow and Malin (2010).
10A possible micro-foundation of the Poisson-type announcement possibility appears in Garćıa-Jimeno and Yildirim

(2017) in which, in equilibrium, the media stochastically follow a candidate due to its interest in reporting the
candidate’s controversial statements.

11Another way to model frictions is to introduce switching costs. See Lipman and Wang (2000) and Caruana and
Einav (2008) for models with switching costs in finite-horizon games. Caruana and Einav’s (2008) “grid invariance”
results do not hold in our constant-sum setup, so directly applying their framework to our context may not be fruitful.
We could instead assume that at each stochastic arrival of an opportunity to announce a policy, there is a cost of
announcing a policy that is inconsistent with the previous announcement. We checked that our “long ambiguity”
result is robust to such a modification, at least in the model of Section 2.2.

12See Ishii and Kamada (2011) and Romm (2014) for extensions.
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2 Three Models of Dynamic Election Campaign

This section offers three models to show that the model of a policy announcement timing game

enables us to analyze rich strategic considerations when it is applied to otherwise well-known and

canonical models of elections. In Section 3, we define a policy announcement timing game, which

unifies the three models, and in Section 4 we present general principles that underlie those findings.

All the models that we present here have timing and payoff structures in common: Two can-

didates receive stochastic opportunities to announce their policies, at which they can either keep

announcing the ambiguous policy or clarify their position. Formally, time flows continuously from

−T < 0 to 0. Imagine that 0 is the fixed election date and the campaign starts at −T . For each

−t ∈ [−T, 0], according to the Poisson process with arrival rate λi > 0, each candidate i obtains

opportunities to announce her “policy set.” A policy set describes a policy announcement by a

candidate, and it is a subset of the entire policy space, which we denote by X. The collection

of available policy sets varies depending on the model. At each opportunity, each candidate can

only announce a subset of the policy set that she has previously announced. Intuitively, this as-

sumption implies that each candidate cannot “flip-flop” her policy.13 The policy set at time −T is

exogenously given to be the entire policy set X.

We assume that the Poisson processes are independent between the candidates. In particular,

this implies that policy announcements are asynchronous with probability one. To simplify the

exposition, we often use “enter” to denote the act of announcing a singleton policy set.

The candidates’ payoffs are determined according to the finally announced policy set profiles

as of the time of the election, which is time 0. Candidates are purely office-motivated. Formally,

the winning candidate obtains a payoff of 1, while the losing candidate obtains a payoff of 0. Each

candidate’s objective is to maximize the expected payoff, that is, their objective is to maximize

their probability of winning.

13This assumption, which we impose throughout the paper, is a key difference from most of the papers in the revision
games literature in which players can costlessly choose their actions from a fixed action space at each opportunity
to move. Settings similar to the current model appear in the “monotone games” in which players can only (weakly)
increase their actions (Gale, [1995, 2001]), and the “commitment games” in which each player simultaneously commits
to a subset of the entire action space and then plays a game (see, for example, Hamilton and Slutsky [1990, 1993];
van Damme and Hurkens [1996]; Romano and Yildirim [2005]; Renou [2009]). These papers are sufficiently different
from ours in their stage games as well as the timing of moves.
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2.1 Valence Election Campaign

We consider the case in which one candidate is stronger than the other, in the sense that if two

of them choose the same policy set, then the former candidate wins. Section 2.1.1 introduces the

model. In Section 2.1.2, we establish that if two candidates are perfectly symmetric, then both

candidates clarify their policy position as soon as possible in equilibrium. In Section 2.1.3, we show

that if one candidate is slightly stronger than the other, then there are rich strategic considerations

driving the incentive for each candidate to make an ambiguous policy announcement. The incentive

for ambiguity follows from the “first-mover disadvantage”: The strong candidate wants to copy the

weak candidate’s policy after the weak candidate clarifies his policy, while the weak candidate does

not want to be the first mover as being copied is the worst outcome. This result presents a novel

connection between ambiguity and valence.

2.1.1 The Model

The two candidates are the strong candidate, S, and the weak candidate, W .14 The policy space

is kept simple, so as to highlight the complexity introduced by the campaign phase into an election

model with valence candidates. Specifically, the policy space is assumed to be X = {0, 1}, and the

available policy sets are {0}, {1}, and {0, 1}. This is the minimal environment in which ambiguity

is a possibility.15

If a candidate enters at 0 (or 1) and the other enters at 1 (or 0) or does not enter, then the

former wins with probability p (or 1− p); if the two candidates enter at the same policy or neither

of them enters, then the strong candidate wins with probability one. We assume p ∈ (0, 1
2).

These winning probabilities can be micro-founded by considering a model of sincere voting in

which voters derive utility mostly from the implemented policy but they derive small extra utility

from the winning candidate being strong. More specifically, suppose that there are a continuum of

voters, located at policy 0 and policy 1. The distribution of the voters’ locations is stochastic, and

policy 0 has more voters with probability p, and policy 1 has more voters with probability 1 − p.

During the campaign, the locations of the voters are unknown.

14For ease of exposition, we use feminine pronouns to refer to S, A and i and masculine pronouns to refer to W ,
B and j.

15A working paper version of this paper (Kamada and Sugaya [2019]) presents a more general model that involves
many other cases, such as a continuous policy space.
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If a candidate i ∈ {S,W} wins the election and implements policy x ∈ {0, 1}, then a voter with

position y ∈ {0, 1} obtains a payoff of

u(|x− y|) + δ · Ii=S ,

where u(0) > u(1) and 0 ≤ δ < (u(0)− u(1))/2, with δ representing the advantage of candidate S

due to her charisma or other asymmetries between candidates’ characteristics that are unrelated

to the policy choices.16 The voters believe that, if candidate i has specified a policy x ∈ {0, 1} and

wins, then x will be implemented. If candidate i with the ambiguous policy Xi = {0, 1} wins, then

the voters believe that the policies {0} and {1} will be implemented with equal probability 1
2 .17

The voters are sincere, that is, they each vote for the candidate who, if elected, maximizes their

expected payoff. The candidate that attracts a larger share of votes wins. In the case of a tie, each

candidate wins with probability 1/2.

The payoff function of the candidates that we specified earlier can be obtained by assuming

δ > 0. For example, if the policy sets of the two candidates are the same at time 0, then S’s utility

is 1 and W’s is 0. If S’s announcement at time 0 is {0} and W ’s is {0, 1}, then S’s utility is p and

W ’s is 1− p.

We call the dynamic game with arrival rates λS = λW =: λ with the above specification a

valence election campaign. It is characterized by a tuple (p, T, λ). We will consider perfect Bayesian

equilibria (PBE) of this game.18

2.1.2 The Benchmark Case: Perfectly Symmetric Candidates

Before analyzing the model with valence, we analyze the model with symmetric candidates as a

benchmark case. The only difference from the model with valence is that, if two candidates end up

announcing the same policy set, both of them win with probability 1
2 (this corresponds to setting

16One way to interpret δ in a “policy related” manner would be to consider a model as in Krasa and Polborn
(2010), in which candidates choose one policy out of two for each of multiple policy issues. If candidates make
policy announcements for some issues first, they then would compete by choosing policies on remaining issues, where
asymmetry between candidates may exist depending on the relative popularity of the policies that each candidate
has chosen already. We note that, if δ > (u(0)− u(1))/2, it will be straightforward to show that S wins the election
with probability 1 in any PBE.

17It is not crucial that the probability is exactly 1
2
. For an open set of probabilities for tie-breaking, our main

results are unchanged.
18The formal definitions of histories, strategies, and equilibrium are given in the Online Appendix.
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δ = 0 in the micro-foundation). Call this game a no-valence election campaign. It turns out that

there are no incentives to announce the ambiguous policy {0, 1}. Note that, in the static version

of this game, we can apply the median voter theorem: It is each candidate’s dominant action to

announce {1}.

The following proposition gives us a stark result:

Proposition 1. In any no-valence election campaign, in any PBE, each candidate announces {1}

as soon as possible.

To see why this holds, fix time −t and suppose that at any time −s > −t, if each candidate has

an opportunity to enter, then he/she enters at 1. Then, at time −t, if no candidate has entered,

entering at 1 gives the payoff strictly greater than 1
2 , entering at 0 gives p < 1

2 , and not entering

gives a payoff of 1
2 by the symmetry of the supposed continuation strategies. Thus, entering at 1

is a unique best response. Therefore, by the continuity of probabilities in time and boundedness

of the payoffs which imply the continuity of the continuation payoff in time, for sufficiently small

ε > 0, it is uniquely optimal to enter at 1 for all time in (−t− ε,−t] if no one has entered. Under

the history at which the opponent has entered, an analogous argument shows that entering at 1 is

uniquely optimal. These observations imply the desired result.19

In the next subsection, we demonstrate that (i) the above simple argument breaks down once

we introduce asymmetry with respect to candidates’ valence (δ > 0 in the micro-foundation),

and (ii) candidates face complicated dynamic incentive problems, which involve ambiguous policy

announcements. Therefore, a small valence (or small δ > 0) matters and is the key for ambiguous

policy announcements.

2.1.3 The Cases with Valence Candidates

Let us start with the following lemma. It states that, if S has an opportunity to enter after W has

entered at x ∈ {0, 1}, then she enters at x and wins for sure. In contrast, if W has an opportunity

to enter after S has entered at x ∈ {0, 1}, then he is indifferent between announcing {0, 1} and

entering at x′ ∈ {0, 1} \ {x}. Since the median is more likely to be at policy 1 (p < 1
2), these two

conclusions imply that, if a candidate enters before the opponent, he/she enters at policy 1.

19That these observations imply the result follows from the “continuous-time backward induction” that we formally
present in Appendix B.
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Lemma 1. In any valence election campaign with (p, T, λ), in any PBE, the following are true at

any time −t:

1. Given that W has already entered, S enters at the same platform as soon as possible.

2. Given that S has already entered, W is indifferent between announcing {0, 1} and entering at

the platform different from S’s.

3. If a candidate i enters before the opponent, then i enters at policy 1.

The above lemma characterizes the equilibrium behaviors on and off the equilibrium path except

when no candidates have yet entered. It also says that if both are still using ambiguous language

and a candidate i enters, then i enters at policy 1. Hence, in the following analysis, we consider

the incentives to enter at policy 1 when both are still using ambiguous language.

Before presenting the characterization of the behavior in a PBE in such a situation, we first

provide the basic intuition, which exploits the idea that being the first mover is disadvantageous.

For the time being, consider the case with p = 1
2 .20 Suppose that at time −t, both S and W have

previously announced {0, 1}. On the one hand, S does not have an incentive to specify her policy

until W specifies his policy. This is because she gets 1
2 for sure by specifying her policy, while using

ambiguous language at all times in [−t, 0] gives her either 1
2 or 1 with the latter taking place with

positive probability (it happens when W does not enter afterward and when W enters and S copies

his policy).

On the other hand, if there is no further revision, W ’s payoff is 0 (because S does not enter).

So W needs to specify his policy to obtain a positive payoff. Thus, W announces {0} or {1} at

some point in [−t, 0], if he can. Since {0} and {1} are symmetric with p = 1
2 , assume without loss

of generality that W announces {1} when he clarifies his policy.

If W announces {1} in the early stages of the campaign, then the probability with which S

enters afterward is high. Therefore, W wants to postpone announcing. But waiting too much is

not optimal for W either since, if he does not have a chance to revise his policy set, W gets a payoff

of 0. It turns out that there exists a “cutoff,” −t∗, until which W announces {0, 1} and after which

W announces {1} when he gets an opportunity for a policy announcement.

20Strictly speaking, since the model assumes p < 1
2
, this is actually outside of the model, but we consider such a

case to provide the intuition. The same comment applies to the case p = 0 that we consider next.
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Recall that we do not have this type of strategic consideration in the no-valence election cam-

paign (δ = 0), even if we extend the model to include the case with p = 1
2 . The simple argument

we provided for Proposition 1 breaks down since the continuation payoff after taking each action

is different once we introduce valence. For example, W expects a payoff close to zero if he specifies

some policy when the deadline is far away in the valence election campaign, as opposed to a payoff

of 1
2 that he gets in the no-valence election campaign.

Next, consider the case with p = 0. In this case, S would want to commit to {1} as soon as

possible, because she can then obtain a payoff of 1 for sure, which is the highest possible payoff.

Since W can win if and only if he enters at {1} and S does not have an opportunity, W also enters

at {1} as soon as possible.

The next proposition fully characterizes the form of PBE for each p ∈ (0, 1
2) \ { 1

1+e}.
21 Suppose

that the current policy set of each candidate is {0, 1}. The equilibrium strategy of W is to wait

until a finite cutoff time and to enter as soon as possible after that cutoff. In contrast to the case of

p = 0, the cutoff is finite for any strictly positive p because the probability that the median voter

is at 0 is strictly positive. The equilibrium strategy for S depends on the value of p, and the value

p = 1
1+e corresponds to the cutoff at which S’s incentive changes. If p > 1

1+e (considered in part

1 of Proposition 2), S does not enter until W enters for a similar reason to in the case of p = 1
2 .

In contrast, for p < 1
1+e (considered in part 2 of Proposition 2), S enters when the deadline is far

away as when p = 0, but does not do so when the deadline is close. The intuition for the ambiguity

near the deadline is as follows: If S obtains an opportunity when the deadline is close, then the

probability with which W has a chance to announce his policy afterward is small. So it is likely

that W uses ambiguous language at the deadline. Thus, keeping ambiguous language is profitable

for S because by doing so, S gets a payoff of 1 with a high probability.

Proposition 2. Consider the valence election campaign with (p, T, λ). There exists a PBE. More-

over, there exist t∗ := 1
λ , tS, and tW (the latter two depend on p) that are independent of T such

that, for any PBE, the following are satisfied if the previous policy sets are both {0, 1}:22

1. If p > 1
1+e , the following hold:23

21The notation e stands for the base of the natural logarithm.
22If p = 1

1+e
, then there is indeterminacy about S’s equilibrium strategy at all −t < −t∗ since she is indifferent.

The Online Appendix presents a characterization of the equilibrium dynamics in this case as well.
23Although the entire game lasts for the time interval [−T, 0], we state results for all times in (−∞, 0]. Any
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(a) S announces {0, 1} for all −t ∈ (−∞, 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−t∗) and {1} for all −t ∈ (−t∗, 0].

2. If p < 1
1+e , then the following hold:

(a) S announces {1} for all −t ∈ (−∞,−tS) and {0, 1} for all −t ∈ (−tS , 0].

(b) W announces {0, 1} for all −t ∈ (−∞,−tW ) and {1} for all −t ∈ (−tW , 0].

(c) Moreover, −tW < −tS, dtS
dp > 0 and dtW

dp < 0.

Note that the cutoffs are independent of T . Hence, when T and p are large, we expect that

candidates use ambiguous language for most of the campaign period.24 Note also that stretching T

and enlarging λ with the same ratio are equivalent. Hence, this also implies that for a fixed length

of campaign period T , if we consider the situation in which the opportunities arrive frequently,

candidates spend most of the time in [−T, 0] using ambiguous language.

In Figure I, we depict the times t∗, tS , and tW that appear in Proposition 2, for different values

of p for the case of λ = 1. For example, p = .4 (> 1
1+e) corresponds to part 1 of the proposition. In

this case, there is one point at which the graph in the figure intersects with the p = .4 line. As a

result, the time spectrum is divided into two regions: In the left region, no candidate enters. In the

right region, S does not enter while W enters. When p = .2 (< 1
1+e), there are two intersections,

and as a result, the time spectrum is divided into three regions: In the left-most region, S enters

while W does not enter. In the middle region, both candidates enter. Finally, in the right-most

region, S does not enter while W enters.

[INSERT FIGURE I HERE]

statement about time interval K ⊆ (−∞, 0] should be interpreted as a statement about the time interval K ∩ [−T, 0].
The same caution applies to all other formal statements involving time intervals.

24Gensbittel et al. (2017) analyze general constant-sum revision games. The result we present here, as well as
the long ambiguity results in other sections, is similar to their “wait and wrestle” property. One difference is that
we consider the case where announcing a singleton policy set is irreversible, while players can freely choose their
action from a fixed action set in the model of Gensbittel et al. (2017). Note that, although our specification implies
that there is no cycling choice of actions, it is still not trivial that candidates wait for a long time. Gensbittel et al.
(2017) also discuss a comparison between the two models. Another difference is that we obtain long ambiguity in
non-constant-sum games as well (see the working paper version of this paper, Kamada and Sugaya [2019]).
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Notice that this particular model predicts that when p is small (p < 1
1+e) and T > tS , S enters

as soon as possible, so if T is large, then the probability that S uses ambiguous language is close

to 0 in equilibrium. This hinges on our assumption that even if W enters after S, S does not incur

any loss. One can show that if there is even a small loss, S prefers to use ambiguous language until

some point in time that does not depend on the horizon length T , and so the modified model is

consistent with ambiguity even if p is low.25 Despite this feature, we believe that the simple model

in this section provides a basic intuition about the dynamic incentives that candidates face. The

basic takeaway is that the nature of the election game with valence leads candidates to strategically

“time” their announcements, since the benefit and cost of maintaining flexibility of choice vary over

time. Consider W ’s incentive, for example. On the one hand, the benefit comes from the fact that

the election game is constant-sum, so avoiding being the first mover is a good thing. On the other

hand, the cost comes from the difference in valence. He does not want to end up making the

same choice as S (that is, taking {0, 1}). This is the general trade-off of timing strategies faced by

electoral candidates, and our model succinctly captures such a trade-off.

