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Abstract. Distributional constraints are common features in many real matching mar-

kets, such as medical residency matching, school admissions, and teacher assignment. To

aid market design in a wide range of applications, we develop a general theory of stabil-

ity and matching mechanisms under distributional constraints. We show that a stable

matching exists, and offer a stable mechanism that is (group) strategy-proof for one side

of the market. We prove our results by exploiting a new connection between a matching

problem under distributional constraints and a matching problem with contracts.
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1. Introduction

The theory of two-sided matching has been extensively studied ever since the seminal

contribution by Gale and Shapley (1962), and it has been applied to design clearinghouses

in various markets in practice. However, many real matching markets are subject to distri-

butional constraints, and researchers and practitioners are often faced with new challenges

from those constraints. Meanwhile, traditional theory cannot be applied because it has

assumed away such complications.

An illuminating example of distributional constraints is the “regional cap” policy in

Japanese medical residency matching. Under this policy, each region of the country

is subject to a regional cap, that is, an upper-bound constraint on the total number of

residents assigned in the region. This measure was introduced to regulate the geographical

distribution of doctors, which was considered to be concentrated too heavily in urban areas

at the expense of rural areas. Policies that are mathematically isomorphic to the regional

cap policy can be found in a wide range of contexts, such as graduate school admission

in China, college admission in several European countries, residency match in the U.K.,

and teacher assignment in Scotland.1

Motivated by these real-life examples, Kamada and Kojima (2015) study the design

of matching markets under distributional constraints. As standard stability may conflict

with distributional constraints, they propose a relaxed stability concept. They show that

existing mechanisms result in instability and inefficiency and offer a mechanism that finds

a stable and efficient matching and is (group) strategy-proof for doctors while respecting

the distributional constraints.

A major limitation of that paper, though, is that their stability concept is closely tai-

lored to a particular governmental goal to equalize the numbers of doctors across hospitals

beyond target capacities. Although such a goal may be appealing in some contexts as

a first-order concern, it may not be appropriate in other applications because hospital

1There are a large number of studies in matching problems with various forms of constraints. Ex-

amples include Roth (1991) on gender balance in labor markets, Abdulkadiroğlu and Sönmez (2003),

Abdulkadiroğlu (2005), Ergin and Sönmez (2006), Hafalir, Yenmez, and Yildirim (2013), and Ehlers,

Hafalir, Yenmez, and Yildirim (2014) on diversity in schools, Westkamp (2013) on trait-specific college

admission, Abraham, Irving, and Manlove (2007) on project-specific quotas in projects-students match-

ing, and Biró, Fleiner, Irving, and Manlove (2010) on college admission with multiple types of tuitions.

These models share some similarities with our model, but all of them are independent of our study. The

more detailed discussion is found in our companion paper, Kamada and Kojima (2015), so we do not

reproduce it here.



GENERAL THEORY OF MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 3

capacities in a given region may vary wildly. For example, the maximum and the mini-

mum capacities of hospitals in Tokyo are 69 and 2, respectively (see Figure 1). For public

elementary schools in Boston, the maximum and the minimum capacities of schools are

871 and 165, respectively (see Figure 2).2 In such cases, it may be more appropriate to

equalize the ratio between the numbers of doctors (beyond the targets) and the capacities

across hospitals.
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Figure 1. The hospital capacities in Tokyo. The data are taken from

Japan Residency Matching Program (2013).

There may be other reasonable policy goals as well. For instance, the government

may wish to give a priority to some hospitals within a region over others for a variety of

reasons.3 Thus it is clear from these examples that focusing on a particular policy goal

limits the practical applicability of the previous analysis.4

To accommodate a wide range of policy goals, this paper provides a general theory

of matching under distributional constraints. We offer a model in which each region is

2In Appendix C, we provide further statistics on heterogeneity of capacities in these markets.
3In the Japanese medical residency match, a hospital is given preferential treatments if that hospital

deploys its doctors to underserved areas (Ministry of Health, Labour and Welfare, 2014).
4Some policy goals could be addressed by setting target capacities judiciously. However, it is easy

to see that policy goals such as those discussed here cannot be fully expressed simply by picking target

capacities.
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Figure 2. The school capacities in public elementary schools in Boston.

The data are taken from Boston Public Schools (2013).

endowed with “regional preferences” over distributions of doctors within the region. The

idea behind this modeling approach is to express policy goals as regional preferences, and

accommodate different types of policy goals by changing regional preferences.5 Then we

define a stability concept that takes the regional preferences into account. We propose

a new class of mechanisms, the flexible deferred acceptance mechanisms, and show that,

under some regularity conditions, the mechanism finds a stable (and efficient) matching

and it is group strategy-proof for doctors.

Previous research suffers from another limitation. It presumes that there is just one

type of constraints, say on geographic distributions, and each hospital belongs to exactly

one region such as a prefecture. In practice, however, distributional concerns can entail

multiple dimensions. For example, again in Japan, there is not only a concern about

regional imbalance of doctors but also that about medical speciality imbalance. This

concern is clearly exemplified by a proposal made to the governmental committee meeting,

which is titled “Measures to Address Regional Imbalance and Specialty Imbalance of

Doctors” (Ministry of Health, Labour and Welfare, 2008). In 2008, Japan took a measure

5In Section D we provide various types of regional preferences that represent different policy goals.
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that intended to address (only) regional imbalance, but even in 2007, the sense of crisis

about specialty imbalance is shared by the private sector as well: In a sensationally

entitled article, “Obstetricians Are in Short Supply! Footsteps of Obstetrics Breakdown,”

NTT Com Research (2007) reports that many obstetrics hospitals have been closed even

in urban areas such as Tokyo. In Hungarian college admission, Biró, Fleiner, Irving, and

Manlove (2010) point out that there are caps on each field of study as well as the set of

state-financed seats.

Given these practical concerns, we further generalize our model to allow for multiple

dimensions of distributional concerns. To do this, we consider a situation where there is a

hierarchy of distributional constraints.6 That is, there exist a class of subsets of hospitals

that have a hierarchical structure and, for each of those subsets, an upper-bound constraint

is imposed.7 This constraint structure addresses such concerns as those in the previous

paragraph, by allowing for caps both on the total number of doctors in each region and

on the number of doctors practicing in each medical specialty in each region.8 In that

setting, we show that a generalization of the flexible deferred acceptance mechanism

produces a stable matching (which is defined appropriately), and the mechanism is group

strategy-proof for doctors. This generalization enables us to also analyze other types

of applications, such as a situation in which there are regional caps not only for each

prefecture, but also for each district within each prefecture.

In order to confirm that our general theory subsumes relevant cases, we provide a

number of results. First, we show that the stability notion of Kamada and Kojima (2015)

is a special case of our stability concept. More specifically, their concept is a case of our

stability notion in which the regional preferences satisfy a condition called the “Rawlsian”

property. Moreover, when the regional preferences are Rawlsian, our flexible deferred

acceptance algorithm reduces to the algorithm of Kamada and Kojima (2015). Thus we

establish the main results of Kamada and Kojima (2015) as a special case of our more

general results. Furthermore, we demonstrate that a wide range of policy goals can be

described by our regional preferences, and the corresponding flexible deferred acceptance

algorithm finds a stable matching with respect to those regional preferences.

6Budish, Che, Kojima, and Milgrom (2013) also study hierarchical constraints, though in the context

of object allocation, rather than two-sided matching.
7Such a hierarchical structure is called a “laminar family” in the mathematics literature.
8Although hierarchical structures exclude some cases, it appears to capture many practical cases. For

example, demand for doctors in a particular medical specialty is often in terms of the number in a given

geographical region, rather than in the entire country, so the constraint structure is hierarchical. Moreover,

when the constraint structure is not hierarchical, we show that there need not exist a stable matching.
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Although the main motivation for this work is an applied one, we believe that one

methodological point is worth emphasizing. Our basic analytical approach is to find an

unexpected connection between our model and the “matching with contracts” model (Hat-

field and Milgrom, 2005).9 More specifically, we define a hypothetical matching problem

between doctors and regions instead of doctors and hospitals; We regard each region as a

hypothetical consortium of hospitals that acts as one agent. By imagining that a region

(hospital consortium) makes a common employment decision, we can account for interre-

lated doctor assignments across hospitals within a region, an inevitable feature in markets

under distributional constraints. This association necessitates, however, that we distin-

guish a doctor’s matching in different hospitals in the given region. We account for this

complication by defining a region’s choice function over contracts rather than doctors,

where a contract specifies a doctor-hospital pair to be matched. Once this connection

is established, with some work we show that properties in the matching-with-contract

model can be invoked to establish key results in our matching model under distribu-

tional constraints, including both the existence of a stable matching and doctor group

strategy-proofness of our mechanism.10 Moreover, this connection allows us to utilize

structural properties of stable allocations in matching with contracts. More specifically,

we obtain many comparative statics results in markets under distributional constraints

as straightforward corollaries of a single new comparative statics result about matching

with contracts (Lemma 1).11 More generally, we envision that analyzing a hypothetical

model of matching with contracts may prove to be a useful approach for tackling complex

matching problems one may encounter in the future.12

9Fleiner (2003) considers a framework that generalizes various mathematical results. A special case of

his model corresponds to the model of Hatfield and Milgrom (2005), although not all results of the latter

(e.g., those concerning incentives) are obtained in the former. See also Crawford and Knoer (1981) who

observe that wages can represent general job descriptions in their model, given their assumption that

firm preferences satisfy separability.
10Specifically, we invoke results by Hatfield and Milgrom (2005), Hatfield and Kojima (2009, 2010),

and Hatfield and Kominers (2009, 2012).
11This result generalizes existing results such as Gale and Sotomayor (1985a,b), Crawford (1991), and

Konishi and Ünver (2006). See also Kelso and Crawford (1982), who derive similar results in a matching

model with wages. Echenique and Yenmez (2015) and Chambers and Yenmez (2013) independently

obtain similar results in a framework based on choice functions as primitives.
12Indeed, after we circulated the first draft of the present paper, this technique was adopted by other

studies such as Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014), Goto, Hashimoto, Iwasaki, Kawasaki,

Ueda, Yasuda, and Yokoo (2014), and Kojima, Tamura, and Yokoo (2015) in the context of matching

with distributional constraints. See Sönmez and Switzer (2013) for a more direct application of matching
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The rest of this paper proceeds as follows. In Section 2, we present the model. Section

3 states the main result. In Section 4, we provide a proof of the main result. Section 5

offers a number of discussions. In Section 6, we present a further generalization. Section

7 concludes. Proofs are in the Appendix unless noted otherwise.

2. Model

This section introduces a model of matching under distributional constraints. We de-

scribe the model in terms of matching between doctors and hospitals with “regional caps,”

that is, upper bounds on the number of doctors that can be matched to hospitals in each

region. However, the model is applicable to various other situations in and out of the

residency matching context. Concrete applications include Chinese graduate school ad-

mission, U.K. medical matching, Scottish teacher matching, and college admissions in

Ukraine and Hungary.13

Our notation and terminology closely follow those of Kamada and Kojima (2015). We

reproduce them here for convenience for the reader, while also introducing new ones as

needed.

2.1. Preliminary Definitions. Let there be a finite set of doctors D and a finite set of

hospitals H. Each doctor d has a strict preference relation �d over the set of hospitals

and being unmatched (being unmatched is denoted by ∅). For any h, h′ ∈ H ∪ {∅}, we

write h �d h′ if and only if h �d h′ or h = h′. Each hospital h has a strict preference

relation �h over the set of subsets of doctors. For any D′, D′′ ⊆ D, we write D′ �h D′′ if

and only if D′ �h D′′ or D′ = D′′. We denote by �= (�i)i∈D∪H the preference profile of

all doctors and hospitals.

Doctor d is said to be acceptable to hospital h if d �h ∅.14 Similarly, h is acceptable

to d if h �d ∅. It will turn out that only rankings of acceptable partners matter for our

analysis, so we often write only acceptable partners to denote preferences. For example,

�d: h, h′

means that hospital h is the most preferred, h′ is the second most preferred, and h and

h′ are the only acceptable hospitals under preferences �d of doctor d.

with contracts model, where a cadet can be matched with a branch under one of two possible contracts.

See also Sönmez (2013) and Kominers and Sönmez (2012).
13See Kamada and Kojima (2015) for detailed descriptions.
14We denote singleton set {x} by x when there is no confusion.
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Each hospital h ∈ H is endowed with a (physical) capacity qh, which is a nonnegative

integer. We say that preference relation �h is responsive with capacity qh (Roth,

1985) if

(1) For any D′ ⊆ D with |D′| ≤ qh, d ∈ D \D′ and d′ ∈ D′, (D′ ∪ d) \ d′ �h D′ if and

only if d �h d′,
(2) For any D′ ⊆ D with |D′| ≤ qh and d′ ∈ D′, D′ �h D′ \ d′ if and only if d′ �h ∅,

and

(3) ∅ �h D′ for any D′ ⊆ D with |D′| > qh.

In words, preference relation �h is responsive with a capacity if the ranking of a doctor

(or keeping a position vacant) is independent of her colleagues, and any set of doctors

exceeding its capacity is unacceptable. We assume that preferences of each hospital h are

responsive with capacity qh throughout the paper.

There is a finite set R which we call the set of regions. The set of hospitals H is

partitioned into hospitals in different regions, that is, Hr ∩ Hr′ = ∅ if r 6= r′ and H =

∪r∈RHr , where Hr denotes the set of hospitals in region r ∈ R. For each h ∈ H, let r(h)

denote the region r such that h ∈ Hr. For each region r ∈ R, there is a regional cap qr,

which is a nonnegative integer.

A matching µ is a mapping that satisfies (i) µd ∈ H ∪ {∅} for all d ∈ D, (ii) µh ⊆ D

for all h ∈ H, and (iii) for any d ∈ D and h ∈ H, µd = h if and only if d ∈ µh. That is, a

matching simply specifies which doctor is assigned to which hospital (if any). A matching

is feasible if |µr| ≤ qr for all r ∈ R, where µr = ∪h∈Hrµh. In other words, feasibility

requires that the regional cap for every region is satisfied. This requirement distinguishes

the current environment from the standard model without regional caps: We allow for

(though do not require) qr <
∑

h∈Hr
qh, that is, the regional cap can be smaller than the

sum of hospital capacities in the region.

To accommodate the regional caps, we introduce a new stability concept that generalizes

the standard notion. For that purpose, we first define two basic concepts. A matching µ

is individually rational if (i) for each d ∈ D, µd �d ∅, and (ii) for each h ∈ H, d �h ∅
for all d ∈ µh, and |µh| ≤ qh. That is, no agent is matched with an unacceptable partner

and each hospital’s capacity is respected.

Given matching µ, a pair (d, h) of a doctor and a hospital is called a blocking pair if

h �d µd and either (i) |µh| < qh and d �h ∅, or (ii) d �h d′ for some d′ ∈ µh. In words,

a blocking pair is a pair of a doctor and a hospital who want to be matched with each

other (possibly rejecting their partners in the prescribed matching) rather than following

the proposed matching.
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When there are no binding regional caps (in the sense that qr ≥
∑

h∈Hr
qh for every

r ∈ R), a matching is said to be stable if it is individually rational and there is no blocking

pair. Gale and Shapley (1962) show that there exists a stable matching in that setting.

In the presence of binding regional caps, however, there may be no such matching that

is feasible (in the sense that all regional caps are respected). Thus in some cases every

feasible and individually rational matching may admit a blocking pair.

A mechanism ϕ is a function that maps preference profiles to matchings. The match-

ing under ϕ at preference profile � is denoted ϕ(�) and agent i’s match is denoted by

ϕi(�) for each i ∈ D ∪H.

A mechanism ϕ is said to be strategy-proof if there does not exist a preference profile

�, an agent i ∈ D ∪H, and preferences �′i of agent i such that

ϕi(�′i,�−i) �i ϕi(�).

That is, no agent has an incentive to misreport her preferences under the mechanism.

Strategy-proofness is regarded as a very important property for a mechanism to be suc-

cessful.15

Unfortunately, however, there is no mechanism that produces a stable matching for all

possible preference profiles and is strategy-proof even in a market without regional caps,

that is, qr > |D| for all r ∈ R (Roth, 1982).16 Given this limitation, we consider the

following weakening of the concept requiring incentive compatibility only for doctors. A

mechanism ϕ is said to be strategy-proof for doctors if there does not exist a preference

profile �, a doctor d ∈ D, and preferences �′d of doctor d such that

ϕd(�′d,�−d) �d ϕd(�).

