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Abstract

We propose a simple model of repeated games with private monitoring and
time-varying information structures. We then obtain an example demon-
strating that the set of achievable equilibrium payoffs may shrink when play-
ers’ information regarding opponents’ information structures is increased.
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1. Introduction

It is well-known that repeated interaction among economic agents may
lead to sustained cooperation, even when the agents would not cooperate
in a one-shot relationship.1 Such results may arise even if monitoring is
“imperfect”—that is, if agents cannot perfectly observe the opponents’ ac-
tions.2

Formalizations of imperfect monitoring typically assume that agents re-
ceive signals about their opponents’ actions, and that these signals follow
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publicly known probability distributions, the so-called signal structure. Typ-
ically, it is additionally presumed that the signal structure is invariant over
time.

But in many situations of interest, the signaling structure does exhibit
change over time. In such a setting, it is natural to assume that players’ signal
structures may be distinct, but that the precision of the signal received by one
player is not completely independent of the precision of the signals received
by opponents.

For example, suppose that two competing firms can observe each other
with high probability by looking out the windows if it is sunny, but only
with low probability if it is foggy. In this setting, a firm can estimate the
likelihood that its production level was observed, given its degree of success
in observing competitors’ production levels.3

In Section 2, we introduce a simple model of time-varying signal structures
which captures the notion of correlated signal precision. We then examine
time-varying signal structures in a prisoner’s dilemma game, demonstrating
in Section 3 that the set of achievable equilibrium payoffs may shrink when
players know more about their opponents’ information structures.

Our main example is a counterpoint to the results of Kandori (1992) for
the effects of signal structure precision upon equilibria in games of imperfect
monitoring. Specifically, while Kandori (1992) shows that “more precise”4

signals result in “more equilibria,”5 we demonstrate that “increased informa-
tion” alone need not yield additional equilibria. Indeed, in our setting, the

3In the example just described, the correlation between the firms’ signaling structures
is positive. This correlation might also be negative, as the following (slightly stylized)
example shows: Two rival firms have agreed to coordinate on a new product campaign,
but there is only one person, “person X,” who serves on both firms’ boards. The board
meetings are held concurrently, so that if X attends part of one then he is less likely to
attend the other. But everyone is focused on work while the meetings are active, so that
nobody takes note of when people enter and exit. And X sometimes slacks off–attending
neither meeting–so that it is not to his advantage to reveal to either firm which meetings
he has actually attended. Each day, X reports in to each firm i anything he was able to
observe from the meeting of firm −i that day. Given whether X was able to observe −i,
the fixed likelihood that X slacks off, and the distance between the two firms, firm i can
estimate the likelihood that X attended part of firm i’s meeting.

4Kandori (1992) measures the precision of signal structures using the concept of “gar-
bling.” For definitions and details on this concept, see Blackwell and Girshick (1954).

5This measurement is conducted in the sense of set inclusion.
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set of equilibrium payoffs may be decreasing in the amount of information
that player i has regarding player −i’s information structure.6

Although our example represents a corner case, we believe that the in-
sight provided applies to more general settings. The objectives of this note
are to generate attention to the setting and to provide a simple example
where the correlation of signal structure yields a somewhat counterintuitive
consequence.

2. The Model

There are two players, 1 and 2. They engage in a repeated interaction with
infinite horizon and discrete time, t = 1, 2, . . .. In each stage, a simultaneous-
move stage game with the following payoff matrix is played:

C2 D2

C1 (1, 1) (−h, 1 + d)
D1 (1 + d,−h) (0, 0).

Here, player 1 chooses a row (C1 or D1) and player 2 chooses a column (C2

or D2). We assume that d, h > 0 so that the stage game is a prisoner’s
dilemma. Additionally, we assume −1 < d − h < 1, so that the sum of
payoffs is maximized at (C,C), and minimized at (D,D).

At each stage, each player i is in one of two states: Oi or Ni. In state Oi,
player i observes player −i’s action perfectly, whereas in state Ni, he does
not observe anything.

The objective of player i is to maximize the discounted sum of payoffs
given by

∞∑
t=1

δt−1ui(ai,t, a−i,t),

where δ ∈ (0, 1) is a discount factor, ai,t is player i’s action in stage t,
and ui(a, a

′) is player i’s stage game payoff when he takes action a and the
opponent takes action a′.