Remark 1 (Contribution to the literature on valence candidates). In the standard simultaneous-

move Hotelling-Downs model with valence candidates, there exists no pure-strategy equilibrium:

The strong candidate always wants to copy the weak candidate’s policy, while the weak candidate

does not want to be copied, just as in the “matching pennies” game. There are two approaches

to addressing this issue in the literature. The first approach is to assume that the strong candi-

date is the incumbent and the weak candidate is the entrant (Bernhardt and Ingberman [1985],

Berger et al. [2000], and Carter and Patty [2015]). In this approach, a typical result is that the

strong candidate positions her policy close to the median voter and the weak candidate positions

his policy at a slight distance from the strong candidate’s policy, where the distance between the

two policies is determined by the degree of asymmetry between candidates’ valences.26 The second

approach is that of Aragonès and Palfrey (2002), who consider the simultaneous-move game and

25A working paper version of this paper (Kamada and Sugaya [2019]) shows this formally.
26See also Ansolabehere and Snyder (2000) and Groseclose (2001) who consider pure-strategy equilibria in models

with valence candidates.
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characterize a mixed equilibrium.27 They show that the strong candidate assigns high probabilities

to the platforms which are close to the location of the median voter with high probabilities while

the weak candidate assigns small probabilities to such platforms. Although these two approaches

give us an understanding about electoral situations with valence candidates under the timing struc-

ture observed in many real elections, in both these models the order of policy announcements is

exogenously given by the modelers. In contrast, we view our result in this section as endogenizing

the order of policy announcements.28

Remark 2 (Empirical implications). Note that Proposition 2 applies to any PBE. This unique-

ness property enables us to conduct meaningful comparative statics, which one can potentially test

empirically. The analysis shows that ambiguity is likely when the probability distribution of the

median voter’s position is close to uniform (p is close to 1/2). This is consistent with Campbell

(1983), who suggests that opinion dispersion has a strong positive effect on the ambiguity in can-

didates’ language.29 Also, a researcher would be able to infer which candidate is stronger, given

the information about the timing of entry or the final policy profiles announced. More detailed

accounts of these claims are in the Online Appendix.

Remark 3 (Robustness of the prediction). The basic structure of the equilibrium is robust even

if the two candidates have different arrival rates, although the fine details change. One can show

that a relatively higher arrival rate makes the candidate better off. This result is due to the fact

that the underlying game is constant-sum.30 It is in a stark contrast to the results for coordination

games in Calcagno et al. (2014) that having a higher arrival rate makes the player worse off since

it decreases his/her commitment power.31

27More specifically, Aragonès and Palfrey (2002) characterize the unique equilibrium in a discrete policy space and
consider a limit as the discrete space approximates the standard continuous policy space. See also Hummel (2010).

28This provides a possible answer to the question posed by Aragonès and Palfrey (2002), who ask “What is the
correct sequential model.”

29Specifically, we have in mind a situation where n voters are independently distributed over {0, 1} where the
probability on the policy 0 is q < 1

2
. A higher q suggests more option dispersion (a higher standard deviation of the

preferred policies among the voters. Campbell [1983] also considers standard deviation), and corresponds to a higher
p.

30Gensbittel et al. (2017) also prove that the equilibrium payoff is weakly increasing in the relative arrival rate for
constant-sum revision games (unlike in our model, players can revise actions back and forth).

31More detailed discussions about heterogeneous arrival rates and a general model with heterogeneous arrival rates
and a general class of payoff functions are provided in a working paper version of of this paper (Kamada and Sugaya
[2019]). One notable insight arising from such an extension is that, in one of the variants of our model discussed in
the working paper, we show that ambiguity occurs even when voters have concave utility functions. This is in a stark
contrast with the result in Shepsle (1972) and Aragonès and Postlewaite (2002) that we discussed in the introduction,
in which convex voter utility functions are assumed to obtain ambiguity results.

16



Remark 4 (Welfare implications). One may be tempted to conduct a welfare analysis resorting to

the micro-foundation we provided, but there is a caveat in doing so: The distribution of the median

voter does not necessarily pin down the voter distribution at each realized state of the world. With

additional assumptions about the voter distribution, one can conduct welfare analysis. For example,

suppose that there is a single voter (or there are multiple voters whose preferences are homogeneous

and are subject to aggregate shocks). It is then necessary that this single voter’s ideal policy is

0 with probability p and 1 with probability 1 − p. Then, one can show by a calculation that the

voter’s expected payoff in our model is smaller than under a unique mixed Nash equilibrium model

in which each candidate chooses between 0 and 1 as in Aragonès and Palfrey (2002) when our model

predicts long ambiguity (p > 1
1+e), the valence term δ > 0 is sufficiently small, and T is sufficiently

large. The Online Appendix formally proves this claim, and explains that this is due to the fact

that the policy announcement timing game results in a positive correlation between candidates’

positions, which is ex ante not desirable for the median voter (because the probability that there

is a candidate at the median voter’s bliss point is small in the presence of such correlation).

Remark 5 (Copying of another candidate’s policy). The heart of the incentives the candidates

face in this application is that one candidate wants to copy the policy of the other candidate. Such

copying behavior may not be realistic when the main political issue for the campaign pertains

to the identifying characteristics of the candidates’ parties, such as right wing’s opposition to

abortion and gun control. They are, however, more realistic for new issues to which candidates

are not necessarily associated with a specific agenda. The issue regarding nuclear power in the

wake of Fukushima discussed in the Introduction was such an example. Another example along

this line is the promise by the Conservative Party to have a Brexit referendum. In this context, the

Conservative Party was an incumbent, and faced UKIP (UK Independence Party), a small right

wing party. UKIP’s eurosceptic idea was popular among right wing voters, and the Conservative

Party had been losing voters to UKIP. This rise of UKIP is widely seen as the reason why David

Cameron in the Conservative Party later promised that the party would hold a referendum if their

party won the election in 2013 (see e.g., BBC News [2013] and Mance and Pickard [2016]).

Remark 6 (Incumbent’s commitment). In some elections, there is an incumbent who has already

committed to a policy position. Indeed, some media mention that a candidate with a long career
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has a disadvantage since he/she has made many policy decisions.32 To understand this problem,

suppose that S is an incumbent and W is a challenger (as in Bernhardt and Ingberman [1985],

Berger et al. [2000], and Carter and Patty [2015] mentioned in Remark 1) and S has committed to

policy 1. In this game, the payoffs for the candidates are 1− p for S and p for W . Candidate S’s

payoff in the game without such a commitment is higher than this when p > 1
1+e and lower when

p < 1
1+e . The reason is as follows. Without the commitment, when p > 1

1+e and the election day

is far away, S at her move has a choice to commit to policy 1 but she strictly prefers not to. This

means that her payoff is strictly higher than the payoff of committing, which is 1− p. In contrast,

again without commitment, when p < 1
1+e and the election day is far away, S enters at policy 1

as soon as possible. This means that the payoff in the game without the commitment is a convex

combination of 1− p and the payoff from being unable to enter, and it is lower than 1− p because

S strictly prefers to enter at policy 1 as soon as possible. Moreover, when p > 1
1+e , the cost of the

commitment, which we define to be the difference of S’s payoffs in the two scenarios, can be shown

to be strictly increasing in p.33 This makes sense because S’s payoff in the election campaign game

is strictly increasing in p as W ’s payoff when W enters and S cannot copy is decreasing in p, while

S’s payoff from the commitment strictly decreases in p as policy 1 is less attractive for a higher p.

The formal analysis is provided in the Online Appendix.

2.2 Multi-dimensional Policy Space

When the policy space is multi-dimensional, generally there does not exist a Condorcet winner,

and a pure-strategy Nash equilibrium does not exist in a static two-candidate Hotelling model.

The literature has struggled with this nonexistence issue. As in the case with valence, one way to

respond to the nonexistence is to consider a sequential game where the incumbent moves first and

the challenger moves second. However, as Roemer (2001) argues, there may be no natural order,

and we again view our approach as endogenizing the order of moves. The ambiguity again results

from a disadvantage of being the first-mover, which follows from the nonexistence of a Condorcet

winner.

32For example, Anita Dunn, a top aide to Obama’s campaign in 2008, discusses disadvantages of serving in the
Senate before running for presidency as a candidate with such a career has cast votes in the Senate (Cadigan and
Struyk [2018]).

33It is p− (1− p)e−1.
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The two candidates are A and B. Suppose that the voters are distributed according to a measure

µ ∈ ∆(Rn) for some n ∈ N. Let the policy space X be the support of µ.34 We assume that X

is a full-dimensional connected subset of Rn. The collection of available policy sets consists of the

entire policy set X and all the singleton sets of the form {x} for x ∈ X.

We assume sincere voting, where each voter receives a utility that is strictly decreasing in the

Euclidian distance between her bliss point and a policy, and supports the candidate with the policy

that would give rise to a strictly higher utility. Formally, given a policy profile (xA, xB) ∈ X ×X,

we define the set of supporters for each candidate as:

SA(xA, xB) = {x ∈ X| |x− xA| < |x− xB|} and SB(xB, xA) = {x ∈ X| |x− xA| > |x− xB|},

where | · | denotes the Euclidian distance. We define the probability of A’s winning, PA(xA, xB),

to be 1 if µ(SA(xA, xB)) > µ(SB(xB, xA)), 1
2 if µ(SA(xA, xB)) = µ(SB(xB, xA)), and 0 otherwise.

Let the probability of B’s winning be PB(xB, xA) = 1− PA(xA, xB).

Each problem is characterized by a pair (X,µ). Let the set of all problems be P. Define M to

be the set of problems such that the so-called “Plott conditions” are met. Formally, we define:

M =

{
(X,µ) ∈ P | ∃x∗ ∈ X s.t. ∀y ∈ X \ {x∗}, µ ({z ∈ X|(y − x∗) · (z − x∗) > 0}) ≤ 1

2

}
.

Notice that, if (X,µ) ∈ M and no Y that has zero-Lebesgue measure satisfies µ(Y ) > 0,35 then

there exists x∗ such that any hyperplane that passes x∗ divides X into two regions which both

have measure 1
2 according to µ (the weak inequality in the definition of M can be replaced with

an equality in this case). The definition of M also deals with the case in which some hyperplane

has positive measure according to µ. To understand the property ofM, notice first that if X ⊆ R,

that is, when X is uni-dimensional, then (X,µ) ∈M holds for any µ. Notice second that for multi-

dimensional X, M is imposing a severe symmetry restriction. For example, if µ is the uniform

distribution over X, then (X,µ) ∈ M is equivalent to X being point symmetric. Also, for a given

multi-dimensional X, (X,µ) 6∈ M holds generically in the space of µ.36 Third, when (X,µ) ∈ M,

34That is, x ∈ X if and only if µ(U) > 0 for any open neighborhood U of x.
35Together with the definition of X, this means that for any Y ⊆ X, µ(Y ) > 0 if and only if Y has positive

Lebesgue measure.
36See Theorem 7.2 of Roemer (2001) for the detail.

19



the x∗ satisfying the condition in the definition ofM is uniquely determined because X is connected.

We denote this unique x∗ by x∗(X,µ).

To define the vote share and winning probabilities for the case in which some candidate does not

enter in the policy announcement timing game, we expand the domain of Si with a restriction that

the winning probabilities are half-half if no one has entered. Formally, we assume Si(X,X) = ∅

for each i = A,B. The domain of Pi is expanded accordingly for each i = A,B.37 The payoffs are

Pi(Xi, Xj) for each announcement profile (Xi, Xj) and i = A,B. We assume that there exists x̄ ∈ X

such that Pi({x̄}, X) = 1 for each i = A,B, which implies that clarifying a policy position is better

than being ambiguous when the other candidate is ambiguous. If (X,µ) ∈ M, we further assume

Pi({x∗}, X) = 1 for each i = A,B. Moreover, (whether or not (X,µ) ∈M,) once a candidate enters,

she prefers the opponent not to enter, that is, µ(Si(xi, X)) > infx′∈X µ(Si(xi, x
′)) holds for each

xi ∈ X, i = A,B. This assumption is satisfied if voters believe that candidates, without specifying

a policy, take a policy randomly upon being elected, and the voter utility functions are strictly

concave. We call the dynamic game with the above specification a symmetric office-motivated

election campaign. It is characterized by a tuple (X,µ, T, λA, λB).

Proposition 3. Consider a symmetric office-motivated election campaign with (X,µ, T, λA, λB).

There exists a PBE, and the following are true.

1. Suppose that (X,µ) ∈ M. Then, in any PBE, conditional on any history, each candidate i

announces x∗(X,µ).

2. Suppose that (X,µ) 6∈ M. Then, there exist t∗A, t
∗
B ∈ (0,∞) such that, in any PBE, if no one

has entered at time −t, candidate i does not enter if −t ∈ (−∞,−t∗i ), and does enter at some

policy if −t ∈ (−t∗i , 0]. It must be the case that sign(λA − λB) = sign(t∗A − t∗B).

Remark 7 (Existence of a pure-strategy Nash equilibrium). Note that (X,µ) ∈ M if and only if

there exists a pure-strategy Nash equilibrium in the static game in which each candidate chooses a

policy in X.38 Hence, the proposition shows that ambiguity emerges in a PBE if and only if there

37That is, PA(XA, XB) is 1 if µ(SA(XA, XB)) > µ(SB(XB , XA)), it is 1
2

if µ(SA(XA, XB)) = µ(SB(XB , XA)), and
is 0 otherwise. We let the probability of B’s winning be PB(XB , XA) = 1− PA(XA, XB).

38The reason for the “if” direction is that there always exists at least one candidate, say i, who receives no more
than half of the entire vote share in a Nash equilibrium, and (X,µ) 6∈ M implies that there exists a policy close to
j’s policy such that i always has an incentive to deviate to it to receive a vote share strictly higher than 1/2 (see, for
example, Theorem 7.1 of Roemer [2001] for a related result).

20



is no pure-strategy Nash equilibrium in such a static game.

[INSERT FIGURE II HERE]

Part 1 of Proposition 3 implies that, if there exists a Condorcet winner, then it is optimal to

announce that policy as soon as possible. In Figure II, we depict the times t∗A and t∗B that appear

in part 2. Intuitively, each candidate’s strategic situation is similar to that of the weak candidate

in the valence election campaign (Section 2.1): If the other candidate cannot enter, she prefers

entering to not entering (the former gives a payoff of 1 while the latter gives 1
2). However, if the

other candidate can enter, then she prefers not entering to entering (the former gives a positive

expected payoff while the latter gives 0). As a result, it is optimal not to enter if the deadline is

far because the probability that the other candidate can enter afterward is large. If the deadline is

close, however, it is optimal to enter since the probability of such an event is small.

Remark 8 (Empirical implications). If candidate B can only move slower (λB < λA), then the

proposition predicts that he is more likely to be ambiguous at the election date, and conditional on

entering, the expected entry time is later. For the entry time, there are two opposing forces: On

the one hand, since candidate B cannot move fast, the risk of him not being able to enter afterward

is substantial. This force would make him willing to enter early. On the other hand, candidate B

knows that candidate A is likely to obtain an opportunity later, and this would make him willing

to wait until the last moment. Since the loss from the latter is particularly large, he does not want

to enter until the last moment (t∗B < t∗A).

Another implication of Proposition 3 is that the faster candidate is more likely to win:

Proposition 4. Consider a symmetric office-motivated election campaign with (X,µ, T, λA, λB).

If λA > λB, then for any PBE, candidate A’s expected payoff is strictly greater than

that of candidate B.
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The proposition is straightforward if (X,µ) ∈ M. The case of (X,µ) 6∈ M may seem subtle.

To prove the claim, we consider the following deviation by candidate A, while fixing B’s strategy:

As long as B’s current announcement is ambiguous, A does not enter until −t∗B, and tries to enter

with probability λB
λA

whenever she receives an opportunity afterward. She, however, enters as soon

as possible after B’s entry. This strategy is symmetric to B’s strategy except that A can move

“more quickly” after the opponent’s entry than B can. Due to this asymmetry, A’s payoff after

the deviation is strictly higher than B’s payoff. Such a deviation would not raise A’s payoff, so

provides a lower bound of her PBE payoff. We combine this lower bound with the assumption that

the election is constant-sum and prove the proposition.

Finally, we state an implication of Proposition 3 on the relationship between the dynamics in

PBE and the dimensionality of the policy set.

Corollary 1. Fix X. The following are true:

1. If X is uni-dimensional (n = 1), then for any (µ, T, λA, λB), the following is true: In the sym-

metric office-motivated election campaign with (X,µ, T, λA, λB), there exists a PBE. More-

over, in any PBE, conditional on any history, each candidate i announces x∗(X,µ).

2. If X is multi-dimensional (n ≥ 2), then for generic µ, for any (T, λA, λB), the following are

true: There exists a PBE. Moreover, there exist t∗A, t
∗
B ∈ (0,∞) such that, in any PBE, if no

one has entered at time −t, candidate i does not enter if −t ∈ (−∞,−t∗i ), and does enter at

some policy if −t ∈ (−t∗i , 0].