A mechanism ϕ is said to be group strategy-proof for doctors if there is no prefer-

ence profile �, a subset of doctors D′ ⊆ D, and a preference profile (�′d′)d′∈D′ of doctors

15One good aspect of having strategy-proofness is that the matching authority can actually state

it as the property of the algorithm to encourage doctors to reveal their true preferences. For exam-

ple, the current webpage of the Japan Residency Matching Program (last accessed on May 25, 2010,

http://www.jrmp.jp/01-ryui.htm) states, as advice for doctors, that “If you list as your first choice a

program which is not actually your first choice, the probability that you end up being matched with

some hospital does not increase [...] the probability that you are matched with your actual first choice

decreases.” In the context of student placement in Boston, strategy-proofness was regarded as a desirable

fairness property, in the sense that it provides equal access for children and parents with different degrees

of sophistication to strategize (Pathak and Sonmez, 2008).
16Remember that a special case of our model in which qr > |D| for all r ∈ R is the standard matching

model with no binding regional caps.
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in D′ such that

ϕd((�′d′)d′∈D′ , (�i)i∈D∪H\D′) �d ϕd(�) for all d ∈ D′.

That is, no subset of doctors can jointly misreport their preferences to receive a strictly

preferred outcome for every member of the coalition under the mechanism.

As this paper analyzes the effect of regional caps in matching markets, it is useful to

compare it with the standard matching model without regional caps. Gale and Shapley

(1962) consider a matching model without any binding regional cap, which corresponds

to a special case of our model in which qr > |D| for every r ∈ R. In that model, they

propose the following (doctor-proposing) deferred acceptance algorithm:

• Step 1: Each doctor applies to her first choice hospital. Each hospital rejects

the lowest-ranking doctors in excess of its capacity and all unacceptable doctors

among those who applied to it, keeping the rest of the doctors temporarily (so

doctors not rejected at this step may be rejected in later steps).

In general,

• Step t: Each doctor who was rejected in Step (t − 1) applies to her next high-

est choice (if any). Each hospital considers these doctors and doctors who are

temporarily held from the previous step together, and rejects the lowest-ranking

doctors in excess of its capacity and all unacceptable doctors, keeping the rest of

the doctors temporarily (so doctors not rejected at this step may be rejected in

later steps).

The algorithm terminates at a step in which no rejection occurs. The algorithm always

terminates in a finite number of steps. Gale and Shapley (1962) show that the resulting

matching is stable in the standard matching model without any binding regional cap.

Even though there exists no strategy-proof mechanism that produces a stable matching

for all possible inputs, the deferred acceptance mechanism is (group) strategy-proof for

doctors (Dubins and Freedman, 1981; Roth, 1982).17 This result has been extended by

many subsequent studies, suggesting that the incentive compatibility of the mechanism

is quite robust and general.18

17Ergin (2002) defines a stronger version of group strategy-proofness. It requires that no group of

doctors can misreport preferences jointly and make some of its members strictly better off without

making any of its members strictly worse off. He identifies a necessary and sufficient condition for the

deferred acceptance mechanism to satisfy this version of group strategy-proofness.
18Researches generalizing (group) strategy-proofness of the mechanism include Abdulkadiroğlu (2005),

Hatfield and Milgrom (2005), Martinez, Masso, Neme, and Oviedo (2004), Hatfield and Kojima (2009,

2010), and Hatfield and Kominers (2009, 2012).
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Kamada and Kojima (2015) present examples that show that a simple adaptation of

the deferred acceptance mechanism results in inefficiency and instability. Motivated by

this problem, the current paper presents a theory of stable matching under distributional

constraints in the subsequent sections.

2.2. Model with Regional Preferences. Let regional preferences �r be a weak or-

dering over nonnegative-valued integer vectors Wr := {w = (wh)h∈Hr |wh ∈ Z+}. That is,

�r is a binary relation that is complete and transitive (but not necessarily antisymmetric).

We write w �r w′ if and only if w �r w′ holds but w′ �r w does not. Vectors such as w

and w′ are interpreted to be supplies of acceptable doctors to the hospitals in region r,

but they only specify how many acceptable doctors apply to each hospital and no infor-

mation is given as to who these doctors are. Given �r, a function C̃hr : Wr → Wr is an

associated quasi choice rule if C̃hr(w) ∈ arg max�r
{w′|w′ ≤ w} for any non-negative

integer vector w = (wh)h∈Hr .
19 We require that the quasi choice rule C̃hr be consistent,

that is, C̃hr(w) ≤ w′ ≤ w ⇒ C̃hr(w
′) = C̃hr(w).20 This condition requires that, if C̃hr(w)

is chosen at w and the supply decreases to w′ ≤ w but C̃hr(w) is still available under w′,

then the same choice C̃hr(w) should be made under w′ as well. Note that there may be

more than one quasi choice rule associated with a given weak ordering �r because the set

arg max�r
{w′|w′ ≤ w} may not be a singleton for some �r and w. Note also that there

always exists a consistent quasi choice rule.21 We assume that the regional preferences �r
satisfy the following mild regularity conditions:

(1) w′ �r w if wh > qh ≥ w′h for some h ∈ Hr and w′h′ = wh′ for all h′ 6= h.

This property says that the region desires no hospital to be forced to be assigned

more doctors than its real capacity. This condition implies that, for any w, the

component [C̃hr(w)]h of C̃hr(w) for h satisfies [C̃hr(w)]h ≤ qh for each h ∈ Hr,

19For any two vectors w = (wh)h∈Hr and w′ = (w′h)h∈Hr , we write w ≤ w′ if and only if wh ≤ w′h

for all h ∈ Hr. We write w � w′ if and only if w ≤ w′ and wh < w′h for at least one h ∈ Hr. For any

W ′r ⊆Wr, arg max�r W
′
r is the set of vectors w ∈W ′r such that w �r w′ for all w′ ∈W ′r.

20Analogous conditions are used by Blair (1988), Alkan (2002), and Alkan and Gale (2003) in dif-

ferent contexts. In Appendix E, we show that if a regional preference satisfies substitutability and its

associated quasi choice rule is acceptant, as defined later, then the quasi choice rule satisfies consistency.

Fleiner (2003) and Aygün and Sönmez (2012) prove analogous results although they do not work on

substitutability defined over the space of integer vectors.
21To see this point consider preferences �′r such that w �′r w′ if w �r w′ and w = w′ if w �′r w′ and

w′ �′r w. The quasi choice rule that chooses (the unique element of) arg max�′
r
{w′|w′ ≤ w} for each w

is clearly consistent with �r.
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that is, the capacity constraint for each hospital is respected by the (quasi) choice

of the region.

(2) w′ �r w if
∑

h∈Hr
wh > qr ≥

∑
h∈Hr

w′h.

This property simply says that region r prefers the total number of doctors in the

region to be at most its regional cap. This condition implies that
∑

h∈Hr
(C̃hr(w))h ≤

qr for any w, that is, the regional cap is respected by the (quasi) choice of the re-

gion.

(3) If w′ � w ≤ qHr := (qh)h∈Hr and
∑

h∈Hr
wh ≤ qr, then w �r w′.

This condition formalizes the idea that region r prefers to fill as many positions

of hospitals in the region as possible so long as doing so does not lead to a violation

of the hospitals’ real capacities or the regional cap. This requirement implies that

any associated quasi choice rule is acceptant, that is, for each w, if there exists h

such that [C̃hr(w)]h < min{qh, wh}, then
∑

h′∈Hr
[C̃hr(w)]h′ = qr.

22 This captures

the idea that the social planner should not waste caps allocated to the region: If

some doctor is rejected by a hospital even though she is acceptable to the hospital

and the hospital’s capacity is not binding, then the regional cap should be binding.

Definition 1. The regional preferences �r are substitutable if there exists an associated

quasi choice rule C̃hr that satisfies w ≤ w′ ⇒ C̃hr(w) ≥ C̃hr(w
′) ∧ w.

Notice that the condition in this definition is equivalent to

w ≤ w′ ⇒ [C̃hr(w)]h ≥ min{[C̃hr(w
′)]h, wh} for every h ∈ Hr.(2.1)

This condition says that, when the supply of doctors is increased, the number of accepted

doctors at a hospital can increase only when the hospital has accepted all acceptable

doctors under the original supply profile. Formally, condition (2.1) is equivalent to

w ≤ w′ and [C̃hr(w)]h < [C̃hr(w
′)]h ⇒ [C̃hr(w)]h = wh.(2.2)

To see that condition (2.1) implies condition (2.2), suppose that w ≤ w′ and [C̃hr(w)]h <

[C̃hr(w
′)]h. These assumptions and condition (2.1) imply [C̃hr(w)]h ≥ wh. Since [C̃hr(w)]h ≤

wh holds by the definition of C̃hr, this implies [C̃hr(w)]h = wh. To see that condition

(2.2) implies condition (2.1), suppose that w ≤ w′. If [C̃hr(w)]h ≥ [C̃hr(w
′)]h, the conclu-

sion of (2.1) is trivially satisfied. If [C̃hr(w)]h < [C̃hr(w
′)]h, then condition (2.2) implies

[C̃hr(w)]h = wh, thus the conclusion of (2.1) is satisfied.

22A similar condition is used by Alkan (2001) and Kojima and Manea (2010) in the context of choice

functions over matchings.
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This definition of substitutability is analogous to persistence by Alkan and Gale (2003),

who define the condition on a choice function in a slightly different context. While our

definition is similar to substitutability as defined in standard matching models (see Chap-

ter 6 of Roth and Sotomayor (1990) for instance), there are two differences: (i) it is now

defined on a region as opposed to a hospital, and (ii) it is defined over vectors that only

specify how many doctors apply to hospitals in the region, and it does not distinguish

different doctors.

Given a profile of regional preferences (�r)r∈R, stability is defined as follows.

Definition 2. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh, and

(iii) either µd /∈ Hr(h) or w �r(h) w
′,

where wh′ = |µh′ | for all h′ ∈ Hr(h) and w′h = wh + 1, w′µd = wµd − 1 and w′h′ = wh′ for all

other h′ ∈ Hr(h).

As stated in the definition, only certain blocking pairs are tolerated under stability. Any

blocking pair that may remain is in danger of violating the regional cap since condition

(i) implies that the cap for the blocking hospital’s region is currently full, and condition

(ii) implies that the only blocking involves filling a vacant position.

There are two possible cases under (iii). The first case implies that the blocking doctor

is not currently assigned in the hospital’s region, so the blocking pair violates the regional

cap. The second part of condition (iii) considers blocking pairs within a region (note

that µd ∈ Hr(h) holds in the remaining case). It states that if the blocking pair does not

improve the doctor distribution in the region with respect to its regional preferences, then

it is not regarded as a legitimate block.

The implicit idea behind the definition is that the government or some authority can in-

terfere and prohibit a blocking pair to be executed if regional caps are an issue. Thus, our

preferred interpretation is that stability captures a normative notion that it is desirable to

implement a matching that respects participants’ preferences to the extent possible. Jus-

tification of the normative appeal of stability has been established in the recent matching

literature, and Kamada and Kojima (2015) offer further discussion on this point, so we

refer interested readers to that paper for details.

The way that regional preferences are determined could depend on the policy goal of

the region or the social planner. One possibility for regional preferences, studied in detail

by Kamada and Kojima (2015), is to prefer distributions of doctors that have “fewer
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gaps” from the target capacities; see Section 5.1 for detail. Other regional preferences are

analyzed in Section 5.2.

Clearly, our stability concept reduces to the standard stability concept of Gale and

Shapley (1962) if there are no binding regional caps.

Remark 1. In Kamada and Kojima (2016), we show that any matching satisfying a

weaker notion than stability is (constrained) efficient, i.e., there is no feasible matching

µ′ such that µ′i �i µi for all i ∈ D ∪ H and µ′i �i µi for some i ∈ D ∪ H.23 Therefore,

a stable matching is efficient for any regional preferences, which provides one normative

appeal of our stability concept.

Remark 2. Kamada and Kojima (2016) define a more demanding concept than stability

that replaces condition (iii) in Definition 2 with µd /∈ Hr(h), which they call strong stability.

While strong stability also has a natural interpretation, they demonstrate that a strongly

stable matching does not necessarily exist, and no mechanism is strategy-proof for doctors

and produces a strongly stable matching when there exists one. Given these negative

findings, the present paper focuses on stability as defined in Definition 2.

3. Main Result

This section has two goals. The first goal is to demonstrate that a stable matching ex-

ists under our general definition of stability under distributional constraints. The second

goal is to show that a stable matching can be found by a mechanism that is strategy-proof

for doctors. To achieve these goals, we begin by introducing the following (generalized)

flexible deferred acceptance algorithm:

The (Generalized) Flexible Deferred Acceptance Algorithm For each region r,

fix an associated quasi choice rule C̃hr which satisfies condition (2.1). Note that the

assumption that �r is substitutable assures the existence of such a quasi choice rule.

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d arbitrarily who is currently not tentatively matched to any

hospital and who has not applied to all acceptable hospitals yet. If such a doctor

does not exist, then terminate the algorithm.

(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. If d is unacceptable to h̄, then reject this doctor and go

23Since regional caps are a primitive of the environment, we consider a constrained efficiency concept.
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back to Step 2. Otherwise, let r be the region such that h̄ ∈ Hr and define vector

w = (wh)h∈Hr by

(a) wh̄ is the number of doctors currently held at h̄ plus one, and

(b) wh is the number of doctors currently held at h if h 6= h̄.

(4) Each hospital h ∈ Hr considers the new applicant d (if h = h̄) and doctors who

are temporarily held from the previous step together. It holds its (C̃hr(w))h most

preferred applicants among them temporarily and rejects the rest (so doctors held

at this step may be rejected in later steps). Go back to Step 2.

We define the (generalized) flexible deferred acceptance mechanism to be a mech-

anism that produces, for each input, the matching given at the termination of the above

algorithm.

This algorithm is a generalization of the deferred acceptance algorithm of Gale and

Shapley (1962) to the model with regional caps. The main differences are found in Steps

3 and 4. Unlike the deferred acceptance algorithm, this algorithm limits the number of

doctors (tentatively) matched in each region r at qr. This results in rationing of doctors

across hospitals in the region, and the rationing rule is governed by regional preferences

�r. Clearly, this mechanism coincides with the standard deferred acceptance algorithm

if all the regional caps are large enough and hence non-binding.

With the definition of the flexible deferred acceptance mechanism, we are now ready to

present the main result of this paper.

Theorem 1. Suppose that �r is substitutable for every r ∈ R. Then the flexible deferred

acceptance algorithm stops in finite steps. The mechanism produces a stable matching for

any input and is group strategy-proof for doctors.

This theorem offers a sense in which it is possible to design a desirable mechanism even

under distributional constraints and various policy goals. As will be seen in subsequent

sections, the class of substitutable regional preferences subsumes the “Rawlsian” regional

preferences motivated by a residency matching application (Section 5.1) as well as others

(Section 5.2). For each of these cases, the flexible deferred acceptance mechanism finds a

stable matching that addresses a given policy goal, while inducing truthful reporting by

doctors. Moreover, because stability implies efficiency (Kamada and Kojima, 2016), the

algorithm produces an efficient matching.
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4. Proof of Theorem 1

This section presents the proof of Theorem 1. Since the proof is somewhat involved,

we illustrate a sketch of the proof in Section 4.1, and then present the formal proof in

Section 4.2.

4.1. Sketch of the proof. Our proof strategy is to connect our matching model with

constraints to the “matching with contracts” model (Hatfield and Milgrom, 2005). More

specifically, given the original matching model under constraints, we define an “associated

model,” a hypothetical matching model between doctors and regions instead of doctors

and hospitals; In the associated model, we regard each region as a hypothetical consortium

of hospitals that acts as one agent. By imagining that a region (hospital consortium)

makes a coordinated employment decision, we can account for the fact that acceptance of

a doctor by a hospital may depend on doctor applications to other hospitals in the same

region, an inevitable feature in markets under distributional constraints. This association

necessitates, however, that we distinguish a doctor’s placements in different hospitals in

the given region. We account for this complication by defining a region’s choice function

over contracts rather than doctors, where a contract specifies a doctor-hospital pair to be

matched. We construct such a choice function by using two pieces of information: the

preferences of all the hospitals in the given region, and regional preferences. The idea is

that each hospital’s preferences are used for choosing doctors given the number of allocated

slots, while regional preferences are used to regulate slots allocated to different hospitals

in the region. In other words, regional preferences trade off multiple hospitals’ desires

to accept more doctors, when accepting more is in conflict with the regional cap. With

the help of this association, we demonstrate that any stable allocation in the associate

model with contracts induces a stable matching in the original model with distributional

constraints (Proposition 2).

Once this association is established, with some work we show that the key conditions

in the associated model—the substitutes condition and the law of aggregate demand—are

satisfied (Proposition 1). This enables us to invoke existing results for matching with

contracts, namely that an existing algorithm called the “cumulative offer process” finds

a stable allocation, and it is (group) strategy-proof for doctors in the associated model

(Hatfield and Milgrom, 2005; Hatfield and Kojima, 2009; Hatfield and Kominers, 2012).

