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1. Introduction

Many real matching markets are subject to distributional constraints. For example,

medical residency matching in Japan is subject to the “regional cap” constraint, which

is an upper-bound constraint on the total number of residents that can be assigned in

each region. Policies that are mathematically equivalent to the regional-cap policy can

be found in many different applications, such as graduate school admission in China,

college admission in several European countries, residency match in the U.K., and teacher

assignment in Scotland.

For cases without any distributional constraint, the theory of two-sided matching has

been extensively studied ever since the seminal contribution by Gale and Shapley (1962),

and it has been applied to the design of clearinghouses in various markets in practice. Sta-

bility has emerged as the key feature to the success of matching market design; a matching

is stable if there is no blocking pair, that is, there is no pair of agents (say a doctor and a

hospital) who prefer matching with each other to accepting the current matching. Unfor-

tunately, all stable matchings may violate the given distributional constraint. This fact

poses a challenge to market designers faced with such constraints.

The present paper addresses this challenge by analyzing stability concepts that respect

the existence of distributional constraints. In order to guide our pursuit of the “right”

stability concepts, we build upon the idea that there are different types of blocking pairs.

Based on this idea, we consider stability concepts that require certain blocking pairs be

eliminated while tolerating others.

Depending on the requirement placed on tolerated blocking pairs, we consider two

related concepts, strong and weak stability. We begin by defining strong stability. We

say that a matching is strongly stable if satisfying a blocking pair inevitably results in a

violation of the distributional constraint.

While strong stability is perhaps the most natural stability concept under distributional

constraints, we find a number of senses in which this concept is too demanding and is

unlikely to be useful for market designers faced with distributional constraints. First, we

find that a strongly stable matching does not necessarily exist, unlike a stable matching

without constraints. In addition, we show that no mechanism is strategy-proof for doctors

and produces a strongly stable matching whenever one exists.

Given these findings, we seek necessary and sufficient conditions under which these

negative conclusions about strong stability can be avoided. Our characterization result

demonstrates that the cases under which the above negative conclusions can be avoided

are exactly the cases in which the distributional constraint reduces to each individual
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hospital’s capacity constraint. Thus, the difficulty with strong stability is an inevitable

conclusion as long as there exists a nontrivial constraint.

Motivated by these negative conclusions, we introduce a more permissive concept, which

we call weak stability. We say that a matching is weakly stable if it eliminates two most

intuitive, and therefore likely most worrisome, types of blocking pairs. More specifically,

it requires that no blocking pair exists such that either (i) adding a doctor at the blocking

hospital does not violate the distributional constraint or (ii) the blocking hospital prefers

the blocking doctor to one of its current employees.

In a sharp contrast to strong stability, weak stability turns out to produce a number

of positive results. First and foremost, a weakly stable matching always exists. Sec-

ond, it can be characterized by feasibility, individual rationality, no justified envy, and

non-wastefulness.1 And yet, we also show that weak stability is strong enough to imply

(constrained) efficiency. In particular, the concept is strong enough to exclude unap-

pealing matchings such as those produced in the current Japanese and British residency

matching clearinghouses, college admission in some European countries, Chinese gradu-

ate school admission, and Scottish teacher matching.2 These results suggest that weak

stability is a useful concept for the market designer who seeks a normatively appealing

outcome.

All of these analyses are conducted in the environment with a general constraint struc-

ture. Specifically, For each input of the numbers of doctors at different hospitals, a

function called the feasibility constraint judges if the given input is feasible or not. This

setting entails the “partitional regional cap” models as in Kamada and Kojima (2015), in

which the set of hospitals are partitioned into regions and each region is assigned an upper

bound of the number of matched doctors. In addition, it also captures many other situ-

ations. For example, imagine there are two hospitals with government-subsidized seats,

and one seat in the first hospital costs half of that of the second. In such a case the differ-

ence in their costs may lead to different “weights” as a natural constraint (e.g., because

of the government’s budget constraint), so that there is a cap on the sum of the number

of doctors in the first hospital and half the number of doctors in the second hospital.

Another possibility is that constraints do not form partitions, as in the case in which

there are restrictions not only in terms of regions but also in terms of medical specialties.3

1Here non-wastefulness is adapted to account for distributional constraints.
2See Kamada and Kojima (2015) for details of these markets and senses in which their mechanisms

may result in matchings that violate weak stability.
3Section 5.1 lists various possibilities that the model with a feasibility constraint can capture.
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Perhaps the most important lesson of this paper is that a market designer should

consider normative appeal of stability concepts when it is not straightforward to set up

an objective of the design. In our context, the distributional constraints imply a possibility

of non-existence of strongly stable matchings. This does not mean we should completely

abandon the idea of stability as it entails normative implications. This is exactly why,

when looking for a weaker stability concept, we not only aimed to guarantee existence

but also sought characterizations in terms of normative criteria such as efficiency and the

no-justified-envy property. The approach we take here may be a good reference point for

the prevalent market design problems in which traditional concepts do not apply.

Related Literature. The present paper is closely related to Kamada and Kojima (2015,

2016). They define a concept that they call stability, which is stronger than weak sta-

bility but weaker than strong stability. In their setting, hard distributional constraints

are supplemented by governmental goals that induce soft preferences over doctor distri-

butions within each region. They show the existence of a stable matching with respect to

the given governmental goal. Our contributions over Kamada and Kojima (2015, 2016)

are the following. First, our stability concepts, both strong and weak, can be defined

only based on hard distributional constraints, without any reference to soft governmental

goals. Although stability using governmental goals can potentially achieve an outcome

deemed more desirable by the policy maker, the information about such soft goals may

not be available to the analyst and, in such a case, analyzing solution concepts indepen-

dent of such information may be more useful. Second, even weak stability turns out to

imply efficiency, and is strong enough to preclude unappealing matchings such as those

produced in the current Japanese residency matching and other applications, thus serving

as a tool to make a judgment in practical situations. Third, our results, both positive

and negative, are shown under a more general constraint structure than in Kamada and

Kojima (2015, 2016), accommodating a wide variety of applications. Lastly, and perhaps

most importantly, the focus of the current paper (investigating stability concepts) is dif-

ferent from those in Kamada and Kojima (2015, 2016) (studying a mechanism for a given

stability concept).

In another related work, Goto, Kojima, Kurata, Tamura, and Yokoo (2016) study

matching under constraints with an engineering-oriented approach. The restriction on

constraints they impose, which they call “heredity” (a term in discrete mathematics) is

equivalent to the restriction on feasibility in our work. However, all of their and our

results are independent of each other because our focus is not engineering-oriented but

on conceptual issues about stability notions. The main difference is that Goto, Kojima,
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Kurata, Tamura, and Yokoo (2016) study neither of our stability concepts, strong nor

weak stability. Hence, none of our negative results about strong stability or our positive

results about weak stability appears in their work. Instead, they present a new mechanism

and study its properties. Their main result is that their mechanism is strategy-proof for

doctors, and there is no analogous result in our paper. On the other hand, the outcome

of their mechanism fails to satisfy our fairness requirement, namely the no-justified-envy

property. Neither do they provide a characterization of their outcome in terms of standard

properties as in our work.

The present paper is a contribution to an active literature on matching problems with

various forms of constraints. Examples include Roth (1991) on gender balance in labor

markets, Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu (2005), Ergin and Sönmez

(2006), and Hafalir, Yenmez, and Yildirim (2013) on diversity in schools, Westkamp (2013)

on trait-specific college admission, Abraham, Irving, and Manlove (2007) on project-

specific quotas in projects-students matching, Biró, Fleiner, Irving, and Manlove (2010)

on college admission with varied tuitions and hierarchical constraints, and Budish, Che,

Kojima, and Milgrom (2013) on object allocation problems under hierarchical constraints.

We take a different approach from these papers. Specifically, instead of restricting the class

of markets that the theory can be applied to, such as hierarchical constraints, we define

a weaker stability concept for which we show existence and other desirable properties in

general environments. In addition, in Section 5.3 we explore the difference and connection

with the literature on affirmative action in school choice (Abdulkadiroğlu and Sönmez,

2003; Hafalir, Yenmez, and Yildirim, 2013).

The rest of this paper proceeds as follows. Section 2 introduces the model. Section 3

defines strong stability and finds senses in which strong stability is too strong a condition.

Section 4 introduces weak stability and provides several positive results. Section 5 provides

discussions, and Section 6 concludes. All proofs are relegated to the Appendix.

2. Model

Let there be a finite set of doctors D and a finite set of hospitals H. Each doctor d has

a strict preference relation �d over the set of hospitals and the option of being unmatched

(being unmatched is denoted by ∅). For any h, h′ ∈ H ∪{∅}, we write h �d h′ if and only

if h �d h′ or h = h′. Each hospital h has a strict preference relation �h over the set of

subsets of doctors. For any D′, D′′ ⊆ D, we write D′ �h D′′ if and only if D′ �h D′′ or

D′ = D′′. We denote by �= (�i)i∈D∪H the preference profile of all doctors and hospitals.
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Doctor d is said to be acceptable to h if d �h ∅.4 Similarly, h is acceptable to d if

h �d ∅. It will turn out that only rankings of acceptable partners matter for our analysis,

so we often write only acceptable partners to denote preferences. For example,

�d: h, h′

means that hospital h is the most preferred, h′ is the second most preferred, and h and

h′ are the only acceptable hospitals under preferences �d of doctor d.

Each hospital h ∈ H is endowed with a capacity qh, which is a nonnegative integer.

We say that preference relation �h is responsive with capacity qh (Roth, 1985) if

(1) For any D′ ⊆ D with |D′| ≤ qh, d ∈ D \D′ and d′ ∈ D′, (D′ ∪ d) \ d′ �h D′ if and

only if d �h d′,
(2) For any D′ ⊆ D with |D′| ≤ qh and d′ ∈ D′, D′ �h D′ \ d′ if and only if d′ �h ∅,

and

(3) ∅ �h D′ for any D′ ⊆ D with |D′| > qh.

In words, preference relation �h is responsive with a capacity if the ranking of a doctor

(or the option of keeping a position vacant) is independent of her colleagues, and any set

of doctors exceeding its capacity is unacceptable. We assume that preferences of each

hospital h are responsive with some capacity qh throughout the paper.

A matching µ is a mapping that satisfies (i) µd ∈ H ∪ {∅} for all d ∈ D, (ii) µh ⊆ D

for all h ∈ H, and (iii) for any d ∈ D and h ∈ H, µd = h if and only if d ∈ µh. That is, a

matching simply specifies which doctor is assigned to which hospital (if any).

A feasibility constraint is a map f : Z|H|+ → {0, 1} such that f(w) ≥ f(w′) whenever

w ≤ w′ and f(0) = 1, where the argument 0 of f is the zero vector and Z+ is the set of

nonnegative integers. The interpretation is that each coordinate in w corresponds to a

hospital, and the number in that coordinate represents the number of doctors matched

to that hospital. f(w) = 1 means that w is feasible and f(w) = 0 means it is not. If

w′ is feasible then any w with a weakly fewer doctors in each hospital must be feasible,

too. In this model, we say that matching µ is feasible if and only if f(w(µ)) = 1, where

w(µ) := (|µh|)h∈H is a vector of nonnegative integers indexed by hospitals whose coordi-

nate corresponding to h is |µh|. The feasibility constraint distinguishes the current envi-

ronment from the standard model. We allow for (though do not require) f((|qh|)h∈H) = 0,

that is, it may be infeasible for all the hospitals to fill their capacities.

This general form of feasibility constraints fits various types of feasibility constraints

in the real world. For example, it can describe a situation in which the set of hospitals

4We denote singleton set {x} by x when there is no confusion.
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is partitioned into different regions, and for each region there exists an upper bound of

the number of doctors that can be matched. It also allows for the case in which such

caps are applied to regions that do not form partitions. Furthermore, it is also possible

that a cap is imposed on the weighted sum of the numbers of doctors across the hospitals

in a given region. Section 5.1 formalizes those ideas using the language of the general

feasibility constraint f , and explains that the constraints in the real matching markets

that we mentioned in the Introduction can be represented.

Since the feasibility constraint is a primitive of the environment, we consider a con-

strained efficiency concept. A feasible matching µ is (constrained) efficient if there

is no feasible matching µ′ such that µ′i �i µi for all i ∈ D ∪ H and µ′i �i µi for some

i ∈ D ∪H.

To accommodate the feasibility constraint, we introduce new stability concepts that

generalize the standard notion. For that purpose, we first define two basic concepts. A

matching µ is individually rational if (i) for each d ∈ D, µd �d ∅, and (ii) for each

h ∈ H, d �h ∅ for all d ∈ µh, and |µh| ≤ qh. That is, no agent is matched with an

unacceptable partner and each hospital’s capacity is respected.

Given matching µ, a pair (d, h) of a doctor and a hospital is called a blocking pair if

h �d µd and either (i) |µh| < qh and d �h ∅, or (ii) d �h d′ for some d′ ∈ µh. In words,

a blocking pair is a pair of a doctor and a hospital who want to be matched with each

other (possibly rejecting their partners in the prescribed matching) rather than following

the proposed matching.

When the feasibility constraint does not bind (in the sense that f((|D|+ 1)h∈H) = 1),

a matching is said to be stable if it is individually rational and there is no blocking pair.