2.3 Partial Commitment

The models presented so far assumes that either the candidate stays ambiguous or completely

specifies a policy. This is a natural generalization of the standard Hotelling model which usually

models candidates’ move as a choice of a single policy platform. However, once we introduce the

possibility of ambiguity, one may want to further ask whether the possibility of partial commitments

changes the prediction. This section considers such a question and shows that the main insight—

that the ambiguous language is used for a long time—is still valid, although partial commitments

may occur on the path of equilibrium play. More specifically, we consider an extension of the
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valence election campaign model (Section 2.1) to the case with a two-dimensional policy space

{0, 1}2. Each candidate can specify a policy in one or two policy issues (dimensions), where for

example {1} × {0, 1} corresponds to specifying a policy in the first issue while being ambiguous

in the second issue. It is shown that, on the path of equilibrium play for some parameter regions,

the candidates spend a long time keeping the policy announcement ambiguous, while the weak

candidate has an incentive to partially specify a policy close to the election date. The Democratic

primary election for the 2008 US presidential election may serve as an example in which such a

prediction applies. Obama had a clear position on health care on September 2007 at the latest,

which is when Mitt Romney used the term “Obama-care,” while it was October 2007 that Obama

clarified his position on LGBT rights.39

The two candidates are S and W . The policy space is X = X̄2 = {0, 1}2. There is a single

voter who is located at (x1, x2) ∈ {0, 1}2 with the following probability:

x2 = 0 x2 = 1

x1 = 0 p1p2 p1 (1− p2)

x1 = 1 (1− p1) p2 (1− p1) (1− p2)

We assume that the uncertainty about the voter’s location is higher in the second issue, i.e.,

p1 < p2 <
1
2 . When the voter is located at (x1, x2), her utility from candidate i with policy (y1, y2)

winning is

−
√

(y1 − x1)2 + (y2 − x2)2 + δ · Ii=S ,

where δ ∈ (0,
√

2
4 ) represents valence. We allow candidates to gradually clarify their policy an-

nouncements (policy sets) issue by issue. Formally, when a candidate’s policy set is Xi,1×Xi,2, we

say that her policy set is (Xi,1, Xi,2). We assume that when a candidate’s most recent policy set is

θi = (Xi,1, Xi,2), she can announce a policy set θ̃i =
(
X̃i,1, X̃i,2

)
with X̃i,1 ⊆ Xi,1 and X̃i,2 ⊆ Xi,2

such that X̃i,1 6= ∅ and X̃i,2 6= ∅. Since the initial policy set (at time −T ) is X, this determines the

collection of available policy sets. We write θ̃i ⊆ θi for simplicity in this case. Oftentimes we also

abuse notation to write, for example, (1, X̄) to mean the policy set ({1}, X̄).

We assume that, given the policy set θi announced at the last opportunity before time 0,

39Reeve (2011) and CNN Policy Ticker (2007).
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the voter believes that the candidate takes a policy according to the uniform distribution over

{(xi,1, xi,2) : ({xi,1}, {xi,2}) ⊆ θi}. She votes for the candidate who brings a higher expected utility,

while she votes for each candidate with probability 1/2 in the case of a tie.

This determines the payoff function.40 For example, suppose that candidate S’s policy set is(
X̄, X̄

)
, candidate W ’s policy set is (1, 1), and the voter is located at (0, 0). The voter’s payoff

from candidate S is

−1

4

(
0 + 1 + 1 +

√
2
)

+ δ = −0.85355 + δ,

and her payoff from W is −
√

2 = −1.4142.... Hence, she votes for S. The similar calculation

shows that candidate S wins if and only if the voter is located at (0, 0), (0, 1), or (1, 0), which

happens with probability 1− (1− p1) (1− p2). Thus, S’s payoff is 1− (1− p1) (1− p2) and W ’s is

(1− p1) (1− p2).

We call the dynamic game with arrival rates λS = λW =: λ with the above specification a

multi-issue election campaign with valence. It is characterized by a tuple (p1, p2, , T, λ).

We always write candidate S’s policy first when we list both candidates’ policies. For example,

when we say the current policy announcement is
((
X̄, X̄

)
,
(
1, X̄

))
, it means that S’s current policy

announcement is
(
X̄, X̄

)
while W ’s is

(
1, X̄

)
.

We focus on the case where pk ≥ 1
1+e for each k ∈ {1, 2}. Given the analysis of the one-issue

case in Section 2.1, this condition implies that, once both candidates enter at
(
xk, X̄

)
, candidate

S never moves until candidate W enters at (xk, 1), and candidate W enters at (xk, 1) for time

−t ∈ (− 1
λ , 0] and stays at

(
xk, X̄

)
for time −t ∈ (−∞,− 1

λ). The following proposition characterizes

the candidates’ behavior under the events that happen on the path of equilibrium play:

Proposition 5. Consider a multi-issue election campaign with valence with (p1, p2, , T, λ) such

that pk ≥ 1
1+e for each k ∈ {1, 2}. There exists a PBE, and the following hold for any PBE, where

t∗W := 1
λ

5−6p1−p2

3(1−2p1+p2) >
1
λ :

1. Given
((
X̄, X̄

)
,
(
X̄, X̄

))
, (i) candidate S stays at

(
X̄, X̄

)
for each −t ∈ (−∞, 0] and (ii)

candidate W stays at
(
X̄, X̄

)
for each −t ∈ (−∞,−t∗W ) and enters at

(
1, X̄

)
for each −t ∈

(−t∗W , 0].

40We put the full payoff matrix in the Online Appendix.
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2. Given
((
X̄, X̄

)
,
(
1, X̄

))
, (i) candidate S enters at

(
1, X̄

)
for each −t ∈ (−∞, 0] and (ii)

candidate W stays at
(
1, X̄

)
for each −t ∈ (−∞, 0].

3. Given
((

1, X̄
)
,
(
1, X̄

))
, (i) candidate S stays at

(
1, X̄

)
for each −t ∈ (−∞, 0] and (ii) can-

didate W stays at
(
1, X̄

)
for each −t ∈ (−∞,− 1

λ) and enters at (1, 1) for each −t ∈ (− 1
λ , 0].

4. Given
((

1, X̄
)
, (1, 1)

)
, candidate S enters at (1, 1) for each −t ∈ (−∞, 0].

[INSERT FIGURE III HERE]

In Figure III, we depict the times t∗W and 1
λ that appear in Proposition 5. As in the one-issue

case, candidate S moves only to match her state with candidate W . Candidate W also stays at(
X̄, X̄

)
until some time cutoff, since moving too early increases the risk of being copied by candidate

S. Candidate W first enters at
(
1, X̄

)
, keeping the possibility of entering at (1, 1) afterward even

if candidate S successfully copies
(
1, X̄

)
. Since candidate W leaves this possibility, the cutoff to

enter at
(
1, X̄

)
comes earlier compared to the cutoff to enter at 1 in the one-issue problem (that

is, t∗W > 1
λ).

Remark 9 (Empirical implication). The multi-issue model in this section has an empirical impli-

cation that we did not have in the one-issue model (Section 2.1): Candidates clarify their policy

positions for the issue k for which the voters’ preferences are “more certain,” in the sense that pk

is small. The intuition for why this happens is roughly as follows: W ’s benefit from delaying the

clarification of a position for issue 1 until a position for issue 2 is clarified would arise after the first

clarification (clarifying a policy for issue 2) is copied by S. But W can time the first clarification

of his policy position to lessen the probability of it being copied, so this benefit is not so large.

Another difference from the one-issue case is that the cutoff t∗W depends on p1 and p2 while the

cutoff 1
λ in the one-issue model is independent of p. In the one-issue model, given that S never

enters unless W enters, the only event in which W can obtain a positive payoff is that he enters at
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1 and S cannot enter afterwards. Since the probability of this event is independent of p, his cutoff

is also independent of p. In the two-issue case, since W has multiple cases in which he can win with

positive probability and their payoffs are different and depend on (p1, p2), the cutoff t∗W depends

on (p1, p2).

Remark 10 (Comparative statics). Given the dependence of t∗W on (p1, p2), we obtain the fol-

lowing comparative statics: The cutoff t∗W in Proposition 5 is strictly increasing in p1 and strictly

decreasing in p2. This in particular implies that it is more likely for us to observe the situation in

which both candidates are completely ambiguous when the popular policy issue is clearer in one

issue (with a constraint that it is not too clear—we need p1 ≥ 1
1+e) while it is highly uncertain in

the other issue.

To understand why t∗W is increasing in p1, note that candidate W ’s payoff when the realized

policy profile is
((
X̄, X̄

)
,
(
1, X̄

))
is 1 − p1. This implies that an increase of p1 reduces W ’s con-

tinuation payoff from entering at
(
1, X̄

)
as well as staying at

(
X̄, X̄

)
. The payoff of 1− p1 realizes

when S cannot enter afterward in the former case, and when W enters and then S cannot enter

afterward in the latter case. Since t∗W can be shown to be not too close to the deadline, at time

−t∗W for a given p1, the probability of W ’s receiving 1 − p1 is larger in the latter case, and hence

the reduction of the continuation payoff is larger in that case. Recalling that −t∗W is the time at

which the two continuation payoffs are equal, this implies that the increase of p1 pushes the cutoff

t∗W further from the deadline. Once
((

1, X̄
)
,
(
1, X̄

))
happens, then W ’s best scenario is that the

election campaign ends with
((

1, X̄
)
, (1, 1)

)
and he obtains 1− p2. An increase in p2 implies that

this scenario (S copies
(
1, X̄

)
and so W needs to differentiate himself in the second issue) becomes

less attractive, so candidate W is more afraid of candidate S copying
(
1, X̄

)
. This incentivizes

candidate W to skip opportunities until later.

Note that, in the proposition, we focus on the case where pk ≥ 1
1+e for each k ∈ {1, 2} because

this is the most interesting case that yields the result consistent with the reality of election cam-

paigns provided in the Introduction. In the one-issue case, if p < 1
1+e , there exists tS < ∞ such

that S enters at policy 1 as soon as possible for each −t ∈ (−∞,−tS) since the uncertainty of the

median voter location is sufficiently low and S is willing to ensure the payoff from policy 1 given

that W does not enter early. In the multi-issue model, we can show a similar result. Specifically,

for sufficiently small p1 and p2, there exists t∗∗S such that S enters at policy (1, 1) as soon as possible
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for each −t ∈ (−∞,−t∗∗S ).

Remark 11 (Incumbent’s partial commitment). In the multi-issue election campaign, it is inter-

esting to see the effect of an incumbent’s commitment as in Remark 6 in Section 2.1. Specifically,

suppose that S has already committed to (1, X̄). In this modified game, we can show that there is

a time cutoff such that before the cutoff, W keeps announcing (X̄, X̄), while W announces (1, 1)

after the cutoff. It might be counterintuitive that W announces a policy that may be later copied

by S, while it might make more sense for W to choose, say, (X̄, 1). However, under the resulting

policy profile ((1, X̄), (X̄, 1)), W will lose if the voter is at (1, 1), which is the most likely event.

This is the key reason why W chooses (1, 1). The cost of the commitment (defined as the difference

in S’s payoffs) can be shown to be strictly increasing in p1 and strictly decreasing in p2.41 The

first comparative statics make sense because a larger p1 implies that W ’s advantage of committing

to policy 1 in the first issue is reduced in the election campaign game, while the commitment to

policy 1 for the first issue is less attractive for S. The second comparative statics follow because

W ’s payoff is negatively affected if p2 increases, but the effect is larger in the commitment case

in which W does not time his entry to the first issue before contemplating the entry time to the

second issue. This means that W ’s payoff difference decreases in p2, so S’s payoff increases in p2.

The formal analysis is provided in the Online Appendix.

3 A Unified Framework for Dynamic Election Campaign—Policy

Announcement Timing Game

This section presents a general model that encompasses the applications presented in Section 2.

There are two candidates, A and B. Whenever we say candidates i and j, we assume i 6= j. There

is a set of policies, X. We define a collection of “policy sets,” denoted X ∈ 2X \{∅}. In the course of

election campaign, each candidate announces an element of X (the available policy sets).42 Given

a profile of policy sets (XA, XB) ∈ X ×X , let vi(Xi, Xj) be candidate i’s payoff for each i = A,B.

This specification allows for virtually any static model of elections. For example, this allows

41It is
e

6p1+p2−5
−6p1+3p2+3 (−8p1p2+12(p1−1)p1−3(p2)2+10p2+1)

12p1−6(p2+1)
+ p2−1

e
+ 1−

(
1− (1− p2) e

−1+
p1

1−p2

)
.

42Here we implicitly assume that the available policy sets are common across the two candidates, but it is merely
for simplicity and does not affect the essence of our results.
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probabilistic voting in which the winning probability is determined once we fix the policy set profile

(XA, XB). The following is how the general setup maps to the applications presented in Section 2.

1. Valence election campaign: vS({0}, {0}) = vS({1}, {1}) = vS(X,X) = 1, vS({0}, {1}) =

vS({0}, X) = vS(X, {1}) = p, vS({1}, {0}) = vS({1}, X) = vS(X, {0}) = 1−p, and vW (XW , XS) =

1− vS(XS , XW ) for each (XS , XW ).

2. Symmetric office-motivated election campaign: vi(Xi, Xj) = Pi(Xi, Xj) for eachXi, Xj ∈

X and i = A,B.

3. Partial commitment: vS(X ′, X ′) = 1 for any X ′ ∈ X , vS((X̄, X̄), (1, 1)) = 1− (1− p1)(1−

p2) as explained in Section 2.3, and so forth. The full payoff matrix is in the Online Appendix.

In our policy announcement timing game, time flows continuously from −T < 0 to 0. Time 0

is the fixed election date and the campaign starts at −T . During the time interval −t ∈ [−T, 0],

according to the Poisson process with arrival rate λi > 0, each candidate i = A,B obtains opportu-

nities to announce her policy set. We assume that the Poisson processes are independent between

the candidates. The candidates’ payoffs are determined according to the finally announced policy

set profiles as of time 0.

In what follows, we analyze perfect Bayesian equilibria of this game. To formally define strate-

gies in our setting, we first define history. A history for candidate i records all of i’s announcements

and their times, all of j’s change of announcements and their times, the current time, and whether

there is an opportunity at the current time. Formally, it is denoted by

((
tki , X

k
i

)ki
k=1

,
(
tlj , X

l
j

)lj
l=1

, t, zi

)
,

where −T ≤ −t1i < ... < −tkii < −t; Xk
i ∈ X for all k; −T ≤ −t1j < ... < −tljj < −t; X l

j ∈ X

for all l; and zi ∈ {yes, no}. The interpretation is that −tki is the time at which candidate i

receives his or her k’th revision opportunity, and Xk
i is the policy set that i has chosen at time −tki .

We assume that candidate i cannot observe whether candidate j receives an opportunity, but can

observe candidate j’s choice of a policy set whenever it changes.43 That is, tlj is the l’th time that

43The prediction of the model will be the same even if candidate i can observe all of candidate j’s opportunities,
in the sense formalized in the Constant-Sum Markov Theorem (Theorem 3) and Remark 14. Such invariance would
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candidate j changes his or her policy set from the previous one, and X l
j is the policy set that j has

chosen at time −tlj . We let X0
i = X0

j = X, that is, the policy set at time −T is exogenously given

to be X. The third element t denotes the current remaining time, and the indicator zi expresses

whether there is an opportunity for candidate i at time −t. By H
ki,lj
i , we denote the set of histories

in which candidate i for i = A,B has received ki opportunities in the past and in which candidate j

has changed policy sets lj times. The set of all histories for candidate i is Hi :=
⋃∞
ki=0

⋃∞
lj=0H

ki,lj
i .

A strategy for candidate i is denoted by σi : Hi → ∆(X ), with three restrictions: First,

σi(hi) = Xki
i where ki is specified in the first element of hi if the fourth element in hi specifies

zi = no. That is, if there is no opportunity at −t for i, then for notational convenience, we

specify that the candidate takes the same policy set as specified in the last opportunity. Second, if

zi = yes, then the strategy σi(hi) must assign probability zero to Xi ∈ X if Xi 6⊆ Xki
i . Thus, the set

of candidate i’s possible announcements at time −t depends on i’s own past policy announcement:

If i has already ruled out some policy platform, then she cannot come back to it afterward. The

third requirement is technical. To guarantee that candidates’ payoffs are integrable with respect

to the distribution of the final outcome given the strategy profile, we require that σi (hi) puts a

positive probability only on a countable subset of X .

Let Σi be the set of all strategies of candidate i. Let ui(σ|hi, hj) be candidate i’s continuation

payoff given history profile (hi, hj) ∈ Hi ×Hj and the strategy profile σ ∈ ΣA ×ΣB.44 Let Hj (hi)

be the set of candidate j’s feasible histories given hi, and let β(·|·) : Hi → ∆ (Hj) be candidate

i’s belief about candidate j’s history such that
∫
hj∈Hj(hi) dβ (hj |hi) = 1 for each hi ∈ Hi for each

i = A,B. Given a belief β, let uβi (σ|hi) =
∫
hj∈Hj ui(σ|hi, hj)dβ (hj |hi) be candidate i’s expected

continuation payoff given hi. A strategy profile (σ∗A, σ
∗
B) is a perfect Bayesian equilibrium

(PBE) if there exists a belief β such that, for each i ∈ {A,B}, (i) σ∗i ∈ arg maxσi∈Σi u
β
i (σi, σ

∗
j |hi)

holds for every hi ∈ Hi and (ii) β is derived from Bayes rule whenever possible.45

Remark 12 (Existence of an equilibrium). Our theorems in the next section prove properties of

not obtain if we introduce incomplete information to the model because the past observation may provide additional
information about the opponent’s type. This possibility is explored in the working paper version of this paper
(Kamada and Sugaya [2019]).

44This is well defined because Hi is a countable union of subsets of a finite-dimensional space.
45Although each information set at any time after −T has probability zero, one can apply Bayes rule to calculate

relevant conditional probabilities because any Poisson process has a countable number of arrivals with probability
one. We formally define Bayes rule for our context in the Online Appendix.
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PBE but do not prove existence of a PBE.46 More specifically, Theorems 1 and 2 provide properties

that hold for any PBE, and Theorem 3 assumes the existence of an MPE. Moroni (2019) and Lovo

and Tomala (2015) show that a PBE and a MPE exists if X is finite, respectively. This latter

result implies that the equilibrium value is unique if X is finite. When X is infinite (for example,

X is a policy set [−1, 1] as in the Downsian model), our theorems will be useful for guaranteeing

the uniqueness of the value once we solve for a particular MPE by backward induction, as we did

in Section 2.