Then, we observe that the outcome of the cumulative offer process corresponds to the

matching produced by the flexible deferred acceptance algorithm in the original model

with constraints (Remark 3). This correspondence establishes that the flexible deferred
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acceptance mechanism finds a stable matching in the original problem and this algorithm

is group strategy-proof for doctors, proving Theorem 1.

The full proof, presented in the next subsection, formalizes this idea. The proof is

somewhat involved because one needs to exercise some care when establishing correspon-

dences between the two models and confirming that a property in one model induces the

corresponding property in the other. For illustration, our proof approach is represented

as a chart in Figure 3.

Matching)with)Contracts)

(the)associated)problem))

Regional)preferences)are)subs:tutable)

Matching)under)Constraint)

(the)original)problem))

Regions’)choice)func:ons)sa:sfy)

•  the)subs:tutes)condi:on)

•  the)law)of)aggregate)demand)

ϕ)produces)a)stable)alloca:on)

Proposi:on)2)

Proposi:on)1)

ϕ)is)a)flexible)deferred))

acceptance)mechanism)
ϕ)is)a)cumula:ve)offer)process)

)))Remark)3)

ϕ)is)(group))strategyFproof))

for)doctors)

ϕ)produces)a)stable)matching)

ϕ)is)(group))strategyFproof))

for)doctors)

Theorem'1:)
We)use)

green)and)

blue)arrows)

to)prove)

this.)
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HM)=)HaOield)and)Milgrom)(2005))

HKj)=)HaOield)and)Kojima)(2009))

HKm)=)HaOield)and)Kominers)(2010))

doctor&hospital-matching- doctor&region-matching-

Figure 3. Proof sketch for Theorem 1.

4.2. The complete proof. Let there be two types of agents, doctors in D and regions in

R. Note that we regard a region, instead of a hospital, as an agent in this model. There

is a set of contracts X = D ×H.

We assume that, for each doctor d, any set of contracts with cardinality two or more is

unacceptable, that is, a doctor wants to sign at most one contract. For each doctor d, her

preferences �d over ({d} × H) ∪ {∅} are given as follows.24 We assume (d, h) �d (d, h′)

24We abuse notation and use the same notation �d for preferences of doctor d both in the original

model and in the associated model with contracts.
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in this model if and only if h �d h′ in the original model, and (d, h) �d ∅ in this model if

and only if h �d ∅ in the original model.

For each region r ∈ R, we assume that the region has preferences �r and its associated

choice rule Chr(·) over all subsets of D × Hr. For any X ′ ⊂ D × Hr, let w(X ′) :=

(wh(X
′))h∈Hr be the vector such that wh(X

′) = |{(d, h) ∈ X ′|d �h ∅}|. For each X ′, the

chosen set of contracts Chr(X
′) is defined by

Chr(X
′) =

⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ (C̃hr(w(X ′)))h

}
.

(4.1)

That is, each hospital h ∈ Hr chooses its (C̃hr(w(X ′)))h most preferred contracts available

in X ′.

We extend the domain of the choice rule to the collection of all subsets of X by setting

Chr(X
′) = Chr({(d, h) ∈ X ′|h ∈ Hr}) for any X ′ ⊆ X.

Definition 3 (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the substitutes

condition if there does not exist contracts x, x′ ∈ X and a set of contracts X ′ ⊆ X such

that x′ /∈ Chr(X
′ ∪ {x′}) and x′ ∈ Chr(X

′ ∪ {x, x′}).

In other words, contracts are substitutes if adding a contract to the choice set never

induces a region to choose a contract it previously rejected. Hatfield and Milgrom (2005)

show that there exists a stable allocation (defined in Definition 5) when contracts are

substitutes for every region.

Definition 4 (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the law of

aggregate demand if for all X ′ ⊆ X ′′ ⊆ X, |Chr(X
′)| ≤ |Chr(X

′′)|.25

Proposition 1. Suppose that �r is substitutable. Then choice rule Chr(·) defined above

satisfies the substitutes condition and the law of aggregate demand.26

Proof. Fix a region r ∈ R. Let X ′ ⊆ X be a subset of contracts and x = (d, h) ∈ X \X ′

where h ∈ Hr. Let w = w(X ′) and w′ = w(X ′ ∪ x). To show that Chr satisfies the

substitutes condition, we consider a number of cases as follows.

25Analogous conditions called cardinal monotonicity and size monotonicity are introduced by Alkan

(2002) and Alkan and Gale (2003) for matching models without contracts.
26Note that choice rule Chr(·) allows for the possibility that multiple contracts are signed between the

same pair of a region and a doctor. Without this possibility, the choice rule may violate the substitutes

condition (Sönmez and Switzer, 2013; Sönmez, 2013). Hatfield and Kominers (2013) explore this issue

further.
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(1) Suppose that ∅ �h d. Then w′ = w and, for each h′ ∈ Hr, the set of acceptable

doctors available at X ′ ∪ x is identical to the one at X ′. Therefore, by inspection

of the definition of Chr, we have Chr(X
′∪x) = Chr(X

′), satisfying the conclusion

of the substitutes condition in this case.

(2) Suppose that d �h ∅.
(a) Consider a hospital h′ ∈ Hr \ h. Note that we have w′h′ = wh′ . This and

the inequality [C̃hr(w
′)]h′ ≤ w′h′ (which always holds by the definition of

C̃hr) imply that [C̃hr(w
′)]h′ ≤ wh′ . Thus we obtain min{[C̃hr(w

′)]h′ , wh′} =

[C̃hr(w
′)]h′ . Since w′ ≥ w and condition (2.1) holds, this implies that

[C̃hr(w)]h′ ≥ [C̃hr(w
′)]h′ .(4.2)

Also observe that the set {d′ ∈ D|(d′, h′) ∈ X ′} is identical to {d′ ∈ D|(d′, h′) ∈
X ′ ∪ x}, that is, the sets of doctors that are available to hospital h′ are iden-

tical under X ′ and X ′ ∪ x. This fact, inequality (4.2), and the definition of

Chr imply that if x′ = (d′, h′) /∈ Chr(X
′), then x′ /∈ Chr(X

′ ∪ x), obtaining

the conclusion for the substitute condition in this case.

(b) Consider hospital h.

(i) Suppose that [C̃hr(w)]h ≥ [C̃hr(w
′)]h. In this case we follow an argu-

ment similar to (but slightly different from) Case (2a): Note that the

set {d′ ∈ D|(d′, h) ∈ X ′} is a subset of {d′ ∈ D|(d′, h) ∈ X ′ ∪ x}, that

is, the set of doctors that are available to hospital h under X ′ is smaller

than under X ′ ∪ x. These properties and the definition of Chr imply

that if x′ = (d′, h) ∈ X ′ \Chr(X
′), then x′ ∈ X ′ \Chr(X

′∪x), obtaining

the conclusion for the substitute condition in this case.

(ii) Suppose that [C̃hr(w)]h < [C̃hr(w
′)]h. This assumption and (2.2) imply

[C̃hr(w)]h = wh. Thus, by the definition of Chr, any contract (d′, h) ∈
X ′ such that d′ �h ∅ is in Chr(X

′). Equivalently, if x′ = (d′, h) ∈
X ′ \ Chr(X

′), then ∅ �h d′. Then, again by the definition of Chr, it

follows that x′ /∈ Chr(X
′∪x) for any contract x′ = (d′, h) ∈ X ′\Chr(X

′).

Thus we obtain the conclusion of the substitute condition in this case.

To show that Chr satisfies the law of aggregate demand, simply note that C̃hr is acceptant

by assumption. This leads to the desired conclusion. �

A subset X ′ of X = D ×H is said to be individually rational if (1) for any d ∈ D,

|{(d, h) ∈ X ′|h ∈ H}| ≤ 1, and if (d, h) ∈ X ′ then h �d ∅, and (2) for any r ∈ R,

Chr(X
′) = X ′ ∩ (D ×Hr).
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Definition 5. A set of contracts X ′ ⊆ X is a stable allocation if

(1) it is individually rational, and

(2) there exists no region r ∈ R, hospital h ∈ Hr, and a doctor d ∈ D such that

(d, h) �d x and (d, h) ∈ Chr(X
′∪{(d, h)}), where x is the contract that d receives

at X ′ if any and ∅ otherwise.

When condition (2) is violated by some (d, h), we say that (d, h) is a block of X ′. A

doctor-optimal stable allocation in the matching model with contracts is a stable

allocation that every doctor weakly prefers to every other stable allocation (Hatfield and

Milgrom, 2005).

Given any individually rational set of contracts X ′, define a corresponding matching

µ(X ′) in the original model by setting µd(X
′) = h if and only if (d, h) ∈ X ′ and µd(X

′) = ∅
if and only if no contract associated with d is in X ′. Since each doctor regards any set of

contracts with cardinality of at least two as unacceptable, each doctor receives at most

one contract at X ′ and hence µ(X ′) is well defined for any individually rational X ′.

Proposition 2. If X ′ is a stable allocation in the associated model with contracts, then

the corresponding matching µ(X ′) is a stable matching in the original model.

Proof. Suppose that X ′ is a stable allocation in the associated model with contracts and

denote µ := µ(X ′). Individual rationality of µ is obvious from the construction of µ.

Suppose that (d, h) is a blocking pair of µ. Denoting r := r(h), by the definition of

stability, it suffices to show that the following conditions (4.3) and (4.4) hold if µd 6∈ Hr,

and (4.3), (4.4) and (4.5) hold if µd ∈ Hr:

|µHr | = qr,(4.3)

d′ �h d for all d′ ∈ µh,(4.4)

w �r w′,(4.5)

where w = (wh)h∈Hr is defined by wh′ = |µh′| for all h′ ∈ Hr while w′ = (w′h)h∈Hr is

defined by w′h = wh + 1, w′µd = wµd − 1 (if µd ∈ Hr) and w′h′ = wh′ for all other h′ ∈ Hr.

Claim 1. Conditions (4.3) and (4.4) hold (irrespectively of whether µd ∈ Hr or not).

Proof. First note that the assumption that h �d µd implies that (d, h) �d x where x

denotes the (possibly empty) contract that d signs under X ′. Let w′′ = (w′′h)h∈Hr be

defined by w′′h = wh + 1 and w′′h′ = wh′ for all other h′ ∈ Hr.
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(1) Assume by contradiction that condition (4.4) is violated, that is, d �h d′ for some

d′ ∈ µh. First, by consistency of C̃hr, we have [C̃hr(w
′′)]h ≥ [C̃hr(w)]h.

27 That

is, weakly more contracts involving h are signed at X ′ ∪ (d, h) than at X ′. This

property, together with the assumptions that d �h d′ and that (d′, h) ∈ X ′ imply

that (d, h) ∈ Chr(X
′∪(d, h)).28 Thus, together with the above-mentioned property

that (d, h) �d x, (d, h) is a block of X ′ in the associated model of matching with

contracts, contradicting the assumption that X ′ is a stable allocation.

(2) Assume by contradiction that condition (4.3) is violated, so that |µHr | 6= qr. Then,

since |µHr | ≤ qr by the construction of µ and the assumption that X ′ is individually

rational, it follows that |µHr | < qr. Then (d, h) ∈ Chr(X
′ ∪ (d, h)) because,

(a) d �h ∅ by assumption,

(b) since
∑

h∈Hr
wh =

∑
h∈Hr

|µh| = |µHr | < qr, it follows that
∑

h∈Hr
w′′h =∑

h∈Hr
wh + 1 ≤ qr. Moreover, |µh| < qh because (d, h) is a blocking pair by

assumption and (4.4) holds, so w′′h = |µh|+ 1 ≤ qh. These properties and the

assumption that C̃hr is acceptant imply that C̃hr(w
′′) = w′′. In particular,

this implies that all contracts (d′, h) ∈ X ′ ∪ (d, h) such that d′ �h ∅ is chosen

at Chr(X
′ ∪ (d, h)).

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contract, contradicting the

assumption that X ′ is a stable allocation.

�

To finish the proof of the proposition suppose that µd ∈ Hr and by contradiction that

(4.5) fails, that is, w′ �r w. Then it should be the case that [C̃hr(w
′′)]h = w′′h = wh + 1 =

27To show this claim, assume for contradiction that [C̃hr(w
′′)]h < [C̃hr(w)]h. Then, [C̃hr(w

′′)]h <

[C̃hr(w)]h ≤ wh. Moreover, since w′′h′ = wh′ for every h′ 6= h by construction of w′′, it follows that

[C̃hr(w
′′)]h′ ≤ w′′h′ = wh′ . Combining these inequalities, we have that C̃hr(w

′′) ≤ w. Also we have

w ≤ w′′ by the definition of w′′, so it follows that C̃hr(w
′′) ≤ w ≤ w′′. Thus, by consistency of C̃hr, we

obtain C̃hr(w
′′) = C̃hr(w), a contradiction to the assumption [C̃hr(w

′′)]h < [C̃hr(w)]h.
28The proof of this claim is as follows. Chr(X

′) induces hospital h to select its [C̃hr(w)]h most

preferred contracts while Chr(X
′ ∪ (d, h)) induces h to select a weakly larger number [Chr(w

′′)]h of its

most preferred contracts. Since (d′, h) is selected as one of the [C̃hr(w)]h most preferred contracts for h

at X ′ and d �h d′, we conclude that (d, h) should be one of the [Chr(w
′′)]h ≥ [C̃hr(w)]h most preferred

contracts at X ′ ∪ (d, h), thus selected at X ′ ∪ (d, h).
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|µh|+ 1.29 Also we have |µh| < qh and hence |µh|+ 1 ≤ qh and d �h ∅, so

(d, h) ∈ Chr(X
′ ∪ (d, h)).

This relationship, together with the assumption that h �d µd, and hence (d, h) �d x, is a

contradiction to the assumption that X ′ is stable in the associated model with contracts.

�

Remark 3. Each step of the flexible deferred acceptance algorithm corresponds to a step

of the cumulative offer process (Hatfield and Milgrom, 2005), that is, at each step, if

doctor d proposes to hospital h in the flexible deferred acceptance algorithm, then at the

same step of the cumulative offer process, contract (d, h) is proposed. Moreover, the set

of doctors accepted for hospitals at a step of the flexible deferred acceptance algorithm

corresponds to the set of contracts held at the corresponding step of the cumulative offer

process. Therefore, if X ′ is the allocation that is produced by the cumulative offer process,

then µ(X ′) is the matching produced by the flexible deferred acceptance algorithm. These

observations apply to a more general model presented in Section 6 as well.

Proof of Theorem 1. By Proposition 1, the choice function of each region satisfies the

substitutes condition and the law of aggregate demand in the associate model of matching

with contracts. By Hatfield and Milgrom (2005), Hatfield and Kojima (2009), and Hatfield

and Kominers (2009, 2012), the cumulative offer process with choice functions satisfying

these conditions produces a stable allocation and is (group) strategy-proof.30 The former

fact, together with Remark 3 and Proposition 2, implies that the outcome of the flexible

deferred acceptance algorithm is a stable matching in the original model. The latter fact

and Remark 3 imply that the flexible deferred acceptance mechanism is (group) strategy-

proof for doctors. �

29To show this claim, assume by contradiction that [C̃hr(w
′′)]h ≤ wh. Then, since w′′h′ = wh′ for any

h′ 6= h by the definition of w′′, it follows that C̃hr(w
′′) ≤ w ≤ w′′. Thus by consistency of C̃hr, we

obtain C̃hr(w
′′) = C̃hr(w). But C̃hr(w) = w because X ′ is a stable allocation in the associated model of

matching with contracts, so C̃hr(w
′′) = w. This is a contradiction because w′ ≤ w′′ and w′ �r w while

C̃hr(w
′′) ∈ arg max�r{w

′′′|w′′′ ≤ w′′}.
30Aygün and Sönmez (2012) point out that a condition called path-independence (Fleiner, 2003) or

irrelevance of rejected contracts (Aygün and Sönmez, 2012) is needed for these conclusions. Aygün and

Sönmez (2012) show that the substitutes condition and the law of aggregate demand imply this condition.

Since the choice rules in our context satisfy the substitutes condition and the law of aggregate demand,

the conclusions go through.
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5. Discussion

5.1. Stability in Kamada and Kojima (2015). In this section we establish the main

result of Kamada and Kojima (2015) by showing that their stability concept can be

rewritten by using a substitutable regional preferences.

In Kamada and Kojima (2015), there is an exogenously given (government-imposed)

nonnegative integer q̄h ≤ qh called target capacity, for each hospital h such that∑
h∈Hr

q̄h ≤ qr for each region r ∈ R. Given a profile of target capacities, their sta-

bility concept is defined as follows.

Definition 6. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh, and

(iii) either µd /∈ Hr(h) or |µ′h| − q̄h > |µ′µd | − q̄µd ,

where µ′ is the matching such that µ′d = h and µ′d′ = µd′ for all d′ 6= d.

Kamada and Kojima (2015) define the flexible deferred acceptance algorithm in

their setting as follows. For each r ∈ R, specify an order of hospitals in region r: Denote

Hr = {h1, h2, . . . , h|Hr|} and order hi earlier than hj if i < j. Given this order, consider

the following algorithm.