Gale and Shapley (1962) show that there exists a stable matching in that setting. In

the presence of a binding feasibility constraint, however, there may be no such matching

that is feasible. Thus in some cases every feasible and individually rational matching may

admit a blocking pair.

A mechanism ϕ is a function that maps preference profiles to matchings. The match-

ing under ϕ at preference profile � is denoted ϕ(�) and agent i’s match is denoted by

ϕi(�) for each i ∈ D ∪H.

A mechanism ϕ is said to be strategy-proof for doctors if there exist no preference

profile �, doctor d ∈ D, and preferences �′d of doctor d such that

ϕd(�′d,�−d) �d ϕd(�).5

5 We do not require strategy-proofness for both sides (i.e., the doctor side and the hospital side) but

only consider its weakening. This is because there is no mechanism that produces a stable matching for
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3. Strong Stability

The first notion presented below is meant to capture the idea that any blocking pair

that will not violate the feasibility constraint should be considered legitimate, so the

appropriate stability concept should require that no agents have incentives to form any

such blocking pair.

For each h ∈ H, let eh be an integer vector whose coordinate corresponding to h is one

and all other coordinates are zero (and let e∅ be the zero vector).

Definition 1. Fix a feasibility constraint f . A matching µ is strongly stable if it is

feasible, individually rational, and if (d, h) is a blocking pair then (i) f(w(µ)+eh−eµd) = 0

and (ii) d′ �h d for all doctors d′ ∈ µh.

As stated in the definition, only certain blocking pairs are tolerated under strong stabil-

ity. Condition (ii) of this definition requires that h likes each of its existing doctors better

than doctor d, so the only reason that h is interested in forming a blocking pair is that

it wants to fill one of its vacant positions with d. Doing so will change the distribution

of doctors across hospitals from w(µ) to w(µ) + eh − eµd . Then, condition (i) implies

that the new distribution of doctors violates feasibility. In other words, strong stability

requires that satisfying any blocking pair will inevitably lead to an infeasible matching.

In this sense, strong stability requires that any blocking pair is “caused” by the feasibility

constraint. Indeed, this concept reduces to the standard stability concept of Gale and

Shapley (1962) if the feasibility constraint does not bind.

As explained above, strong stability appears to be the most natural definition of stability

under a feasibility constraint. However, we present two senses in which this concept is too

strong a requirement for the market designer to achieve. The first is that a strongly stable

matching does not necessarily exist. The following example demonstrates this point.

all possible preference profiles and is strategy-proof for both sides even in a market without a feasibility

constraint, that is, f((|D|+1)h∈H) = 1 (Roth, 1982), which is a special case of our model. One good aspect

of having strategy-proofness for doctors is that the matching authority can actually state it as the property

of the algorithm to encourage doctors to reveal their true preferences. For example, the current webpage

of the Japan Residency Matching Program (last accessed on June 10, 2016, http://www.jrmp.jp/01-

ryui.htm) states, as advice for doctors, that “If you list as your first choice a program which is not

actually your first choice, the probability that you end up being matched with some hospital does not

increase [...] the probability that you are matched with your actual first choice decreases.” In the context

of student placement in Boston, strategy-proofness for the student side was regarded as a desirable

fairness property, in the sense that it provides equal access for children and parents with different degrees

of sophistication to strategize (Pathak and Sonmez, 2008).
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Example 1 (A strongly stable matching does not necessarily exist). There are two hos-

pitals, h1 and h2, and the feasibility constraint is such that f(1, 0) = f(0, 1) = 1 and

f(1, 1) = 0.6 Each hospital h has a capacity of qh = 1. Suppose that there are two

doctors, d1 and d2. We assume the following preferences:

�h1 : d1, d2, �h2 : d2, d1,

�d1 : h2, h1, �d2 : h1, h2.

First, in any strongly stable matching, there is exactly one doctor matched to some

hospital. This is because matching two doctors violates the feasibility constraint, while

(d1, h1) would constitute a blocking pair that is not tolerated in the definition of strong

stability if no doctor is matched to any hospital. By symmetry, it suffices to consider

the case in which d1 is matched (and hence d2 is unmatched). If d1 is matched with h1,

then (d1, h2) is a non-tolerated blocking pair because it violates condition (i) of Definition

1. On the other hand, if d1 is matched with h2, (d2, h2) is a non-tolerated blocking pair

because it violates condition (ii) of Definition 1. Therefore, a strongly stable matching

does not exist in this market. �

Even if a strongly stable matching does not always exist, can we try to achieve a weaker

desideratum? More specifically, does there exist a mechanism that selects a strongly stable

matching whenever there exists one? We show that such a mechanism does not exist if we

also require certain incentive compatibility: No mechanism is strategy-proof for doctors

and produces a strongly stable matching whenever one exists. This is the second difficulty

with strong stability. To see this point, consider the following example.

Example 2 (No mechanism that is strategy-proof for doctors selects a strongly stable

matching whenever there exists one). There are two hospitals, h1 and h2, and the feasi-

bility constraint is such that f(1, 0) = f(0, 1) = 1 and f(1, 1) = 0. Each hospital h has

a capacity of qh = 1. Suppose that there are two doctors, d1 and d2. We assume the

following preferences:

�h1 : d1, d2, �h2 : d2, d1,

�d1 : h2, �d2 : h1.

In this market, by inspection one can show that there are exactly two strongly stable

matchings,

µ =

(
h1 h2 ∅
d2 ∅ d1

)
and µ′ =

(
h1 h2 ∅
∅ d1 d2

)
.

6We note that this is a case of the “partitional regions” setting formalized in item 1 of Section 5.1.
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Now, suppose that a mechanism chooses µ under the above preference profile �. Then d1

is unmatched. Consider reported preferences �′d1 of d1,

�′d1 : h2, h1.

Then µ′ is a unique strongly stable matching, so the mechanism chooses µ′ at (�′d1 ,�−d1).
Doctor d1 is better off at µ′ than at µ since she is matched to h2 at µ′ while she is

unmatched at µ. Hence, d1 can profitably misreport her preferences when the preference

profile is �.

If a mechanism chooses µ′ under the above preference profile �, then by a symmetric

argument, doctor d2 can profitably misreport her preferences when the preference profile

is �. Therefore, there does not exist a mechanism that is strategy-proof for doctors and

selects a strongly stable matching whenever one exists. �

The above examples show that a strongly stable matching need not exist, and there

exists no mechanism that is strategy-proof for doctors and selects a strongly stable match-

ing whenever one exists. Given these negative findings, we next seek conditions under

which these problems do not occur. We begin by formalizing some concepts we use in the

analysis.

Definition 2. A set of hospitals H and a feasibility constraint f guarantee the exis-

tence of a strongly stable matching if, for every D and �, there exists a strongly

stable matching.

As the name suggests, this concept is a restriction on H and f such that a strongly

stable matching exists no matter what hospital and doctor preferences are.

Definition 3. A set of hospitals H and a feasibility constraint f satisfy independence

across hospitals if there exists q̄h ∈ Z+ ∪ {∞} for each h ∈ H such that {w|f(w) =

1} = {w|wh ≤ q̄h, ∀h ∈ H}.

Note that, under the condition in this definition, a profile of weights is feasible if and

only if, for each h, the weight wh for h is at most q̄h. Thus the constraint is placed

on each hospital independently, without any reference to the relation between weights

for different hospitals.7 Therefore, independence across hospitals is an extremely strong

restriction, requiring that the feasibility constraint reduces to each individual hospital’s

capacity constraint.

7In the context of regional caps, this corresponds to assuming that there be no region with multiple

hospitals and a positive and finite cap.
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Theorem 1. Consider a market with H and f . The following three claims are equivalent:

(1) H and f satisfy independence across hospitals.

(2) H and f guarantee the existence of a strongly stable matching.

(3) Under H and f , There exists a mechanism that is strategy-proof for doctors and

generates a strongly stable matching whenever one exists.

This theorem strengthens the negative implications of the earlier examples. It implies

that problems pointed out by the previous examples are valid whenever there is a non-

trivial feasibility constraint. Therefore, this theorem suggests that the concept of strong

stability is not appropriate as the desideratum in our context with a feasibility constraint.

4. Weak Stability

Given the negative result regarding strong stability, this section introduces a more

permissive concept and studies its properties.

Definition 4. Fix a feasibility constraint f . A matching µ is weakly stable if it is

feasible, individually rational, and if (d, h) is a blocking pair then (i) f(w(µ) + eh) = 0

and (ii) d′ �h d for all doctors d′ ∈ µh.

The difference of weak stability from strong stability is that in condition (i) of weak

stability, eµd is not subtracted in the argument of f . Thus, weak stability checks the

feasibility of a “pseudo-matching” in which a blocking doctor is hypothetically added

without being removed from the hospital that the doctor was originally matched to.8

Notice that, as for the case of strong stability, weak stability also reduces to stability of

Gale and Shapley (1962) when the feasibility constraint does not bind.

Since weak stability tolerates certain blocking pairs that do not violate the feasibility

constraint, we do not necessarily claim that weak stability is the most natural stability

concept. However, we show that weak stability satisfies two desirable properties, namely

existence and efficiency. Moreover, weak stability is strong enough to exclude certain

undesirable outcomes: for example, the real-market mechanisms mentioned in the In-

troduction (in Japan, China, Ukraine, UK, and Scotland) do not necessarily produce

a weakly stable matching.9 One of the major advantages of weak stability over strong

stability is that the existence of a weakly stable matching is guaranteed.10

8In the context of regional caps, this corresponds to the condition that a blocking pair such that the

doctor in the pair moves between two hospitals in the same region is tolerated.
9See Kamada and Kojima (2015) for the detail.
10Kamada and Kojima (2016) show existence of a matching that satisfies a stronger notion than weak

stability by constructing a mechanism that is strategy-proof for doctors in the context of hierarchical
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Theorem 2. A weakly stable matching exists, and any weakly stable matching is (con-

strained) efficient.

In our environment with general constraints, there is no easy way to adapt the de-

ferred acceptance algorithm or its modification (such as the flexible deferred acceptance

algorithm in Kamada and Kojima (2016)). Hence our proof for existence does not make

use of these mechanisms; instead, it is a generalization of Sotomayor’s (1996) proof of

the existence of a stable matching in one-to-one matching markets without distributional

constraints. We define what we call hospital-quasi-stable matching, a generalization of

Sotomayor’s simple matching, and use that to show existence.

Note that it follows from the efficiency result in Theorem 2 that any notion stronger

than weak stability implies efficiency. In particular, strong stability defined in Section 3

and stability defined in Kamada and Kojima (2015) imply efficiency.11

As in the above theorem, it is of interest to know what normatively desirable properties

are implied by weak stability. To investigate this question, we provide a characterization

of weak stability. For that goal, we begin by introducing a few axioms.

A matching µ satisfies the no-justified-envy property if there exists no pair of doctors

d, d′ ∈ D such that (i) µd′ �d µd and (ii) d �µd′ d
′ or µd′ = ∅. In the definition, (i) says

that d envies d′, and (ii) says that the envy is justified. A matching µ is non-wasteful if

there is no doctor-hospital pair (d, h) such that (i) h �d µd and d �h ∅, and (ii) |µh| < qh

and f(w(µ) + eh) = 1.

No-justified-envy and non-wastefulness conditions are standard normative requirements

in the literature, although the latter axiom is adapted to the case with a feasibility con-

straint. More specifically, the requirement f(w(µ)+eh) = 1 is included in the definition of

non-wastefulness because the feasibility constraint regulates what matchings are deemed

feasible under distributional constraints. With these concepts, we are now ready to offer

a characterization of weak stability.

Proposition 1. Matching µ is non-wasteful, individually rational, feasible, and satisfies

the no-justified-envy property if and only if it is weakly stable.12

regional caps. However, Theorem 2 establishes existence under more general constraints, where existence

is not guaranteed for the concept of Kamada and Kojima (2016).
11The fact that stability in Kamada and Kojima (2015) implies efficiency in the context of partitional

regional caps is stated in Theorem 3 of that paper. Hence the efficiency result in Theorem 2 of the present

paper is a generalization of that theorem.
12It is straightforward to see that these four axioms are independent. See Appendix B.1 for specific

examples.



STABILITY CONCEPTS UNDER DISTRIBUTIONAL CONSTRAINTS 13

In matching problems without a feasibility constraint, stability is characterized by

non-wastefulness, individual rationality, and the no-justified-envy property (Balinski and

Sönmez, 1999). Proposition 1 generalizes this characterization to the case with a feasibil-

ity constraint. To address additional complications posed by feasibility constraints, our

characterization adds feasibility as a new axiom and adapts non-wastefulness to environ-

ments with constraints. This proposition makes precise the way in which stability of Gale

and Shapley (1962) is generalized to the setting with a feasibility constraint.

5. Discussions

This section provides discussions on several topics. In Section 5.1, we list various

types of feasibility constraints and illustrate how they can be analyzed in our framework.

Section 5.2 provides a domain restriction result, identifying the necessary and sufficient

condition on hospital preference profiles for ensuring the existence of a strongly stable

matching. In Section 5.3, we study the relationship between our model and several models

of school choice with affirmative action constraints. Section 5.4 studies the existence of a

strongly stable matching in a context of large random markets.