4 General Predictions

In Section 2, we have seen that the policy announcement timing game can be applied to analyses of

various settings. In those applications, we showed results that match observations in real election

campaigns (cf. discussions in the Introduction). Now we present general principles that underlie

those results. This helps us understand the logic behind various results in Section 2, as well as

shows the robustness of those results to wider classes of environments.

To recap, our discussion of the applications have the following in common: Candidates use

ambiguous language when the election date is not close if entering before the opponent is disadvan-

tageous, while they enter as soon as possible if a Condorcet winner exists. Moreover, we obtained

uniqueness of the entry times in all the applications. In this section, we aim to generalize those

results.

In Section 4.1, we offer a general condition for candidates to use ambiguous language. The key

condition is what we call the “first-mover disadvantage,” which roughly corresponds to the non-

existence of a Condorcet winner. In contrast, Section 4.2 shows that if there is a Condorcet winner,

then candidates announce the policy corresponding to the Condorcet winner as soon as possible.

Finally, Section 4.3 offers a general implication of the candidates being purely office-motivated.

46The reason for this choice of exposition is that we did not want to rule out continuous action spaces, which
the standard Hotelling model features. Although existence could be proven for each application, generally proving
existence when there are infinitely many actions would be difficult.
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4.1 The Long Ambiguity Theorem

In this section, we identify conditions under which candidates spend a long time keeping their

policies ambiguous. For simplicity, here we assume that (vi, vj) is constant-sum. The case with

non-constant-sum payoffs is discussed in Appendix F.

Before stating the first-mover disadvantage condition, we introduce a few notations. Given

(θi, θj) ∈ X 2, we define i’s first-mover payoff as the payoff that i receives in a deterministic-move

game with the initial policy set profile (θi, θj) in which i moves first and j moves next, with a

constraint that i can only announce a singleton policy set. Formally,

vFMi (θi, θj) = sup
xi∈θi

(
inf

Xj∈X , Xj⊆θj
vi(xi, Xj)

)
.

Similarly, i’s second-mover payoff is the payoff that i receives in a deterministic-move game with

the initial policy set profile (θi, θj) in which j moves first and i moves next:

vSMi (θi, θj) = inf
Xj∈X , Xj⊆θj

(
sup

Xi∈X , Xi⊆θi
vi(Xi, Xj)

)
.

Note that there is slight asymmetry in the two definitions, namely that i is assumed to announce

a singleton policy set in defining the first-mover payoff. This is because the theorem below will

provide a condition under which i will not announce a singleton policy set.

Normalize the worst possible payoff of the game at 0. We say that, the first-mover disad-

vantage holds for candidate i given (θi, θj) if the first-mover payoff is relatively small compared to

the second-mover payoff:47

vFMi (θi, θj) <


e−1vSMi (θi, θj) if λj = λi,(

λj
λi

) λj
λi−λj vSMi (θi, θj) if λj 6= λi.

(1)

Theorem 1 (Long Ambiguity). Suppose (vA, vB) is constant-sum and is bounded, i.e., there exists

v̄ < ∞ such that 0 ≤ vi(X,X
′) ≤ v̄ for all X,X ′ ∈ X and i = A,B. For each (θi, θj), there exists

T̄ <∞ such that, for any PBE, if the first-mover disadvantage holds for candidate i, then she never

47The coefficient
(
λj
λi

) λj
λi−λj converges to e−1 as λj → λi.
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enters at any xi ∈ X for each −t ∈
(
−∞,−T̄

)
such that the current policy set profile is (θi, θj).

The idea of the proof can be explained as follows. Suppose that at time −t, the current policy

set profile is (θi, θj). On the one hand, the payoff from choosing a singleton policy set approaches

the first-mover payoff (vFMi (θi, θj)) as the time −t tends to infinity. On the other hand, the payoff

from not doing so can be bounded from below by considering the payoff from the strategy in which

i keeps choosing θi until some (t-independent) time-cutoff −a and then chooses some policy set.

A lower bound of the expected payoff under such a strategy can be computed by assuming that

(i) i receives the second-mover payoff when i moves after time −a and then j has no chance to

react, while (ii) i receives the worst feasible payoff in all other cases. The first-mover disadvantage

condition ensures that the comparison of the two payoffs suggests that i does not choose a singleton

policy set when t is sufficiently far away. Since we can further show that the convergence speed

of the payoff from choosing a singleton policy set does not depend on the choice of the policy to

enter, there is a uniform bound T̄ <∞ such that for all −t < −T̄ , i does not enter at any singleton

policy set.

Let us explain how we use this theorem. In the valence election campaign (Section 2.1), given

θS = {0, 1} and θW = {0, 1}, the first-mover disadvantage holds for candidate W . To see why,

notice that on the one hand, we have minxS∈{0,1} vW (xW , xS) = 0 for xW ∈ {0, 1} since S can win

for sure by copying W ’s policy, and hence vFMW (X,X) = 0. On the other hand,

vSMW ({0, 1}, {0, 1}) = min
XS∈{0,1,{0,1}}

max
XW∈{0,1,{0,1}}

vW (XW , XS) = p > 0.

Therefore, there exists T̄ < ∞ such that, for any PBE, W does not enter for each −t ∈(
−∞,−T̄

)
given θS = {0, 1} and θW = {0, 1}. To obtain Proposition 2 in Section 2.1, we separately

verify that if p > 1/(1 + e), then for any PBE, for each −t ∈ [−T̄ , 0], S does not enter unless W

entered before. Given these results, for each −t < −T̄ , if S skips all the opportunities until −T̄ ,

the policy announcement profile at −T̄ is ({0, 1} , {0, 1}). If S enters at {1} (or {0}), her payoff is

1−p (or p). Hence, if S prefers not entering at −T̄ in any PBE, then she does not enter until −T̄ in

any PBE. Therefore, we conclude that θS = {0, 1} and θW = {0, 1} are realized on the equilibrium

path for each −t ∈
(
−∞,−T̄

)
in any PBE.

In the symmetric office-motivated election campaign (Section 2.2), if the Condorcet winner does
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not exist, then for each candidate i, we have (i) minxj∈X vi(xi, xj) = 0 for each xi ∈ X and hence

vFMi (X,X) = 0, and (ii) vSMi (X,X) = minXj∈X maxXi∈X vj(Xj , Xi) = 1. Hence, again, there

exists T̄ <∞ such that for any PBE, each candidate i does not enter for each −t ∈ (−∞,−T̄ ].

In the model of Section 2.3, given (θS , θW ) satisfying θW ⊆ θS , the first-mover disadvantage

holds for W (the proof is the same as in the valence election campaign). Separately, we verify that

if p1, p2 > 1/(1 + e), then the strong candidate always copies W ’s policy on the equilibrium path in

any PBE (that is, denoting the current policy set profile by (θS , θW ), we have θW ⊆ θS all the time

on the equilibrium path). Hence, candidate W does not enter for a long time on the equilibrium

path. Since θW ⊆ θS on the equilibrium path, this long ambiguity of W implies that S employs

ambiguous policies for a long time.

4.2 The Dynamic Median-Voter Theorem

In this section, we consider an extension of the median voter theorem, which has an implication

on several of our models in Section 2. A policy set X∗ ∈ X is a Condorcet winner if, for each

i, X∗ is a unique best response to X∗ and vi (X∗, X) ≥ vi (Xi, X) for each Xi ∈ X . Notice that,

in a symmetric election (vi(X̄, X̄
′) = vj(X̄, X̄

′) for any X̄, X̄ ′ ∈ X ) that is constant-sum such that

vi(X̄, X̄
′)+vj(X̄, X̄

′) = 1 for any X̄, X̄ ′ ∈ X , “X∗ is a unique best response to X∗” is equivalent to

“vi(X
∗, X̄ ′) > 1

2 for any X̄, X̄ ′ ∈ X ,” hence the name “Condorcet winner.”48 Note, however, that

a Condorcet winner need not be a weakly dominant strategy under our definition, so our theorem

will apply to a wider class of elections.49

For example, in a uni-dimensional Downsian model in which (i) a candidate wins with probabil-

ity one if the vote share is strictly greater than 1/2 and with probability 1/2 if the vote share is 1/2,

and (ii) entering at the median voter ensures winning when the opponent does not enter (for exam-

ple, consider a model in which the voters are risk averse and think that there is uncertainty about

what policy a candidate announcing X would implement), there is a unique Condorcet winner {x∗}

if the policy corresponding to the median voter is x∗. In addition, the policy set {1} with δ = 0 in

48To see that the equivalence holds, consider a symmetric constant-sum election. Symmetry and constant-sum
imply vi(X

∗, X∗) = 1
2
. Take an arbitrary X̄ ′ 6= X∗. Note that symmetry implies that vi(X

∗, X̄ ′) > 1
2

is equivalent
to vi(X̄

′, X∗) < 1
2
. Hence, vi(X

∗, X̄ ′) > 1
2

is equivalent to vi(X
∗, X∗) > vi(X̄

′, X∗). Since this holds for any choice
of X̄ ′ 6= X∗, we have established the desired equivalence.

49Thus, our theorem that candidates enter at the Condorcet winner as soon as possible may not be as straightforward
as one might think. Moreover, even if there is a dominant strategy, the revision-games literature shows that it is not
necessarily the case that it must be played right away (see, e.g., Kamada and Kandori [2019]).
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Proposition 1 and the policy set {x∗(X,µ)} in the symmetric office-motivated election campaign

with (X,µ) ∈M (part 1 of Proposition 3) are Condorcet winners. Note that the definition implies

that there is at most one Condorcet winner.50

The following theorem extends the median voter theorem to a dynamic environment.

Theorem 2 (Dynamic Median-Voter). Suppose that (vA, vB) is constant-sum and there exists a

Condorcet winner X∗. Then, in any PBE, at any time −t ∈ (−∞, 0), conditional on any history

of candidate i such that the current policy set profile is (X ′, X ′′) with X∗ ⊆ X ′ and X ′′ ∈ {X,X∗},

i announces X∗.

The theorem can be applied to prove that, in the examples mentioned above, candidates enter

at the Condorcet winner specified above as soon as possible.

The heart of the proof shows that, if candidate i chooses some X ′ 6= X∗ and the opponent j has

a chance to make an announcement afterward, j can secure the payoff of vj(X
∗, X ′) in the event i

receives no further move after such j’s move. By the constant-sum assumption, this implies that

vi(X
′, X∗) is an upper bound of i’s payoff in this case, which is strictly lower than vi(X

∗, X∗) by

the assumption that X∗ is a unique best response to X∗. This enables us to bound i’s payoff from

choosing X ′ 6= X∗ from above. With a similar argument, we can bound the payoff from choosing

X∗ from below, and show that such a lower bound is larger than the upper bound of the payoff

from choosing X ′ 6= X∗.

In a working paper version of this paper (Kamada and Sugaya [2019]), we generalize the theorem

to cover the case with non-constant-sum games. In particular, we show the uniqueness of a PBE

when we further require that there is a policy that is strictly dominant for each i.

4.3 The Constant-Sum Markov Theorem

In all of the applications we consider in Section 2, candidates are purely office-motivated, and thus

their utility functions are constant-sum since the winning probabilities must add up to one. In

this section, we provide a characterization of the equilibrium dynamics for constant-sum elections

by showing that, in constant-sum elections, candidates’ continuation payoffs at any history are

50To prove this, suppose that X∗ and X∗∗ are both Condorcet winners. Then, vi(X
∗, X∗) < vi(X

∗, X∗∗) <
vi(X

∗∗, X∗∗), where the first inequality follows because X∗ is j’s unique best response against i’s X∗ and (vi, vj) is
constant-sum, and the second inequality follows because X∗∗ is i’s unique best response against j’s X∗∗. A symmetric
argument shows that vi(X

∗∗, X∗∗) < vi(X
∗, X∗). This is a contradiction.
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determined only by the remaining time and the current policy set profile. Moreover, we show that

it is irrelevant whether each candidate observes the arrival of the opponent’s opportunities. More

specifically, as specified in Section 3, we assume throughout the paper that each candidate cannot

observe the arrivals of opportunities to the opponent but only the changes of the policy set. We

compare such a setting with the model in which each candidate can observe the arrivals of the

opponent’s opportunities, including those that do not involve changes in the policy set. We call

the former and the latter setups “private monitoring” and “public monitoring,” respectively.

To define the setup of “public monitoring” formally, let ht =
((
tkA, X

k
A

)kA
k=1

,
(
tkB, X

k
B

)kB
k=1

, t
)

be the entire history at −t, where −tkj < −t is the time at which candidate j receives his or her

k’th revision opportunity; Xk
j is the policy set that j has chosen at time −tkj ; and t denotes the

current remaining time. Let H be the set of all histories. We say that a history for candidate i

at time −t, denoted hti, is consistent with ht if the former is given by deleting information about

j’s opportunities at which j did not change the policy set. Let θ
(
ht
)

=
(
XkA
A , XkB

B

)
be the most

recent policy profile at time −t; and θi
(
ht
)

= Xki
i be candidate i’s most recent policy at −t. Note

that θ
(
ht
)

= θ
(
hti
)

for each i and t. Candidate i’s strategy is a map σi : H → ∆ (X ), with a

restriction that θ(ht) = (XA, XB) implies that σi(ht) ⊆ Xi. Let Σ̌i be the space of i’s strategies,

and Σ̌ = Σ̌A×Σ̌B. With σi, candidate i takes σi
(
ht
)

if she has an opportunity at time −t and takes

θi
(
ht
)

otherwise. A subgame-perfect equilibrium (SPE) can be defined in the standard manner.

We call this setup “public monitoring.”

In the “private monitoring” setup, recall that a strategy profile (σ∗A, σ
∗
B) is a PBE if there exists

a belief β such that, for each i ∈ {A,B}, (i) σ∗i ∈ arg maxσi∈Σi u
β
i (σi, σ

∗
j |hti) holds for every hti ∈ Hi

and (ii) β is derived from Bayes rule whenever possible.

First, take an arbitrary PBE σ ∈ Σ in private monitoring, and let wit
(
σ, hti, Xi

)
be candidate i’s

continuation payoff of taking Xi ∈ X when her private history is hti and she receives an opportunity

at −t. Similarly, let ŵit
(
σ, hti, Xj

)
be candidate i’s continuation payoff when her private history is

hti and candidate j receives an opportunity and takes Xj ∈ X ; and let wit
(
σ, hti, no

)
be candidate

i’s continuation payoff when her private history is hti and no candidate receives an opportunity at

−t.

Second, take an arbitrary SPE σ̄ ∈ Σ̌ in public monitoring, and let W i
t

(
σ̄, ht, Xi

)
be candidate

i’s continuation payoff of taking policy Xi ∈ X when the public history is ht and she receives an
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opportunity at −t. Similarly, let Ŵ i
t

(
σ̄, ht, Xj

)
be candidate i’s continuation payoff when the public

history is ht and candidate j receives an opportunity and takes Xj ∈ X ; and let W i
t

(
σ̄, ht, no

)
be candidate i’s continuation payoff when the public history is ht and no candidate receives an

opportunity at −t.

Third, candidate i’s Markov strategy is a map that is constant with respect to the part of the

histories other than the state, where the state is defined as the profile of the current remaining time

t and the policy set profile at −t. Markov-perfect equilibrium (MPE) is a subset of the set of SPE

where candidates take Markov strategies.

We can show that, if an MPE exists in public monitoring, then its value function corresponds to

a value function of any SPE under public monitoring and that of any PBE under private monitoring,

where the value vi,t(Xi, Xj) represents all three of the following: (a) i’s continuation payoff of i’s

taking Xi when only i receives an opportunity at −t in which the current policy set of j is Xj , (b) i’s

continuation payoff of j’s taking Xj when only j receives an opportunity at −t in which the current

policy set of i is Xi, and (b) i’s continuation payoff when no candidate receives an opportunity at

−t in which the current policy set profile is (Xi, Xj) (recall that θj
(
ht
)

= θj
(
hti
)

= θj(h
t
j)).

Theorem 3 (Constant-Sum Markov). Suppose vA(XA, XB)+vB(XA, XB) = 1 for each (XA, XB) ∈

X ×X and an MPE exists under public monitoring. Then, there exists vi,t : X ×X → R such that,

for any PBE σ ∈ Σ under private monitoring, SPE σ̄ ∈ Σ̌ under public monitoring, public history

ht, private history hti consistent with ht, and (Xi, Xj) ∈ X × X , we have

wit
(
σ, hti, Xi

)
= W i

t

(
σ̄, ht, Xi

)
= vi,t

(
Xi, θj

(
ht
))

; (2)

ŵit
(
σ, hti, Xj

)
= Ŵ i

t

(
σ̄, ht, Xj

)
= vi,t

(
θi
(
ht
)
, Xj

)
(3)

and

wit
(
σ, hti, θi

(
hti
))

= ŵit
(
σ, hti, θj

(
hti
))

= wit
(
σ, hti, no

)
(4)

= W i
t

(
σ̄, ht, θi

(
ht
))

= Ŵ i
t

(
σ̄, ht, θj

(
ht
))

= W i
t

(
σ̄, ht, no

)
= vi,t

(
θ
(
ht
))
.

First, we explain the result under public monitoring. Take an MPE σ̄ ∈ Σ̌ under public

monitoring, and let vi,t (Xi, Xj) be the equilibrium value of this MPE when the state is (t,Xi, Xj).