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d who is currently not tentatively matched to any hospital and

who has not applied to all acceptable hospitals yet. If such a doctor does not exist,

then terminate the algorithm.

(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. Let r be the region such that h̄ ∈ Hr.

(4) (a) For each h ∈ Hr, let D′h be the entire set of doctors who have applied to but

have not been rejected by h so far and are acceptable to h. For each hospital

h ∈ Hr, choose the q̄h best doctors according to �h from D′h if they exist,

and otherwise choose all doctors in D′h. Formally, for each h ∈ Hr choose D′′h

such that D′′h ⊂ D′h, |D′′h| = min{q̄h, |D′h|}, and d �h d′ for any d ∈ D′′h and

d′ ∈ D′h \D′′h.
(b) Start with a tentative match D′′h for each hospital h ∈ Hr. Hospitals take

turns to choose (one doctor at a time) the best remaining doctor in their

current applicant pool. Repeat the procedure (starting with h1, proceeding

to h2, h3, . . . and going back to h1 after the last hospital) until the regional
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quota qr is filled or the capacity of the hospital is filled or no doctor remains

to be matched. All other applicants are rejected.31

Kamada and Kojima (2015) define the flexible deferred acceptance mechanism to be

a mechanism that produces, for each input, the matching at the termination of the above

algorithm.32 The following theorem is the main result of Kamada and Kojima (2015).

Proposition 3 (Theorem 2 of Kamada and Kojima (2015)). In the setting of Kamada

and Kojima (2015), the flexible deferred acceptance algorithm stops in finite steps. The

mechanism produces a stable matching for any input and is group strategy-proof for doc-

tors.

In the remainder of this section, we establish this result as a corollary of the main result

of the present paper, Theorem 1.

To start the analysis, fix a region r. Given the target capacity profile (q̄h)h∈Hr and the

vector w ∈ Wr, define the ordered excess weight vector η(w) = (η1(w), ..., η|Hr|(w))

by setting ηi(w) to be the i’th lowest value (allowing repetition) of {wh− q̄h|h ∈ Hr} (we

suppress dependence of η on target capacities). For example, if w = (wh1 , wh2 , wh3 , wh4) =

(2, 4, 7, 2) and (q̄h1 , q̄h2 , q̄h3 , q̄h4) = (3, 2, 3, 0), then η1(w) = −1, η2(w) = η3(w) = 2, η4(w) =

4.

Consider the regional preferences �r that compare the excess weights lexicographically.

More specifically, let �r be such that w �r w′ if and only if there exists an index i ∈
{1, 2, . . . , |Hr|} such that ηj(w) = ηj(w

′) for all j < i and ηi(w) > ηi(w
′). The associated

weak regional preferences�r are defined by w �r w′ if and only if w �r w′ or η(w) = η(w′).

We call such regional preferences Rawlsian.

Proposition 4. Stability of Kamada and Kojima (2015), defined in Definition 6, is a

special case of the stability in Definition 2 such that the regional preferences of each region

are Rawlsian.

31Formally, let ιi = 0 for all i ∈ {1, 2, . . . , |Hr|}. Let i = 1.

(i) If either the number of doctors already chosen by the region r as a whole equals qr, or ιi = 1, then

reject the doctors who were not chosen throughout this step and go back to Step 2.

(ii) Otherwise, let hi choose the most preferred (acceptable) doctor in D′hi at �hi among the doctors

that have not been chosen by hi so far, if such a doctor exists and the number of doctors chosen

by hi so far is strictly smaller than qhi .

(iii) If no new doctor was chosen at Step 4(b)ii, then set ιi = 1. If a new doctor was chosen at Step

4(b)ii, then set ιj = 0 for all j ∈ {1, 2, . . . , |Hr|}. If i < |Hr| then increment i by one and if

i = |Hr| then set i to be 1 and go back to Step 4(b)i.

32Theorem 1 and Propositions 4 and 5 show that the algorithm stops in a finite number of steps.
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Proof. See Appendix A.1. �

Consider the (generalized) flexible deferred acceptance algorithm in a previous subsec-

tion. With the following quasi choice rule, this algorithm is equivalent to the flexible

deferred acceptance algorithm in Kamada and Kojima (2015): For each w′ ∈ Wr,

C̃hr(w
′) = max

w=wk for some k∑
h∈Hr

wh≤qr

w,(5.1)

where w0 = (min{w′h, q̄h})h∈Hr and wk ∈ Wr (k = 1, 2, . . . ) is defined by

wkhj = min{w′hj , qhj , w
k−1
hj

+ Ij≡k (mod |Hr|)} for each j = 1, 2, . . . , |Hr|.

Proposition 5. Rawlsian preferences are substitutable with the associated quasi choice

rule (5.1).

Proof. See Appendix A.1. �

Theorem 1 and Propositions 4 and 5 imply Theorem 2 of Kamada and Kojima (2015).

In Appendix D, we discuss how to allocate target capacities among hospitals in a region,

within the Rawlsian framework. There we observe that the allocation problem is similar to

the celebrated “bankruptcy problem,” and consider several rules studied in that literature.

5.2. Alternative Criteria. Although Kamada and Kojima (2015) focus on a particular

stability concept and corresponding regional preferences, called Rawlsian preferences, it

is quite plausible that some societies may prefer to impose different criteria from the

Rawlsian preferences. This section proposes other criteria that seem to be appealing.

The following are examples of regional preferences that satisfy substitutability defined in

Definition 1. In the following, we assume that 0 �r w for any weight vector w such that∑
h∈Hr

wh > qr or wh > qh for some h ∈ Hr. Thus in (1) - (4) below, we assume that any

weight vector w satisfies
∑

h∈Hr
wh ≤ qr and wh ≤ qh for all h ∈ Hr.

(1) “Equal gains”: Let the region prefer a distribution that equalizes the weights across

hospitals in the region as much as possible. Formally, such a preference, which we

call the equal gains preferences, can be expressed as the Rawlsian preferences

for the special case in which the target capacity for every hospital is set at zero.

Since Proposition 5 shows that the Rawlsian preferences are substitutable for any

target capacity profile, the equal gains preferences satisfy substitutability.

(2) “Equal Losses”: Let the region prefer to equalize the “losses,” that is, the dif-

ferences between the (physical) capacities and the weights across hospitals in the
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region. More generally, one could consider the preferences for equal losses above

target capacities, that is, the regional preferences first prefer to fill as many

positions as possible to meet target capacities and then (lexicographically less im-

portantly) prefer to equalize the losses. To formally define such preferences �r,
recall that η(w) denotes the ordered excess weight vector as defined in Section 5.1,

and define η̂(w) as a |Hr|-dimensional vector whose i’th component η̂i(w) is the

i’th highest value (allowing repetition) of {qh − wh|h ∈ Hr}. We let w �r w′ if

and only if

(a) there exists an index i ∈ {1, 2, . . . , |Hr|} such that min{ηj(w), 0} = min{ηj(w′), 0}
for all j < i and min{ηi(w), 0} > min{ηi(w′), 0}, or

(b) min{ηi(w), 0} = min{ηi(w′), 0} for every index i ∈ {1, 2, . . . , |Hr|}, and there

exists an index i ∈ {1, 2, . . . , |Hr|} such that η̂j(w),= η̂j(w
′) for all j < i and

η̂i(w) < η̂i(w
′).

(3) “Proportional”: The proportional regional preferences prefer to allocate posi-

tions to hospitals in a proportional manner subject to integer constraints. More

precisely, define η̃(w) as a |Hr|-dimensional vector whose i’th component η̃i(w) is

the i’th lowest value (allowing repetition) of {wh/qh|h ∈ Hr}. We let w �r w′ if

there exists an index i ∈ {1, 2, . . . , |Hr|} such that η̃j(w),= η̃j(w
′) for all j < i

and η̃i(w) > η̃i(w
′). As above, one could consider preferences for proportional

losses as well. Also, these preferences can be generalized so that these concerns

enter only above target capacities (this generalization is somewhat tedious but

straightforward, and can be done as in Item 2). Finally, when constructing η̃i, we

can use a denominator different from qh.
33

(4) “Hospital-lexicographic”: Let there be a pre-specified order over hospitals, and

the region lexicographically prefers filling a slot in a higher-ranked hospital to

filling that of a lower-ranked hospital. For instance, the region may desire to fill

positions of hospitals that are underserved within the region (say, a prefecture

may desire to fill positions of a hospital in a remote island within the prefecture

before other hospitals). Formally, hospital-lexicographic regional preferences

�r are defined as follows. Fix an order over hospitals in r, denoted by h1, h2, . . . ,

and h|Hr|. Let w �r w′ if and only if there exists an index i ∈ {1, 2, . . . , |Hr|}
such that whj = w′hj for all j < i and whi > w′hi . We note that one can also

33Moreover, the generalizations mentioned above can be combined. For example, the region may desire

to fill capacities above targets proportionally to qh − q̄h.
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consider hospital-lexicographic preferences above targets by using the criterion for

hospital-lexicographic preferences for weights above targets.

All the above regional preferences have associated quasi choice rules that satisfy the

property that we call “order-respecting.” To define this property, let there be a finite

sequence of hospitals in region r such that each hospital h appears, potentially repeatedly,

qh times in the sequence, and the total size of the sequence is
∑

h∈Hr
qh. Consider a quasi

choice rule that increases the weights of hospitals one by one following the specified

order.34 Formally, fix a vector (h1, h2, . . . , h∑h∈Hr
qh) ∈ (Hr)

∑
h∈Hr

qh such that #{i ∈
{1, 2, . . . ,

∑
h∈Hr

qh}|hi = h} = qh for each h ∈ Hr, and define C̃hr(w) through the

following algorithm:

(1) Let w0 be the |Hr|-dimensional zero vector, indexed by hospitals in Hr.

(2) For any t ≥ 0, if
∑

h∈Hr
wth = qr or wth = min{qh, wh} for all h ∈ Hr, then stop

the algorithm and define C̃hr(w) = wt . If not, define wt+1 by:

(a) If wtht+1
< min{qht+1 , wht+1}, then let wt+1

ht+1
= wtht+1

+1; otherwise, let wt+1
ht+1

=

wtht+1
.

(b) For every h 6= ht+1, let wt+1
h = wth.

It is easy to see that any order-respecting quasi choice rule satisfies the condition in the

definition of substitutability. Also it is easy to see that, for each of the above regional

preferences (1) - (4), there exists an associated quasi choice rule that is order-respecting.

By these observations, all of the above regional preferences are substitutable.

Remark 4. In addition, it may be of interest to consider regional preferences involving

“subregions”: The region prefers to assign no more doctors than a certain number to a

subset of the hospitals in the region. Such preferences may arise if the society desires to

impose a hierarchy of regional caps, say one cap for a prefecture and one for each district

within the prefecture. Or the policy maker may desire to regulate the total number of

doctors practicing in each specialty in each prefecture. In general, this type of preferences

is outside of the current framework because if a cap of a district in a prefecture is filled

while there are remaining seats in the prefecture as a whole, then no more doctor can be

accepted to hospitals in the district and this violates the assumption that the associated

quasi choice rule of the prefecture is acceptant. For this reason, a further generalization

of our model is called for. Such a generalization is done in Section 6.

34Order-respecting quasi choice rules are similar to choice functions based on the precedence order of

Kominers and Sönmez (2012), although we find no logical relationship between these two concepts.
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5.3. Comparative Statics. As demonstrated in Section 4, our analytical approach is to

construct an associated matching model with contracts and to utilize results from that

model to obtain corresponding results in the original market. This connection enables us

to exploit structural properties of stable allocations in the matching model with contracts.

In particular, we obtain many comparative statics results as corollaries of a single general

result in the matching with contract model.

We begin by stating various comparative statics results presented in Kamada and

Kojima (2015). They formalize the current practice in Japan, the Japan Residency

Matching Program (JRMP) mechanism. The JRMP mechanism is a rule that pro-

duces the matching resulting from the deferred acceptance algorithm except that, for each

hospital h, it uses q̄h ≤ qh instead of qh as the hospital’s capacity. In words, the JRMP

mechanism pretends that the target capacities are actual physical capacities.

The first result establishes comparisons across the flexible deferred acceptance, JRMP,

and the (unconstrained) deferred acceptance algorithms:

Proposition 6 (Theorem 3 of Kamada and Kojima (2015)). Consider the model of Ka-

mada and Kojima (2015). For any preference profile,

(1) Each doctor d ∈ D weakly prefers a matching produced by the deferred acceptance

mechanism to the one produced by the flexible deferred acceptance mechanism to

the one produced by the JRMP mechanism.

(2) If a doctor is unmatched in the deferred acceptance mechanism, she is unmatched in

the flexible deferred acceptance mechanism. If a doctor is unmatched in the flexible

deferred acceptance mechanism, she is unmatched in the JRMP mechanism.

The next result shows that, under the flexible deferred acceptance mechanism, all doc-

tors are made weakly worse off when the regional caps become more stringent. By con-

trast, the number of doctors matched in a region whose regional cap is unchanged weakly

increases when the regional caps of other regions become more stringent.

Proposition 7 (Proposition 3 of Kamada and Kojima (2015)). Consider the model of

Kamada and Kojima (2015). Fix a picking order in the flexible deferred acceptance mech-

anism. Let (qr)r∈R and (q′r)r∈R be regional caps such that q′r ≤ qr for each r ∈ R. Then

the following statements hold.

(1) Each doctor d ∈ D weakly prefers a matching produced by the flexible deferred

acceptance mechanism under regional caps (qr)r∈R to the one under (q′r)r∈R.
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(2) For each region r such that qr = q′r, the number of doctors matched in r at a

matching produced by the flexible deferred acceptance mechanism under regional

caps (q′r)r∈R is weakly larger than at the matching under (qr)r∈R.

Another comparative statics result is about the changes in the imposed constraints

under the JRMP mechanism.

Proposition 8 (Proposition 4 of Kamada and Kojima (2015)). Consider the model of

Kamada and Kojima (2015). Let (q̄h)h∈H and (q̄′h)h∈H be target capacities such that q̄′h ≤
q̄h for each h ∈ H. Then the following statements hold.35

(1) Each doctor d ∈ D weakly prefers a matching produced by the JRMP mechanism

under target capacities (q̄h)h∈H to the one under (q̄′h)h∈H .

(2) Each hospital h ∈ H such that q̄h = q̄′h weakly prefers a matching produced by

the JRMP mechanism under target capacities (q̄′h)h∈H to the one under (q̄h)h∈H .

Moreover, the number of doctors matched to any such h in the former matching

is weakly larger than that in the latter.

The following result, also from Kamada and Kojima (2015), shows that, whenever a

hospital or a region is underserved under the flexible deferred acceptance mechanism,

the (unconstrained) deferred acceptance mechanism cannot improve the match at such a

hospital or a region.

Proposition 9 (Proposition 2 of Kamada and Kojima (2015)). Consider the model of

Kamada and Kojima (2015).

(1) If the number of doctors matched with h ∈ H in the flexible deferred acceptance

mechanism is strictly less than its target capacity, then the set of doctors matched

with h under the (unconstrained) deferred acceptance mechanism is a subset of the

one under the flexible deferred acceptance mechanism.

(2) If the number of doctors matched in r ∈ R in the flexible deferred acceptance mech-

anism is strictly less than its regional cap, then each hospital h in r weakly prefers

a matching produced by the flexible deferred acceptance mechanism to the one un-

der the (unconstrained) deferred acceptance mechanism. Moreover, the number of

doctors matched to any such h in the former matching is weakly larger than that

in the latter.

35 Since the JRMP mechanism is equivalent to the deferred acceptance mechanism with respect to the

target capacities, this result can also be obtained by appealing to the “Capacity Lemma” by Konishi and

Ünver (2006), although we obtain these results as corollaries of a more general result, Lemma 1.
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We obtain all these results as corollaries of a single general comparative statics result

in the matching with contracts model. More specifically, we establish that if the choice

function of a region becomes larger in the set inclusion sense, then all doctors are made

weakly better off and all other regions are made weakly worse off in the doctor-optimal

stable allocation (Lemma 1 in Appendix A.2). Also, Hatfield and Milgrom (2005) show

that the outcome of a cumulative offer process is a doctor-optimal allocation. Given these

results, we can prove all the above results by demonstrating that all the comparisons

above can be interpreted as comparisons of outcomes of cumulative offer processes under

different choice functions of regions. The formal statement of the Lemma and proofs of

all the results in this section can be found in Appendix A.2.

6. A Generalization for Hierarchies of Regions

This section provides a generalization of the model in Section 2: we consider the sit-

uation where there is a hierarchy of regional caps. For instance, one could consider a

hierarchy of regional caps, say one cap for a prefecture and one for each district within

the prefecture. Or the policy maker may desire to regulate the total number of doctors

practicing in each specialty in each prefecture. We show that a generalization of the

flexible deferred acceptance mechanism induces a stable matching appropriately defined.