5.1. Examples of Feasibility Constraints. This paper investigates the question of

what the “right” stability concept is, and the generality of feasibility constraint per se

is not our focus. However, it is desirable to understand the extent to which our results

apply. In this section, we present how we can express various distributional constraints

using the language of feasibility constraints in our model. In all of the examples in this

section, there is a set R ⊆ 2H \ {∅} which we call the set of regions. For each region

r ∈ R, there is a regional cap qr, which is a nonnegative integer.

(1) Partitional regions: The set of hospitals H is partitioned into hospitals in differ-

ent regions, that is, r ∩ r′ = ∅ if r 6= r′ for r, r′ ∈ R, and H = ∪r∈Rr. A matching

is feasible if |µr| ≤ qr for all r ∈ R, where µr = ∪h∈rµh. In words, feasibility

requires that the regional cap for every region is satisfied. This model is a special

case of our general model presented in Section 2. To see this, define function f by

f(w) =

1 if
∑

h∈r wh ≤ qr for every r ∈ R,

0 otherwise.
(5.1)

By the construction of f , it is obvious that f(w(µ)) = 1 if and only if µ is fea-

sible in the sense of the model with partitional regions. Moreover, it is obvious

that this function satisfies f(w) ≥ f(w′) whenever w ≤ w′ and f(0) = 1, which

are the requirements for f to be a feasibility constraint. Therefore, the model
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with partitional regions is a special case of our general model. Examples of con-

straints given by partitional regions include Japanese and UK medical matching

and Chinese graduate school admission (Kamada and Kojima, 2015).

(2) Hierarchical regions: Assume that the set of regions R forms a hierarchy (but

not necessarily a partition), that is, r, r′ ∈ R implies r ⊆ r′ or r′ ⊆ r or r ∩ r′ = ∅.
A matching µ is feasible if

∑
h∈r |µh| ≤ qr for every r ∈ R. This model generalizes

the one with partitional regions formalized in item 1 above, and is a special case of

the general model in Section 2. The feasibility constraint in this case corresponds

to function f as in (5.1), with the sole difference being that R can now be a more

general hierarchy than a partition. Examples of constraints given by hierarchical

regions include Hungarian college admission before 2007 (Biro, Fleiner, Irving, and

Manlove, 2010).

(3) General (non-hierarchical) regions: Consider a model that is identical to the

preceding case, except that we allow R to be an arbitrary subset of 2H \ {∅}, not

necessarily a hierarchy. Non-hierarchical regions pose a problem in many respects.

For example, Kamada and Kojima (2016) show that, if R is not a hierarchy,

there always exist regional caps and regional preferences such that a mechanism

that always produces a stable matching that they define and is strategy-proof

for doctors does not exist. Nevertheless, this model is again a special case of

the general model studied in Section 2, corresponding to the definition of f as in

(5.1). Examples of constraints given by non-hierarchical regions include Hungarian

college admission after 2007 (Biro, Fleiner, Irving, and Manlove, 2010). Kamada

and Kojima (2016) detail the distinction between hierarchical and non-hierarchical

regions giving various examples.

(4) Constraints on weighted sums of doctors: Let us depart from the preceding

models by allowing that doctors in different hospitals may contribute to a regional

cap differently. More specifically, let R be an arbitrary subset of 2H \{∅}. For each

h ∈ H and r ∈ R, shr is a nonnegative real number, or a “score.” A matching µ

is feasible if
∑

h∈r shr|µh| ≤ qr for every r ∈ R. The preceding models are special

cases of this model in which shr = 1 for every pair of h and r. Compared to

the models discussed so far in this section, this model adds additional flexibility,

by allowing that assignments in different hospitals count differently toward the

constraints.13 The feasibility constraint in this model can be expressed by function

13See the introduction for the motivation for allowing for such flexibility.
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f defined by

f(w) =

1 if
∑

h∈r shrwh ≤ qr for every r ∈ R,

0 otherwise.

This function satisfies f(w) ≥ f(w′) whenever w ≤ w′ and f(0) = 1, which are the

requirements for f to be a feasibility constraint. The feasibility constraint given

in Example 3 is an instance of this general form of a constraint. The example of

subsidized seats as mentioned in the Introduction fits this case.

5.2. Domain Restriction for Strong Stability. In this section, we consider a domain

restriction for the existence of a strongly stable matching. More specifically, we identify

the necessary and sufficient condition on hospital preference profiles for ensuring the

existence of a strongly stable matching.

For this purpose, we first focus on the case in which the feasibility constraint is given

through a set of regions that forms a hierarchy, as described in item 2 in Section 5.1

(a more general case is analyzed at the end of this section). Recall that the feasibility

constraint is specified by a set of regions R and a profile of nonnegative integers (qr)r∈R,

where the feasibility constraint is given by f(w) = 1 if and only if
∑

h∈r wh ≤ qr for every

r ∈ R.

Given R and hospital preference profile �H≡ (�h)h∈H , we say that �H is consistent

with master lists of R (Biro, Fleiner, Irving, and Manlove, 2010) if there exists a strict

order �r over D for each region r ∈ R such that, for each hospital h ∈ r, d �h d′ �h ∅
implies d �r d′, that is, �h coincides with the restriction of �r to the doctors who are

acceptable to h. In particular, under the presumption that all doctors are acceptable to

all hospitals, this condition is equivalent to the requirement that all hospital preferences

in a region be identical to one another, a condition stronger than imposing the acyclicity

condition of Ergin (2002) to hospitals in each region.

With this condition at hand, we are now ready to describe our domain restriction result.

Proposition 2. Consider sets of doctors D and hospitals H, a hospital preference profile

�H , and a set of regions R that forms a hierarchy. The following two claims are equivalent:

(1) For every (qr)r∈R and doctor preference profile, there exists a strongly stable match-

ing.

(2) The hospital preference profile �H is consistent with master lists of R.

This proposition can be interpreted as providing a further sense, in addition to The-

orem 1, in which strong stability is hard to achieve. In our intended applications such
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as medical match where hospitals have preferences over doctors, we expect that there is

at least some heterogeneity in preferences. Therefore, in such a context, strongly stable

matching is too restrictive to hope for.

On the other hand, there may be other contexts in which hospital preferences are con-

sistent with master lists. An example is Scottish Foundation Allocation Scheme (SFAS),

which matches doctors and hospitals in Scotland. In SFAS, the ranking of hospitals over

doctors are decided by NHS Education for Scotland, the governing body of SFAS, in order

of scores, and these rankings are common across all hospitals (Irving, 2011).14 Another ex-

ample is school choice with affirmative action constraints as formalized by Abdulkadiroğlu

and Sönmez (2003). In that setting, given a school choice problem with affirmative ac-

tion constraints, one can construct a hypothetical matching market with constraints in a

partitional regional structure described in item 1 in Section 5.1, where consistency with

master lists are guaranteed by the construction of the hypothetical market. We explore

this connection further in Section 5.3.

When the feasibility constraint is not given by a hierarchy of regions, the conclusion of

Proposition 2 does not necessarily hold. To see this point, consider the following example.

Example 3. Let there be three doctors, d1, d2, and d3, and three hospitals, h1, h2, and

h3. Let the feasibility constraint f be represented by a constraint on weighted sums of

doctors as in item 4 of Section 5.1. More specifically, let r = {h1, h2} be the only region

on which there exists a constraint and the feasibility constraint be given by

f(w) =

1 if 2wh1 + wh2 ≤ 2,

0 otherwise.

Let the capacities of hospitals h1, h2, and h3 be 1, 2, and 1, respectively, and preferences

of hospitals and doctors be given as follows:

�h1 : d2, d1, d3, �h2 : d2, d1, d3, �h3 : d3, d2,

�d1 : h1, �d2 : h3, h2, h1, �d3 : h1, h2, h3.

Note that �H is consistent with master lists in this market. Nevertheless, by inspection

one can check that there exists no strongly stable matching in this market.15 �

14We are grateful to a referee for suggesting the SFAS example and encouraging us to consider consis-

tency with master lists.
15Appendix B.4 provides the detail.
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This example shows that, with general feasibility constraints, even the existence of a

master list does not ensure existence of a strongly stable matching. This again fortifies

our claim that strong stability is not an appropriate desideratum.

5.3. Relation with Affirmative Action in School Choice. This section explores

the relationship between our model and two models of school choice with affirmative

action constraints, namely the model with type-specific quotas due to Abdulkadiroğlu

and Sönmez (2003) and the model with type-specific reserves due to Hafalir, Yenmez, and

Yildirim (2013).

First, we introduce a model of school choice with type-specific quotas due to Abdulka-

diroğlu and Sönmez (2003), which we will refer to as the AS model. There exist a set

of schools C and a set of students S. Each student has a strict preference relation over

S ∪ {∅}. Each school has a priority order over S and capacity qc. The set of students

is partitioned into two types of students, the set of majority students SM and the set of

minority students Sm (the assumption that there are only two types is made purely for

simplicity, and generalization to more than two types is straightforward). Let T = {M,m}
denote the set of types. For each c ∈ C and t ∈ T , there is a type-specific quota qtc,

which represents the maximum number of students of type t who can be matched to

school c.16

In this context, a matching ν is feasible if |νc| ≤ qc and |νc ∩St| ≤ qtc for all c ∈ C and

t ∈ T . A matching ν is AS-stable if it is feasible and

(1) νs �s ∅ for each s ∈ S, and

(2) if c �s νs, then either (i) |νc| = qc and s′ �c s for all s′ ∈ νc or (ii) |µc ∩ St| = qtc

and s′ �c s for all s′ ∈ νc ∩ St, where t is the type such that s ∈ St.

Abdulkadiroğlu and Sönmez (2003) show that an AS-stable matching always exists in

this problem and can be found by a version of the student-proposing deferred acceptance

algorithm.

We shall describe how to associate this model with the model of matching with con-

straints of the present paper, which we refer to as the KK model in this subsection. For

this purpose, given an AS model, consider the following hypothetical KK model. The set

of hospitals is defined as H ≡ C × T , that is, each hospital is identified with a school c

and a type t ∈ T . An interpretation is that a hospital h = (c, t) corresponds to school

c’s seats that can potentially be assigned to type t students. Set the capacity qh for

h = (c, t) as qh = qtc. The feasibility constraint is given by partitional regions as in item 1

16Hafalir, Yenmez, and Yildirim (2013) consider a case in which there is no type-specific quota for

type m. Such a case can be modeled in our framework by setting qmc = qc.
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of Section 5.1. More specifically, the set of regions are {{(c,M), (c,m)} : c ∈ C} and the

regional cap for region {(c,M), (c,m)} is qc.

Preferences of each hospital h = (c, t) are identical to the preference of school c in the

AS model. Meanwhile, the preferences of each student s in the KK model, which we

denote as �s with slight abuse of notation, are constructed as follows: Let t be the type

of student s. Then,

(1) In the KK model, ∅ �s (c, t′) for any c ∈ C if t′ 6= t.

(2) (c, t) �s ∅ in the KK model if and only if c �s ∅ in the AS model.

(3) (c, t) �s (c′, t) in the KK model if and only if c �s c′ in the AS model.

That is, the preferences of each student in the KK model agree with the preference in the

AS model, but only finds school seats of her own type acceptable.17

Given a matching in the AS model, we associate with it a matching in the KK model

in a natural manner: A student s is matched with a hospital (c, t) in the KK model if and

only if s is of type t and matched with c in the AS model.

Proposition 3. Suppose that a matching is stable in the AS model. Then, the matching

associated to it is strongly stable in the KK model.

The following example shows that the converse of Proposition 3 does not hold.

Example 4. In the AS model, let there be one school c as well as two students s1 and

s2. Assume that s1 is a majority type while s2 is a minority type, qc = qMc = qmc = 1, and

preferences are given as follows:

�c: s1, s2,

�s1 : c, �s2 : c.

Clearly, the matching

ν =

(
c ∅
s1 s2

)
,

is the unique AS-stable matching in the AS model. By contrast, in the KK model, both

µ =

(
(c,M) (c,m) ∅
s1 ∅ s2

)
and µ′ =

(
(c,M) (c,m) ∅
∅ s2 s1

)
,

17We could assume that each hospital (c, t) finds only students of type t acceptable. This assumption

may be intuitive given our interpretation that a hospital (c, t) represents the seats that can be assigned

to students of type t. An analogous analysis can be done even if we restrict hospitals’ preferences in such

a manner, but we opted to do otherwise as we find it simpler notationwise. Since our ultimate objective

is only to make a formal connection between the AS and KK models, the specific manner in which we do

so is not essential, and indeed both methods achieve the same goal.
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are strongly stable matchings. Matching µ is the matching associated with ν, while µ′

does not have any AS-stable matching in the AS model that is associated with it. �

Next, we introduce a model of school choice with type-specific reserves due to Hafalir,

Yenmez, and Yildirim (2013), which we will refer to as the HYY model. The HYY

model is identical to the AS model except that, instead of type-specific quotas, for each

c ∈ C and t ∈ T , there is a type-specific reserve ptc, which represents the number of

students of type t who should be matched to c as long as there are type-t students who

demand a seat at c. We assume
∑

t∈T p
t
c ≤ qc.