Suppose there exists another SPE σ̂ ∈ Σ̌ which achieves the value v̂i,t (Xi, Xj) 6= vi,t (Xi, Xj) for
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some t, Xi, and Xj . Without loss, assume v̂i,t (Xi, Xj) > vi,t (Xi, Xj).
51 Since the game is constant-

sum, this inequality implies that if candidate i deviates from σ̄i to σ̂i for the time interval (−t, 0]

when θj
(
hti
)

= Xi and θj
(
ht
)

= Xj , then no matter what candidate j will do in the continuation

play, candidate i’s payoff improves upon vi,t (Xi, Xj). In particular, her payoff strictly increases

when j follows σ̄j . Therefore, if σ̄ is MPE, such σ̂ cannot exist. This establishes the results for

public monitoring.

Second, for private monitoring, suppose there exists a PBE σ̃ ∈ Σ which achieves ṽi,t (Xi, Xj) 6=

vi,t (Xi, Xj) for some t, Xi, and Xj . Again, without loss, assume ṽi,t (Xi, Xj) > vi,t (Xi, Xj). By

the same argument as above, if candidate i takes σ̃i, then no matter what candidate j will do

under private monitoring, candidate i’s payoff improves upon vi,t (Xi, Xj). In particular, candidate

i obtains the payoff no less than ṽi,t (Xi, Xj) if candidate j takes σ̄j under private monitoring. Here,

we use the fact that the space for Markov strategies under public monitoring can be seen as the

same as the space for Markov strategies under private monitoring: Since Markov strategies depend

only on the current policy sets and the current time, candidate j “can take” σ̄j under private

monitoring as well.

However, whether monitoring is private or public, candidate i’s strategy that is a best response

against σ̄j after all histories contains a Markov strategy. Intuitively, if the opponent uses a strategy

that only depends on t, θi(h
t), and θj

(
ht
)
, then it is sufficient for candidate i to take a strategy which

depends only on those variables. Together with this result, the conclusion of the last paragraph

implies that there exists a Markov strategy of candidate i that achieves the value no less than

ṽi,t (Xi, Xj) > vi,t (Xi, Xj) against σ̄j . This contradicts the fact that vi,t (Xi, Xj) is the value of

MPE σ̄. Therefore, under private monitoring, the equilibrium value must be equal to vi,t (Xi, Xj).
52

As we mentioned, all of the applications in Section 2, candidates are purely office-motivated,

so the payoffs are constant-sum. Thus, Theorem 3 implies that the continuation payoffs are the

same between the public monitoring and private monitoring models. This implies that the outcome

characterized under private monitoring is outcome-equivalent to the one under public monitoring.

Moreover, the equivalence between public and private monitoring is used to prove Theorem 2.

51This is without loss because, since the game is constant-sum, given v̂i,t (Xi, Xj) < vi,t (Xi, Xj), we have
v̂j,t (Xj , Xi) > vj,t (Xj , Xi). The rest of the explanation goes through with i and j reversed.

52Although it is intuitive, we do not know whether the result extends to the case with non-constant-sum games.
The (generic) uniqueness of continuation payoffs is an open question in the revision-games literature.
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5 Discussions

We provide two more examples of settings in which our policy announcement timing game is

applicable. The full analysis of those can be found in the Appendix. A working paper version of this

paper (Kamada and Sugaya [2019]) contains more topics, such as campaign spending, incomplete

information, and synchronous announcement opportunities. The point of this section is to illustrate

the wide applicability of the model: There are many ways in which one can use our framework to

analyze topics that are relevant for election campaigns.

Multi-dimensional policy space with policy motivation: The analysis on the multi-dimensional

policy space in Section 2.2 does not give us a precise prediction regarding the policies that can-

didates announce due to its excessive simplicity of pure office motivation. To show that such

indeterminacy is not a consequence of the way our general dynamic model is specified, we intro-

duce policy motivation to the model with a multi-dimensional policy space in Appendix G. Again,

we show that ambiguous language is used for a long time in equilibrium, and pin down the policies

that candidates announce. Interestingly, in equilibrium, a candidate may announce a policy that is

Pareto inefficient among both candidates. The reason is that announcing such a policy will make

it incentive compatible for the other candidate to announce a policy that is not too unfavorable

for the candidate in the event that the other candidate obtains a chance of a policy announcement

afterward. Announcing a policy position with a motive to influence the opposition’s policy, though

possibly sounding unrealistic, did actually happen in real campaigns. During the Democratic Party

presidential primaries in 2016, for example, the far-left Bernie Sanders called for a $15-an-hour min-

imum wage (more than twice as much as the $7.25 standard back then) and Medicare-for-all health

care, and proposed to end TPP. After losing Pennsylvania, Maryland, Delaware, and Connecticut

in a row, Sanders declared in a town hall meeting: “But if we do not win, we intend to win every

delegate that we can so that when we go to Philadelphia in July, we are going to have the votes to

put together the strongest progressive agenda that any political party has ever seen.”53 An article

in Vox (Stein [2016]) writes: “Bernie Sanders moved Democrats to the left. The platform is proof.

[...] Hillary Clinton may have won the Democratic Party’s presidential nomination, but Bernie

Sanders has still left an outsize mark on its future.”

Different reasons for ambiguity: In our model, candidates use ambiguous language due to the

53The facts and the quote appear in Strauss (2016) and Gurciullo and Debenedetti (2016).
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first-mover disadvantage. As we discussed in the Introduction, the literature has pointed out other

reasons for candidates to be ambiguous. One of those is that candidates have limited resources

for making precise policy announcements and voters have limited capacity to understand those

announcements (Page [1976, 1978], Polborn and Yi [2006], Egorov [2015] and Dragu and Fan

[2016]). In Appendix H, we extend the model of Dragu and Fan (2016), in which candidates spend

their funds to various policy issues to make them more prominent, to our policy announcement

timing game and demonstrate that our dynamic extension brings in new insights.54 For example,

Dragu and Fan (2016) show that there is no policy issue for which two candidates spend money on.

This prediction is robust to our setting in the sense that there is no history of play at time −t at

which both candidates would spend money at time −t, but the prediction about the total spending

on the election day would change: the identity of the potential candidate who would spend money

may change over time, and it is possible that one candidate spends early on in the campaign while

the other candidate spends later.

6 Conclusion

We have introduced the first model of dynamic campaigns into the literature on elections, which

we call the “policy announcement timing game.” In the model, candidates cannot always announce

their policies but stochastically obtain opportunities to do so. We applied the model to various

settings, demonstrating that the introduction of such a simple friction to the model generates

interesting dynamic strategic considerations and equilibrium dynamics consistent with election

dynamics in reality. In particular, we showed that the candidates may or may not have motivations

to defer a clear announcement of policies, depending on the opponent’s latest announcement and the

time left until the election. The insights from the analysis of our three applications are generalized

in the Long Ambiguity Theorem, the Dynamic Median Voter Theorem, and the Constant-Sum

Markov Theorem. Our model by no means captures all relevant incentives in election campaigns,

54We chose Dragu and Fan (2016) for this analysis because their game has perfect information. Other papers cited
here involve incomplete information, so in our dynamic extension we would have to deal with evolving beliefs. Such
an analysis is possible (indeed, the working paper version of this paper (Kamada and Sugaya [2019]) considers a
model involving incomplete information), but it is outside the scope of this paper. Note that the dynamic extension
of the model of Dragu and Fan (2016) can be regarded as a special case of the policy announcement timing game
by interpreting the policy set to be the available cumulative spending. This is because the cumulative spending can
never decrease over time.
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nor do we claim that it captures the most relevant ones. Which types of incentives are most powerful

depends on the nature of the given campaign, and hence in future work, it would be important

to incorporate other realistic features into the model. Our work shows that the incentives are

complicated even in our rather simple setup. It raises a wide range of new questions as follows.

First, we restricted ourselves to the case in which, once a candidate commits to a particular

policy, he or she cannot overturn it later. Although we believe that this is a reasonable starting

point for analysis, one could also assume that candidates can change their policies if they are willing

to incur a “reputational cost” for announcing “inconsistent” policies. The idea is that if a candidate

overturns his or her opinion, voters would infer that it is likely that the candidate would change

policies even after the election.

Second, it would be interesting to enrich the model by assuming that the median voter’s position

gets gradually revealed over the course of the campaign (for example, because of polls), so that

candidates have an additional reason to wait.

Third, there may be a positive effect of getting a candidate’s name salient in the early stage of

a campaign. For example, the “June Puzzle” asks why the Obama campaign significantly outspent

the Romney campaign in June 2012, even though the election was in November and the effect of

TV advertisements on voter’s preferences is known to be short-lived.55 An explanation for this

puzzle argues that popularity in the early stages may help with gathering more donations. Another

explanation claims that if the opponent’s popularity is below a certain level, then that opponent

will “never come back.” It will be interesting to enrich our model to analyze these hypotheses.

Fourth, we have considered two-candidate elections, but it would be interesting to consider

more than two candidates.56 In such an environment, there is no pure-strategy equilibrium in a

static election game, while we can hope for the existence of a unique pure-strategy PBE outcome

in a corresponding election campaign game, just as in the case with the multi-dimensional policy

space.

Finally, our work raises empirical questions as well. For example, our model predicts different

patterns of the timing of policy clarification/campaign spending for different parameter values. For

example, in the valence election campaign, p, which measures how much uncertainty candidates

55Gerber et al. (2011) empirically show that the effect of campaign spending declines over time (earlier spending
has a weaker effect). We thank Avidit Acharya for sharing the story of June Puzzle, who attributes the story to Seth
Hill, Brett Gordon, and Michael Peress.

56We thank Alessandro Lizzeri for pointing this out.
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face with respect to the position of the median voter, affects the timing of policy announcements.

One may want to test whether this prediction is supported by the data.57 The uniqueness of the

equilibrium that we obtain in our analysis would be useful in empirically testing the theoretical

implications of the model.

References

[1] Alesina, Alberto, and Alex Cukierman (1990), “The Politics of Ambiguity,” Quarterly
Journal of Economics, 4, 829–50.

[2] ——– and Richard Holden (2008), “Ambiguity and Extremism in Elections,” unpublished.

[3] Ambrus, Attila, James Burnes, and Yuhta Ishii (2014), “Gradual bidding in eBay-like
auctions,” unpublished.

[4] ——– and Shih-En Lu (2015), “A Continuous-Time Model of Multilateral Bargaining,”
AEJ: Microeconomics, 7, 208–249.

[5] Ansolabehere, Stephen, and James M. Snyder Jr. (2000), “Valence Politics and Equi-
librium in Spatial Election Models,” Public Choice, 103, 327–336.

[6] Aragonès, Enriqueta, and Zvika Neeman (2000), “Strategic Ambiguity in Electoral
Competition,” Journal of Theoretical Politics, 12, 183–204.

[7] ——– and Thomas R. Palfrey (2002), “Mixed Equilibrium in a Downsian Model with a
Favored Candidate,” Journal of Economic Theory, 103, 131–161.

[8] ——– and Andrew Postlewaite (2002), “Ambiguity in Election Games,” Review of Eco-
nomic Design, 7, 233–255.

[9] Asahi Shimbun Digital (2014a), “Hosokawa-Koizumi ‘Ex Prime Minister Union,’ If
Realized, May Change the Scene for Tokyo Gubernatorial Election” (in Japanese), January 14,
https://web.archive.org/web/20140121185951/http://www.asahi.com/articles/ASG187WCQG
18UTIL04R.html?ref=reca, accessed on 04/23/2018.

[10] ——– (2014b) “The Focus is on Anti-Nuclear Power in the Tokyo Gubernatorial
Election: Hosokawa and Masuzoe Declared to Run for Election” (in Japanese), January 15,
https://web.archive.org/web/20140228074009/http://www.asahi.com/articles/ASG1G5R5SG
1GUTIL03Y.html?ref=reca, accessed 04/23/2018.

[11] Austen-Smith, David (1987), “Interest Groups, Campaign Contributions, and Probabilis-
tic Voting,” Public Choice, 54, 123–139.

[12] Avoyan, Ala and Joan Ramos (2018), “A Road to Efficiency through Communication
and Commitment,” unpublished.

57As mentioned in Remark 2, this pattern is roughly consistent with the empirical finding in Campbell (1983).

41



[13] BBC News (2013), “David Cameron promises in/out referendum on EU,”
https://www.bbc.com/news/uk-politics-21148282, accessed 01/31/2019.

[14] Bailey, Michael A. (2002), “Money and Representation: An Exploration in Multiple Di-
mensions with Informative Campaigns,” unpublished.

[15] Banda, Kevin K. (2013), “The Dynamics of Campaign Issue Agendas,” State Politics &
Policy Quarterly, 13, 446–470.

[16] ——– (2015), “Competition and the Dynamics of Issue Convergence,” American Politics
Research, 43, 821–845.

[17] Banks, Jeffrey S. (1990), “A Model of Electoral Competition with Incomplete Information,”
Journal of Economic Theory, 50, 309–325.

[18] Baron, David P. (1994), “Electoral Competition with Informed and Uninformed Voters,”
American Political Science Review, 88, 33–47.

[19] Berger, Mark M., Michael C. Munger, and Richard F. Potthoff (2000), “With
Uncertainty, the Downsian Model Predicts Divergence,” Journal of Theoretical Politics, 12,
262–268.

[20] Bernhardt, Daniel, and Daniel Ingberman (1985), “Candidate Reputations and the
Incumbency Effect,” Journal of Public Economics, 27, 47–67.

[21] Cadigan, Will and Ryan Struyk (2018), “A lot of Democratic sena-
tors want to be President. History shows it will be hard.” in CNN Politics
https://www.cnn.com/2018/04/26/politics/senator-president-history-analysis/index.html,
accessed 10/08/2019.

[22] Calcagno, Riccardo, Yuichiro Kamada, Stefano Lovo, and Takuo Sugaya (2014),
“Asynchronicity and Coordination in Common and Opposing Interest Games,” Theoretical
Economics, 9, 409–434.

[23] Callander, Steven, and Simon Wilkie (2007), “Lies, Damned Lies, and Political Cam-
paigns,” Games and Economic Behavior, 60, 262–286.

[24] ——– and Catherine H. Wilson (2008), “Context-Dependent Voting and Political Am-
biguity,” Journal of Public Economics, 92, 565–581.

[25] Calvo, Guillermo A. (1983), “Staggered Prices in a Utility-Maximizing Framework,” Jour-
nal of Monetary Economics, 12, 383–398.

[26] Campbell, James E. (1983), “Ambiguity in the Issue Positions of Presidential Candidates:
A Causal Analysis,” American Journal of Political Science, 27, 284–293.

[27] Carter, Jennifer and John W. Patty (2015), “Valence and Campaigns.” American Jour-
nal of Political Science 59, 825–840.

[28] Caruana, Guillermo and Liran Einav (2008), “A Theory of Endogenous Commitment,”
Review of Economic Studies, 75, 99–116.

42



[29] CNN Political Ticker (2007), “Obama takes heat for link too McClurkin,”
https://web.archive.org/web/20071130064038/http://politicalticker.blogs.cnn.com/2007/10/23/obama-
takes-heat-for-link-to-mcclurkin/, accessed 10/03/2019.

[30] Coate, Stephen (2004), “Political Competition with Campaign Contributions and Informa-
tive Advertising,” Journal of the European Economic Association, 2, 772–804.

[31] Coughlin, Peter J. (1992), Probabilistic Voting Theory, New York: Cambridge University
Press.

[32] van Damme, Eric, and Sjaak Hurkens (1996), “Commitment Robust Equilibria and
Endogenous Timing,” Games and Economic Behavior, 15, 290–311.

[33] Dragu, Tiberiu and Xiaochen Fan (2016), “An Agenda-Setting Theory of Electroral
Competition,” Journal of Politics, 78, 1170–1183.

[34] Egorov, Georgy (2015), “Single-Issue Campaigns and Multidimensional Politics” unpub-
lished.

[35] Fudenberg, Drew and Jean Tirole (1991), “Perfect Bayesian Equilibrium and Sequential
Equilibrium,” Journal of Economic Theory, 53: 236–260.

[36] Gale, Douglas (1995), “Dynamic Coordination Games,” Economic Theory, 5, 1–18.

[37] ——– (2001), “Monotone Games with Positive Spillovers,” Games and Economic Behaviors,
37, 295–320.

[38] Gensbittel, Fabien, Stefano Lovo, Jérôme Renault, and Tristan Tomala (2017),
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A Structure of the Appendix

We first state and prove the continuous-time backward induction, which turns out to be useful

in many proofs. Second, we offer the proofs of the results. Although we present the applications

before the general theorems in the main text to highlight the applicability of the model of policy

announcement timing game, since the general theorems are useful for proving the results in the

applications, here we prove the general theorems. The proofs of the results in the applications can

be found in the Online Appendix.
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B Continuous-Time Backward Induction

The following result, which we call continuous-time backward induction, is due to Calcagno et al.

(2014), and is repeatedly used in the proofs of this paper. We reproduce its statement and proof

for the reader’s convenience.

Lemma 2. Suppose that for any t ∈ [0,∞), there exists ε > 0 such that statement At′ is true for

all t′ ∈ [t, t+ ε) if statement At′′ is true for any t′′ < t. Then, for any t ∈ [0,∞), statement At is

true.

Proof. Suppose that the premise of the lemma holds. Let −t∗ be the supremum of −t such that

At is false. If t∗ = ∞, we are done. So suppose that t∗ < ∞. Then it must be the case that for

any ε > 0, there exists −τ ∈ (−t∗ − ε,−t∗] such that Aτ is false. But by the definition of t∗, there

exists ε̃ > 0 such that statement Aτ is true for all −τ ∈ (−t∗ − ε̃,−t∗] because the premise of the

lemma is true. This is a contradiction.