6Somewhat similarly, Kandori and Obara (2006) present an example in which decreased
sensitivity of signals to actions leads to more efficient (limit) equilibria. However, the model
and logic behind the “less is more” result of Kandori and Obara (2006) are quite different
from those driving our results.
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There is a joint probability distribution π over the set

{(O1, O2), (O1, N2), (N1, O2), (N1, N2)}

of possible states of the world. For simplicity we assume that

π({(O1, O2), (O1, N2)}) = π({(O1, O2), (N1, O2)}) =
1

2
.7

We then let p be the conditional probability that player 2 observes player
1’s action given that player 1 observes player 2’s action, so that

π({(O1, O2)}) =
p

2
.

If p = 0, then the information structures are perfectly negatively correlated;
if p = 1

2
, then they are independent; and if p = 1, then they are are perfectly

positively correlated.8

A strategy of player i is just a map from the set of possible histories to
a probability distribution over actions. We analyze sequential equilibria of
this game, which we simply call “equlibria” in the sequel.

3. Analysis

We now describe two key results obtained in our setting. Since all the
proofs are straightforward, we omit them.

Proposition 1.

1. If p ∈ (0, 1), then there exists δ̄ ∈ (0, 1) such that, for any δ ∈ [δ̄, 1), the
expected payoff of full cooperation, 1

1−δ , can be achieved in equilibrium.

2. If p = 0, then there exists δ̄ ∈ (0, 1) such that, for any δ ∈ [δ̄, 1), the
best expected payoff achievable in equilibrium is 1+d−h

2(1−δ) .

3. If p = 1, then there exists δ̄ ∈ (0, 1) such that, for any δ ∈ [δ̄, 1), the
best expected payoff achievable in equilibrium is 1

2(1−δ) .

7We believe relaxation of this assumption to be straightforward.
8Consequently, if p = 1

2 , then each player has no information about the opponent’s
information structure, while as p approaches 0 or 1, players’ information about opponent’s
information structures increases.
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This proposition shows that, in almost all cases, full cooperation can be
achieved when players are sufficiently patient.9 Surprisingly, however, it is
no longer possible to sustain cooperation when the correlation between signal
structures is perfect. The intuition for this latter fact is clear: if a player
is certain that his actions will not be observed, then he has no incentive to
cooperate.

In many settings of economic interest, the discount factor is not very
high.10 It is therefore important to know the minimal value δ∗ at which the
expected payoff of full cooperation can be achieved.11 Setting

r = max{p, 1− p},

we may compute δ∗ explicitly.

Proposition 2. δ∗ = d/(d+ 1− r) holds.

Note that the value of δ∗ obtained in Proposition 2 is consistent with
Parts 2 and 3 of Proposition 1. If p ∈ {0, 1}, then we have r = 1, so δ∗ = 1.
But by assumption, we have δ < 1, so cooperation cannot be sustained when
p ∈ {0, 1}.

We now observe two interesting comparative statics of δ∗. The first is
standard: δ∗ is increasing in d, hence it is increasingly difficult to sustain
cooperation as the “temptation” d increases.

The second comparative static is our main observation and our coun-
terpoint to Kandori (1992): δ∗ is increasing in r. The information held by
each player at each stage is increasing in the correlation between signal pre-
cision levels. Thus r may be interpreted as a measurement of the amount
of information that player i has about player −i’s information structure.12

9This result likely extends to a setting with slighly imperfect monitoring (in place of
the perfect monitoring structure used in our example), in the sense that sufficiently strong
signals lead to near-cooperation when players are sufficiently patient. (Sekiguchi (1997)
presents a result along these lines.) Also, the result can be easily extendable to the case
where the states are serially correlated with Markov process.

10Or, equivalently, players’ interactions are not very frequent.
11For p ∈ (0, 1), this is equivalent to saying that δ∗ is the minimal value of δ̄ in Part 1

of Proposition 1.
12This value r achieves its minimum 1

2 when the information structure is independent,
and increases as the correlation increases (positively or negatively), to a maximum 1
achieved when the information structure is perfectly correlated.
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Hence, the comparative static in r indicates that cooperation becomes more
and more difficult to sustain as players’ information about their opponents’
signals is increased.

Note that this example does not contradict the main result of Kandori
(1992), since the notion of “more information” in our model differs from that
Kandori uses. Nonetheless, our results indicate that the type of “information
precision” under investigation significantly impacts the effects of increased
precision upon the set of achievable equlibria.
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