In this context, a matching ν is feasible if |νc| ≤ qc for all c ∈ C. A matching ν is

HYY-stable if it is feasible and

(1) νs �s ∅ for each s ∈ S, and

(2) if c �s νs where s ∈ St, then either (i) |νc| = qc, |νc ∩ St| ≥ ptc, and s′ �c s for all

s′ ∈ νc or (ii) |νc| = qc, |νc ∩ St| ≥ ptc, |νc ∩ St
′| ≤ pt

′
c for t′ 6= t, and s′ �c s for all

s′ ∈ νc ∩ St.18

Hafalir, Yenmez, and Yildirim (2013) show that an HYY-stable matching always exists

in this problem, and it can be found by a version of the student-proposing deferred

acceptance algorithm.

Hafalir, Yenmez, and Yildirim (2013) compare their model with the AS model by

associating the HYY model with type-specific reserves ptc with an AS model with type-

specific quotas qtc = qc−pt
′
c where t′ 6= t. Motivated by this approach, given a HYY model,

we consider an association that is identical to the association we defined in the case of the

AS model, except that the capacity of a hospital h = (c, t) is set as qh = qc − pt
′
c where

t′ 6= t.

With the above association, the following example shows that even if a matching in the

HYY model is HYY-stable, the matching in the KK model that is associated with that

matching is not necessarily strongly stable (or even weakly stable).

Example 5. Let there be one school c as well as two students s1 and s2. Assume that s1

is a majority type while s2 is a minority type, qc = pmc = 1, pMc = 0, and:

�c: s1, s2,

�s1 : c,

18The definition stated in Hafalir, Yenmez, and Yildirim (2013) contains a minor error, and the one

provided here is their intended definition (Hafalir, Yenmez, and Yildirim, 2016). Our definition is also

consistent with the definition given in the working paper version (Hafalir, Yenmez, and Yildirim, 2011).
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and s2 prefers ∅ the most. Clearly, the matching

ν =

(
c ∅
s1 s2

)
,

is the unique HYY stable matching in the HYY model. By contrast, in the KK model,

the matching associated to ν, i.e.,

µ =

(
(c,M) (c,m) ∅
s1 ∅ s2

)
,

is not feasible because q(c,M) = qc − pmc = 0. Therefore, matching ν is not strongly stable

(or even weakly stable). �

A slight modification of Example 4, with the only change being that we set pMc = pmc =

0, shows that the implication from strong stability to HYY-stability also fails.

Remark 1. There may be more than one plausible manner in which one may associate

a matching in the KK model given an HYY model. In particular, one problem with

the above association is that even though the reserves in the HYY model do not affect

feasibility and they are only used for HYY-stability, the KK model has them affect the

feasibility constraint. One possibility to avoid such a feature is to set qh = qc for h = (c, t).

With this approach, however, no information about the reserves is reflected anywhere in

the KK model. Therefore, clearly there is no relationship between HYY-stability and

strong stability.

The school choice model with soft bounds due to Ehlers, Hafalir, Yenmez, and Yildirim

(2014) is more general than the HYY model, so the above examples also show that there

is no logical relationship between their stability concept and strong stability in the KK

model.

5.4. Strong Stability in Large Markets. One question of interest is whether a strongly

stable matching exists in a typical instance of a matching market with constraints. To

study this issue, we consider an environment in which preferences of doctors and hospi-

tals are drawn from certain distributions and investigate the probability that a strongly

stable matching exists. In particular, we study the asymptotic behavior of the existence

probability as the numbers of doctors and hospitals grow.

Our exercise is partly motivated by the recent literature on large matching markets. In

that literature, it has been recognized that various impossibilities in classical matching

markets can be circumvented approximately in large markets. For example, although a

stable matching does not necessarily exist when some doctors are couples (Roth, 1984),
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Roth and Peranson (1999) find a stable matching for all years of data from NRMP they

analyzed. Motivated by this finding, Kojima, Pathak, and Roth (2013) and then Ashlagi,

Braverman, and Hassidim (2014) find conditions under which the probability that a stable

matching exists in the presence of couples goes to one as the number of market participants

approaches infinity. Che, Kim, and Kojima (2013) and Azevedo and Hatfield (2012) find

asymptotic existence in the face of other kinds of preference complementarity.19

Given these possibility results in large markets, one may conjecture that the probability

that a strongly stable matching exists converges to one as the market size goes to infinity.

However, the following analysis shows that this statement does not necessarily hold, at

least unless some further restrictions are imposed.

Let there be n ≥ 1 doctors and m ≥ 1 hospitals. The feasibility constraint f can

be represented by the “partitional regions” model as in item 1 of Section 5.1: There is

exactly one region that contains all the hospitals. The regional cap of this region is one.

Each hospital has a positive (and arbitrary) capacity.

For each doctor, her preferences are drawn from the uniform distribution over all pref-

erences in which all hospitals are acceptable. Similarly, for each hospital, its preferences

are drawn from the uniform distribution over all preferences in which all doctors are ac-

ceptable. Preference draws are i.i.d. across doctors and hospitals.20 Call this model with

stochastic preferences the (n,m)-market model.

In this setting, we consider the limit as n varies from 1 to ∞ and m depends on n

such that m → ∞ as n → ∞ (one example is the “balanced” markets, i.e., m = n,

but unbalanced markets, i.e., m 6= n, are allowed; see Remark 3 for further discussion).

Specifically, we derive the limit of the probability that a strongly stable matching exists,

as follows:

Proposition 4. The probability that there exists a strongly stable matching in the (n,m)-

market model converges to 1− 1
e
' 0.632 as n and m go to infinity, where e denotes the

base of the natural logarithm.

19See also Nguyen and Vohra (2016) who find the existence of a stable matching with couples in a

neighborhood of a given matching problem. Although their result does not necessarily focus on large

markets, their result can be interpreted as an approximate existence result in large markets.
20Studies such as Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima, Pathak, and

Roth (2013), Hatfield, Kojima, and Narita (2016), and Arnosti (2016) assume that preferences exhibit

“limited acceptability” (Lee, 2011), that is, there is a constant k such that each doctor finds only k

hospitals acceptable even in large markets. In contrast, our (n,m)-market model assumes “unlimited

acceptability,” which follows other studies such as Knuth, Motwani, and Pittel (1990), Lee (2011), Ashlagi,

Braverman, and Hassidim (2014), and Ashlagi, Kanoria, and Leshno (2016).
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Let us comment on a contrast between this result and asymptotic existence results in

matching with couples due to Kojima, Pathak, and Roth (2013) and Ashlagi, Braverman,

and Hassidim (2014). In those papers, asymptotic existence is established by showing

that the rejection chains (as in Kojima and Pathak (2009)) are likely to be short in

large markets. By contrast, the nonexistence of a strongly stable matching appears to be

unrelated to arguments based on rejection chains. In fact, Proposition 4 shows that the

non-existence probability does not converge to zero.

Proposition 4 demonstrates that enlarging the market size does not necessarily solve

the existence problem. More specifically, the probability of the existence of a strongly

stable matching does not necessarily converge to one even in a large market limit. This

is in a sharp contrast to asymptotic existence results such as Kojima, Pathak, and Roth

(2013) and then Ashlagi, Braverman, and Hassidim (2014).

On the other hand, Proposition 4 also shows that the probability of the existence of a

strongly stable matching does not necessarily diminish to zero either. In that sense, this

result also establishes that the market size does not necessarily intensify the non-existence

problem of strong stability.

Remark 2. When studying an asymptotic behavior of a market, one important modeling

question is how to model large markets. For example, one could keep the number of

hospitals fixed while increasing the size of each hospital, in a manner analogous to earlier

papers such as Abdulkadiroğlu, Che, and Yasuda (2015), Che and Kojima (2010), and

Azevedo and Leshno (2015). Our modeling approach is to increase the number of hospitals

(as well as doctors). This approach is close to earlier studies in the literature such as Roth

and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima,

Pathak, and Roth (2013), Ashlagi, Braverman, and Hassidim (2014), Lee (2011), Hatfield,

Kojima, and Narita (2016), and Ashlagi, Kanoria, and Leshno (2016).

Another modeling issue is the treatment of regions. For instance, it is possible to

increase the number of regions as the market grows while keeping the number of hospitals

in each region fixed. It is even possible to have both the number of regions and the

number of hospitals in each region increase. In contrast to these possibilities, our setting

keeps the number of regions fixed while increasing the size of a region by increasing the

number of hospitals in a region.

Of course, what kind of modeling approach is appropriate cannot be decided purely

from a theoretical viewpoint, and instead it depends on the intended application. As

we are not restricting ourselves to one particular application in this study and instead
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focusing on conceptual questions about stability under constraints, such an inquiry is

beyond the scope of the present paper.

Remark 3. In the (n,m)-market model of this section, we impose no restriction between

the number of doctors n and the number of hospitals m except that the latter goes to

infinity as the former goes to infinity. One simple example satisfying this condition is the

“balanced” case, i.e., the case where m = n, a standard assumption employed by Knuth,

Motwani, and Pittel (1990), Roth and Peranson (1999), and Lee (2011), among others.

The “unbalanced” case, i.e., m = n, may be of interest, however. In a recent study,

Ashlagi, Kanoria, and Leshno (2016) study unbalanced two-sided matching markets and

show that the behavior of stable matching mechanisms is very different between balanced

and unbalanced cases. Our setting allows both balanced and unbalanced cases, suggesting

that the existence problem of strongly stable matchings identified in this section does not

necessarily depend on whether the market is balanced or not.

6. Conclusion

Matching under constraints is a largely unexplored area of research. In this paper, we

addressed foundational issues: What should it mean for a matching to be “stable” in an

environment under constraints? Do stable matchings exist or, more precisely, under what

conditions do stable matchings exist? Does stability imply efficiency? What normative

properties characterize stability?

To answer these questions, we defined two stability concepts, strong and weak stability,

both of which reduce to the standard stability concept of Gale and Shapley (1962) in the

environments with no binding feasibility constraints. Strong stability is conceptually ap-

pealing, but we demonstrated that its existence is not guaranteed unless extremely strong

restrictions are imposed on the nature of the constraints. In a sharp contrast, we estab-

lished that a weakly stable matching always exists, implies efficiency, and is characterized

by standard axioms. Discussions were provided to examine various applications and to

evaluate the severity of the nonexistence problem.

Before closing, let us mention that our stability concepts can be characterized in terms

of a stability notion used in an earlier study. Consider a “partitional regions” model as in

item 1 of Section 5.1, where each region has “regional preferences” (Kamada and Kojima,

2016) over the distribution of doctors within the region, which represent certain policy

goals by the social planner. Given regional preferences, a stability concept is defined

based on those regional preferences. Appendix B.2 of the present paper establishes that a

matching is strongly stable if and only if it is stable for every possible regional preference
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profile, while a matching is weakly stable if and only if there exists a regional preference

profile for which it is stable. In this sense, in the “partitional regions” setting, strong and

weak stability concepts can be regarded as two canonical strengthening and weakening of

stability by Kamada and Kojima (2016), respectively.

One of the contributions of this paper is to analyze stability concepts when the con-

straint is not given by bounds on the numbers of matched agents. Analysis of such an

environment is practically relevant as we have discussed, but at the same time it is diffi-

cult.21 We give an algorithm to find a weakly stable matching in Appendix B.3, but that

algorithm violates strategy-proofness. We have not studied this issue further because our

focus is on stability concepts per se rather than mechanisms, but a further analysis on

incentives is an important direction for future research.22

There still remain many other open questions. One interesting but challenging task

would be to develop a general theory when there are floor constraints. With floor con-

straints, even the existence of an individually rational matching is not guaranteed. Mean-

while, when individual rationality is not a requirement (as is the case in the allocation of

soldiers in the military (Sönmez, 2013; Sönmez and Switzer, 2013), for instance), Ehlers,

Hafalir, Yenmez, and Yildirim (2014) and Fragiadakis and Troyan (2016) have obtained

positive results in the presence of floor constraints. Meanwhile, existing research does

not seem to have reached a consensus about the “right” stability concept with floor con-

straints. This question is beyond the scope of the present paper, and it would be an

interesting direction for future research. Another direction would be to consider a restric-

tion that takes into account who is matched, not just how many are matched. Eventually,

even a general theory of stable matching under a broad class of potentially complicated

constraints might be possible. The analysis of this paper is a step toward these ambitious

goals.