C Proof of Theorem 1

Without loss, we assume that vi(Xi, Xj) ∈ [0, 1] for each i and Xi, Xj ∈ X . Fix a PBE σ and

(θi, θj), and take T̄ such that

e−λj T̄ <


e−1vSMi (θi, θj)− vFMi (θi, θj) if λj = λi(

λj
λi

) λj
λi−λj vSMi (θi, θj)− vFMi (θi, θj) if λj 6= λi

(5)

and

T̄ ≥

 1
λ if λj = λi = λ

log λi−log λj
λi−λj if λj 6= λi

.

Suppose that candidate i receives an opportunity at time −t when the current policy set profile

is (θi, θj), and let her history be hi.

First, suppose for contradiction that there is xi ∈ θi such that σi(hi)({xi}) > 0. Since σj must

specify that a static best response to xi is taken after i’s entry to xi, an upper bound of candidate
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i’s payoff of entering at xi is given by

(
1− e−λjt

)
inf

Xj∈X , Xj⊆θj
vi(xi, Xj) + e−λjt, (6)

which is no greater than vFMi (θi, θj) + e−λjt by the definition of vFMi (θi, θj).

Second, suppose candidate i deviates to the following strategy denoted by σ
(a)
i with a ∈ [0, t] be-

ing a parameter: Under σ
(a)
i , i takesXi = θi for each−t′ ∈ (−t,−a) and takes maxXi∈X , Xi⊆θi vi(Xi, θj,t′)

for each −t′ ∈ (−a, 0), where θj,t′ represents the policy set of candidate j at time −t′. Candidate

i’s payoff of taking σ
(a)
i is bounded from below by

∫ a

τ=0
λie
−λiτ × e−λj(a−τ) × inf

Xj∈X , Xj⊆θj
sup

Xi∈X , Xi⊆θi
vi(Xi, Xj)dτ

=


λae−λavSMi (θi, θj) if λj = λi = λ,

λi

(
λie
−λia−λje−λja

)
λi−λj vSMi (θi, θj) if λj 6= λi.

.

Here, λie
−λiτ represents the probability density that i has the first opportunity after −a at time

− (a− τ), and e−λj(a−τ) is the probability that j cannot move after i moves at time − (a− τ).

Note that (i)
λi

(
λie
−λia−λje−λja

)
λi−λj (or λae−λa) is maximized at a = a∗ :=

log λi−log λj
λi−λj (or a =

a∗ := 1
λ) and (ii) the maximized value is

(
λj
λi

) λj
λi−λj (or e−1). Candidate i’s payoff from taking σ

(a∗)
i

is: 
e−1vSMi (θi, θj) if λj = λi,(

λj
λi

) λj
λi−λj vSMi (θi, θj) if λj 6= λi.

(7)

Given the definition of T̄ in (5), this implies that, when j uses σj , i’s payoff from taking σ
(a)
i is

strictly greater than her payoff from taking σi. This is a contradiction to the assumption that σ is

a PBE. Hence, for any PBE, for all time −t < −T̄ , it is optimal not to enter at xi.

D Proof of Theorem 2

Fix a PBE σ. Take any time −t ∈ [−T, 0) and a history of candidate i such that j’s current

policy set is X or X∗. Suppose that under σ, strictly after time −t, candidates announce X∗ if the

opponent’s current policy set is either X or X∗.
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First, suppose that j’s current policy set of the opponent is X and compare the payoff of

announcing X∗ and the payoff of announcing Xi 6= X∗. The former payoff is at least

e−λjtvi(X
∗, X) + (1− e−λjt)vi (X∗, X∗) (8)

and the latter payoff is at most

e−λjtvi(Xi, X) + (1− e−λjt)v̄, (9)

where v̄ < vi (X∗, X∗). The second term of (8) and the second term of (9) need some explanations.

Notice that Theorem 3 implies that the continuation payoff can be computed by assuming the model

of public monitoring in which candidates observe all the Poisson arrivals in the past, including those

of the opponent. Thus we consider the model of public monitoring to compute payoffs.

• For the second term of (8), since σ is a PBE, it must be a Nash equilibrium in the subgame

starting from time −t. This implies that i’s payoff under σ in that subgame is at least as

good as her payoff from always announcing X∗ against σj . This payoff is minimized when, if

j receives an opportunity after time −t, he plays X∗ because j’s best response against i’s X∗

is to announce X∗. This is why the expression in (8) provides a lower bound of the payoff

from i’s announcing X∗ at time −t.

• For the second term of (9), suppose that, after i’s announcement of Xi at time −t, j receives

an opportunity. Since σ is a PBE, it must be a Nash equilibrium in the subgame starting from

such j’s opportunity. This implies that j’s payoff under σ in that subgame is at least as good

as his payoff from always announcing X∗ against σi. Since (vi, vj) is constant-sum, we then

have that i’s payoff under σ in the game is at most her payoff from j’s always announcing X∗

against σi.

This upper-bound payoff, which we denote by v̄, is a convex combination of the values in

{vi(X ′i, X∗)|X ′i ∈ X}, with a strictly positive weight on vi(Xi, X
∗). Since (i) the maximum

value in {vi(X ′i, X∗)|X ′i ∈ X} is vi(X
∗, X∗) because X∗ is a best response to X∗ and (ii)

vi(Xi, X
∗) < vi(X

∗, X∗) because X∗ is a unique best response to X∗, v̄ is strictly less than

vi(X
∗, X∗).
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Given v̄ < vi(X
∗, X∗) and vi(x

∗, X) ≥ vi(Xi, X) for all Xi ∈ X , we conclude that the payoff in

(8) is strictly larger than the one in (9).

Second, suppose that j’s current policy set of the opponent is X∗ and compare the payoff of

announcing X∗ and the payoff of announcing Xi 6= X∗. The former payoff is at most

vi(X
∗, X∗) (10)

and the latter payoff is

e−λjtvi(Xi, X) + (1− e−λjt)v̄′, (11)

where v̄′ < vi (X∗, X∗) for the same reasons as above.

Given this and our assumption that X∗ is a best response to X∗, the payoff in (10) is strictly

larger than the one in (11).

Overall, under σ, at any −t such that j’s current policy set profile is X or X∗, i’s unique best

response is to announce X∗, so she assigns probability one to X∗. This proves the theorem.

E Proof of Theorem 3

We first prove that conditions (2)–(4) hold for public monitoring. Using this result, we prove that

conditions (2)–(4) hold for private monitoring.

E.1 Public Monitoring

We prove that conditions (2)–(4) hold for public monitoring:

Lemma 3. Suppose vA(XA, XB)+vB(XB, XA) = 1 for each (XA, XB) ∈ X ×X . If an MPE exists,

then there exists vi,t (θ) for each θ ∈ X × X such that, for any SPE σ̄ ∈ Σ̌ and ht, we have

W i
t

(
σ̄, ht, Xi

)
= vi,t

(
Xi, θj

(
ht
))

;

Ŵ i
t

(
σ̄, ht, Xj

)
= vi,t

(
θi
(
ht
)
, Xj

)
;

and

W i
t

(
σ̄, ht, θi

(
ht
))

= Ŵ i
t

(
σ̄, ht, θj

(
ht
))

= W i
t

(
σ̄, ht, no

)
= vi,t

(
θ
(
ht
))
.
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The intuition for this result is simple: Since the game is constant-sum, the value is uniquely

determined by the minimax theorem.58

Proof. Fix an MPE σ̄∗, and let vi,t (θ) be candidate i’s value under σ̄∗ when the current remaining

time is t and the policy set profile is θ. By definition,

vi,t
(
θ(ht)

)
= sup

σi∈Σ̌i

ui
(
σi, σ̄

∗
j |ht

)
= ui

(
σ̄∗|ht

)
, (12)

where ui
(
σ|ht

)
is candidate i’s continuation payoff given strategy profile σ.59

Suppose there exists ht such thatW i
t

(
σ̄, ht, no

)
6= vi,t

(
θ
(
ht
))

. Without loss, assumeW i
t

(
σ̄, ht, no

)
>

vi,t
(
θ
(
ht
))

:60

vi,t
(
θ
(
ht
))
< W i

t

(
σ̄, ht, no

)
= inf

σj∈Σ̌j

ui
(
σ̄i, σj |ht

)
≤ ui

(
σ̄i, σ̄

∗
j |ht

)
≤ ui

(
σ̄∗|ht

)
,

which contradicts (12). The proofs forW i
t

(
σ̄, ht, Xi

)
, Ŵ i

t

(
σ̄, ht, Xj

)
, W i

t

(
σ̄, ht, θi

(
ht
))

, and Ŵ i
t

(
σ̄, ht, θj

(
ht
))

are analogous, so are omitted.

E.2 Private Monitoring

Consider the “private monitoring” setup. Fix any σj ∈ Σj (not necessarily an equilibrium strategy).

Given hti, let ~θ(hti) =

((
tli, X

l
i

)li
l=1

,
(
tlj , X

l
j

)lj
l=1

)
denote the part of hti that is public information

across both candidates.61 By (19) in the Online Appendix, candidate i’s belief about htj does not

depend on candidate i’s private history. Denote by βσj
(
htj |~θ(hti)

)
a belief to be explicit about the

fact that the belief is solely determined by σj and ~θ(hti).

Using this independence of the belief, we can show that candidate i’s continuation payoff does

not depend on hti. Take any strategy profile σ (not necessarily an equilibrium). Let

wit
(
σi, σj , h

t
i, Xi

)
=

∫
htj

ui
(
σi, σj |

(
hti, Xi

)
, htj
)
dβσj

(
htj |hti

)
58Gensbittel et al. (2017) show that the minimax theorem extends to revision games with finite actions and payoffs.

Here, since we allow the action set to be infinite, we offer the formal proof of the lemma below.
59To simplify the notation, we use the same u for both private and public monitoring.
60Since the game is constant-sum, given W i

t

(
σ̄, ht, no

)
< vi,t

(
θ
(
ht
))

, we have W j
t

(
σ̄, ht, no

)
> vj,t

(
θ
(
ht
))

. The
rest of the proof goes through with i and j reversed.

61The precise definition is provided in the Online Appendix.
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be candidate i’s payoff when she takes Xi given hti, given that (i) candidate i takes a continuation

strategy determined by σi and history
(
hti, Xi

)
for (−t, 0],62 and (ii) candidate j takes a continuation

play determined by σj and history htj for (−t, 0]. Note that (i) candidate i’s decision Xi does not

affect candidate i’s belief βσj
(
·|hti
)
; and (ii) the belief βσj

(
·|hti
)

does not depend on whether

candidate i obtains an opportunity at time −t by the independence of the Poisson processes.

Since dβσj
(
htj |hti

)
is independent of hti given ~θ(hti),

63 for each hti, h̃
t
i satisfying ~θ(hti) = ~θ(h̃ti),

we have

sup
σi∈Σi

wit
(
σi, σj , h

t
i, Xi

)
= sup

σi∈Σi

∫
hj

ui(σi, σj |
(
hti, Xi

)
, htj)dβ

σj
(
htj |~θ(hti)

)
= sup

σi∈Σi

∫
hj

ui(σi, σj |(h̃ti, Xi), h
t
j)dβ

σj
(
htj |~θ(h̃ti)

)
= sup

σi∈Σi

wit(σi, σj , h̃
t
i, Xi).

The second-to-last line follows since the distribution of the final profiles of policy sets that candidate

i can induce given σj depends only on βσj (htj |~θ(hti)) and θ
(
hti
)
. Hence, we can write

wit

(
σj , ~θ,Xi

)
= sup

σi∈Σi

wit
(
σi, σj , h

t
i, Xi

)
(13)

for each hti ∈ Hi with ~θ
(
hti
)

= ~θ.

Similarly, let wit
(
σi, σj , h

t
i, no

)
be candidate i’s payoff given that she does not receive an oppor-

tunity at time −t. We also have

wit

(
σj , ~θ, θi(h

t
i)
)

= sup
σi∈Σi

wit
(
σi, σj , h

t
i, θi(h

t
i)
)

= sup
σi∈Σi

wit
(
σi, σj , h

t
i, no

)
(14)

since, by (20) imposed in the Online Appendix, (i) candidate i’s belief about htj is the same between(
hti, θi(h

t
i)
)

and
(
hti, no

)
and (ii) given htj , candidate j’s continuation play after (hti, θi(h

t
i)) and that

after (hti, no) are the same. In addition, let ŵjt

(
σi, ~θ,Xi

)
be candidate j’s value when candidate i

takes Xi at time −t given ~θ.

Together with the constant-sum assumption, we can show that wit

(
σj , ~θ,Xi

)
+ŵjt

(
σi, ~θ,Xi

)
= 1

62Recall that, in Section 3, we define ui(σi, σj |hti, htj). Here, we define ui(σi, σj |(hti, Xi), htj) analogously, conditional
on the event that candidate i takes Xi at time −t.

63This assumption is formalized by (19) in the Online Appendix.
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for any PBE σ.

Lemma 4. Suppose vA(XA, XB) + vB(XB, XA) = 1 for each (XA, XB) ∈ X ×X . For any PBE σ,

the following holds: Fix vi ∈ [0, 1], t ≥ 0, ~θ, and Xi. Then, the following two claims hold:

1. If we have wit

(
σj , ~θ,Xi

)
> vi, then we have ŵjt

(
σi, ~θ,Xi

)
< 1− vi.

2. If we have wit

(
σj , ~θ,Xi

)
< vi, then we have ŵjt

(
σi, ~θ,Xi

)
> 1− vi.

Proof. By symmetry, we only prove part 1. Given PBE σ ∈ Σ, if wit

(
σj , ~θ,Xi

)
> vi, then (13)

implies that candidate i obtains the payoff strictly greater than vi after any hti satisfying ~θ(hti) = ~θ.

Since the election is constant-sum, there must exist htj satisfying wjt

(
σj , σi, h

t
j , Xi

)
< 1 − vi and

~θ(htj) = ~θ. Since j takes a best response under σ, it implies that supσ′j w
j
t

(
σ′j , σi, h

t
j , Xi

)
< 1− vi.

Recalling that we have supσ′j w
j
t

(
σ′j , σi, h

t
j , Xi

)
= wjt

(
σi, ~θ,Xi

)
, we have wjt

(
σi, ~θ,Xi

)
< 1−vi.

Proving the following lemma will be sufficient for conditions (2)–(4) to hold in private monitor-

ing:

Lemma 5. Suppose vA(XA, XB) + vB(XB, XA) = 1 for each (XA, XB) ∈ X × X , and there exists

an MPE in public monitoring. Take vi,t (θ) that satisfies conditions stated in Lemma 3. Then, for

any hti, we have

wit
(
σ, hti, Xi

)
= vi,t

(
Xi, θj

(
hti
))

;

ŵit
(
σ, hti, Xj

)
= vi,t

(
θi
(
hti
)
, Xj

)
;

and

wit
(
σ, hti, θi

(
ht
))

= ŵit
(
σ, hti, θj

(
ht
))

= wit
(
σ, hti, no

)
= vi,t

(
θ
(
ht
))
.

Proof. Suppose that there exists a PBE σ̃ ∈ Σ such that, for some i ∈ {A,B} and hti, we have

wit
(
σ̃j , h

t
i, Xi

)
6= vi,t

(
Xi, θj

(
hti
))

. Without loss,64 we can assume

wit
(
σ̃j , h

t
i, Xi

)
> vi,t

(
Xi, θj

(
hti
))
. (15)

64If wit
(
σ̃j , h

t
i, Xi

)
< vi,t

(
Xi, θj

(
hti
))

, then since the game is constant-sum, we have vj,t
(
Xi, θj

(
hti
))

= 1 −
vi,t

(
Xi, θj

(
hti
))

. From Lemma 4, we have wjt
(
σ̃i, h

t
j , X

)
> vj,t

(
Xi, θj

(
hti
))

. The following lemma goes through with
indices i and j being reversed.
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Fix θ̄j = θj
(
hti
)
. From Lemma 4, for each h̃tj with θ(h̃tj) =

(
Xi, θ̄j

)
, candidate j’s expected payoff

is less than 1− vi,t
(
Xi, θ̄j

)
.

First, recall that candidate i’s Markov strategy can be represented as a map σi : X×X×[0, T ]→

∆(X ). Let Mi be the the space of i’s Markov strategies. Note that the space for Markov strategies

in public monitoring is the same as the space for Markov strategies in private monitoring. Since

Markov strategies are constant with respect to the part of the histories other than the current

policy sets and the current time, we write Mi ⊆ Σi for each i. Fix an MPE (σi, σj) ∈ Mi ×Mj .

We have

sup
σ′i∈Mi

Ŵ i
t

(
σ′i, σj , h

t, Xi

)
= vi,t

(
Xi, θ̄j

)
(16)

for each ht with θj(h
t) = θ̄j .

Since this strategy σj is Markov, candidate j can take this strategy in private monitoring. We

have wit

(
σ̃i, σj , ĥ

t
i, Xi

)
> vi,t

(
Xi, θ̄j

)
for some ĥti with ~θ

(
ĥti

)
= ~θ by (15) since otherwise candidate

j would like to deviate to σj from σ̃j given each htj with ~θ
(
htj

)
= ~θ in private monitoring and

obtain the expected payoff no less than 1 − vi,t
(
Xi, θ̄j

)
. Hence, by (14), we have wit

(
σj , ~θ,Xi

)
>

vi,t
(
Xi, θj

(
ht
))

.

By (14), for each h̃ti with ~θ
(
h̃ti

)
= ~θ, we have

wit

(
σj , h̃

t
i, Xi

)
= sup

σi∈Σi

wit

(
σi, σj , h̃

t
i, Xi

)
= sup

σi∈Σi

∫
htj

ui

(
σi, σj |

(
h̃ti, Xi

)
, htj

)
dβσj

(
htj |~θ

)
.