The set of regions R is a subset of 2H \{∅} such that {h} ∈ R for all h ∈ H and H ∈ R
(the region H is called the grand region). Further, we assume that the set of regions R is

nested (a hierarchy), that is, r, r′ ∈ R implies r ⊆ r′ or r′ ⊆ r or r ∩ r′ = ∅. Hr denotes

the set of hospitals in region r (thus we use Hr and r interchangeably for convenience).36

For each region r, there is a fixed positive integer qr which we call the regional cap for

r. For singleton region {h} for each h ∈ H, we let q{h} = qh.

For any r, r′ ∈ R, region r′ is said to be an immediate subregion of r if r′ ( r and,

for any r′′ ∈ R, r′′ ( r implies either r′′ ∩ r′ = ∅ or r′′ ⊆ r′. It is straightforward to see

that any non-singleton region r ∈ R is partitioned into its immediate subregions. In the

remainder, we simply refer to an immediate subregion as a subregion. Denote by S(r)

the set of subregions of r.

We say that region r is of depth k if |{r′ ∈ R|r ⊆ r′}| = k. Note that the depth of a

“smaller” region is larger. The standard model without regional caps can be interpreted

as a model with regions of depths less than or equal to 2 (H and singleton sets), and the

36 The assumption that the set of regions forms a hierarchy is important for our results. See Remark

7 and Appendix F for details.
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model in the previous sections has regions of depths less than or equal to 3 (H, “regions,”

and singleton sets), both with qH sufficiently large.

Below is an example in which the set of regions forms a hierarchy.

Example 1. There are 6 hospitals, h1, h2, . . . , h6. The regions are

R = {H, r1, r2, r3, r4, {h1}, {h2}, {h3}, {h4}, {h5}, {h6}},

where r1 = {h1, h2}, r2 = {h3, h4, h5, h6}, r3 = {h3, h4}, and r4 = {h5, h6}. See Figure 4

for a graphical representation. In this example, r1 and r2 are the (immediate) subregions

Figure 4. A hierarchy of regions in Example 1.

of H, r3 and r4 are the (immediate) subregions of r2, and each singleton region is an

(immediate) subregion of r1 or r3 or r4. The depths of regions are as depicted in the

figure. For example, the depth of H is 1, that of r1 is 2, that of {h1} is 3, and that of

{h5} is 4. �

Let �r be a weak ordering over nonnegative-valued integer vectors Wr := {w =

(wr′)r′∈S(r)|wr′ ∈ Z+}. That is, �r is a binary relation that is complete and transitive

(but not necessarily antisymmetric). We write w �r w′ if and only if w �r w′ holds but

w′ �r w does not. Vectors such as w and w′ will be interpreted to be supplies of accept-

able doctors to regions that partition r, but they will only specify how many acceptable

doctors apply to each subregion and no information is given as to who these doctors are.

Given �r, a function

C̃hr : Wr × {0, 1, 2, . . . , qr} → Wr

is an associated quasi choice rule if C̃hr(w; t) ∈ arg max�r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤

t} for any non-negative integer vector w = (wr′)r′∈S(r) and non-negative integer t ≤ qr.
37

37Similarly to footnote 19, for any two vectors w = (wr′)r′∈S(r) and w′ = (w′r′)r′∈S(r), we write w ≤ w′

if and only if wr′ ≤ w′r′ for all r′ ∈ S(r). We write w � w′ if and only if w ≤ w′ and wr′ < w′r′ for at
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Intuitively, C̃hr(w, t) is the best vector of numbers of doctors allocated to subregions of r

given a vector of numbers w under the constraint that the sum of the number of doctors

cannot exceed the quota t.

We assume that the regional preferences �r satisfy w �r w′ if w′ � w. This condition

formalizes the idea that region r prefers to fill as many positions in its subregions as

possible. This requirement implies that any associated quasi choice rule is acceptant in

the sense that, for each w and t, if there exists r′ ∈ S(r) such that [C̃hr(w; t, )]r′ < wr′ ,

then
∑

r′∈S(r)[C̃hr′(w; t)]r′ = t. This captures the idea that the social planner should not

waste caps allocated to the region.38

We now define a restriction on preferences that we will maintain throughout our anal-

ysis.

Definition 7. The weak ordering �r is substitutable if there exists an associated quasi

choice rule C̃hr that satisfies

w ≤ w′ and t ≥ t′ ⇒ C̃hr(w; t) ≥ C̃hr(w
′; t′) ∧ w.

Remark 5. Three remarks on the concept of substitutability are in order. First, the

condition in the definition of substitutability can be decomposed into two parts, as follows:

w ≤ w′ ⇒ C̃hr(w; t) ≥ C̃hr(w
′; t) ∧ w, and(6.1)

t ≥ t′ ⇒ C̃hr(w; t) ≥ C̃hr(w; t′).(6.2)

Condition (6.1) imposes a condition on the quasi choice rule for different vectors w and w′

with a fixed parameter t while Condition (6.2) places restrictions for different parameters

t and t′ with a fixed vector w. The former condition is similar to the standard substi-

tutability condition except that it deals with multiunit supplies (that is, coefficients in w

can take integers different from 0 or 1).39 The latter condition may appear less familiar,

and it requires that the choice increase (in the standard vector sense) if the allocated

quota is increased. Conditions (6.1) and (6.2) are independent from each other. One

least one r′ ∈ S(r). For any W ′r ⊆Wr, arg max�r W
′
r is the set of vectors w ∈W ′r such that w �r w′ for

all w′ ∈W ′r.
38This condition is a variant of the concept of acceptance due to Kojima and Manea (2010).
39Condition (6.1) is analogous to persistence by Alkan and Gale (2003), who define the condition on a

choice function in a slightly different context. While our condition is similar to substitutability as defined

in standard matching models (see Chapter 6 of Roth and Sotomayor (1990) for instance), there are two

differences: (i) it is now defined on a region as opposed to a hospital, and (ii) it is defined over vectors

that only specify how many doctors apply to hospitals in the region, and it does not distinguish different

doctors.
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might suspect that these conditions are related to responsiveness of preferences, but these

conditions do no imply responsiveness. In Appendix E we provide examples to distinguish

these conditions.

Second, Condition (6.1) is equivalent to

w ≤ w′ ⇒ [C̃hr(w; t)]r′ ≥ min{[C̃hr(w
′; t)]r′ , wr′} for every r′ ∈ S(r).(6.3)

This condition says that, when the supply of doctors is increased, the number of accepted

doctors at a hospital can increase only when the hospital has accepted all acceptable

doctors under the original supply profile. Formally, condition (6.3) is equivalent to

w ≤ w′ and [C̃hr(w; t)]r′ < [C̃hr(w
′; t)]r′ ⇒ [C̃hr(w, t)]r′ = wr′ .(6.4)

To see that condition (6.3) implies condition (6.4), suppose that w ≤ w′ and [C̃hr(w; t)]r′ <

[C̃hr(w
′; t)]r′ . These assumptions and condition (6.3) imply [C̃hr(w; t)]r′ ≥ wr′ . Since

[C̃hr(w; t)]r′ ≤ wr′ holds by the definition of C̃hr, this implies [C̃hr(w; t)]r′ = wr′ . To

see that condition (6.4) implies condition (6.3), suppose that w ≤ w′. If [C̃hr(w; t)]r′ ≥
[C̃hr(w

′; t)]r′ , the conclusion of (6.3) is trivially satisfied. If [C̃hr(w; t)]r′ < [C̃hr(w
′; t)]r′ ,

then condition (6.4) implies [C̃hr(w; t, )]r′ = wr′ , thus the conclusion of (6.3) is satisfied.

Finally, substitutability implies the following natural property that we call “consis-

tency”: A quasi choice rule C̃hr is said to be consistent if for any t, C̃hr(w; t) ≤ w′ ≤
w ⇒ C̃hr(w

′; t) = C̃hr(w; t).40 Consistency requires that, if C̃hr(w; t) is chosen at w and

the supply decreases to w′ ≤ w but C̃hr(w; t) is still available under w′, then the same

choice C̃hr(w; t) should be made under w′ as well. Note that there may be more than

one consistent quasi choice rule associated with a given weak ordering �r because the set

arg max�r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤ t} may not be a singleton for some �r, w, and t.

Note also that there always exists a consistent quasi choice rule.41 We relegate the proof

of the fact that substitutability implies consistency to Appendix E. �

Now we define the notion of stability and the (generalized) flexible deferred ac-

ceptance algorithm in our context where R is a hierarchy. Let SC(h, h′) ∈ R be the

smallest common region of hospitals h and h′, that is, it is a region r ∈ R with the

property that h, h′ ∈ Hr, and there is no r′ ∈ R with r′ ( r such that h, h′ ∈ Hr′ . Given

(�r)r∈R, stability is defined as follows.

40More precisely, it is Condition (6.1) of substitutability that implies consistency.
41To see this point consider preferences �′r such that w �′r w′ if w �r w′ and w = w′ if w �′r w′ and

w′ �′r w. The quasi choice rule that chooses (the unique element of) arg max�′
r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤

t} for each w is clearly consistent.
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Definition 8. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then there exists r ∈ R with h ∈ Hr such that (i) |µr| = qr, (ii) d′ �h d
for all doctors d′ ∈ µh, and

(iii) either µd /∈ Hr or (wr′)r′∈S(SC(h,µd)) �SC(h,µd) (w′r′)r′∈S(SC(h,µd)),

where wr′ =
∑

h′∈r′ |µh′ | for all r′ ∈ S(r) and w′rh = wrh + 1, w′rd = wrd − 1 and w′r′ = wr′

for all other r′ ∈ S(r) where rh and rd are subregions of r such that h ∈ r′h, and µd ∈ rd.

Remark 6. Condition (iii) of this definition captures the idea behind stability in Defi-

nition 2 in that a region’s preferences are invoked when a doctor moves within a region

whose regional cap is binding (region r in the definition). However, when r is a strict

superset of SC(h, µd), we do not invoke region r’s regional preferences, but the prefer-

ences of SC(h, µd).
42 The use of preferences of SC(h, µd) reflects the following idea: if

the regional cap at r is binding then holding fixed the number of doctors matched in r

but not in SC(h, µd), there is essentially a binding cap for SC(h, µd). This motivates our

use of the regional preferences of SC(h, µd). The reason for not using preferences of r (or

any region between r and SC(h, µd)) is that the movement of a doctor within the region

SC(h, µd) does not affect the distribution of doctors on which preferences of r (or regions

of any smaller depth than SC(h, µd)) are defined. �

Remark 7. As mentioned in footnote 36, the assumption that the set of regions forms

a hierarchy is important for our results. Example 5 in Appendix F shows that a stable

matching does not necessarily exist if the set of regions does not form a hierarchy.43

We proceed to define a quasi choice rule for the “hospital side,” denoted C̃h: Let

q̃H = qH . Given w = (wh)h∈H , we define vw{h} = min{wh, qh}, and inductively define

vwr = min{
∑

r′∈S(r) v
w
r′ , qr}. Thus, vwr is the maximum number that the input w can

allocate to its subregions given the feasibility constraints that w and regional caps of

subregions of r impose. Note that vwr is weakly increasing in w, that is, w ≥ w′ implies

vwr ≥ vw
′

r .

42 It is important that we allow r to be a strict superset of SC(h, µd). Example 4 in Appendix F

points out that, if we further require r ⊆ SC(h, µd) in Definition 8, then there does not need to exist a

matching that satisfies this stronger notion of stability.
43Under a different setting and stability concept from ours, Biró, Fleiner, Irving, and Manlove (2010)

construct a related example that shows nonexistence of a stable matching under non-hierarchical regional

caps. The main difference is that their stability concept requires there be no blocking pair by a vacant

position of a hospital and a doctor who is outside of the hospital’s region (with a certain additional

restriction), while our concept does not impose such a requirement.



GENERAL THEORY OF MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 35

We inductively define C̃h(w) following a procedure starting from Step 1, where Step k

for general k is as follows:

Step k: If all the regions of depth k are singletons, then let C̃h(w) = (q̃w{h})h∈H

and stop the procedure. For each nonsingleton region r of depth k, set q̃wr′ =

[C̃hr((v
w
r′′)r′′∈S(r); q̃

w
r )]r′ for each subregion r′ of r. Go to Step k + 1.

Assume that �r is substitutable for every region r. Now we are ready to define a gener-

alized version of the flexible deferred acceptance algorithm:

For each region r, fix an associated quasi choice rule C̃hr for which conditions (6.1) and

(6.2) are satisfied (note that the assumption that �r is substitutable assures the existence

of such a quasi choice rule.)

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d arbitrarily who is currently not tentatively matched to any

hospital and who has not applied to all acceptable hospitals yet. If such a doctor

does not exist, then terminate the algorithm.

(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. If d is unacceptable to h̄, then reject this doctor and go back

to Step 2. Otherwise, define vector w = (wh)h∈H by

(a) wh̄ is the number of doctors currently held at h̄ plus one, and

(b) wh is the number of doctors currently held at h if h 6= h̄.

(4) Each hospital h ∈ H considers the new applicant d (if h = h̄) and doctors who

are temporarily held from the previous step together. It holds its [C̃h(w)]h most

preferred applicants among them temporarily and rejects the rest (so doctors held

at this step may be rejected in later steps). Go back to Step 2.

We define the (generalized) flexible deferred acceptance mechanism to be a

mechanism that produces, for each input, the matching given at the termination of the

above algorithm.44

Theorem 2. Suppose that �r is substitutable for every r ∈ R. Then the flexible deferred

acceptance algorithm stops in a finite number of steps. The mechanism produces a stable

matching for any input and is group strategy-proof for doctors.

Proof. See Appendix B. �

44Note that this algorithm terminates in a finite number of steps. Note also that the outcome of the

algorithm is independent of the order in which doctors make their applications during the algorithm.
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The formal proof of this result is more involved than that of Theorem 1, and it is

relegated to the Appendix. The proof strategy is similar to the one for Theorem 1, in

the sense that we relate our model to the model of matching with contracts. In the

model with hierarchical regions, however, the allocation of doctors in two regions can be

related through a constraint on another region that contains both of the first two regions,

so we cannot regard each region as one agent as before. Instead, we regard the set of

all hospitals as one agent, and define its choice function. With this change in the view,

the proof strategy analogous to the previous theorem is employed. More specifically, we

establish key conditions in the associated matching with contracts model, and then we

demonstrate that those desirable properties imply corresponding properties in the original

model with regional caps, establishing the theorem.

7. Conclusion

This paper presented a model of matching under distributional constraints. Building

upon an approach of Kamada and Kojima (2015), we defined a stability concept that takes

distributional constraints into account. Departing from the previous work, we generalized

the model to allow for a variety of policymaker preferences over doctor distributions.

We offered a class of mechanisms that produce a stable matching under distributional

constraints and various policy preferences, and showed that these mechanisms are (group)

strategy-proof for doctors.

It is worth noting that our paper found a new connection between matching with con-

straints and matching with contracts. This technique was subsequently adopted by other

studies such as Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014), Goto, Hashimoto,

Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014), and Kojima, Tamura, and Yokoo

(2015). We envision that this approach may prove useful for tackling complex matching

problems one may encounter in the future.

In addition to its intrinsic theoretical interest, our major motivation for a general theory

was the desire to accommodate various constraints and policy preferences in practice, thus

enabling applications to diverse types of real problems. As already mentioned, geographic

and other distributional constraints are prevalent in practice; Concrete examples include

British and Japanese medical matches, Chinese graduate admission, European college

admissions, and Scottish teacher allocation, just to name a few. Although all these

markets are subject to distributional constraints, because of differences in details, the

same mechanism may be suitable in one market while unfit in another. This is a major

reason that a general theory is needed. Moreover, we are quite confident that there are
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many other markets with specific constraints which have yet to be recognized or addressed

in the literature. We hope that this paper provides a useful building block for market

design in those undiscovered markets, and stimulates further research in matching under

constraints and, more generally, practical market design.
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Appendix A. Proofs for Section 5

A.1. Proofs for Section 5.1.

Proof of Proposition 4. Let µ be a matching and w be defined by wh′ = |µh′ | for each

h′ ∈ Hr and w′ by w′h = wh + 1, w′µd = wµd − 1, and w′h′ = wh′ for all h′ ∈ Hr \ {h, µd}.
It suffices to show that w �r w′ if and only if |µh|+ 1− q̄h > |µµd | − 1− q̄µd .

Suppose that |µh|+1− q̄h > |µµd |−1− q̄µd . This means that wh+1− q̄h > wµd−1− q̄µd ,

which is equivalent to either wh− q̄h = wµd−1− q̄µd or wh− q̄h ≥ wµd− q̄µd . In the former

case, obviously η(w) = η(w′), so w �r w′. In the latter case, {h′|w′h′− q̄h′ < |µµd |− q̄µd} =

{h′|wh′ − q̄h′ < |µµd| − q̄µd} ∪ {µd}, and wh′ = w′h′ for all h′ ∈ {h′|wh′ − q̄h′ < |µµd| − q̄µd}.
Thus we obtain w �r w′.