21Existing works on matching under constraints such as Kamada and Kojima (2015, 2016) and Goto,

Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) utilize the existing theory of matching with contracts

(Hatfield and Milgrom, 2005) to construct a stable mechanism that is strategy-proof for doctors, but

such an approach does not appear promising here. This is because an environment studied in Section ??

may result in violations of key properties in matching with contracts, such as substitutability and the law

of aggregate demand (e.g., a decrease of one seat at a hospital can result in two additional seats available

at another hospital).
22However, some structural properties of weak stability seem to suggest strategy-proofness may be

hard to obtain. Namely, we can show that there is no doctor optimal weakly stable matching, and two

weakly stable matchings can have different numbers of matched doctors (so in particular the rural hospital

theorem fails). The same environments as in Examples 4 and 5 of Kamada and Kojima (2015) can be

used to show these results.
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We regard this study as a building block for further studies of matching under con-

straints. We argued that each of our stability concepts has normative appeal and investi-

gated their properties. We established that our stability concepts have various normatively

appealing properties. What kind of normative criterion is the most relevant in practice,

however, is difficult to predict by introspection alone. For problems without distributional

constraints, the standard stability notion has stood the test of time through not only the-

oretical scrutiny, but also laboratory experiments (Kagel and Roth, 2000) and case studies

(Roth, 1984; Roth and Peranson, 1999). We hope that more studies in theoretical as well

as empirical and experimental market design will analyze matching under distributional

constraints. We envision that such studies will further our understanding of suitable sta-

bility concepts and, more generally, normative concepts and practically important issues

in matching under constraints, informing researchers and practitioners alike.
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Abdulkadiroğlu, A., Y.-K. Che, and Y. Yasuda (2015): “Expanding “Choice” in

School Choice,” American Economic Journal: Microeconomics, 7(1), 1–42.

Abdulkadiroğlu, A., and T. Sönmez (2003): “School Choice: A Mechanism Design

Approach,” American Economic Review, 93, 729–747.

Abraham, D. J., R. Irving, and D. Manlove (2007): “Two algorithms for the

student-project allocation problem,” Journal of Discrete Algorithms, 5, 73–90.

Arnosti, N. (2016): “Centralized Clearinghouse Design: A Quantity-Quality Tradeoff,”

mimeo.

Ashlagi, I., M. Braverman, and A. Hassidim (2014): “Stability in large matching

markets with complementarities,” Operations Research, 62(4), 713–732.

Ashlagi, I., Y. Kanoria, and J. D. Leshno (2016): “Unbalanced random matching

markets: The stark effect of competition,” Journal of Political Economy, forthcoming.

Azevedo, E. M., and J. W. Hatfield (2012): “Complementarity and multidimen-

sional heterogeneity in matching markets,” Unpublished mimeo.

Azevedo, E. M., and J. D. Leshno (2015): “A supply and demand framework for

two-sided matching markets,” Journal of Political Economy, forthcoming.

Balinski, M., and T. Sönmez (1999): “A tale of two mechanisms: student placement,”

Journal of Economic theory, 84(1), 73–94.



26 YUICHIRO KAMADA AND FUHITO KOJIMA

Biro, P., T. Fleiner, R. Irving, and D. Manlove (2010): “The College Admissions

Problem with Lower and Common Quotas,” Theoretical Computer Science, 411(34-36),

3136–3153.
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Appendix A. Proofs

A.1. Proof of Theorem 1.

We begin by offering an equivalent formulation of independence across hospitals.

Claim 1. H and f satisfy independence across hospitals if and only if, for every pair of

distinct hospitals h1 and h2, and every w, f(w+ eh1) = f(w+ eh2) = 1 imply f(w+ eh1 +

eh2) = 1.

Proof. The “only if” direction is obvious, so let us show the “if” direction in the following.

Define q̄h := sup{t ∈ Z+|f(teh) = 1}. By the definition of q̄h and the assumption that

f is a feasibility constraint, it is clear that f(w) = 0 unless wh ≤ q̄h for all h ∈ H.23

Therefore, {w ∈ Z|H|+ |f(w) = 1} ⊆ {w ∈ Z|H|+ |wh ≤ q̄h, ∀h ∈ H}.
Thus it remains to show {w ∈ Z|H|+ |f(w) = 1} ⊇ {w ∈ Z|H|+ |wh ≤ q̄h, ∀h ∈ H}. That

is, we show that every (q′h)h∈H =: q′ ∈ Z|H|+ such that q′ ≤ (q̄h)h∈H satisfies f(q′) = 1.

To show this, assume for contradiction that there exists q′ ∈ Z|H|+ with q′ ≤ q̄ such that

f(q′) = 0. Since f(0) = 1, there exists w ≤ q′ such that f(w) = 0 and f(w − eh) = 1

for each hospital h with wh > 0. This is because if there does not exist such w then for

any w ≤ q′ such that f(w) = 0, we can find h such that f(w − eh) = 0. But this means

that f(0) = 0, a contradiction. Now suppose that the only w’s with the aforementioned

property are the ones that can be expressed by w = teh for some hospital h and integer

t ∈ {0, 1, . . . , q′h}. But this is a contradiction because f(w) = 0 by assumption, while

f(w) = 1 must hold because (i) f(q′heh) = 1 by the definitions of q′h and q̄h and the

assumption that f is a feasibility constraint, (ii) w ≤ q′heh, and (iii) again f is a feasibility

constraint. If there is a w with the aforementioned property such that there are at least

two hospitals h and h′ with wh, wh′ > 0, then we have f(w) = 0, f(w − eh) = 1 and

f(w − eh′) = 1, a contradiction. �

Proof of “(2) → (1)”: We prove this claim by contraposition. Fix a market with

H = {h1, h2, h3, . . . , h|H|} and f such that there exist h1, h2 and w such that f(w+eh1) =

f(w + eh2) = 1, f(w + eh1 + eh2) = 0. Consider a market in which D = {d1, d2} ∪

23To see this, assume wh > q̄h for some h. Then by the definition of q̄h, f(wheh) = 0. Because

wheh ≤ w, this and the assumption that f is a feasibility constraint imply that f(w) = 0.
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(
⋃
h∈H{dh1 , dh2 , . . . , dhwh

}) such that dhj 6= dh
′

k if j 6= k or h 6= h′, with the following prefer-

ences:

�dhi : h, for h ∈ H, i = 1, . . . , wh

�d1 : h3, h4, . . . , h|H|, h2, h1

�d2 : h3, h4, . . . , h|H|, h1, h2

�h1 : dh11 , d
h1
2 , . . . , d

h1
wh1

, d1, d2; qh1 = wh1 + 1,

�h2 : dh21 , d
h2
2 , . . . , d

h2
wh2

, d2, d1; qh2 = wh2 + 1,

�h : dh1 , d
h
2 , . . . , d

h
wh
, d1, d2; qh = wh, for any h 6= h1, h2.

In this market, we first show that in any strongly stable matching µ, dhi ∈ µh for all

h ∈ H, i = 1, . . . , wh. To show this, consider the following cases.

• Suppose that a doctor d ∈ {d1, d2} is matched to some hospital h 6∈ {h1, h2}.
Then, since qh = wh, there exists a doctor dhi who is unmatched in µ. Then (dhi , h)

is a blocking pair such that dhi �h d, violating strong stability.

• Suppose that no doctor d ∈ {d1, d2} is matched to any hospital h 6∈ {h1, h2}.
Consider the following cases.

– Suppose that dhi 6∈ µh for some dhi and h 6∈ {h1, h2}. Then |µh| < qh and

h �d µd for each d ∈ {d1, d2} because µd ∈ {h1, h2, ∅} by assumption of

the present case. Furthermore, satisfying block (d, h) results in a feasible

matching by the assumption f(w+ eh1) = f(w+ eh2) = 1. Therefore µ is not

strongly stable.

– Suppose dhi ∈ µh for all h 6∈ {h1, h2}, i = 1, . . . , wh. If dhi 6∈ µh for some dhi

and h ∈ {h1, h2}, then either {d1, d2} ⊆ µh or |µh| < qh. In the former case,

(dhi , h) is a blocking pair such that dhi �h d1, violating strong stability. In the

latter case, (dhi , h) is a blocking pair, and satisfying block (dhi , h) results in a

feasible matching by the assumption f(w+ eh1) = f(w+ eh2) = 1. Therefore

µ is not strongly stable.

Therefore we have established that in any strongly stable matching µ, dhi ∈ µh for all

h ∈ H, i = 1, . . . , wh.

Under this restriction, we consider the following exhaustive cases:

• If µd1 = µd2 = ∅, then µ is not strongly stable because (d1, h1) is a blocking pair

and the matching satisfying this blocking pair is feasible because f(w + eh1) = 1,

so µ is not strongly stable.
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• If µd1 = h1 and µd2 = ∅, then (d1, h2) is a blocking pair and the matching satisfying

this blocking pair is feasible, so µ is not strongly stable. The case in which µd2 = h2

is symmetric.

• If µd1 = h2 and µd2 = ∅, then (d2, h2) is a blocking pair such that d2 �h2 d1, so µ

is not strongly stable. The case in which µd2 = h1 is symmetric.

• If µd1 6= ∅ 6= µd2 , then µ violates either feasibility or individual rationality (the

capacity of at least one hospital is violated), so it is not strongly stable.

Proof of “(1) → (2)”: Suppose that there exist no h1, h2, and w such that f(w+eh1) =

f(w+ eh2) = 1, f(w+ eh1 + eh2) = 0. Order hospitals arbitrarily as H = {h1, h2, . . . , hH}.
Now, for each h ∈ H, define q̄h by q̄h := sup{t ∈ Z+|f(teh) = 1}.

Consider a stable matching (in the standard matching problem without a feasibility

constraint) where the capacity for each hospital h is min{qh, q̄h} < ∞. Such a stable

matching exists because h’s preferences are responsive with capacity min{qh, q̄h}, too. By

Claim 1, the definition of strong stability in the new market is identical to the definition

of stability (in the standard market without a feasibility constraint) with the capacity for

each hospital h being min{qh, q̄h}. Thus, there exists a strongly stable matching in the

new market. Hence there exits a strongly stable matching in the original market.

Proof of “(1) → (3)” The proof is straightforward because if (1) holds, then the doctor-

proposing deferred acceptance algorithm is well-defined, it is strategy-proof for doctors,

and it finds a strongly stable matching for any D and �.

Proof of “(3) → (1)” To prove this claim by contraposition, assume that H and f

violate independence across hospitals. Let H = {h1, h2, h3, . . . , h|H|} and fix h1, h2 and w

such that f(w + eh1) = f(w + eh2) = 1, f(w + eh1 + eh2) = 0 (note that such h1, h2, and

w exist by Claim 1). Consider a market in which D = {d1, d2} ∪ (
⋃
h∈H{dh1 , dh2 , . . . , dhwh

})
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with the following preferences:

dhi : h, for h ∈ H, i = 1, . . . , wh

d1 : h3, h4, . . . , h|H|, h2,

d2 : h3, h4, . . . , h|H|, h1,

h1 : dh11 , d
h1
2 , . . . , d

h1
wh1

, d1, d2; qh1 = wh1 + 1,

h2 : dh21 , d
h2
2 , . . . , d

h2
wh2

, d2, d1; qh2 = wh2 + 1,

h : dh1 , d
h
2 , . . . , d

h
wh
, d1, d2; qh = wh, for any h 6= h1, h2.

In this market, we first show that in any strongly stable matching µ, dhi ∈ µh for all

h ∈ H, i = 1, . . . , wh. To show this, consider the following cases.

• Suppose that a doctor d ∈ {d1, d2} is matched to some hospital h 6∈ {h1, h2}.
Then, since qh = wh, there exists a doctor dhi who is unmatched in µ. Then (dhi , h)

is a blocking pair such that dhi �h d, violating strong stability.

• Suppose that no doctor d ∈ {d1, d2} is matched to any hospital h 6∈ {h1, h2}.
Consider the following cases.

– Suppose that dhi 6∈ µh for some dhi and h 6∈ {h1, h2}. Then |µh| < qh and

h �d µd for each d ∈ {d1, d2} because µd ∈ {h1, h2, ∅} by assumption of

the present case. Furthermore, satisfying block (d, h) results in a feasible

matching by the assumption f(w+ eh1) = f(w+ eh2) = 1. Therefore µ is not

strongly stable.

– Suppose dhi ∈ µh for all h 6∈ {h1, h2}, i = 1, . . . , wh. If dhi 6∈ µh for some dhi and

h ∈ {h1, h2}, then |µh| < qh. Then (dhi , h) is a blocking pair, and satisfying

block (dhi , h) results in a feasible matching by the assumption f(w + eh1) =

f(w + eh2) = 1. Therefore µ is not strongly stable.

Therefore we have established that in any strongly stable matching µ, dhi ∈ µh for all

h ∈ H, i = 1, . . . , wh.

Under this restriction, we consider the following exhaustive cases:

• If µd1 = µd2 = ∅, then µ is not strongly stable because (d2, h1) is a blocking pair

and the matching satisfying this blocking pair is feasible because f(w + eh1) = 1,

so µ is not strongly stable.

• If µd1 6= ∅ 6= µd2 , then µ violates either feasibility or individual rationality (the

capacity of at least one hospital is violated), so it is not strongly stable.
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• Thus there are only two strongly stable matchings µ and µ′, where

µd =


∅ d = d1

h1 d = d2

h d = dhi

, µ′d =


h2 d = d1

∅ d = d2

h d = dhi

.

Now, suppose that a mechanism chooses µ under the above preference profile �. Then d1

is unmatched. Consider reported preferences �′d1 of d1,

�′d1 : h3, h4, . . . , h|H|, h2, h1.