Since σj ∈ Mj , candidate j’s continuation strategy depends only on θt =
(
Xi, θ̄j

)
. Hence,65 for

each htj , we can write

sup
σi∈Σi

ui

(
σi, σj |

(
h̃ti, Xi

)
, htj

)
= sup

σi∈Mi

ui(σi, σj |θt =
(
Xi, θ̄j

)
).

65This is a standard result in dynamic programming: Fix candidate j’s Markov strategy σj , and see

supσi∈Σi
ui

(
σi, σj |

(
h̃ti, Xi

)
, htj

)
as the maximization problem of a single decision maker (candidate i). Since the

environment is Markov, the value depends only on t and θt, and there exists a solution which only depends on t and
θt.
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Therefore,

wit

(
σj , h̃

t
i, Xi

)
= sup

σi∈Mi

ui(σi, σj |θt =
(
Xi, θ̄j

)
) = vi,t

(
Xi, θ̄j

)
by (16).

This is a contradiction. Thus, for each PBE σ ∈ Σ, we have wit
(
σj , h

t
i, Xi

)
= vi,t

(
Xi, θj

(
ht
))

.

The proofs for the other equalities can be done similarly.

F Long Ambiguity Theorem in Non-Constant-Sum Elections

In this section, we present a version of the long ambiguity theorem that is applicable to elections

that are not constant-sum. In order to carry out a proof in such a general environment, we restrict

attention to elections in which candidates can either be completely ambiguous or specify a precise

policy. Formally, we assume

X = {X} ∪ {{x}|x ∈ X}.

This class of elections does not include the multi-issue election campaign with valence (Section

2.3), but is general enough to encompass the valence election campaign and the symmetric office-

motivated election campaign.

Before starting the analysis, let us introduce some notation and assumptions. Let (x,X) denote

the set of histories at which candidate A has entered at x and candidate B has not entered. Other

sets of histories are denoted in an analogous manner. Abuse notation to write “xi” to mean {xi}

as part of the argument of vi. For each Xi ∈ X , let BRj (Xi) be the set of candidate j’s best

responses against candidate i’s policy set Xi:

BRj (Xi) = arg max
Xj∈X

vj (Xj , Xi) ,

and suppose that it is non-empty. We often write BRj(xi) for BRj({xi}). To simplify the notation,

we sometimes write xj ∈ BRj(xi) to mean {xj} ∈ BRj(xi).

In the main text, we show that, under the constant-sum and first-mover disadvantage assump-

tions, long ambiguity prevails. We will show the same result without the constant-sum assumption.

Another difference from the result in the main text is that we fully characterize the equilibrium

play, in addition to examining whether long ambiguity holds or not.
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We say that X∗i ⊆ X is candidate i’s optimal set if the following hold for each x∗i ∈ X∗i .66

1. v
BRj
i := supXj∈BRj(x∗i )

vi (x∗i , Xj) ≥ supxi 6∈X∗i ,Xj∈BRj(xi) vi (xi, Xj).

2. x∗i ∈ BRi(X).

If candidate j has a unique best response to each policy of candidate i, the first part implies that

taking any action in the optimal set is the best for candidate i if she knows that j will have a move

afterwards. The condition is a generalization of it, taking into account the possibility of multiple

best responses by j. The second part further requires that if the opponent is using ambiguous

language, taking any policy in the optimal set is a static best response. For general (vi, vj), it

is straightforward that the definition of the optimal set ensures that there exits a unique largest

optimal set (the optimal set that is a superset of all other optimal sets). Hereafter, let X∗i be the

largest optimal set for candidate i.67

Assumption 1. For each candidate i, the largest optimal set X∗i is non-empty, and satisfies the

following properties.68

1. For any x∗i ∈ X∗i and Xj , X
′
j ∈ BRj(x∗i ), vi (x∗i , Xj) = vi

(
x∗i , X

′
j

)
holds.

2. For any x∗i , x
∗∗
i ∈ X∗i , vj (x∗i , X) = vj (x∗∗i , X) and maxxj∈X vj (x∗i , xj) = maxxj∈X vj (x∗∗i , xj).

Note that the equality in part 1 holds if (vi, vj) is constant-sum, which happens, for example, if

candidates are purely office-motivated. Note that once i enters at xi, j chooses some Xj ∈ BRj (xi)

when he receives an opportunity in any PBE. Hence, part 1 implies that conditional on any history

such that i’s opponent has not entered, if i enters, then she enters at some x∗i ∈ X∗i . In addition,

i’s expected payoff when she enters is uniquely pinned down. Moreover, part 2 requires that, fixing

j’s strategy, if i enters, then j’s payoff is also pinned down uniquely. Assumption 1 thus implies

that any xi ∈ X∗i gives the same continuation payoff to both candidates i and j in any PBE.

66A policy is in the largest optimal set if it is a Condorcet winner and the stage game is constant-sum. The
reason is that the first condition of an optimal set is implied by minXj∈X vi(Xi, Xj) ≤ vi(Xi, x

∗) < vi(x
∗, x∗) and

x∗ ∈ BRj(x∗), and the second condition is implied by vi (x∗, X) ≥ vi (Xi, X) for each Xi ∈ X .
67For each xi 6∈ X∗i , we have either “v

BRj
i > vi (xi, xj) for all xj ∈ BRj (xi)” or “vi (x∗i , X) > vi (xi, X).”

68There does not exist an optimal set (so there is no largest optimal set) in the environment considered in Remark
11 in Section 2.3. There, it is shown that W , when he enters, would choose policy (1, 1), which is in the policy set
that S has committed to. But if W expects that S will have an opportunity, then W would prefer to enter at (0, 1),
which is outside of the policy set S has committed to.
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Assumption 2. For each candidate i and any x∗i ∈ X∗i , vi (x∗i , X) ≥ vBRji .

This assumption implies that, after i’s entry, i cannot be better off by the opponent’s subsequent

entry. For an arbitrary x∗i ∈ X∗i , define

vi,t(enter) = e−λjtvi (x∗i , X) +
(

1− e−λjt
)
v
BRj
i .

Assumption 1 implies that this is candidate i’s expected payoff at time −t when she enters (in any

PBE). Moreover, Assumption 2 implies that vi,t(enter) is weakly decreasing in t.

We consider the following three cases, depending on the incentives at the deadline.

• Case 1: vi (X,X) > vi (x∗i , X) for each i.

• Case 2: vi (X,X) < vi (x∗i , X) for each i.

• Case 3: vA (X,X) > vA (x∗A, X) and vB (X,X) < vB (x∗B, X).69

That is, in Case 1, given that the opponent’s policy is ambiguous, each candidate strictly

prefers to stay ambiguous at the deadline. In Case 2, in contrast, given that the opponent’s policy

is ambiguous, each candidate strictly prefers to clarify their policies at the deadline. Case 3 is an

asymmetric situation in which, given that the opponent’s policy is ambiguous, A strictly prefers to

stay ambiguous while B strictly prefers to clarify his policy at the deadline.

F.1 Case 1: No Candidate Enters at the Deadline

In this case, uniqueness and long ambiguity hold without additional assumptions, as follows.

Proposition 6. Consider Case 1. Under Assumptions 1 and 2, there exists a PBE. In any PBE,

at histories in (X,X), each candidate i does not enter at any −t ∈ (−∞, 0].

The intuition is simple: Candidate i’s entry at time −t results in either vi(x
∗
i , X) if the opponent

j does not enter afterward, or v
BRj
i if j does. Given that no candidate enters at histories in (X,X)

after time −t, the former payoff is lower than the payoff from not entering, vi(X,X), by the

definition of Case 1, and the latter is weakly lower due to Assumption 2.

69The case with vA (X,X) < vA (x∗A, X) and vB (X,X) > vB (x∗B , X) is symmetric.
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F.2 Case 2: Both Candidates Enter at the Deadline

Define v̄i,t(not) as candidate i’s expected continuation payoff at time −t when she does not enter,

assuming that each candidate will enter at times in (−t, 0] upon receiving an opportunity. Such a

payoff is well defined due to Assumption 1.70 Let

t∗i ≡ inf {t > 0 : v̄i,t(not) ≥ vi,t(enter)} .

Given the continuity of the continuation payoffs in time, −t∗i is the time closest to the deadline at

which candidate i is indifferent between entering and not entering.

Assumption 3 (Genericity). At least one of the following holds: v
BRj
i < supxi∈X vi (xi, X) for

each i, or t∗A 6= t∗B, or t∗A = t∗B =∞.

Note that the first part of this assumption is a strengthening of Assumption 2. Since t∗A and t∗B

are generically different if they are not both infinity, this assumption is a genericity assumption in

the sense that the environment in which it is violated constitutes a degenerate (non-full-dimensional)

space in the space of payoff functions.71

Proposition 7. Consider Case 2. Under Assumptions 1, 2, and 3, there exists a PBE. There exists

a profile (tA, tB) ∈ (R++ ∪ {∞})2 such that, for any PBE, at any histories in (X,X), candidate i

does not enter at any −t ∈ (−∞,−ti), and enters at every time −t ∈ (−ti, 0]. Moreover, if t∗i ≤ t∗j ,

then ti ≤ tj and ti = t∗i .

This proposition offers a characterization of the equilibrium dynamics in any PBE in Case 2. It

implies that each candidate i’s policy announcement changes before and after a cutoff time ti: She

keeps using ambiguous language before −ti, and clarifies after −ti. In particular, if ti < ∞, then

candidate i does not enter when the deadline is sufficiently far. The following condition, which is

70The formal expression of this payoff is complicated, so we relegate it to the Online Appendix.
71To see why t∗A 6= t∗B or t∗A = t∗B = ∞ holds generically, notice that, for each i = A,B and t < ∞, v̄i,t(enter) is

independent of vi(X,X), while v̄i,t(not) is strictly increasing in it. Hence, if there exists w ∈ R such that t∗A = t∗B <∞
holds for some payoff function (vA, vB) such that vA(X,X) = w, then t∗A 6= t∗B holds for any payoff function that is
the same as (vA, vB) except that vA(X,X) 6= w.
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stronger than the condition for candidate i in Assumption 2, is a sufficient condition for ti <∞:72

First-mover disadvantage∗ for i

 vi

(
X,x∗j

)
, vi (x∗i , X) , vi (X,X) ≥ vBRji

maxXi∈X vi

(
Xi, x

∗
j

)
> v

BRj
i

. (17)

The second line of this condition states that, if the order of the moves is known, then being

the first mover is strictly worse than being the second mover. The first line further requires that

the disadvantage∗ of being the first mover is so large, that it is the worst option even if we include

the possibility of some candidates not specifying a policy. Intuitively, when it is the worst for

candidate i to be best-responded by her opponent, i has little incentive to enter when the election

day is far away. This is because when the election day is far away, the probability of the opponent

best-responding in the future is high. In Section F.4, we explain that this condition holds under

some cases in our applications.

Proposition 8. For each i, Proposition 7 holds with ti <∞ if we additionally require first-mover

disadvantage∗ for i to hold.73

Remark 13. The same conclusion as in Propositions 7 and 8 hold in the more general case in which

there exist t0 ≥ 0 and a number vi,t0 (X,X) such that (i) there exists a PBE if the horizon length

is t0, (ii) the continuation payoff at time −t0 given any history in (X,X) is equal to vi,t0 (X,X) in

any PBE, and (iii) vi,t0(enter) > vi,t0 (X,X) holds for each i.74 The proofs provided in the Online

Appendix are conducted for this general case. The generalization will be useful in analyzing Case

3.

F.3 Case 3: Only One Candidate Enters at the Deadline

We define v̄Ai,t(not) as candidate i’s expected payoff at time −t when she does not enter, assuming

that only candidate B will enter at times in (−t, 0] upon receiving an opportunity.75 Such a payoff

is well defined due to Assumption 1.

72When restricted to the environment in which X = {X} ∪ {{x}|x ∈ X} holds, this is neither stronger or weaker
than the first-mover disadvantage condition defined in (1) in Section 4.1. In particular, first-mover disadvantage∗

refers to the values of vi
(
X,x∗j

)
, vi (x∗i , X), and vi (X,X), which first-mover disadvantage does not.

73This result is not inconsistent with the case with t∗A = t∗B = ∞ which is allowed in Assumption 3 because the
proof shows that if first-mover disadvantage∗ for i holds then t∗i <∞.

74“vi (X,X) < vi (x∗i , X) for each i” as stated in Case 2 corresponds to taking t0 = 0.
75The superscript denotes the candidate who does not enter close to the deadline in Case 3.
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Let

t̂A ≡ inf
{
t > 0 : v̄AA,t(not) ≤ vA,t(enter)

}
;

t̂B ≡ inf
{
t > 0 : v̄AB,t(not) ≥ vB,t(enter)

}
.

Given the continuity of the continuation payoffs in time, t̂i is the time closest to the deadline at

which i is indifferent between entering and not entering, respectively, assuming that only candidate

B will enter afterward.

Assumption 4 (Genericity). t̂A 6= t̂B or t̂A = t̂B =∞ holds.

Like Assumption 3, this assumption is again a genericity assumption. If t̂A = t̂B =∞, then for

each time −t in any PBE, candidate A does not enter and candidate B enters. Hence we focus on

the case in which t̂A 6= t̂B.

Proposition 9. Consider Case 3. Under Assumptions 1, 2, and 4, there exists a PBE, and the

following hold.

1. If t̂A < t̂B, then there exists ε̄ > 0 such that for all ε ∈ (0, ε̄), in any PBE σ and its associated

belief β, at any history at time −(t̂A + ε) in (X,X), each candidate strictly prefers to enter

under the continuation strategy given by σ and the belief β.

2. If t̂A > t̂B, then for any PBE, at any history in (X,X), no candidate enters at any −t ∈(
−∞,−t̂B

)
.

The first part of this proposition implies that, if t̂A < t̂B, we can use the generalized version

of Proposition 7 in Case 2 to characterize any PBE, with a substitution that time t0 is set to be

equal to t̂A + ε where ε > 0 is sufficiently small and with an additional requirement of a genericity

assumption (Assumption 3) (see Remark 13). The second part states that, if t̂A > t̂B, no candidate

enters at any −t ∈
(
−∞,−t̂B

)
.

Corresponding to (17), define:

Strong first-mover disadvantage∗ for i


vi (x∗i , X) > v

BRj
i

(17) holds if t̂A < t̂B

.
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That is, strong first-mover disadvantage∗ requires, in addition to first-mover disadvantage∗, that

it is strictly worse for i who has entered at x∗i if j best-responds afterward than if j keeps being

ambiguous afterward. Putting the two parts of Proposition 9 together, we can show that, under

the assumptions imposed in that proposition, in any PBE, candidate i spends a long time using

ambiguous language if strong first-mover disadvantage∗ for i holds:76

Proposition 10. Consider Case 3 and suppose that strong first-mover disadvantage∗ for i holds.

Under Assumptions 1, 2, and 4, there exists a PBE, and for any PBE, there exists ti < ∞ such

that candidate i does not enter at any −t ∈ (−∞,−ti).

In proving this theorem, we use strong first-mover disadvantage∗ for B to show that t̂B < ∞,

which is necessary for B not to enter when the deadline is far away. More precisely, suppose that

t̂B = ∞, which means that B would be better off entering at any time −t if, after −t, A never

enters before B enters. This implies that B’s PBE continuation payoff at time −t approaches vBRAB

as t → ∞ because the probability of A’s receiving an opportunity and best-responding after B’s

entry approaches one. But then, there exists a finite t′ < 0 and T ′ < ∞ such that, for t > T ′, B

has a profitable deviation from time −t onward: It is to keep using ambiguous language until time

−t′ and then entering afterward. This is a profitable deviation because the expected payoff from

such a deviation is a strict convex combination of vB(x∗i , X), vB(X,X), and vBRAB , all of which are

weakly greater than vBRAB and vB(x∗B, X) > vBRAB by strong first-mover disadvantage∗ for B where

the weight on vi(x
∗
i , X) is bounded away from 0. Since B has a profitable deviation, t̂B =∞ cannot

hold in any PBE. Thus, we have t̂B < ∞. The intuition is simple: If B enters too early, then it

is highly likely that A receives an opportunity after B’s entry. Strong first-mover disadvantage∗

ensures that such an event is not favorable for B, and hence B would rather wait until close to the

deadline than enter too early.

F.4 Summary

We are now ready to state our first general prediction:

Theorem 4 (Non-Constant-Sum Long Ambiguity). Under Assumptions 1 and 2, the following

claims are true.

76The proof shows that, if strong first-mover disadvantage∗ for B holds, then t̂B <∞ must hold.
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1. Suppose vi (X,X) > vi (x∗i , X) for each i. Then, there exists a PBE, and in any PBE,

candidate i does not enter at any history in (X,X) at any −t ∈ (−∞, 0].

2. Suppose vi (X,X) < vi (x∗i , X) for each i. Then, with additionally requiring Assumption

3, there exists a PBE. Moreover, if first-mover disadvantage∗ for i holds, then there exists

ti < ∞ such that, for any PBE, candidate i does not enter at any history in (X,X) at any

−t ∈ (−∞,−ti).

3. Suppose that vi (X,X) > vi (x∗i , X) and vj (X,X) < vj

(
x∗j , X

)
for i 6= j. Then, with addi-

tionally requiring Assumption 4, there exists a PBE. Moreover, fix an arbitrary k ∈ {i, j} and

suppose that t̂i > t̂j or strong first-mover disadvantage∗ for candidate k holds. Then, there

exists tk < ∞ such that, for any PBE, candidate k does not enter at any history in (X,X)

at any −t ∈ (−∞,−tk).