If |µh|+ 1− q̄h ≤ |µµd|−1− q̄µd , then obviously w′ �r w. This completes the proof. �

Proof of Proposition 5. It is clear that the quasi choice rule C̃hr defined in (5.1) satisfies

the condition (2.1) for substitutability (as well as consistency and acceptance). Thus in

the following, we will show that C̃hr indeed satisfies C̃hr(w) ∈ arg max�r
{x|x ≤ w} for

each w. Let w′ = C̃hr(w). Assume by contradiction that w′ /∈ arg max�r
{x|x ≤ w} and

consider an arbitrary w′′ ∈ arg max�r
{x|x ≤ w}. Then we have w′′ �r w′, so there exists

i such that ηj(w
′′) = ηj(w

′) for every j < i and ηi(w
′′) > ηi(w

′). Consider the following

cases.

(1) Suppose
∑

j ηj(w
′′) >

∑
j ηj(w

′). First note that
∑

j ηj(w
′′) +

∑
h q̄h =

∑
hw
′′
h ≤

qr because w′′ ∈ arg max�r
{x|x ≤ w}. Thus

∑
hw
′
h =

∑
j ηj(w

′) +
∑

h q̄h <∑
j ηj(w

′′) +
∑

h q̄h ≤ qr. Moreover, the assumption implies that there exists a

hospital h such that w′h < w′′h ≤ min{qh, wh}. These properties contradict the

construction of C̃hr.

(2) Suppose
∑

j ηj(w
′′) <

∑
j ηj(w

′). First note that
∑

j ηj(w
′)+

∑
h q̄h =

∑
hw
′
h ≤ qr

by construction of C̃hr. Thus
∑

hw
′′
h =

∑
j ηj(w

′′)+
∑

h q̄h <
∑

j ηj(w
′)+

∑
h q̄h ≤

qr. Moreover, the assumption implies that there exists a hospital h such that

w′′h < w′h ≤ min{qh, wh}. Then, w′′′ defined by w′′′h = w′′h + 1 and w′′′h′ = w′′h′ for

all h′ 6= h satisfies w′′′ ≤ w and w′′′ �r w′′, contradicting the assumption that

w′′ ∈ arg max�r
{x|x ≤ w}.

(3) Suppose that
∑

j ηj(w
′′) =

∑
j ηj(w

′). Then there exists some k such that ηk(w
′′) <

ηk(w
′). Let l = min{k|ηk(w′′) < ηk(w

′)} be the smallest of such indices. Then

since l > i, we have ηi(w
′) < ηi(w

′′) ≤ ηl(w
′′) < ηl(w

′). Thus it should be the

case that ηi(w
′) + 2 ≤ ηl(w

′). By the construction of C̃hr, this inequality holds

only if w′h = min{qh, wh}, where h is an arbitrarily chosen hospital such that



42 YUICHIRO KAMADA AND FUHITO KOJIMA

w′h − q̄h = ηi(w
′). Now it should be the case that w′′h = min{qh, wh} as well,

because otherwise w′′ /∈ arg max�r
{x|x ≤ w}.45 Thus w′h = w′′h. Now consider the

modified vectors of both w′ and w′′ that delete the entries corresponding to h. All

the properties described above hold for these new vectors. Proceeding inductively,

we obtain w′h = w′′h for all h, that is, w′ = w′′. This is a contradiction to the

assumption that w′ /∈ arg max�r
{x|x ≤ w} and w′′ ∈ arg max�r

{x|x ≤ w}.

The above cases complete the proof. �

A.2. Proofs for Section 5.3. The following result, which applies not only to matching

with contract models defined over the set of contracts D × H but also to those defined

over general environments, proves useful.

Lemma 1. Consider a model of matching with contracts. Fix the set of doctors and

regions as well as doctor preferences. Assume that choice rules Ch := (Chr)r∈R and

Ch′ := (Ch′r)r∈R satisfy Ch′r(X
′) ⊆ Chr(X

′) for every subset of contracts X ′ and region

r. Then the following two statements hold:

(1) Each doctor weakly prefers the outcome of the cumulative offer process with respect

to Ch to the result with respect to Ch′. Hence each doctor weakly prefers the doctor-

optimal stable allocation under Ch to the doctor-optimal stable allocation under

Ch′.

(2) The set of contracts that have been offered up to and including the terminal step of

the cumulative offer process under Ch is a subset of the corresponding set under

Ch′.

Proof. Let Yd and Y ′d be the contracts allocated to d by the cumulative offer processes

under Ch and Ch′, respectively. Also, let C(t) be the set of contracts that have been

offered up to and including step t of the cumulative offer process under Ch, and C ′(t) be

the corresponding set for the cumulative offer process under Ch′. Let T and T ′ be the

terminal steps for the cumulative offer processes under Ch and Ch′, respectively. We first

prove Part 2 of the lemma, and then show Part 1.

Part 2: Suppose the contrary, i.e., that C(T ) 6⊆ C ′(T ′). Then there exists a step t′ such

that C(t) ⊆ C ′(T ′) for all t < t′ and C(t′) 6⊆ C ′(T ′) holds. That is, t′ is the first step such

45The proof that w′′ /∈ arg max�r{x|x ≤ w} if w′′h < min{qh, wh} is as follows. Suppose that w′′h <

min{qh, wh}. Consider w′′′ defined by w′′′h = w′′h+1, w′′′h′ = w′′h′−1 for some h′ such that w′′h′−q̄h′ = ηi(w
′′),

and w′′′h′′ = w′′h′′ for all h′′ ∈ Hr \ {h, h′}. Then we have w′′′h − q̄h = w′′h − q̄h + 1 ≤ w′h − q̄h < w′′h′ − q̄h′ ,

where the weak inequality follows because w′′h < min{qh, wh} = w′h. The strict inequality implies that

w′h − q̄h ≤ w′′h′ − 1− q̄h′ = w′′′h′ − q̄h′ . Hence w′′′h − q̄h ≤ w′′′h′ − q̄h′ , which implies w′′′ �r w′′.
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that an application not made in the cumulative offer process under Ch′ is made in the

cumulative offer process under Ch. Let x be the contract that d offers in this step under

Ch. Notice that Y ′d �d x. This implies that Y ′d 6= ∅ and that Y ′d is rejected by r′ in some

steps of the cumulative offer process under Ch, where r′ is the region associated with

Y ′d . Let the first of such steps be t′′. Since in the cumulative offer process doctors make

offers in order of their preferences, Y ′d �d x implies that t′′ < t′, which in turn implies

C(t′′) ⊆ C ′(T ′) by the definition of t′.

Now, we show that the set of contracts accepted by r′ at step t′′ of the cumulative offer

process under Ch is a superset of the set of contracts accepted by r′ from the application

pool C(t′′) (which is a subset of C ′(T ′)) at step T ′ of the cumulative offer process under

Ch′. To see this, note that if the same application pool C ′(T ′) is given, the set of contracts

accepted by r′ in the cumulative offer process under Ch is weakly larger than that under

Ch′ by the assumption that Ch′r(X
′) ⊆ Chr(X

′) for all X ′ ⊆ X and r ∈ R. Since

Ch is substitutable, subtracting applications in C ′(T ′) \ C(t′′) does not shrink the set of

contracts accepted by r′ within C(t′′) at step t′′ of the cumulative offer process under Ch,

which establishes our claim.

However, this contradicts our earlier conclusion that Y ′d is rejected by r′ at step t′′ of

the cumulative offer process under Ch while she is allocated Y ′d in the cumulative offer

process under Ch′. Hence we conclude that C(T ) ⊆ C ′(T ′).

Part 1: Now, since in the cumulative offer process each doctor d make offers of contracts

in order of her preferences, Yd is ∅ or the worst contract for d in the set of contracts

associated with d in C(T ). Similarly, for each doctor d, Y ′d is ∅ or the worst contract for

d in the set of contracts associated with d in C ′(T ′). If Yd 6= ∅, this and C(T ) ⊆ C ′(T ′)

imply that Yd �d Y ′d . If Yd = ∅, d has applied to all acceptable contracts in the cumulative

offer process under Ch. Thus C(T ) ⊆ C ′(T ′) implies that she has applied to all acceptable

contracts in the algorithm under Ch′, too. Let x′ be the worst acceptable contract in X

for d, and r be a region associated with x′. At this point we already know that Y ′d is either

x′ or ∅, and we will show that Y ′d = ∅ in what follows. Again, C(T ) ⊆ C ′(T ′) implies that

all applications associated with r in C(T ) is in C ′(T ′). In particular, d’s application to x′

is in C ′(T ′). Since Ch is substitutable, subtracting applications in C ′(T ′)\C(T ) does not

shrink the set of doctors accepted by r within C(T ) at step T of the deferred acceptance,

so d not being accepted by r from C(T ) at step T of the cumulative offer process under

Ch implies that she is not accepted by r from C ′(T ′) in step T ′ of the process under Ch′

either. But since we have shown that d’s offer of contract x′ to r is in C ′(T ′), this implies

that in the cumulative offer process under Ch′, x′ is rejected by r. Because x′ is the worst
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acceptable contract for d and d’s applications are made in order of her preferences, we

conclude that Y ′d = ∅, thus in particular Yd �d Y ′d .
This shows that each doctor d ∈ D weakly prefers a contract allocated by the cumulative

offer process under Ch to the one under Ch′.

Since the outcome of the cumulative offer process is the doctor-optimal stable allocation,

the preceding proof has also shown that the doctor-optimal stable allocation under Ch is

weakly more preferred to the doctor-optimal stable allocation under Ch′. �

Lemma 1 is a generalization of a number of existing results. Gale and Sotomayor

(1985a,b) establish comparative statics results in one-to-one and many-to-one matching

with respect to the extension of an agent’s list of her acceptable partners or an addition

of an agent to the market, and Crawford (1991) generalizes the results to many-to-many

matching. Konishi and Ünver (2006) consider many-to-one matching and obtain a com-

parative statics result with respect to the changes of hospital capacities.46 All these

changes are special cases of changes in the choice rules, so these results are corollaries of

Lemma 1.

Lemma 1 may be of independent interest as the most general comparative statics result

known to date. In addition, the lemma implies various results that are directly relevant

to the current study of regional caps, such as Propositions 6, 7, 8, and 9 in the main text.

Proof of Proposition 6. Part 1: Let ChF = (ChFr )r∈R be the choice rule associated with

the flexible deferred acceptance as defined earlier, that is, for each region r ∈ R and subset

of contracts X ′ ⊆ X = D ×H, the chosen set of contracts ChFr (X ′) is defined by

ChFr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ (C̃hr(w(X ′)))h

}
,

where C̃hr corresponds to a Rawlsian regional preference of region r and w(X ′) = (wh(X
′))h∈Hr

is the vector such that wh(X
′) = |{(d, h) ∈ X ′|d �h ∅}| (this is a special case of the choice

rule (4.1)).

46See also Kelso and Crawford (1982) who derive comparative statics results in a matching model with

wages, and Hafalir, Yenmez, and Yildirim (2013) and Ehlers, Hafalir, Yenmez, and Yildirim (2014) who

study comparative statics in the context of diversity in school choice. Echenique and Yenmez (2015)

and Chambers and Yenmez (2013) independently obtain similar results to ours in a framework based on

choice functions as primitives.
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Moreover, consider choice rules ChD = (ChDr )r∈R and ChJ = (ChJr )r∈R such that, for

each X ′ and r,

ChDr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ qh

}
,

ChJr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ q̄h

}
.

Clearly, both ChD and ChJ satisfy the substitute condition and the law of aggregate de-

mand. Moreover, the matchings corresponding to the results of the cumulative offer pro-

cesses under ChD and ChJ are identical to the results of the deferred acceptance algorithm

and the JRMP mechanism, respectively. Because min{q̄h, wh} ≤ (C̃hr(w(X ′)))h ≤ qh for

all h ∈ Hr and X ′, by inspection of the above definitions of the choice rules we obtain

ChJr (X ′) ⊆ ChFr (X ′) ⊆ ChDr (X ′) for all X ′ and r. Thus the desired conclusion follows by

Part 1 of Lemma 1.

Part 2: This is a direct corollary of Part 1 and the fact that none of the algorithms

considered here matches a doctor to an unacceptable hospital. �

Proof of Proposition 7. Let Ch = (Chr)r∈R and Ch
′

= (Ch
′

r)r∈R be the choice rules as-

sociated with the flexible deferred acceptance mechanisms (as defined in the proof of

Proposition 6) with respect to (qr)r∈R and (q′r)r∈R, respectively.

Part 1: Because q′r ≤ qr for each r ∈ R, the definition of these choice rules implies

Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r. Hence the desired conclusion follows by Part 1 of

Lemma 1.

Part 2: Since Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r as mentioned in the proof of Part 1,

Part 2 of Lemma 1 implies that C(T ) ⊆ C ′(T ′), where C, T , C ′, and T ′ are as defined

in Part 2 of the lemma. Note that the sets of contracts allocated to hospitals in r at the

conclusions of the cumulative offer processes under Ch and Ch′ are given as r’s choice

from contracts associated with r in C(T ) and C ′(T ′), respectively. Because the choice

rules satisfy the law of aggregate demand and the set-inclusion relationship C(T ) ⊆ C ′(T ′)

holds, for any r such that qr = q′r, the number of doctors matched in r under a matching

produced by the flexible deferred acceptance mechanism under regional caps (q′r)r∈R is

weakly larger than in the matching under (qr)r∈R, completing the proof. �

Proof of Proposition 8. Let Ch = (Chr)r∈R and Ch
′

= (Ch
′

r)r∈R be the choice rules asso-

ciated with the JRMP mechanisms (as defined in the proof of Proposition 6) with respect

to (q̄h)h∈H and (q̄′h)h∈H , respectively.
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Part 1: Because q̄′h ≤ q̄h for each h ∈ H, the definition of these choice rules implies

Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r. Hence the desired conclusion follows by Part 1 of

Lemma 1.

Part 2: Since Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r as mentioned in the proof of Part 1,

Part 2 of Lemma 1 implies that C(T ) ⊆ C ′(T ′), where C, T , C ′, and T ′ are as defined in

Part 2 of Lemma 1. Note that the matchings for h at the conclusions of the cumulative

offer processes under Ch and Ch′ are given as h’s most preferred acceptable doctors up

to q̄h = q̄′h from contracts associated with h in C(T ) and C ′(T ′), respectively. Thus the

set-inclusion relationship C(T ) ⊆ C ′(T ′) implies both of the statements of Part 2. �

Proof of Proposition 9. Part 1: First, by Part 2 of Lemma 1 and the proof of Proposi-

tion 6, the set of contracts that have been offered up to and including the terminal step

under the deferred acceptance mechanism is a subset of the one under the flexible deferred

acceptance mechanism. Second, by the construction of the flexible deferred acceptance

algorithm, and the assumption that hospital h’s target capacity is not filled, under the

flexible deferred acceptance mechanism h is matched to every doctor who is acceptable

to h and who applied to h in some step of the algorithm. These two facts imply the

conclusion.

Part 2: First, by Part 2 of Lemma 1 and the proof of Proposition 6, the set of con-

tracts that have been offered up to and including the terminal step under the deferred

acceptance mechanism is a subset of the one under the flexible deferred acceptance mech-

anism. Second, by the construction of the flexible deferred acceptance algorithm, and the

assumption that region r’s regional cap is not filled, under the flexible deferred accep-

tance mechanism any hospital h in region r is matched to every doctor who is acceptable

and who is among the most preferred qh doctors who applied to h in some step of the

algorithm. These two facts imply the conclusion. �

Appendix B. Proof of Theorem 2

It is useful to relate our model to a (many-to-many) matching model with contracts

(Hatfield and Milgrom, 2005). Let there be two types of agents, doctors in D and the

“hospital side” (thus there are |D|+ 1 agents in total). Note that we regard the hospital

side, instead of each hospital, as an agent in this model. There is a set of contracts

X = D ×H.

We assume that, for each doctor d, any set of contracts with cardinality two or more

is unacceptable, that is, a doctor can sign at most one contract. For each doctor d, her
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preferences �d over ({d} × H) ∪ {∅} are given as follows.47 We assume (d, h) �d (d, h′)

in this model if and only if h �d h′ in the original model, and (d, h) �d ∅ in this model if

and only if h �d ∅ in the original model.

For the hospital side, we assume that it has preferences � and its associated choice

rule Ch(·) over all subsets of D × H. For any X ′ ⊂ D × H, let w(X ′) := (wh(X
′))h∈H

be the vector such that wh(X
′) = |{(d, h) ∈ X ′|d �h ∅}|. For each X ′, the chosen set of

contracts Ch(X ′) is defined by

Ch(X ′) =
⋃
h∈H

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ [C̃h(w(X ′))]h

}
.