Then it can be verified, by an argument analogous to the above, that µ′ is a unique

strongly stable matching, so the mechanism chooses µ′ at (�′d1 ,�−d1). Doctor d1 is better

off at µ′ than at µ since she is matched to h2 at µ′ while she is unmatched at µ. Hence,

d1 can profitably misreport her preferences when her true preferences are �d1 .
If a mechanism chooses µ′ under the above preference profile �, then by a symmetric

argument, doctor d2 can profitably misreport her preferences when her true preferences

are �d2 . Therefore there does not exist a mechanism that is strategy-proof for doctors

and selects a strongly stable matching whenever one exists.

A.2. Proof of Theorem 2.

Proof of Existence:

The proof is a generalization of a proof due to Sotomayor (1996) who focuses on the

standard one-to-one matching problem without a feasibility constraint.

Define a matching µ to be hospital-quasi-stable24 if it is feasible and individually ra-

tional, and every blocking pair (d, h) of this matching is such that d′ �h d for all doctors

d′ ∈ µh. The set of hospital-quasi-stable matchings is nonempty because a matching with

µi = ∅ for all i ∈ D ∪H is hospital-quasi-stable.

Now, take a doctor-efficient matching µ in the set of hospital-quasi-stable matchings,

i.e., a matching µ that is hospital-quasi-stable such that there is no other hospital-quasi-

stable matching µ̃ with µ̃ �d µ for all d.25 We will show that µ is weakly stable. Suppose

that it is not. Then, by feasibility and individual rationality of µ, we only need to show

that if (d, h) is a blocking pair then (i) f(w(µ) + eh) = 0 and (ii) d′ �h d for all doctors

d′ ∈ µh. By the definition of hospital-quasi-stable matching, if (d, h) is a blocking pair

then condition (ii) is satisfied. We will show that condition (i) is satisfied as well.

24The concept of hospital-quasi-stability is a generalization of the concept that was originally defined

for the one-to-one matching without a feasibility constraint. The term “hospital-quasi-stable matching”

is due to Blum, Roth, and Rothblum (1997). Sotomayor (1996) uses the term “simple matching.”
25Such a matching exists because the set of hospital-quasi-stable matchings is finite.
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If there is no blocking pair, then this condition is vacuously satisfied, so µ is weakly

stable. So suppose that the set of blocking pairs is nonempty. For each h, consider the

set of doctors Bh such that d′ ∈ Bh if and only if (d′, h) is a blocking pair. There exists

h such that we can take d ∈ Bh with d �h d′ for all d′ ∈ Bh \ {d} (note that such h and

d exist by the assumption that the set of blocking pairs is nonempty). Now consider a

matching µ′ such that µ′d = h and µ′d′ = µd′ for all d′ ∈ D \ {d}. We first show that (1)

µ′ is hospital-quasi-stable if condition (i) in the definition of weak stability is violated,

and then show that (2) µ′ is a Pareto improvement over µ for doctors, contradicting our

starting assumption that µ is doctor-efficient.

(1) Since (d, h) is a blocking pair, µ′ is individually rational.26 If condition (i) is

violated, then f(w(µ)+eh) = 1 and hence f(w(µ′)) = 1 because w(µ′) ≤ w(µ)+eh

by the definition of µ′, and thus µ′ is feasible. Suppose that under µ′, there exists

a blocking pair (d∗, h∗) such that d∗ �h∗ d′ for some doctor d′ ∈ µ′h∗ . Given the

definition of µ′, it must be either (a) d∗ = d, (b) h∗ = h, or (c) h∗ = µd.

(a) In this case, it holds that d �h∗ d′ for some doctor d′ ∈ µ′h∗ . But this means

that under µ, (d, h∗) can form a blocking pair such that d �h∗ d′ for some

doctor d′ ∈ µh∗ because µh̃ = µ′
h̃

for all h̃ ∈ H \ {h, µd} and h∗ 6= h, µd by the

definitions of µ′ and blocking pair. This contradicts the assumption that µ is

hospital-quasi-stable.

(b) In this case, it holds that d∗ �h d′ for some doctor d′ ∈ µ′h. But this means

that under µ, (d∗, h) can form a blocking pair such that d∗ �h d′ for some

doctor d′ ∈ µh because d �h d′′ for all d′′ ∈ Bh \ {d}. But this contradicts the

assumption that µ is hospital-quasi-stable.

(c) In this case, it holds that d∗ �µd d′ for some doctor d′ ∈ µ′µd . But this means

that under µ, (d∗, µd) can form a blocking pair such that d∗ �µd d′ for some

doctor d′ ∈ µµd because µ′µd ⊂ µµd . This contradicts the assumption that µ

is hospital-quasi-stable.

(2) Since µ′d �d µd and µ′d′ �d′ µd′ for all d′, µd is not doctor-efficient, contradicting

our starting assumption that it is doctor-efficient.

Proof of Efficiency:

Let µ be a weakly stable matching and assume, for contradiction, that µ is not efficient.

Then there exists a feasible matching µ′ that Pareto dominates µ, that is, there is a feasible

matching µ′ such that µ′i �i µi for all i ∈ D ∪H, with at least one being strict. Noting

26Note that responsiveness implies that µ′ is individually rational for the hospital µd.
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that matching is bilateral and that preferences are strict, this implies that there exists a

doctor d ∈ D with µ′d �d µd. Since µ is a weakly stable matching, µd �d ∅ and hence

µ′d 6= ∅, so µ′d ∈ H. Denote h = µ′d. Since µ is a weakly stable matching, h �d µd implies

one of the following (cases (1) and (2) correspond to a situation in which (d, h) is not a

blocking pair of µ. Case (3) covers, by the definition of weak stability, the case in which

(d, h) blocks µ):

(1) ∅ �h d.

(2) |µh| = qh and d′ �h d for all d′ ∈ µh.
(3) f(w(µ) + eh) = 0 and d′ �h d for all d′ ∈ µh.

Suppose ∅ �h d. Then, if |µh| = qh, then there is a doctor d′′ ∈ µ′h \ µh such that

d′′ �h d′ for some d′ ∈ µh (otherwise, by responsiveness of the preference of h, it follows

that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting the

assumption that µ′ Pareto dominates µ. If |µh| < qh, then there should be a doctor

d′′ ∈ µ′h \ µh such that d′′ �h ∅ (otherwise, by responsiveness of the preference of h, it

follows that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting

the assumption that µ′ Pareto dominates µ.

Suppose |µh| = qh and d′ �h d for all d′ ∈ µh. Then there should be a doctor d′′ ∈ µ′h\µh
such that d′′ �h d′ for some d′ ∈ µh (otherwise, by responsiveness of the preference of h,

it follows that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting

the assumption that µ′ Pareto dominates µ.

Suppose f(w(µ) + eh) = 0 and d′ �h d for all d′ ∈ µh. Then, if |µ′h| ≤ |µh|, then

there should be a doctor d′′ ∈ µ′h \ µh such that d′′ �h d′ for some d′ ∈ µh (otherwise,

by responsiveness of the preference of h, it follows that µh �h µ′h). Then, since µ is

weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting the assumption that µ′ Pareto dominates

µ. If |µ′h| > |µh|, then since f(w(µ) + eh) = 0, there exists a hospital h′ ∈ H with

|µ′h′| < |µh′ |. This, since µ′h′ �h′ µh′ as µ′ Pareto dominates µ, implies that there should be

a doctor d′′ ∈ µ′h′ \ µh′ such that d′′ �h′ d′ for some d′ ∈ µh′ (otherwise, by responsiveness

of the preference of h′, it follows that µh′ �h′ µ′h′). Then, since µ is weakly stable,

µd′′ �d′′ h′ = µ′d′′ , contradicting the assumption that µ′ Pareto dominates µ.

A.3. Proof of Proposition 1.

The “only if” part: Fix a matching µ that is feasible, non-wasteful and individually

rational, and satisfies the no-justified-envy property. We will show that µ is weakly stable.

We only need to show that any blocking pair (d, h) satisfies the conditions (i) and (ii) in

the definition of weak stability. We show this by contradiction.
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So suppose that (d, h) is a blocking pair. That is, h �d µd and either (a) |µh| < qh and

d �h ∅, or (b) d �h d′ for some d′ ∈ µh.
If µ is not weakly stable, then either (a’) f(w(µ) + eh) = 1 or (b’) d �h d′ for some

doctor d′ ∈ µh.27 If (b) or equivalently (b’) hold, then the no-justified-envy property is

violated because for d and the doctor d′ such that d �h d′ for some d′ ∈ µh, conditions (i)

and (ii) in the definition of no-justified-envy hold ((i) follows because (d, h) is a blocking

pair; (ii) directly follows). But if (a) and (a’) hold, then the collection of preference

relations in these conditions directly implies violation of non-wastefulness.

The “if” part: To show the “if” part, suppose that µ is weakly stable. By definition it

implies that µ is feasible and individually rational.

To show that µ is non-wasteful assume, for contradiction, that µ does not satisfy non-

wastefulness. Then there exists a doctor-hospital pair (d, h) such that (i) h �d µd and

d �h ∅, and (ii) |µh| < qh and f(w(µ) + eh) = 1. Because h �d µd, d �h ∅, and |µh| < qh,

the pair (d, h) is a blocking pair. Moreover, h satisfies f(w(µ) + eh) = 1, implying that µ

is not weakly stable.

To show that µ satisfies the no-justified-envy property assume, for contradiction, that

µ does not satisfy the condition. Then there exists a pair of doctors d, d′ ∈ D such that (i)

µd′ �d µd and (ii) d �µd′ d
′ or µd′ = ∅. This implies that (d, µd′) is a blocking pair because

µd′ 6= ∅ by individual rationality for d under µ, a weakly stable matching. Moreover,

condition (ii) of weak stability is violated for this pair, and hence µ is not weakly stable.

A.4. Proof of Proposition 2.

We first define a condition called no preference cycle, and then state and prove two

lemmas that show that no preference cycle is equivalent to consistency with master lists.

We use those results to prove the direction “(1) → (2).”

Given R and hospital preference profile �H≡ (�h)h∈H , we say that �H has no pref-

erence cycle in R if there exist no r ∈ R, distinct hospitals h1, . . . , hn ∈ r, and distinct

doctors d1, . . . , dn ∈ D such that di+1 �hi di �hi ∅ for every i ∈ {1, . . . , n} (with the

convention that dn+1 ≡ d1, and hn+1 ≡ h1).

Lemma 1. Suppose that �H has no preference cycle. Then, there do not exist a sequence

of (not necessarily distinct) doctors d1, . . . , dn ∈ D and that of (not necessarily distinct)

hospitals h1, . . . , hn ∈ H such that di+1 �hi di �hi ∅ for every i ∈ {1, . . . , n} where

dn+1 ≡ d1 and hn+1 ≡ h1.

27This follows from the assumption that h has strict preferences.
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Proof. We show this lemma by proving its contraposition. Fix a pair of sequences satisfy-

ing the property stated in the statement of the lemma, and denote them by d1, . . . , dn ∈ D
and h1, . . . , hn ∈ H.

For each i ∈ {1, . . . , n}, let d
A(0)
i = di and h

A(0)
i = hi. Consider the following algorithm.

Step A(k):

If there do not exist i and j with i < j such that d
A(k−1)
i = d

A(k−1)
j , then define

B(0) := A(k− 1), and go to Step B(1). Otherwise, take an arbitrary pair of indices i and

j with i < j such that d
A(k−1)
i = d

A(k−1)
j .

Construct a new pair of sequences (d
A(k)
1 , . . . , d

A(k)
nA(k)) ∈ DnA(k) and (h

A(k)
1 , . . . , h

A(k)
nA(k)) ∈

HnA(k) with nA(k) = nA(k−1) − (j − i) such that d
A(k)
l = d

A(k−1)
l and h

A(k)
l = h

A(k−1)
l for

l = 1, . . . , i, and d
A(k)
l = d

A(k−1)
l+(j−i) and h

A(k)
l = h

A(k−1)
l+(j−i) for l = i + 1, . . . , nA(k−1) − (j − i).

Go to Step A(k + 1).

Step B(k):

If there do not exist i and j with i < j such that h
B(k−1)
i = h

B(k−1)
j , then, define

C := B(k− 1), and stop the algorithm. Otherwise, take an arbitrary pair of indices i and

j with i < j such that h
B(k−1)
i = h

B(k−1)
j .

(i) Suppose that dj+1 �hi di holds. Construct a new pair of sequences (d
B(k)
1 , . . . , d

B(k)
nB(k)) ∈

DnB(k) and (h
B(k)
1 , . . . , h

B(k)
nB(k)) ∈ HnB(k) with nB(k) = nB(k−1) − (j − i) such that d

B(k)
l =

d
B(k−1)
l and h

B(k)
l = h

B(k−1)
l for l = 1, . . . , i, and d

B(k)
l = d

B(k−1)
l+(j−i) and h

B(k)
l = h

B(k−1)
l+(j−i) for

l = i+ 1, . . . , nB(k−1) − (j − i).
(ii) Suppose that dj+1 �hi di does not hold. Construct a new pair of sequences

(d
B(k)
1 , . . . , d

B(k)
nB(k)) ∈ DnB(k) and (h

B(k)
1 , . . . , h

B(k)
nB(k)) ∈ HnB(k) with nB(k) = j − i such that

d
B(k)
l = d

B(k−1)
i+l and h

B(k)
l = h

B(k−1)
i+l for l = 1, . . . , (j − i).

Go to Step B(k + 1).