That is, under the assumptions imposed, in any PBE, candidates keep announcing X for a

long time when the horizon is sufficiently long. Although the conditions referred to in the theorem

involve evaluation of variables that are endogenously determined in equilibrium (such as t̂i), they are

fairly easy to check. For example, in the valence election campaign, the environment of Proposition

2 corresponds to part 3 of Theorem 4, where i = W and j = S. It satisfies Assumptions 1, 2,

and 4, and first-mover disadvantage∗ for W . In addition, for Proposition 3, any symmetric office-

motivated election campaign model with (X,µ) 6∈ M satisfies Assumptions 1, 2, 3, and first-mover

disadvantage∗ for each candidate. Hence, part 2 of Theorem 4 applies.77

Since some of the assumptions in the above theorem are genericity conditions, we can also

restate part of the theorem in a way that is easier to interpret, as follows.

Corollary 2. Under Assumptions 1 and 2, the following claims are true.

1. Suppose vi (X,X) > vi (x∗i , X) for each i. Then, there exists a PBE. In any PBE, candidate

i does not enter at any history in (X,X) at any −t ∈ (−∞, 0].

77One might think that part 2 of Theorem 4 can be applied to the analysis of the policy-motivated election campaign
that we present in Appendix G. However, Assumption 1 fails because the optimal set is empty in that application.
Specifically, for candidate L, the intersection of the set of best responses to X, {( 1

2
, 1

2
)}, and the set of best responses

assuming the opponent’s subsequent best response, {( 2
3
, 0), (0, 2

3
)}, is empty. The application hence demonstrates

that even outside the environment in which our assumptions hold, long ambiguity can be an equilibrium phenomenon,
showing the robustness of the result.
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2. Suppose vi (X,X) < vi (x∗i , X) for each i. Then, generically in the space of payoff functions,

the following holds. There exists a PBE, and if first-mover disadvantage∗ for i holds, then

there exists ti < ∞ such that, for any PBE, candidate i does not enter at any history in

(X,X) at any −t ∈ (−∞,−ti).

Note that the corollary states that we expect long ambiguity in many cases, but does not identify

conditions under which we expect it. Theorem 4, in contrast, pins down the sufficient condition for

when we expect long ambiguity.

G Multi-dimensional Policy Space – the Case with Policy-Motivated

Candidates

We consider the policy announcement timing game with a multi-dimensional policy space, but now

with policy-motivated candidates. We show that, in a PBE, if a candidate cares about the policy

implemented by the winner of the election, then she may announce a Pareto-inefficient policy to

influence a later announcement by the opposition party. By announcing such a policy, she can

induce the opponent to implement a policy that is not too undesirable even in the event that she

loses.

Specifically, we consider the following setting of Persson and Tabellini (2000): X = {(x1, x2) ∈

[0, 1]2 : x1 + x2 ≤ 1}.78 Here, a higher x1 is interpreted as a more conservative economic policy

and a higher x2 is interpreted as a more aggressive military policy. There are three voters: Voter

1’s ideal policy is (1, 0) and her utility from policy x is − (1− x1). That is, she is right-wing and

only cares about the economic policy. Voter 2’s ideal policy is (0, 1) and her utility from policy

x is − (1− x2). That is, she is also right-wing and only cares about the military policy. Finally.

voter 3’s ideal policy is (0, 0) and her utility from policy x is −x1 − x2. That is, she generally likes

a left-wing policy.

There are two candidates L and R, whose ideal policies are (0, 0) and
(

1
2 ,

1
2

)
, respectively.79

Their ideal policies are common knowledge, and the voters correctly believe that the candidate

78The specific interpretation we give to the policy space we study may not be consistent with this episode of
Sanders vs. Clinton that we discussed in Section 5. We provide this example to make a point that an entry to a
policy platform can happen with a motive to influence the opposition’s platform.

79When we need to distinguish between the two candidates, we use a masculine pronoun for L and a feminine
pronoun for R.
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who wins without specifying a policy will implement her ideal policy. If a candidate wins with a

specified policy x, then she must implement x. The voters vote for the candidate who brings the

higher utility, with a tie broken in favor of the entrant if there is only one candidate who enters,

and in favor of the candidate who enters later if both enter.80 This in particular implies that R

collects two votes when no candidate enters. The candidate collecting two or three votes wins.

Since R has an ideal policy that is preferred by two voters (voters 1 and 2), she has a chance of

winning with probability 1 if no candidate specifies a policy. In this sense, candidate R is similar

to the “strong candidate” in the valence election campaign analyzed in Section 2.1. We will show,

however, that the distribution of entry times differs from the one for that model because the payoff

from the entry is specified differently.

If a candidate k ∈ {L,R} wins the election and implements policy x, the payoff of candidate

i ∈ {L,R} is

Ii=k + εui (x) ,

where uL (x) = −maxn∈{1,2} xn and uR (x) = minn∈{1,2} xn are the utility functions to represent

candidates’ policy preferences, and ε > 0.81 The payoff function vi for each i = L,R is specified

accordingly. Persson and Tabellini (2000) show that there is no Condorcet winner (no median

voter) and there is no pure-strategy Nash equilibrium in the simultaneous-move game in which

choosing X is not allowed.

In the policy announcement timing game, as a tie-breaking rule, we assume that if it is optimal

for a candidate to enter and X̄ is the set of all policies such that entering at any policy in X̄ generates

the maximum continuation payoff, then she enters at a policy in arg min(x1,x2)∈X̄ |x1 − x2|. That

is, each candidate enters at a policy that is the most equally right-wing in both dimensions. Call

this game a policy-motivated election campaign. It is characterized by a tuple (ε, T, λL, λR).

Suppose a candidate has entered at x. Since the tie is broken in favor of the last mover and

80 This tie-breaking rule is consistent with considering a limit of unique PBEs in models with discrete policy
spaces. Palfrey (1984) conducts the same exercise of taking a limit in a game where best responses do not exist
with a continuous policy space. To be precise, this tie-breaking rule violates the assumption that the payoffs to the
candidates are determined solely by the functions (vi)i=L,R which only depend on the profile of policy sets. One could
define a value function that depends both on the policy-set profile and on the times at which they are announced,
but we do not write out such formalization in light of the justification due to discrete policy spaces and for the sake
of readability.

81To avoid confusion, we use n for the index of a dimension of the policy space; and i, j and k for the indices of
the candidates.
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there is no Condorcet winner, there exists a closed set X (i, x) such that the remaining candidate i

wins if she enters at a policy in X (i, x). Let yi(x) be the unique minimizer of |x′1 − x′2| among all

x′ ∈ arg maxx′′∈X(i,x) ui(x
′′), that is, it is the policy that candidate i enters.82

Proposition 11. Fix λL and λR such that λL 6= 2λR. There exists ε̄ > 0 such that, for any T <∞

and ε ∈ (0, ε̄), any PBE of the policy-motivated election campaign with (ε, T, λL, λR) satisfies the

following: Each candidate enters at yi (x) as soon as possible, once the other candidate enters at

x. If the other candidate has not entered, the following hold:

1. Candidate R does not enter at any −t ∈ (−∞, 0] for any (λL, λR).

2. Candidate L’s strategy depends on the parameters (λL, λR).

(a) If λL
λR

> 2, then there exists tL ∈ (0,∞) such that L does not enter at −t ∈ (−∞,−tL)

and does enter at
(

1
2 ,

1
2

)
for −t ∈ (−tL, 0].

(b) If λL
λR

< 2, then there exist t∗L, t
∗∗
L ∈ (0,∞) such that L does not enter at −t ∈ (−∞,−t∗∗L ),

enters at either
(

2
3 , 0
)

or
(
0, 2

3

)
at −t ∈ (−t∗∗L ,−t∗L), and enters at

(
1
2 ,

1
2

)
at −t ∈ (−t∗L, 0].

The proof in the Online Appendix provides an explicit expression of ε̄. The bound ensures that

it is a dominated strategy for candidate i to enter at a policy x such that i loses at a policy set

profile ({x}, X).

On the one hand, since both voters (1, 0) and (0, 1) prefer candidate R’s ideal policy, R wins

with probability 1 if no candidate specifies a policy. Moreover, if candidate R enters and then

candidate L can enter, R will lose for sure. These facts turn out to imply that candidate R does

not have an incentive to enter unless candidate L enters.

On the other hand, candidate L has to enter at some point to achieve a positive probability of

winning. If the deadline is very far, then since candidate R will enter with a very high probability

once L enters, it is optimal for him not to enter. If the deadline is very close, then the probability

that candidate R will enter is very small. Therefore, L enters at the policy he prefers the most

among those with which he can win, namely,
(

1
2 ,

1
2

)
. In the middle, his optimal policy depends

on the relative arrival rates of opportunities. If candidate L is a relatively fast mover (λLλR > 2),

then the risk of not being able to enter at all is small. Hence, he waits until the probability of

82The proof of Proposition 11 shows uniqueness of the minimizer.
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candidate R entering after L becomes sufficiently small, and then enters at
(

1
2 ,

1
2

)
. If L is relatively

slow (λLλR < 2), it is too risky for him to wait until the probability of candidate R entering becomes

small. Hence, he enters even when there is a significant probability of candidate R entering after

L. Taking this event into account, he does not enter at the policy he prefers the most among those

with which he can win, but at
(

2
3 , 0
)

or
(
0, 2

3

)
. This narrows down the set of policies with which

candidate R can win after L’s entry, so L can make R’s policy more left-wing.

We note that the consideration in this last part (leading L to entering at
(

2
3 , 0
)

or
(
0, 2

3

)
) does

not occur if L does not care about what policy R picks when R wins. For example, candidates

may care about the utility from being in the office and the cost of persuading the voters that

they implement a policy far from their bliss points, while they do not derive any utility from the

implemented policy per se. In the Online Appendix, we formalize a model with such preferences

of candidates that we call the “persuasion cost election campaign,” and show that the equilibrium

dynamics in such a model are simpler.

Remark 14 (Outcome-equivalence for a public-monitoring model). The PBE we characterize

in this section (as well as the PBE characterized in the model of persuasion-cost election cam-

paign) is Markov-perfect where the state consists of the current remaining time t and the policy

sets at −t (except for measure-zero sets of times). Hence this equilibrium is outcome-equivalent

to a Markov perfect equilibrium in the “public monitoring” model where candidates observe the

other candidate receiving opportunities even when the policy set does not change.83 Moreover, we

solve the equilibrium by backward induction, which means that any SPE under public monitoring

is outcome-equivalent to a PBE in our main model where the opponent’s opportunities are not

observable. This in particular implies that the continuation payoffs are “identical” in those two

models.84

Remark 15 (Flexibility in office). We believe that there are various reasons for ambiguous an-

nouncements in real election campaigns. It is not our intention to capture all of those reasons

in our general model, but to focus on those that relate to candidates’ dynamic incentives. In

the valence election campaign (Section 2.1) and the symmetric office-motivated election campaign

(Section 2.2), ambiguity is present because each candidate does not want to be the first mover.

83See Section 4.3 for the formal description of such a model.
84In Sections 2.1 and 2.2, such identity is a consequence of Theorem 3 in Section 4.3. Hence, the prediction in

Theorem 3 is robust in the current setting which has non-zero-sum payoffs.
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In the policy-motivated election campaign in this section, this effect is still present, while there is

potentially another reason to be ambiguous: Not specifying a policy gives a flexibility in choosing

a preferred policy after being elected.

H Dynamic Extension of the Model of Dragu and Fan (2016)

Let us first explain the model by Dragu and Fan (2016). Candidate i ∈ {1, 2} has an ideal policy

vector pi = (pi1, ..., p
i
n) ∈ Rn. There is a continuum of voters with measure one, and their ideal

policy x ∈ Rn is distributed according to x ∼ N(µ,Σ) where Σ is a diagonal matrix. The voter

with ideal policy x derives utility U from a candidate with policy p, defined as follows:

U = −
n∑
k=1

wk(a) (pk − xk)2 ,

where wk(a) is “awareness” of the kth policy issue, which depends on the candidates’ advertising

profile a = (a1, a2) =
(
(a1

1, ..., a
1
n), (a2

1, ..., a
2
n)
)
∈ R2n with aik being candidate i’s spending on

issue k. Specifically, wk(a) := f(a1
k + a2

k)/
∑

k′=1,...,n f(a1
k′ + a2

k′), where f : R+ → R++ is twice

continuously differentiable and weakly concave. Each voter votes for the candidate that generates

the higher U . This determines the vote share of each candidate i, denoted Wi(a). If candidate i

advertises aik for each issue k, then she pays the cost
∑

k=1,...,n c
i(aik), where ci is twice continuously

differentiable, increasing, weakly convex, ci(0) = ci′(0) = 0, and lima→∞ c
i(a) = lima→∞ c

i′(a) =∞.

Each candidate maximizes her vote share minus the advertisement cost.

Dragu and Fan (2016) prove that, in any pure-strategy equilibrium, there is no policy issue k

in which both candidates spend positive advertising resources.85 The intuition is that, since the

payoffs from the election (that is, the payoffs except for the advertisement cost) are constant-sum,

whenever one candidate has a positive marginal value of advertising in issue k, the other candidate

has a negative marginal value.

We now explain the dynamic model, and will see how the conclusion changes in the dynamic

case by numerical examples. We assume that each candidate obtains opportunities to advertise

according to an independent Poisson process with arrival rate λ. Whenever candidate i has an

85This is their Proposition 1. They have other results, but we only focus on a single proposition to keep the
comparison simple.
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opportunity, she can spend ai ∈ Rn with the cost
∑

k c
i(aik). Let θt ∈ Rn+ be the vector of the

summations of the total spending up to time −t. Candidate i’s payoff from the dynamic game is

Wi(θ0) −
∑

t∈Ti
∑

k c
i(aik,t), where Ti is the set of times in which candidate i has an opportunity,

and aik,t denotes the amount i spent on dimension k at time −t.

We focus on Markov perfect equilibrium (MPE), where the continuation strategy from −t

depends only on θt. Since ci(0) = 0 and lima→∞ c
i(a) = lima→∞ c

i′(a) = ∞ while the payoff from

winning the election is bounded by one, there exists ā ∈ R such that we can assume that ai ∈ [0, ā]n

for any ai played after any history in any MPE. Since the feasible choice set is compact, the objective

is continuous in θ0, and players obtain finitely many Poisson opportunities with probability one, a

proof analogous to the one in Lovo and Tomala (2015) shows that a MPE exists.

For a fixed MPE, the Bellman equation for candidate i’s value function Vi,t(θ) is given by

V̇i,t(θ) = λ max
ai∈Rn+

[
Vi,t(θ + ai)− Vi,t(θ)− Ci(ai)

]
+ λ

(
Vi,t(θ + ajt (θ))− Vj,t (θ)

)
,

where the opponent best-responds:

ajt (θ) ∈ arg max
aj∈Rn+

Vj,t(a
j)− C(aj)

where the choice of ajt (θ) only depends on t and θ (but not on histories), and the initial condition

satisfies

Vi,0(θ0) = Wi(θ0).

In principle, for any parameter specification of the model, a solution to the above differential

equation provides an equilibrium characterization. In what follows, we apply the same principle to

numerically solve the dynamic extension of an example provided in Dragu and Fan (2016).86

Example 5 (Example 1 of Dragu and Fan [2016). ).]Let k = 3 and suppose that the feasible

spending level is binary: ai ∈ {0, 1}3. Candidate 1 has an advantage in issue 1, while candidate 2

has an advantage in issue 3: v1
1 = 10, v1

2 = 0, v1
3 = −2, λ1 = 1, λ2 = 100, λ3 = 1, f(ã) = ã+ 1, and

C(a) =
∑

k 0.05× ak for each candidate.

In the static case, the unique pure-strategy Nash equilibrium is a1 = (1, 0, 0) and a2 = (0, 1, 0).

86Details are available upon request.
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In the dynamic case, for each on-path θt, we have ai1 > 0 only if i = 1, ai2 > 0 only if i = 2, and

ai3 = 0 for each i ∈ {1, 2}. Hence, there is no issue for which both candidates advertise.

Example 6. Consider the same environment as in Example 5, except that we now set v1
3 = −10.

In the static case, the unique pure-strategy Nash equilibrium is a1 = (1, 0, 0) and a2 = (0, 0, 1).

In contrast, in the dynamic case, there exists a realization of the Poisson process such that

candidate 1 spends on issue 2 at one point in time and candidate 2 spends on issue 2 at another

point in time.

To see why this difference shows up, fix a MPE. Suppose candidate i obtains an opportunity

at time −t. Let vik (θt) be the marginal increase of the probability of winning by increasing the

spending on the kth issue at time −t when the state at time −t is θt. The dynamic analogue of

Proposition 1 of Dragu and Fan (2016), that there is no policy issue k in which both candidates

spend positive advertising resources in any pure-strategy equilibrium, would hold if the sign of

vik (θt) is constant for each t and each realization of on-path θt. In such a case, vik (θt) is positive

for one candidate for each t and θt and is negative for the other candidate for each t and θt. Hence,

only the former candidate is willing to spend on issue k.

In the first example, since candidates are sufficiently asymmetric, if vik (θt) is positive for one

candidate for some t and θt that happens on the equilibrium path, then it is always positive for

that candidate for each t and θt that happens on the equilibrium path. However, in the second

example, candidates are symmetric and there exists a path of the realization of {θt}t such that (i)

at some time τ , vi2 (θτ ) is positive for candidate 1 and negative for candidate 2, and (ii) for another

τ ′, vi2 (θτ ′) is negative for candidate 1 and positive for candidate 2.
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Figure I: Cutoff times and the on-path behavior for the valence election campaign (λ = 1).

70



Figure II: The on-path behavior for the symmetric office-motivated election campaign.
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Figure III: The on-path behavior for the multi-issue election campaign with valence.
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