That is, each hospital h ∈ H chooses its [C̃h(w(X ′))]h most preferred contracts from

acceptable contracts in X ′.

Definition 9 (Hatfield and Milgrom (2005)). Choice rule Ch(·) satisfies the substitutes

condition if there do not exist contracts x, x′ ∈ X and a set of contracts X ′ ⊆ X such

that x′ /∈ Ch(X ′ ∪ {x′}) and x′ ∈ Ch(X ′ ∪ {x, x′}).

In other words, contracts are substitutes if adding a contract to the choice set never

induces a region to choose a contract it previously rejected. Hatfield and Milgrom (2005)

show that there exists a stable allocation (defined in Definition 11) when contracts are

substitutes for the hospital side.

Definition 10 (Hatfield and Milgrom (2005)). Choice rule Ch(·) satisfies the law of

aggregate demand if for all X ′ ⊆ X ′′ ⊆ X, |Ch(X ′)| ≤ |Ch(X ′′)|.

Proposition 10. Suppose that �r is substitutable for all r ∈ R.

(1) Choice rule Ch(·) defined above satisfies the substitutes condition

(2) Choice rule Ch(·) defined above satisfies the law of aggregate demand.

Proof. Part 1. Fix X ′ ⊂ X. Suppose to the contrary, i.e., that there exist X ′, (d, h) and

(d′, h′) such that (d′, h′) 6∈ Ch(X ′ ∪{(d′, h′)}) and (d′, h′) ∈ Ch(X ′ ∪{(d, h), (d′, h′)}). We

will lead to a contradiction.

Let w′ = w(X ′ ∪ {(d′, h′)}) and w′′ = w(X ′ ∪ {(d, h), (d′, h′)}). The proof consists of

three steps.

Step 1: In this step we observe that q̃w
′

{h′} < q̃w
′′

{h′}. To see this, note that other-

wise we would have q̃w
′

{h′} ≥ q̃w
′′

{h′}, hence by the definition of Ch we must have [Ch(X ′ ∪

47We abuse notation and use the same notation �d for preferences of doctor d both in the original

model and in the associated model with contracts.
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{(d′, h′)})]h′ ⊇ [Ch(X ′ ∪ {(d, h), (d′, h′)})]h′ \ {(d, h)}. This contradicts (d′, h′) 6∈ Ch(X ′ ∪
{(d′, h′)}) and (d′, h′) ∈ Ch(X ′ ∪ {(d, h), (d′, h′)}).

Step 2: Consider any r such that h′ ∈ r. Let q̃w
′

r and q̃w
′′

r be as defined in the procedure

to compute C̃h(w′) and C̃h(w′′), respectively. Let r′ ∈ S(r) be the subregion such that

h′ ∈ r′. Suppose q̃w
′

r′ < q̃w
′′

r′ . We will show that q̃w
′

r < q̃w
′′

r . To see this, suppose the

contrary, i.e., that q̃w
′

r ≥ q̃w
′′

r . Let v′ := (vw
′

r′′ )r′′∈S(r) and v′′ := (vw
′′

r′′ )r′′∈S(r). Since w′ ≤ w′′

and vwr′′ is weakly increasing in w for any region r′′, it follows that v′ ≤ v′′. This and

substitutability of �r imply

[C̃hr(v
′; q̃w

′

r )]r′ ≥ min{[C̃hr(v
′′; q̃w

′′

r )]r′ , v
′
r′}.

Since we assume q̃w
′

r′ < q̃w
′′

r′ , or equivalently

[C̃hr(v
′; q̃w

′

r )]r′ < [C̃hr(v
′′; q̃w

′′

r )]r′ ,

this means [C̃hr(v
′; q̃w

′
r )]r′ ≥ v′r′ . But then by [C̃hr(v

′; q̃w
′

r )]r′ ≤ v′r′ (from the definition

of C̃h) we have [C̃hr(v
′; q̃w

′
r )]r′ = v′r′ . But this contradicts the assumption that (d′, h′) 6∈

Ch(X ′∪{(d′, h′)}), while d′ is acceptable to h′ (because (d′, h′) ∈ Ch(X ′∪{(d, h), (d′, h′)})).
Thus we must have that q̃w

′
r < q̃w

′′
r .

Step 3: Step 1 and an iterative use of Step 2 imply that q̃w
′

H < q̃w
′′

H . But we specified

q̃wH for any w to be equal to qH , so this is a contradiction.

Part 2. To show that Ch satisfies the law of aggregate demand, let X ′ ⊆ X and (d, h)

be a contract such that d �h ∅. We shall show that |Ch(X ′)| ≤ |Ch(X ′ ∪ {(d, h)})|. To

show this, denote w = w(X ′) and w′ = w(X ′ ∪ {(d, h)}). By definition of w(·), we have

that w′h = wh + 1 and w′h′ = wh′ for all h′ 6= h. Consider the following cases.

(1) Suppose
∑

r′∈S(r) v
w
r′ ≥ qr for some r ∈ R such that h ∈ r. Then we have:

Claim 2. vw
′

r′ = vwr′ unless r′ ( r.

Proof. Let r′ be a region that does not satisfy r′ ( r. First, note that if r′∩ r = ∅,
then the conclusion holds by the definitions of vwr′ and vw

′

r′ because w′h′ = wh′ for

any h′ /∈ r. Second, consider r′ such that r ⊆ r′ (since R is hierarchical, these

cases exhaust all possibilities). Since vwr = min{
∑

r′∈S(r) v
w
r′ , qr}, the assumption∑

r′∈S(r) v
w
r′ ≥ qr implies vr(w) = qr. By the same argument, we also obtain

vr(w
′) = qr. Thus, for any r′ such that r ⊆ r′, we inductively obtain vw

′

r′ = vwr′ . �
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The relation vw
′

r′ = vwr′ for all r′ ( r implies that, together with the construction

of C̃h,

[C̃h(w′)]h′ = [C̃h(w)]h′ for any h′ /∈ r.(B.1)

To consider hospitals in r, first observe that r satisfies
∑

r′∈S(r) v
w
r′ ≥ qr by

assumption, so vwr = min{
∑

r′∈S(r) v
w
r′ , qr} = qr, and similarly vw

′
r = qr, so vwr =

vw
′

r . Therefore, by construction of C̃h, we also have vwr′ = vw
′

r′ for any region r′ such

that r ⊆ r′. This implies q̃wr = q̃w
′

r , where q̃wr and q̃w
′

r are the assigned regional caps

on r under weight vectors w and w′, respectively, in the algorithm to construct

C̃h.

Now note the following: For any r′ ∈ R, since vwr′ is defined as min{
∑

r′′∈S(r′) v
w
r′′ , qr′}

and all regional preferences are acceptant, the entire assigned regional cap q̃wr′ is

allocated to some subregion of r′, that is, q̄wr′ =
∑

r′′∈S(r′) q̄
w
r′′ . Similarly we also

have q̄w
′

r′ =
∑

r′′∈S(r′) q̄
w′

r′′ . This is the case for not only for r′ = r but also for all

subregions of r, their further subregions, and so forth. Going forward until this

reasoning reaches the singleton sets, we obtain relation∑
h′∈r

[C̃h(w′)]h′ =
∑
h′∈r

[C̃h(w)]h′ .(B.2)

By (B.1) and (B.2), we conclude that

|Ch(X ′)| =
∑
h′∈H

[C̃h(w)]h′ =
∑
h′∈H

[C̃h(w′)]h′ = |Ch(X ′ ∪ {(d, h)})|,

completing the proof for this case.

(2) Suppose
∑

r′∈S(r) v
w
r′ < qr for all r ∈ R such that h ∈ r. Then the regional cap for

r is not binding for any r such that h ∈ r, so we have

[C̃h(w′)]h = [C̃h(w)]h + 1.(B.3)

In addition, the following claim holds.

Claim 3. [C̃h(w′)]h′ = [C̃h(w)]h′ , for all h′ 6= h.

Proof. First, note that vw
′

r = vwr + 1 for all r such that h ∈ r because the regional

cap for r is not binding for any such r. Then, consider the largest region H. By

assumption, qH has not been reached under w, that is,
∑

r′∈S(H) v
w
r′ < qH . Thus,

since C̃hH is acceptant, the entire vector (vr′(w))r′∈S(H) is accepted by C̃hH , that

is, q̃wr′ = vwr′ . Hence, for any r′ ∈ S(H) such that h /∈ r′, both its assigned regional

cap and all v’s in their regions are identical under w and w′, that is, q̃wr′ = q̃w
′

r′ and

w′h′ = wh′ for all h′ ∈ r′. So, for any hospital h′ ∈ r′, the claim holds.
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Now, consider r ∈ S(H) such that h ∈ r. By the above argument, the assigned

regional cap has increased by one in w′ compared to w. But since r’s regional cap

qr has not been binding under w, all the v’s in the subregions of r are accepted in

both w and w′. This means that (1) for each subregion r′ of r such that h /∈ r′, it

gets the same assigned regional cap and v’s, so the conclusion of the claim holds

for these regions, and (2) for the subregion r′ of r such that h ∈ r′, its assigned

regional cap is increased by one in w′ compared to w, and its regional cap qr′

has not been binding. And (2) guarantees that we can follow the same argument

inductively, so the conclusion holds for all h 6= h′. �

By equation (B.3) and Claim 3, we obtain

|Ch(X ′ ∪ {(d, h)})| =
∑
h′∈H

[C̃h(w′)]h′ =
∑
h′∈H

[C̃h(w)]h′ + 1 = |Ch(X ′)|+ 1,

so we obtain |Ch(X ′ ∪ {(d, h)})| > |Ch(X ′)|, completing the proof.

�

A subset X ′ of X = D ×H is said to be individually rational if (1) for any d ∈ D,

|{(d, h) ∈ X ′|h ∈ H}| ≤ 1, and if (d, h) ∈ X ′ then h �d ∅, and (2) Ch(X ′) = X ′.

Definition 11. A set of contracts X ′ ⊆ X is a stable allocation if

(1) it is individually rational, and

(2) there exists no hospital h ∈ H and a doctor d ∈ D such that (d, h) �d x and

(d, h) ∈ Ch(X ′∪{(d, h)}), where x is the contract that d receives at X ′ if any and

∅ otherwise.

When condition (2) is violated by some (d, h), we say that (d, h) is a block of X ′.

Given any individually rational set of contracts X ′, define a corresponding matching

µ(X ′) in the original model by setting µd(X
′) = h if and only if (d, h) ∈ X ′ and µd(X

′) = ∅
if and only if no contract associated with d is in X ′. For any individually rational X ′,

µ(X ′) is well-defined because each doctor receives at most one contract at such X ′.

Proposition 11. Suppose that �r is substitutable for all r ∈ R. If X ′ is a stable allocation

in the associated model with contracts, then the corresponding matching µ(X ′) is a stable

matching in the original model.

Proof. Suppose that X ′ is a stable allocation in the associated model with contracts and

denote µ := µ(X ′). Individual rationality of µ is obvious from the construction of µ.

Suppose that (d, h) is a blocking pair of µ. By the definition of stability, it suffices to



GENERAL THEORY OF MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 51

show that there exists a region r that includes h such that the following conditions (B.4),

(B.5), and µd 6∈ Hr hold, or (B.4), (B.5), (B.6), and h, µd ∈ r hold:

|µHr | = qr,(B.4)

d′ �h d for all d′ ∈ µh,(B.5)

(wr′′)r′′∈S(SC(h,µd)) �SC(h,µd) (w′r′′)r′′∈S(SC(h,µd)),(B.6)

where for any region r′ we write wr′′ =
∑

h′∈r′′ |µh′| for all r′′ ∈ S(r′) and w′rh = wrh + 1,

w′rd = wrd − 1 and w′r′′ = wr′′ for all other r′′ ∈ S(r′) where rh, rd ∈ S(r), h ∈ rh, and

µd ∈ rd. Let w = (wh)h∈H .

For each region r that includes h, let w′′r′ = wr′ +1 for r′ such that h ∈ r′ and w′′r′′ = wr′′

for all other r′′ ∈ S(r). Let w′′ = (w′′h)h∈H .

Claim 4. Condition (B.5) holds, and there exists r that includes h such that Condition

(B.4) holds.

Proof. First note that the assumption that h �d µd implies that (d, h) �d x where x

denotes the (possibly empty) contract that d signs under X ′.

(1) Assume by contradiction that condition (B.5) is violated, that is, d �h d′ for some

d′ ∈ µh. First, note that [C̃h(w′′)]h ≥ [C̃h(w)]h. That is, weakly more contracts

involving h are signed at X ′ ∪ (d, h) than at X ′. This is because for any r and

r′ ∈ S(r) such that h ∈ r′,

(B.7) [C̃hr((v
w′′

r′′ )r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v
w
r′′)r′′∈S(r); q̃

′
r)]r′ if q̃r ≥ q̃′r.

To see this, first note that [C̃hr((v
w
r′′)r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v

w
r′′)r′′∈S(r); q̃

′
r)]r′ by

substitutability of �r. Also, by consistency of C̃hr and vw
′′

r′′ ≥ vwr′′ for every region

r′′, the inequality

[C̃hr((v
w′′

r′′ )r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v
w
r′′)r′′∈S(r); q̃r)]r′
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follows,48 showing condition (B.7). An iterative use of condition (B.7) gives us the

desired result that [C̃h(w′′)]h ≥ [C̃h(w)]h. This property, together with the as-

sumptions that d �h d′ and that (d′, h) ∈ X ′ imply that (d, h) ∈ Ch(X ′∪ (d, h)).49

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contracts, contradicting the

assumption that X ′ is a stable allocation.

(2) Assume by contradiction that condition (B.4) is violated, so that |µHr | 6= qr for

every r that includes h. Then, for such r, since |µHr | ≤ qr by the construction of

µ and the assumption that X ′ is individually rational, it follows that |µHr | < qr.

Then (d, h) ∈ Ch(X ′ ∪ (d, h)) because,

(a) d �h ∅ by assumption,

(b) since
∑

r′∈S(r) wr′ =
∑

h∈Hr
|µh| = |µHr | < qr, it follows that

∑
r′∈S(r) w

′′
r′ =∑

r′∈S(r) wr′ + 1 ≤ qr. This property and the fact that C̃hr is acceptant and

the definition of the function vr′ for regions r′ imply that C̃h(w′′) = w′′. In

particular, this implies that every contract (d′, h) ∈ X ′ ∪ (d, h) such that

d′ �h ∅ is chosen at Ch(X ′ ∪ (d, h)).

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contract, contradicting the

assumption that X ′ is a stable allocation.

�

To finish the proof of the proposition suppose for contradiction that there is no r that

includes h such that (B.4), (B.5), and µd 6∈ Hr hold, and that condition (B.6) fails. That

is, we suppose (w′r′′)r′′∈S(SC(h,µd)) �SC(h,µd) (wr′′)r′′∈S(SC(h,µd)). Then it must be the case

that [C̃hr((v
w′′

r′′ )r′′∈S(SC(h,µd)); q̃
w′′

SC(h,µd))]r′ = w′′r′ = wr′ + 1 = |µh| + 1, where h ∈ r′ and

48To show this claim, let v = (vwr′′)r′′∈S(r) and v′′ = (vw
′′

r′′ )r′′∈S(r) for notational simplicity and assume

for contradiction that [C̃hr(v
′′; q̃r)]r′ < [C̃hr(v; q̃r)]r′ . Then, [C̃hr(v

′′; q̃r)]r′ < [C̃hr(v; q̃r)]r′ ≤ vr′ . More-

over, since v′′r′′ = vr′′ for every r′′ 6= r′ by the construction of v′′, it follows that [C̃hr(v
′′)]r′′ ≤ v′′r′′ = vr′′ .

Combining these inequalities, we have that C̃hr(v
′′) ≤ v. Also we have v ≤ v′′ by the definition of

v′′, so it follows that C̃hr(v
′′) ≤ v ≤ v′′. Thus, by consistency of C̃hr, we obtain C̃hr(v

′′) = C̃hr(v), a

contradiction to the assumption [C̃hr(v
′′)]r′ < [C̃hr(v)]r′ .

49The proof of this claim is as follows. Ch(X ′) induces hospital h to select its [C̃h(w)]h most preferred

contracts while Ch(X ′∪(d, h)) induces h to select a weakly larger number [Ch(w′′)]h of its most preferred

contracts. Since (d′, h) is selected as one of the [C̃h(w)]h most preferred contracts for h at X ′ and d �h d′,
we conclude that (d, h) must be one of the [Ch(w′′)]h (≥ [C̃h(w)]h) most preferred contracts at X ′∪(d, h),

thus selected at X ′ ∪ (d, h).