This algorithm ends in finite steps for the following reasons. First, Step B(1) is reached

in finite steps because, for every k ∈ N, if Step A(k) is reached, then nA(k) < nA(k−1)

holds. Once Step B(1) is reached, again nB(k) < nB(k−1) holds by definition for every

k ∈ N, so the algorithm ends in finite steps.

Next, for each i, j ∈ {1, . . . , nC}, dCi 6= dCj and hCi 6= hCj hold by the definition of the

algorithm.

Finally, it is straightforward that if d
A(k−1)
i+1 �

h
A(k−1)
i

d
A(k−1)
i �

h
A(k−1)
i

∅ for every i ∈
{1, . . . , nA(k−1)} such that d

A(k−1)
nA(k−1)+1 ≡ d

A(k−1)
1 and h

A(k−1)
nA(k−1)+1 ≡ h

A(k−1)
1 , then d

A(k)
i+1 �hA(k)

i

d
A(k)
i �

h
A(k)
i
∅ for every i ∈ {1, . . . , nA(k)} such that d

A(k)
nA(k)+1 ≡ d

A(k)
1 and h

A(k)
nA(k)+1 ≡ h

A(k)
1 .

Also, it is true that if d
B(k−1)
i+1 �

h
B(k−1)
i

d
B(k−1)
i �

h
B(k−1)
i

∅ for every i ∈ {1, . . . , nB(k−1)}
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such that d
B(k−1)
nB(k−1)+1 ≡ d

B(k−1)
1 and h

B(k−1)
nB(k−1)+1 ≡ h

B(k−1)
1 , then d

B(k)
i+1 �hB(k)

i
d
B(k)
i �

h
B(k)
i
∅

for every i ∈ {1, . . . , nB(k)} such that d
B(k)
nB(k)+1 ≡ d

B(k)
1 and h

B(k)
nB(k)+1 ≡ h

B(k)
1 . This follows

because for each h ∈ H, �h is a strict order, so if there exist d, d′d′′, d′′′ ∈ D such that

d �h d′ and d′′ �h d′′′, then either d �h d′′′ or d′′ �h d′ holds. Hence, for each k = 1, . . . ,

in (ii) of Step B(k), it must be the case that di+1 �hi dj.
This completes the proof. �

Lemma 2. For a set of regions R and a hospital preference profile �H , the following two

claims are equivalent.

(1) �H is consistent with master lists of R.

(2) �H has no preference cycle in R.

Proof. Proof of “(1) → (2)”: Suppose for contradiction that �H is consistent with

master lists of R while �H has a preference cycle in R. Then there exists a region

r ∈ R, distinct hospitals h1, . . . , hn ∈ r, and distinct doctors d1, . . . , dn ∈ D such that

di+1 �hi di �hi ∅ for every i ∈ {1, . . . , n}. Because �H is consistent with master lists in

R, this implies di+1 �r di for all i ∈ {1, . . . , n}. By transitivity of �r, we obtain d1 �r d1,
a contradiction to the assumption that �r is a strict order over D and hence satisfies

antisymmetry.

Proof of “(2) → (1)”: Assign indices 1, . . . , n to all the doctors arbitrarily, D =

{d1, . . . , dn}. For each r, construct a binary relation �r through the following procedure:

Let D0 = D. For k = 1, . . . , n,

Step k: Let dk = minl∈{1,...,n}{dl ∈ Dk−1| 6 ∃(d, h) ∈ Dk−1 × r s.t. d �h
dl �h ∅}. Let Dk = Dk−1 \ {d1}.

Define �r by, for all k, l ∈ {1, . . . , n}, letting dk �r dl if and only if k < l.

Note that |Dk| = n− k for each k = 0, . . . , n because, for each k, the set {dl ∈ Dk−1| 6
∃(d, h) ∈ Dk−1 × r s.t. d � dl} is nonempty. To see this, suppose for contradiction that

it is empty for some k. Then, for each d ∈ Dk−1, there exists d′ ∈ Dk−1 and h ∈ r such

that d′ �h d. This implies that there exist a sequence of (not necessarily distinct) doctors

d1, . . . , dm ∈ D and that of (not necessarily distinct) hospitals h1, . . . , hm ∈ H such that

di+1 �hi di �hi ∅ for every i ∈ {1, . . . ,m} where dm+1 ≡ d1 and hm+1 ≡ h1. Then, by

Lemma 1, �H has no preference cycle in R, a contradiction. Completeness, transitivity,

and antisymmetry of �r is obvious from the construction of �r. It is also clear from

construction of �r that for each hospital h ∈ r, d �h d′ �h ∅ implies d �r d′. Therefore,

�H is consistent with master lists in R, completing the proof. �



STABILITY CONCEPTS UNDER DISTRIBUTIONAL CONSTRAINTS 39

Proof of “(1) → (2)” of Proposition 2: Suppose for contradiction that (1) holds

while (2) does not. Then Lemma 2 implies that there exist a region r as well as sequences

of distinct hospitals h1, . . . , hn and distinct doctors d1, . . . , dn such that di+1 �hi di �hi ∅
for every i ∈ {1, . . . , n}. Now, let qr = 1, qr′ ≥ |D| for all r′ ∈ R \ {r}, �di : hi, hi−1, for

each i = {1, . . . , n} where h0 ≡ hn, and every doctor d ∈ D \ {d1, . . . , dn} prefers ∅ the

most.

First, note that any strongly stable matching must have exactly one hospital h ∈ r

matched to one doctor while every other h′ ∈ r \ {h} is unmatched because (1) if no

doctor is matched to hospitals in r, then any pair of a hospital in r and a doctor who find

each other acceptable (note such a pair exists by the present preference specification) forms

a blocking pair and (unless the present matching is itself infeasible) violates condition (i)

of Definition 1, and (2) if more than one doctor is matched to hospitals in r, then the

matching is infeasible. Therefore, in the remainder of the proof, consider a matching

under which there is exactly one hospital hi ∈ r that is matched with one doctor while

all other hospitals in r are unmatched. Consider the following (exhaustive) cases.

(1) Suppose that hi is matched to di. Then (di+1, hi) is a blocking pair because

di+1 is currently unmatched by our earlier argument and hence prefers hi to her

present outcome; hi prefers di+1 to di by assumption. Furthermore, blocking pair

(di+1, hi) violates condition (ii) of Definition 1, which shows that the matching is

not strongly stable.

(2) Suppose that hi is matched to di+1. Then (di+1, hi+1) is a blocking pair because

hi+1 is currently unmatched by our earlier argument and prefers di+1 to ∅ by as-

sumption; di+1 prefers hi+1 to hi by assumption. Finally, blocking pair (di+1, hi+1)

violates condition (i) of Definition 1 (unless the present matching is itself infeasi-

ble), which shows that the matching is not strongly stable.

(3) Suppose that hi is matched to a doctor d ∈ D \ {di, di+1}. Then this matching is

not individually rational and hence it is not strongly stable.

Proof of “(2) → (1)” of Proposition 2: When �H has no preference cycle in R, by

inspection strong stability is implied by the stability concept due to Biro, Fleiner, Irving,

and Manlove (2010). Biro, Fleiner, Irving, and Manlove (2010) show the existence of a

stable matching in their setting, which implies the existence of a stable matching.

A.5. Proof of Proposition 3.

Let ν be a stable matching in the AS model and µ be a matching in the KK model

that is associated to ν.
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To show that µ is strongly stable in the KK model, note first that feasibility and

individual rationality of µ are obvious by feasibility and individual rationality of ν in the

AS model (which are implied by stability of ν in the AS model).

Suppose that a student s, whose type is t, blocks matching µ with hospital (c, t) in the

KK model. This implies c �s νs in the AS model. Then, because ν is stable in the AS

model, it follows that either (i) |νc| = qc and s′ �c s for all s′ ∈ νc or (ii) |νc ∩ St| = qtc

and s′ �c s for all s′ ∈ νc ∩ St. In the former case, |µr| = qr for r = {(c,m), (c,M)},
s′ �(c,t) s for all s′ ∈ µ(c,t), and µs 6∈ r. Therefore, µ is strongly stable. In the latter

case, |µ(c,t)| = q(c,t), and s′ �(c,t) s for all s′ ∈ µ(c,t), so (s, (c, t)) is not a block. This is a

contradiction, completing the proof.

A.6. Proof of Proposition 4.

In the (n,m)-market model, we first establish the following characterization of the

existence of a strongly stable matching.

Lemma 3. A matching is strongly stable if and only if exactly one doctor-hospital pair

(d, h) is matched in that matching and d prefers h the most and h prefers d the most.

Proof. The “if” direction is obvious, because if the matching satisfies the above condition,

then every blocking pair satisfies conditions (i) and (ii) in Definition 1.

To show the “only if” direction, first note that any strongly stable matching must have

exactly one pair of a doctor and a hospital who are matched because (1) if no doctor is

matched, then any doctor-hospital pair forms a blocking pair and violates condition (i) of

Definition 1, and (2) if more than one doctor is matched, then the matching is infeasible.

Therefore, in the remainder of the proof, consider a matching under which there is exactly

one doctor-hospital pair (d, h) who are matched to each other. Consider the following two

cases.

(1) Suppose that d is not the first choice of h. Let d′ be the first choice of h. Then

(d′, h) is a blocking pair because d′ is currently unmatched by assumption and

prefers h to ∅ given the assumption that all hospitals are acceptable to all doctors; h

prefers d′ to d by assumption. Furthermore, blocking pair (d′, h) violates condition

(ii) of Definition 1, which shows that the matching is not strongly stable.

(2) Suppose that h is not the first choice of d. Let h′ be the first choice of d. Then

(d, h′) is a blocking pair because h′ is currently unmatched by assumption and

prefers d to ∅ given the assumption that all doctors are acceptable to all doctors;

d prefers h′ to h by assumption. Finally, blocking pair (d, h′) violates condition

(i) of Definition 1, which shows that the matching is not strongly stable.



STABILITY CONCEPTS UNDER DISTRIBUTIONAL CONSTRAINTS 41

�

Recall that m is assumed to depend on n. Denote by pn the probability that, in the

(n,m)-market model there exists no doctor-hospital pair (d, h) such that d prefers h most

and h prefers d most. By Lemma 3, the probability that there exists at least one strongly

stable matching is equal to 1− pn. Recall that m→∞ as n→∞.

Lemma 4.

lim
n→∞

pn =
1

e
.

Proof. Assign indices from 1 to n to the doctors (with exactly one index assigned to each

doctor and vice versa). Similarly, assign indices from 1 to m to the hospitals. For each

index i, let Yi be (the index of) the hospital that doctor (with the index) i prefers the

most. That is, Yi is a random variable with Pr(Yi = j) = 1/m for every i, j that is

independently distributed across i. Then, the conditional probability, given a realization

of (Yi)
n
i=1, that there exists no doctor-hospital pair who prefer each other the most is(

1−
∑n

i=1 1{Yi=1}

n

)
×
(

1−
∑n

i=1 1{Yi=2}

n

)
× · · · ×

(
1−

∑n
i=1 1{Yi=m}

n

)
.

Hence, by linearity of the expectation operator, we have

pn = E
[(

1−
∑n

i=1 1{Yi=1}

n

)
×
(

1−
∑n

i=1 1{Yi=2}

n

)
× · · · ×

(
1−

∑n
i=1 1{Yi=m}

n

)](A.1)

= E

[
1−

m∑
j=1

aj +
∑
j<j′

ajaj′ − · · ·+ (−1)ma1a2 . . . am

]

= 1− E

[
m∑
j=1

aj

]
+ E

[∑
j<j′

ajaj′

]
− · · ·+ (−1)mE [a1a2 . . . am] ,

where

aj =

∑n
i=1 1{Yi=j}

n
,

for each j ∈ {1, . . . ,m}. By symmetry with respect to j ∈ {1, . . . ,m}, for each k ∈
{1, . . . ,m}, the (k + 1)-st term of Equation (A.1) can be expressed as the sum of

(
m
k

)
terms of the form

(−1)k
1

nk
E

(
n∑
i=1

1{Yi=j1}

n∑
i=1

1{Yi=j2} · · ·
n∑
i=1

1{Yi=jk}

)
,
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where j` 6= j`′ for all ` 6= `′, all of which have the same value as one another. Note that

E

(
n∑
i=1

1{Yi=j1}

n∑
i=1

1{Yi=j2} · · ·
n∑
i=1

1{Yi=jk}

)
=

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

E
(
1{Yi1=j1}1{Yi2=j2} . . .1{Yik=jk}

)
=

∑
1≤i`≤n,∀`
i` 6=i`′ ,∀`6=`′

E
(
1{Yi1=j1}1{Yi2=j2} . . .1{Yik=jk}

)

=
∑

1≤i`≤n,∀`
i` 6=i`′ ,∀`6=`′

E
(
1{Yi1=j1}

)
E
(
1{Yi2=j2}

)
. . .E

(
1{Yik=jk}

)

=
n(n− 1) . . . (n− k + 1)

mk
,

where the first equality follows from linearity of the expectation operator, the second

equality follows from the fact that 1{Yi1=j1}1{Yi2=j2} . . .1{Yik=jk} = 0 if there exit `, `′

with ` 6= `′ such that i` = i`′ (because, for each i, 1{Yi=j} = 0 for all but one j), the

third equality follows from independence of random variables Yi1 , Yi2 , . . . , Yik , and the last

equality follows because E(1{Yi=j}) = 1/m for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} and

there are n(n−1) . . . (n−k+1) terms to be added together in the summation. Therefore,

the (k + 1)-st term of Equation (A.1) is equal to(
m

k

)
(−1)k

1

nk
n(n− 1) . . . (n− k + 1)

mk

= (−1)k
1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)(
1− 1

m

)(
1− 2

m

)
. . .

(
1− k − 1

m

)
.

Therefore,

pn = 1 +
m∑
k=1

(−1)k
1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)(
1− 1

m

)(
1− 2

m

)
. . .

(
1− k − 1

m

)
.

In the right hand side of this equation, note that the term

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)(
1− 1

m

)(
1− 2

m

)
. . .

(
1− k − 1

m

)
lies in [0, 1] and is nonincreasing in k. Thus, for any nonnegative integers m and ` with

m ≥ 2`+ 1, we have

1 +
2`+1∑
k=1

(−1)k
1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)(
1− 1

m

)(
1− 2

m

)
. . .

(
1− k − 1

m

)
≤ pn

≤ 1 +
2∑̀
k=1

(−1)k
1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)(
1− 1

m

)(
1− 2

m

)
. . .

(
1− k − 1

m

)
.
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Thus, taking n→∞ and recalling the assumption that m→∞ as n→∞,

2`+1∑
k=0

(−1)k
1

k!
≤ lim inf pn ≤ lim sup pn ≤

2∑̀
k=0

(−1)k
1

k!
,

for any nonnegative integer `. By taking `→∞, we obtain

1

e
≤ lim inf pn ≤ lim sup pn ≤

1

e
,

and hence, limn→∞ pn = 1
e
. �

Lemmas 3 and 4 lead to the desired conclusion, completing the proof.

Appendix B. Additional Discussions

B.1. Independence of the Axioms for Proposition 1. Proposition 1 characterizes

weak stability by non-wastefulness, individual rationality, feasibility, and the no-justified-

envy property. This section provides examples to show that these four axioms are inde-

pendent.

• Non-wastefulness: The empty matching, that is, a matching µ such that µd = ∅
for every d ∈ D, violates non-wastefulness as long as there are a doctor d and

a hospital h such that h �d ∅, d �h ∅, and f(eh) = 1. It is straightforward to

see that the empty matching satisfies individual rationality, feasibility, and the

no-justified-envy property.

• Individual rationality: Let D = {d}, H = {h}, f(eh) = 1, and ∅ �d h and

∅ �h d. Then the matching µ such that µd = h violates individual rationality.

This matching µ satisfies non-wastefulness, feasibility, and the no-justified-envy

property.

• Feasibility: Let D = {d}, H = {h}, R = {H}, qH = 0, and h �d ∅ and d �h ∅
and qh = 1. Then the matching µ such that µd = h violates feasibility. This

matching µ satisfies non-wastefulness, individual rationality, and the no-justified-

envy property.

• No-justified-envy: Let D = {d1, d2}, H = {h1, h2}, f is such that f(1, 1) = 1,

�h: d1, d2 and qh = 1 for each h ∈ H, and �d: h1, h2 for each d ∈ D. Consider

matching µ defined by

µ =

(
h1 h2

d2 d1

)
.
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Because µd2 = h1 �d1 h2 = µd1 and d1 �h1 d2, matching µ violates the no-justified-

envy property. Meanwhile, µ satisfies non-wastefulness, individual rationality, and

feasibility.

B.2. Characterization of Strong and Weak Stability Using Stability in Kamada

and Kojima (2016). Here we relate strong and weak stability with the stability notion

developed in Kamada and Kojima (2016). They develop a stability concept that is weaker

than strong stability while stronger than weak stability. In doing so, they devise a notion

of regional preferences and use them to define stability. The idea is that, under the

matching µ, a blocking pair (d, h) involving a move of a doctor d is considered legitimate

only if it leads to Pareto improvement among the regions that contain both µd and h, in

light of their regional preferences. An important feature of this notion is that it depends on

the regional preferences at hand. Although this is helpful in explicitly taking into account

the policy goal regarding allocation of doctors, it also means that we need additional

information to define stability.

In this section we try to relate such a stability notion with strong and weak stability

in our paper, which do not use such additional information. We find that strong stability

corresponds to stability for all regional preferences, while weak stability corresponds to

stability for some regional preferences.

In what follows, we consider the “partitional regions” setting formalized in item 1 of

Section 5.1. To make the paper self-contained, we provide formal definitions of regional

preferences and stability.

Let regional preferences �r be a weak ordering over nonnegative-valued integer

vectors Wr := {w = (wh)h∈r|wh ∈ Z+}. That is, �r is a binary relation that is complete

and transitive (but not necessarily antisymmetric). We write w �r w′ if and only if

w �r w′ holds but w′ �r w does not. Vectors such as w and w′ are interpreted to be

supplies of acceptable doctors to the hospitals in region r, but they only specify how many

acceptable doctors apply to each hospital and no information is given as to who these

doctors are.

For each h ∈ H, let r(h) denote the region r such that h ∈ r. Given a profile of

regional preferences (�r)r∈R, under partitional regional caps, stability defined in Kamada

and Kojima (2016) reduces to the following.

Definition 5. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh, and

(iii) either µd /∈ r(h) or w �r(h) w′,
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where wh′ = |µh′ | for all h′ ∈ r(h) and w′h = wh + 1, w′µd = wµd − 1 and w′h′ = wh′ for all

other h′ ∈ r(h).

Under partitional regional caps, strong stability reduces to replacing (i) in Definition

1 with “|µr(h)| = qr(h) and µd 6∈ r(h),” and weak stability reduces to replacing (i) in

Definition 4 with “|µr(h)| = qr(h).”

Proposition 5. (1) µ is strongly stable if and only if µ is stable for all possible re-

gional preferences.

(2) µ is weakly stable if and only if there exists a profile of regional preferences (�r)r∈R
under which µ is stable.

Proof. Part 1: By the definition of stability, the “only if” part is obvious. We prove the

“if” part. Since the only difference of strong stability and stability is that µd 6∈ r(h) in the

definition of strong stability is replaced with condition (iii) in the definition of stability,

it suffices to show that for any matching µ, if there is a blocking pair (d, h) such that

µd ∈ r(h), we can find a profile of regional preferences (�r)r∈R such that w′ �r(h) w where

wh′ = |µh′| for all h′ ∈ r(h) and w′h = wh + 1, w′µd = wµd − 1 and w′h′ = wh′ for all other

h′ ∈ r(h).

To this end, fix a blocking pair (d, h) such that µd ∈ r(h) and define w and w′ in the

above manner. For each region r ∈ R, consider an ordering of hospitals in it, (hr1, . . . , h
r
|r|),

such that h
r(h)
1 = h. Define a profile of regional preferences (�r)r∈R by the rule: For each

weight vector w̃ for region r, let n(w̃) =
∑

h′∈r w̃h′ be the number of doctors matched to

r under w̃. For any pair of weight vectors w̃ and ŵ for region r:

(1) If n(w̃) > qr ≥ n(ŵ), then ŵ �r w̃. If n(w̃), n(ŵ) > qr, then ŵ �r w̃ if and only if

n(w̃) ≥ n(ŵ).

(2) Suppose n(w̃), n(ŵ) ≤ qr. Then, if w̃h > qh for some h while ŵh′ ≤ qh′ for all

h′ ∈ r then ŵ � w̃. If w̃h > qh for some h and ŵh′ > qh′ for some h′ then ŵ � w̃

if and only if n(w̃) ≥ n(ŵ).

(3) If qr ≥ max{n(w̃), n(ŵ)} and qh′ ≥ max{w̃h′ , ŵh′} for all h′, and there exists i

such that w̃hrj = ŵhrj for all j < i and w̃hri > ŵhri , then w̃ �r ŵ.

With this specification, it is straightforward to see that w′ �r(h) w, which completes the

proof.

Part 2: By the definition of stability, the “if” part is obvious. We prove the “only if”

part. Consider a profile of regional preferences such that for each region r and for each

pair of vectors w̃ and ŵ for region r, regional preference �r is specified by (1) and (2) for
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Part 1 and, if qr ≥ max{n(w̃), n(ŵ)}, qh′ ≥ max{w̃h′ŵh′} for all h′, and n(ŵ) ≥ n(w̃), then

ŵ �r w̃. In this case, condition (iii) of stability automatically holds. Since the rest of the

conditions in the definition of stability is identical to the definition of weak stability, this

implies that these two notions are equivalent under the specified regional preferences. �

Remark 4. The “if” part of each of the statements would be stronger if we restrict

ourselves to a narrower class of regional preferences. In fact, the results of the proposition

hold even if we restrict ourselves to a class of regional preferences that Kamada and

Kojima (2016) restricts to. We also note that the regional preferences constructed in the

proofs of both Parts 1 and 2 satisfy the conditions assumed in that paper.28

B.3. Construction of a Weakly Stable Matching. Theorem 2 shows existence of

weakly stable matchings, and their proof in Appendix A.2 does not explicitly construct a

weakly stable matching. However, we can use the same idea as in that proof to define an

algorithm that finds a weakly stable matching for any given preference profile.

To do this, for any matching µ and a preference profile, for each h, define the set of

doctors Bh(µ) to be such that d′ ∈ Bh(µ) if and only if (d′, h) is a blocking pair under µ.

Algorithm.

Step 0: Fix an order of hospitals, {h1, . . . , hH}. Define µ by µd = ∅ for all d ∈ D. Go

to Step 1.

Step 1: If f(w(µ)+eh) = 0 for every h with Bh(µ) 6= ∅, stop the algorithm and output

µ. Otherwise, go to Step 2.

Step 2: Take hi such that Bhj(µ) = ∅ for all j < i, Bhi(µ) 6= ∅, and f(w(µ) + ehi) = 1.

Take d ∈ Bhi(µ) with d �h d′ for all d′ ∈ Bhi(µ) \ {d}, and define a matching µ′ such that

µ′d = hi and µ′d′ = µd′ for all d′ ∈ D \ {d}. Let µ = µ′. Go back to Step 1.

This algorithm ends in finite steps because in Step 2, µ′d �d µd hold for all d ∈ D.

The proof that this algorithm produces a weakly stable matching is omitted because it is

essentially the replication of the proof for Theorem 2 that we presented in Appendix A.2.

B.4. A Detailed Analysis of Example 3. The following observations show that there

exists no strongly stable matching in the market presented in Example 3. Suppose for

contradiction that there exists a strongly stable matching µ, and consider the following

(exhaustive) cases.

28Specifically, they satisfy feasibility with respect to both hospital capacities and the regional cap, the

acceptance condition, consistency, and substitutability.
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(1) Suppose that h1 is matched to d2 at µ. Then feasibility of µ implies that h1 is

not matched to any other doctor and h2 is unmatched. Then, however, (d2, h2) is

a blocking pair that violates condition (i) of Definition 1, showing that µ is not

strongly stable.

(2) Suppose that h1 is matched to d1 at µ. Then, feasibility of µ implies h2 is un-

matched. Then h3 should be matched with d3 because otherwise (d3, h3) is a

blocking pair that violates condition (i) of Definition 1. This and feasibility of µ

imply that d2 is unmatched. This implies, however, that (d2, h1) is a blocking pair

that violates condition (ii) of Definition 1, which shows µ is not strongly stable.

(3) Suppose that h1 is matched to d3 at µ. Then, individual rationality of µ implies

d1 is unmatched while feasibility of µ implies h2 is unmatched. Thus, (d1, h1) is

a blocking pair which violates condition (ii) of Definition 1, showing that µ is not

strongly stable.

(4) Suppose that h1 is unmatched at µ. Then, d3 should be matched to h2 at µ because

otherwise (d3, h2) is a blocking pair that violates condition (i) of Definition 1. This

implies that d2 must be matched to h3, because otherwise (d2, h3) is a blocking

pair that violates condition (i) of Definition 1. This in turn implies that h2 is

matched to only one doctor, namely d3, while h1 is unmatched at µ. This implies

that (d3, h1) is a blocking pair which violates condition (i) of Definition 1, showing

that µ is not strongly stable.


	1. Introduction
	Related Literature

	2. Model
	3. Strong Stability
	4. Weak Stability
	5. Discussions
	5.1. Examples of Feasibility Constraints
	5.2. Domain Restriction for Strong Stability
	5.3. Relation with Affirmative Action in School Choice
	5.4. Strong Stability in Large Markets

	6. Conclusion
	References
	Appendix
	Appendix A. Proofs
	A.1. Proof of Theorem 1
	A.2. Proof of Theorem 2
	A.3. Proof of characterization-theorem
	A.4. Proof of Proposition 2
	A.5. Proof of Proposition 3
	A.6. Proof of Proposition 4

	Appendix B. Additional Discussions
	B.1. Independence of the Axioms for characterization-theorem
	B.2. Characterization of Strong and Weak Stability Using Stability in kamakoji-iff 
	B.3. Construction of a Weakly Stable Matching
	B.4. A Detailed Analysis of Example 3