GENERAL THEORY OF MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 53

q̃w
′′

SC(h,µd) is as defined in the procedure to compute C̃h(w′′).50 Note that for all r′ such

that h ∈ r′ and r′ ( SC(h, µd), it follows that µd /∈ Hr′ . Also note that (B.5) is satisfied

by Claim 4. Therefore we have |µr′ | < qr′ for all r′ ( SC(h, µd) that includes h by

assumption and hence |µr′ |+ 1 ≤ qr′ for all such r′. Moreover we have d �h ∅, thus

(d, h) ∈ Ch(X ′ ∪ (d, h)).

This relationship, together with the assumption that h �d µd, and hence (d, h) �d x, is a

contradiction to the assumption that X ′ is stable in the associated model with contracts.

�

Proof of Theorem 2. By Proposition 10, the choice rule Ch(·) satisfies the substitutes

condition and the law of aggregate demand in the associate model of matching with

contracts. By Hatfield and Milgrom (2005), Hatfield and Kojima (2009), and Hatfield and

Kominers (2012), the cumulative offer process with choice rules satisfying these conditions

produces a stable allocation and is (group) strategy-proof. The former fact, together with

Remark 3 and Proposition 11, implies that the outcome of the flexible deferred acceptance

algorithm is a stable matching in the original model. The latter fact and Remark 3 imply

that the flexible deferred acceptance mechanism is (group) strategy-proof for doctors. �

Appendix C. Further Statistics on Heterogeneity of Capacities

Across prefectures in Japan, the mean and the median of the ratios of the maximum and

the minimum hospital capacities are 20.98 and 19, respectively (see Figure 5). The mean

50To show this claim, assume for contradiction that [C̃hSC(h,µd)((v
w′′

r′′ )r′′∈S(SC(h,µd)); q̃
w′′

SC(h,µd)
)]r′ ≤

wr′ where h ∈ r′. Let v := (vwr′′)r′′∈S(SC(h,µd)) and v′′ := (vw
′′

r′′ )r′′∈S(SC(h,µd)). Since w′′r′′ = wr′′ for any

r′′ 6= r′ by the definition of w′′, it follows that

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ≤ (wr′′)r′′∈SC(h,µd) ≤ (w′′r′′)r′′∈SC(h,µd).

But C̃hSC(h,µd)(v; q̃wSC(h,µd)
) = (wr′′)r′′∈SC(h,µd) because X ′ is a stable allocation in the associated model

of matching with contracts, which in particular implies v = (wr′′)r′′∈SC(h,µd). Since v ≤ v′′, this means

that

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ≤ v ≤ v′′.

Thus by consistency of C̃hSC(h,µd), we obtain

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) = C̃hSC(h,µd)(v; q̃w

′′

SC(h,µd)
).

But again by C̃hSC(h,µd)(v; q̃wSC(h,µd)
) = (wr′′)r′′∈SC(h,µd), by substitutability we ob-

tain C̃hSC(h,µd)(v; q̃w
′′

SC(h,µd)
) = (wr′′)r′′∈SC(h,µd), thus C̃hSC(h,µd)(v

′′; q̃w
′′

SC(h,µd)
) =

(wr′′)r′′∈SC(h,µd). This is a contradiction because (w′r′′)r′′∈SC(h,µd) ≤ (w′′r′′)r′′∈SC(h,µd) =

v′′ and (w′r′′)r′′∈SC(h,µd) �SC(h,µd) (wr′′)r′′∈SC(h,µd) while C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ∈

arg max�SC(h,µd)
{(w′′′r′′)r′′∈SC(h,µd)|(w′′′r′′)r′′∈SC(h,µd) ≤ v′′,

∑
r′′∈S(SC(h,µd))

w′′′r′′ ≤ q̃w
′′

SC(h,µd)
}.
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and the median of the Gini coefficients across prefectures are both 0.48, showing that the

heterogeneity of hospital capacities is quite significant.51 Capacities differ substantially

in the school choice context as well; see Table 1 that reports data from Boston Public

Schools (2013). The ratios of the maximum and the minimum of school capacities range

from 1.80 to 16.19 with the median of 5.28, and all the Gini coefficients are no less than

0.10.
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Figure 5. The ratios of the maximum and the minimum hospital capac-

ities across prefectures.

Category Maximum Minimum Max/Min Gini Coefficient

Early Learning Center 234 109 2.15 0.10

Elementary School 871 165 5.28 0.25

Exam School 2323 1291 1.80 0.13

High School 1457 90 16.19 0.32

Kindergarten–Eight 960 132 7.27 0.27

Middle School 760 288 2.64 0.15

Special/Alternative Education 297 25 11.88 0.31

Table 1. Heterogeneity in size by school category.

Appendix D. Allocating Target Capacities

A problem related to, but distinct from, our discussion in Section 5.2 is how to allocate

target capacities among hospitals in a region, within the simple, Rawlsian framework of

51The data are taken from Japan Residency Matching Program (2013)
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Kamada and Kojima (2015). We will not try to provide a final answer to the normative

question of how to do so for several reasons. First, there may be different ways to specify

the quasi choice rule even given the same target capacity profile, as we have seen in

this section, and in fact there may be reasonable quasi choice rules that do not even

presuppose the existence of target capacities. Second, even if we fix a quasi choice rule,

the relation between target capacities and the desirability of the resulting outcome is

ambiguous. An example in Kamada and Kojima (2015) shows that the effect on hospital

welfare is ambiguous.52

Despite these reservations, hospitals may still find having higher targets intuitively

appealing in practice, so the problem seems to be practically important. Motivated by

this observation, we present several methods to allocate target capacities that seem to be

reasonable.

To do so, our starting point is to point out that the problem of allocating target capac-

ities is similar to the celebrated “bankruptcy problem” (see Thomson (2003)). This is a

useful association in the sense that, in the bankruptcy problem, there are known analyses

(e.g., axiomatic characterizations) of various allocation rules, which can be utilized to

judge which rule is appropriate for a given application.

To make this association, recall that in the standard bankruptcy problem, there is a

divisible asset and agents whose claims sum up to (weakly) more than the amount of

the available asset. Our problem is a discrete analogue of the bankruptcy problem. The

regional cap qr is an asset, hospitals in region r are agents, and physical capacity qh is the

claim of hospital h. Just as in the bankruptcy problem, the sum of the physical capacities

may exceed the available regional cap, so the target capacity profile (q̄h)h∈Hr needs to be

decided subject to the constraint
∑

h∈Hr
q̄h ≤ qr.

This association suggests adaptations of well-known solutions in the bankruptcy prob-

lem to our problem, with the modification due to the fact that both the asset and the

claims are discrete in our problem. The following are a few examples (in the following,

we assume
∑

h∈Hr
qh ≥ qr; otherwise set q̄h = qh for all h).

(1) “Constrained Equal Awards Rule”: This solution allocates the targets as equally

as possible except that, for any hospital, it does not allocate a target larger than

the capacity. This rule is called the constrained equal awards rule in the

52Example 9 in Kamada and Kojima (2015) shows that the effect on hospital welfare is ambiguous. In

fact, Example 15 in Kamada and Kojima (2015) shows that the same conclusion holds even if hospitals or

doctors have homogeneous preferences, which are strong restrictions that often lead to strong conclusions

in matching.
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literature on the bankruptcy problem. In our context, this solution should be

modified because all the targets need to be integers. Formally, a constrained equal

awards rule in our context can be defined as follows:

(a) Find λ that satisfies
∑

h∈Hr
min{λ, qh} = qr.

(b) For each h ∈ Hr, if λ > qh, then set q̄h = qh. Otherwise, set q̄h to be either

bλc (the largest integer no larger than λ) or bλc+ 1, subject to the constraint

that
∑

h∈Hr
q̄h = qr.

The rule to decide which hospital receives bλc or bλc + 1 is arbitrary: For any

decision rule, the resulting target profiles satisfy conditions assumed in Kamada

and Kojima (2015). The decision can also use randomization, which may help

achieve ex ante fairness.

(2) “Constrained Equal Losses Rule”: This solution allocates the targets in such a way

that it equates losses (that is, differences between the capacities and the targets)

as much as possible, except that none of the allocated targets can be strictly

smaller than zero. This rule is called the constrained equal losses rule in the

literature on the bankruptcy problem. As in the case of the constrained equal

awards rule, this solution should be modified because all the targets need to be

integers. Formally, a constrained equal losses rule in our context can be defined

as follows:

(a) Find λ that satisfies
∑

h∈Hr
max{qh − λ, 0} = qr.

(b) For each h ∈ Hr, if qh−λ < 0, then set q̄h = 0. Otherwise, set q̄h to be either

qh − bλc or qh − bλc − 1, subject to the constraint that
∑

h∈Hr
q̄h = qr.

As in the constrained equal awards rule, the rule to decide which hospital receives

qh − bλc or qh − bλc − 1 is arbitrary: For any decision rule, the resulting target

profiles satisfy conditions assumed in Kamada and Kojima (2015). The decision

can also use randomization, which may help achieve ex ante fairness.

(3) “Proportional Rule”: This solution allocates the targets in a manner that is as

proportional as possible to the hospitals’ capacities. This rule is called the pro-

portional rule in the literature on the bankruptcy problem. As in the case of the

previous rules, this solution should be modified because all the targets need to be

integers. Formally, a proportional rule in our context can be defined as follows:

(a) Find λ that satisfies
∑

h∈Hr
λqh = qr.

(b) For each h ∈ Hr, set q̄h be either bλqhc or bλqhc+ 1, subject to the constraint

that
∑

h∈Hr
q̄h = qr.
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As in the previous cases, the rule to decide which a hospital receives bλqhc or

bλqhc + 1 is arbitrary: For any decision rule, the resulting target profiles satisfy

conditions assumed in Kamada and Kojima (2015). The decision can also use

randomization, which may help achieve ex ante fairness.

The proportional rule seems to be fairly appealing in practice. This rule is used

in Japanese residency match and Chinese graduate school admission, for example.

Appendix E. Discussion on Substitutability

In this section we aim to deepen our understanding of substitutability conditions. First

we study the relationship between substitutability and consistency, and then we show

that conditions (6.1) and (6.2) are independent.

Claim 5. Condition (6.1) implies consistency.53

Proof. Fix � and its associated quasi choice rule C̃hr, and suppose that for some t,

C̃hr(w
′; t) ≤ w ≤ w′. Suppose also that condition (6.1) holds. We will prove C̃hr(w; t) =

C̃hr(w
′; t). Condition (6.1) implies w ≤ w′ ⇒ C̃hr(w; t) ≥ C̃hr(w

′; t) ∧ w. Since

C̃hr(w
′; t) ≤ w implies C̃hr(w

′; t)∧w = C̃hr(w
′; t), this means that C̃hr(w

′; t) ≤ C̃hr(w; t) ≤
w′. If C̃hr(w; t) 6= C̃hr(w

′; t) then by the assumption that C̃hr is acceptant, we must have

C̃hr(w; t) �r C̃hr(w
′; t). But then C̃hr(w

′; t) cannot be an element of arg max�r
{w′′|w′′ ≤

w′,
∑

r′∈S(r) w
′′
r′ ≤ t} because C̃hr(w; t) ∈ {w′′|w′′ ≤ w′,

∑
r′∈S(r) w

′′
r′ ≤ t}. Hence we have

C̃hr(w
′; t) = C̃hr(w; t). �

Example 2 (Regional preferences that violate (6.1) while satisfying (6.2)). There is a

grand region r in which two hospitals reside. The capacity of each hospital is 2. Region

r’s preferences are as follows.

�r: (2, 2), (2, 1), (1, 2), (2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0).

One can check by inspection that condition (6.2) and consistency are satisfied. To show

that (6.1) is not satisfied, observe first that there is a unique associated choice rule

(since preferences are strict), and denote it by C̃hr. The above preferences imply that

C̃hr((1, 2); 2) = (0, 2) and C̃hr((2, 2); 2) = (2, 0). But this is a contradiction to (6.1) be-

cause (1, 2) ≤ (2, 2) but C̃hr((1, 2); 2) ≥ C̃hr((2, 2); 2)∧ (1, 2) does not hold (the left hand

side is (0, 2) while the right hand side is (1, 0)). �

53Fleiner (2003) and Aygün and Sönmez (2012) prove analogous results although they do not work on

substitutability defined over the space of integer vectors.
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Example 3 (Regional preferences that violate (6.2) while satisfying (6.1)). There is a

grand region r in which three hospitals reside. The capacity of each hospital is 1. Region

r’s preferences are as follows.

�r: (1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0).

One can check by inspection that condition (6.1) (and hence consistency by Claim 5)

are satisfied. To show that (6.2) is not satisfied, observe first that there is a unique

associated choice rule (since preferences are strict), and denote it by C̃hr. The above

preferences imply that C̃hr((1, 1, 1); 1) = (0, 0, 1) and C̃hr((1, 1, 1); 2) = (1, 1, 0). But this

is a contradiction to (6.2) because 1 ≤ 2 but C̃hr((1, 1, 1); 1) ≤ C̃hr((1, 1, 1); 2) does not

hold (the left hand side is (0, 0, 1) while the right hand side is (1, 1, 0)). �

Appendix F. Discussion on Stability for Hierarchical Regions

The following example shows that there exists no matching that satisfies a certain

strengthening of the stability concept (see footnote 42).

Example 4 (Stable matchings do not necessarily exist under a stronger definition). Sup-

pose that in the definition of stability (Definition 8), we further require that r ⊆ SC(h, µd).

We demonstrate that there does not necessarily exist a stable matching under this notion.

There is a grand region r in which two subregions r′ and r′′ exist. Two hospitals h1

and h2 reside in r′, and one hospital h3 resides in r′′. The capacity of each hospital is 1.

The regional caps are 1 for r, 2 for r′, and 1 for r′′. Regional preferences are as follows.

�r : (1, 0), (0, 1), (0, 0),

�r′ : (0, 2), (1, 1), (2, 0), (0, 1), (1, 0), (0, 0).

There are two doctors d1 and d2. Preferences are as follows:

�d1 : h1, h2, �d2 : h2, h1,

�h1 : d2, d1, �h2 : d1, d2,

and preferences of h3 are arbitrary.

To show that there exists no stable matching under the stronger definition, first note

that the matching in which all doctors are unmatched is clearly unstable because, for

example, pair (d1, h1) is a valid blocking pair. Also note that no matching under which

both of the two doctors are matched is stable because the regional cap for the grand

region r is one. Thus we are left with the cases in which only one doctor is matched to a

hospital.
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(1) Consider a matching µ such that µd1 = h1. Pair (d2, h1) is a blocking pair and,

because d2 �h1 d1, this is a legitimate blocking pair, showing that µ is unstable.

(2) Consider a matching µ such that µd1 = h2. First, note that pair (d1, h1) is a

blocking pair. Moreover, since SC(h1, µd) = r′, we only need to check whether the

cap qr′ of region r′ and the cap q{h1} of the region {h1} are binding. Because |µr′ | =
1 < 2 = qr′ and |µh1 | = 0 < 1 = qh1 , the regional caps are not binding. Hence the

conditions in the stability concept are not satisfied, showing that showing that µ

is unstable.

(3) Consider a matching µ such that µd1 = h3. Since h3 is unacceptable to d1, µ is

unstable.

Any matching in which d2 is matched to a hospital can be shown to be unstable in a

symmetric manner. Hence, there does not exist any stable matching under the stronger

definition. �

The next example shows that a stable matching does not necessarily exist if the set of

regions violates the assumption of a hierarchical structure.

Example 5 (Non-Hierarchical Regions). Suppose that there are three hospitals, h1, h2,

and h3. Suppose that regions are not hierarchical, and

R = {{h1}, {h2}, {h3}, {h1, h2}, {h2, h3}, {h3, h1}, {h1, h2, h3}}.

Each region’s regional cap is 1. There are two doctors, d1 and d2, and preferences are as

follows:

�d1 : h1, h2, h3, �d2 : h3, h1, h2,

�h1 : d2, d1, �h2 : d2, d1; �h3 : d1, d2.

Regional preferences for binary regions are that {h1, h2} prefers a doctor to be in h1 rather

than h2, {h2, h3} prefers a doctor to be in h2 rather than h3, and {h3, h1} prefers a doctor

to be in h3 rather than h1.

Given the above specification, we show that there is no stable matching. First it is

straightforward to see that there is no stable matching in which zero or two doctors are

matched. So consider the case in which one doctor is matched. By the definition of

stability, no hospital is matched to its second-choice doctor in any stable matching. This

leaves us with only three possibilities: µd2 = h1, µd2 = h2, and µd1 = h3.

In the first case, (d2, h3) is a blocking pair, and from regional preferences of {h3, h1},
the existence of such a blocking pair violates stability. In the second case, (d2, h1) is a

blocking pair, and from regional preferences of {h1, h2}, the existence of such a blocking
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pair violates stability. Finally, in the third case, (d1, h2) is a blocking pair, and from

regional preferences of {h2, h3}, the existence of such a blocking pair violates stability.

Hence there is no stable matching. �


