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1. Introduction

Allocation of resources such as daycare slots, school seats and vaccines are often con-

ducted at small local levels. For example, in Tokyo, daycare slots and elementary school

seats are allocated within each of the 23 small districts that partitions the city.1 Major

cities in China such as Tianjin and Shanghai have an admission system for kindergartens

where the cities are divided into small districts and a child in a given district can only be

assigned to a school in the district. During the Covid-19 pandemic, Japanese government

adopted the policy to first distribute vaccines to each municipality, such as each of the 23

small districts in Tokyo, which was then responsible for distributing the allotted vaccine

to their residents. In the assignment of children into foster homes in Los Angeles County,

CA, the assignment is conducted at an inefficiently fragmented level of regional offices

(Robinson-Cortes, 2019).2 Facing such fragmentation of the markets, one could hope for

a welfare gain by the integration of the regions. What are the barriers against integration?

Integration entails two opposing effects for the individuals seeking for resources. On the

one hand, it increases the choice because the resources in the integrated region become

available. On the other hand, it increases the competition because the resources that

were originally exclusive to the individuals in a given region become available to more

individuals. The objective of this paper is to understand this tradeoff and characterize

when the first effect dominates; that is, individuals become better off by integration.

For this purpose, we consider a two-sided matching model, where we refer to agents

in the two sides as students and schools.3 A “region structure” partitions the set of

students and schools, and we examine how a change in the region structure affects student

welfare. In particular, we ask if a mechanism in consideration is monotone, meaning that

integration always weakly improves student welfare. That is, we ask when the choice effect

of the integration dominates the competition effect so that there is no barrier against

integration in terms of social welfare.

Our first theorem (Theorem 1) shows that every “good” mechanism lacks monotonicity:

No mechanism that is strategy-proof, Pareto efficient and individually rational is mono-

tone. This result demonstrates that a policymaker designing a mechanism has to admit

competition to sometimes override choice if they wish to maintain strategy-proofness,

1There are some exceptions to this rule that allow for interdistrict transfers under limited scenarios,

but such transfers are rarely implemented.
2See also Slaugh et al. (2016), who are, to our knowledge, the first to apply tools from matching theory

to the problem of child adoption.
3See Gale and Shapley (1962), Roth (1984), Roth and Peranson (1999), and Abdulkadiroğlu and

Sönmez (2003), among many others, for seminal work in two-sided matching markets.
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Pareto efficiency and individual rationality. Or, they have to abandon at least one of

these three properties to retain monotonicity. Given this impossibility, we then con-

sider mechanisms that are Pareto efficient and individually rational (while possibly being

non-strategy-proof). We show that there exist monotone mechanisms that satisfy those

properties if and only if the set of allowed region structures has a type of a hierarchical

structure (Theorem 2). This result demonstrates that there is a limit to monotonicity

even when the requirement for strategy-proofness is lifted and completely characterizes

such a limit.

Intuitively, the effect of competition is present when schools in a given region prefer

the students in other regions than the students in its own region. We investigate the

validity of this intuition by considering well-known mechanisms in school choice. We

show that (i) there exists a stable and monotone mechanism if and only if (ii) the DA

mechanism (applied to each region) is monotone if and only if (iii) the school preferences

favor local students (Proposition 1). By contrast, we also prove that other well-known

mechanisms such as the top trading cycles (TTC) mechanism (Shapley and Scarf, 1974)

are not monotone even if school preferences favor locals. Our analysis demonstrates that

integration improves welfare for every student in some practical scenarios under the DA

mechanism while the same cannot be said for other well-known mechanisms. Hence,

integration may face less public opposition under the DA mechanism than under those

mechanisms.

This paper belongs to the literature in matching with constraints. Research in this

literature include Abdulkadiroğlu (2005), Ergin and Sönmez (2006), Abraham, Irving

and Manlove (2007), Biro et al. (2010), Hafalir, Yenmez and Yildirim (2013), West-

kamp (2013), Goto et al. (2014), Kamada and Kojima (2015, 2017, 2018, 2023b), Kojima,

Tamura and Yokoo (2018), Aygün and Turhan (2020) and Pathak et al. (2021). The main

departure of the present paper is that we consider integration of multiple markets, while

those earlier contributions treat the relevant market as given.

We note that Kamada and Kojima (2023a) also consider integration of multiple regions

in a matching problem between students and schools and provide an approach complemen-

tary to the present paper. Specifically, their paper studies “partial integration” of regions,

in the sense that the produced matching must satisfy the balancedness constraint: for each

region, the total number of residents of other regions matched to schools in it must be
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equal to the total number of its residents matched to a school outside of the region.4 That

is, the paper takes as given the constraint that “full integration” of multiple regions is

infeasible. The present paper, in contrast, studies whether, and to what extent, a full

integration of regions is desirable. Their paper and ours are complementary in this sense.

Integration in matching markets is studied in the literature. The seminal work by

Ortega (2018) studies monotonicity that are more stringent than ours in the sense that

they require improvement for agents on both sides of the market, with a restriction of the

allowed region structures to the ones where there are distinct small regions and either (i)

the only possible merger is where all the small regions merge, or (ii) all possible mergers are

allowed. Due to those differences and others, his results are logically unrelated to ours.5

Ortega (2018) and later studies such as Ortega (2019), Klein, Aue and Ortega (2024), and

Gersbach and Haller (2022) study environments where both the competition and choice

effects of integration exist and quantify those effects theoretically and empirically.

There are other notions of monotonicity in the resource allocation literature. Popu-

lation monotonicity (Thomson, 1983) requires that adding individuals make all existing

individuals weakly worse off while resource monotonicity (Chun and Thomson, 1988) re-

quires that adding resources make all individuals weakly better off. Our monotonicity

(almost) implies resource monotonicity, as expanding a region involves adding resources,

namely new schools.6

Our paper takes an axiomatic approach that has a long tradition in matching and re-

source allocation problems. Roth (1982), for instance, shows that there exists no stable

mechanism that is strategy-proof for both students and schools. The method has been

4Hafalir, Kojima and Yenmez (2022) introduced a balancedness constraint in the context of interdistrict

school choice. A balancedness constraint across individual institutions was introduced by Dur and Ünver

(2019).
5More specifically, Ortega (2018) provides two theoretical results that might seem similar to some of

our results. First, he shows that his notions of monotonicity are incompatible with stability. Recall that

his monotonicity conditions are stronger than ours, and also note that stability is stronger than Pareto

efficiency and individual rationality, which our impossibility result (Theorem 1) requires. The second

result is that no Pareto efficient matching is monotone (in his sense). This result is reminiscent of the

“only if” direction of our Theorem 2, which shows that if the allowed region structures do not form a

weak hierarchy, then there does not exist a monotone mechanism (in our sense, which is weaker) that is

Pareto efficient and individually rational (Ortega (2018) assumes that each agent on a given side deems

all agents in the other side as acceptable).
6There are some technical differences which make the logical relationship incomplete. Most impor-

tantly, our model is endowed with a potentially restricted set of possible region structures, and the mono-

tonicity requirement imposes restrictions only on those instances. This is in contrast with the resource

monotonicity axiom which imposes restrictions for all possible configurations of available resources.
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used to obtain impossibility results for different kinds of axioms (e.g., Sönmez (1997,

1999), Thomson (2011), Doğan (2016), and Chaudhury and Pápai (2025)), characterizing

standard mechanisms (e.g., Pápai (2000), Sönmez and Ünver (2010), Kojima and Manea

(2010), Ehlers and Klaus (2016), and Pycia and Ünver (2017)), and finding tight condi-

tions under which mechanisms has desirable properties (e.g., Ergin (2002), Kesten (2006),

and Hatfield, Kojima and Narita (2016)). The present study contributes to this literature

by formalizing and analyzing the monotonicity axiom to study the issue of integration of

matching markets.

At a high level, our paper shares the interest in integration in school choice with the

literature, though in different contexts. For example, Doğan and Yenmez (2019) and Ek-

mekci and Yenmez (2019) compare an integrated school choice mechanism with a divided

choice mechanism in which the assignment of schools of different types is conducted sep-

arately. In their models, students can potentially be assigned to any school irrespective

of the degree of integration, and thus, they do not entail the tradeoff between choice and

competition, the issue that our paper studies. Another example is Hafalir, Kojima and

Yenmez (2022), who consider interdistrict school choice under various constraints and

policy objectives.7

Benefit of integration as well as its possible cost has been a central issue in international

economics for at least two centuries. Ricardo (1821) famously argued that opening up

countries for international trade will benefit all countries through specialization and access

to goods from abroad, broadening choice. Stolper and Samuelson (1941) offered a model

in which, although trade improves overall welfare of a country, some sectors may be made

worse off through competition. Our paper can be thought of as identifying and analyzing

analogous forces of choice and competition in the context of matching problems.

2. Model

2.1. Preliminary Definitions. Let there be a finite set of students I and a finite set of

schools S. Each student i has a strict preference relation �i over the set of schools and

being unmatched (being unmatched is denoted by ∅). For any s, s′ ∈ S ∪ {∅}, we write

s �i s
′ if and only if s �i s

′ or s = s′.

Each school s ∈ S is endowed with a strict preference relation �s over the set of subsets

of students (we use ∅ to denote the empty set with a slight abuse of notation). For any

I ′, I ′′ ⊆ I, we write I ′ �s I
′′ if and only if I ′ �s I

′′ or I ′ = I ′′. We denote by �= (�a)a∈I∪S

7C.f., footnote 18.
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the preference profile of all students and schools. For any i, i′ ∈ I ∪ {∅}, we write i �s i
′

if and only if i �s i
′ or i = i′.8

For each s ∈ S, fix a positive integer qs. We assume that preference relation �s is

responsive with capacity qs (Roth, 1985), that is,

(1) For any I ′ ⊆ I with |I ′| ≤ qs, i ∈ I \ I ′ and i′ ∈ I ′, (I ′ ∪ i) \ i′ �s I
′ if and only if

i �s i
′, and

(2) For any I ′ ⊆ I with |I ′| ≤ qs and i′ ∈ I ′, I ′ �s I
′ \ i′ if and only if i′ �s ∅.

(3) ∅ �s I
′ for any I ′ ⊆ I with |I ′| > qs.

In words, we assume that the ranking of a student (or keeping a position vacant) is

independent of her peers, and any set of students exceeding its capacity is unacceptable.

Student i is said to be acceptable to school s if i �s ∅ (and unacceptable otherwise).

Similarly, s is acceptable to i if s �i ∅. It will turn out that only rankings of acceptable

partners matter for our analysis, so we often write only acceptable partners to denote

preferences and priorities. For example,

�i: s, s
′

means that school s is the most preferred, s′ is the second most preferred, and s and s′

are the only acceptable schools under preferences �i of student i. We also use analogous

expressions for school preferences.

A matching µ is a mapping that satisfies (i) µi ∈ S ∪ {∅} for all i ∈ I, (ii) µs ⊆ I

for all s ∈ S, and (iii) for any i ∈ I and s ∈ S, µi = s if and only if i ∈ µs. That is, a

matching simply specifies which student is assigned to which school (if any).

A matching is individually rational if µa �a ∅ for every a ∈ I ∪ S.

2.2. Regions. Fix a base of regions, which is a partition R0 of I∪S. A region structure

R is a partition of I ∪ S such that each r ∈ R is of the form r = r1 ∪ · · · ∪ rk with

r1, . . . , rk ∈ R0. An element r ∈ R is called a region. Note that each s belongs to a

single r ∈ R and each i is a resident of a single r ∈ R. To simplify the exposition of some

results, we hereafter assume that |r ∩ I| ≥ 2 and |r ∩ S| ≥ 1 hold for each r ∈ R0. We

denote by Q a nonempty subset of the set of all region structures.

We call tuple (I, S,Q) an environment.

A matching µ is feasible under R if, for all r ∈ R and i ∈ r∩ I, we have µi ∈ r∪{∅}.
A matching µ is Pareto efficient under R if (i) it is feasible under R and (ii) there exists

no other matching µ′ that is feasible under R and satisfies µ′a �a µa for every a ∈ I ∪ S.

8We denote singleton set {x} by x when there is no confusion.
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Given a matching µ, a pair (i, s) ∈ I × S is called a blocking pair if s �i µi and

there is I ′ ⊆ µs ∪ {i} such that I ′ �s µs. A matching µ is stable under R if (i) it is

feasible under R, (ii) s = µi implies s �i ∅ and i ∈ µs implies i �s ∅, and (iii) it does not

have any blocking pair (i, s) such that there exists r ∈ R with i, s ∈ r. Gale and Shapley

(1962) imply that there is a unique stable matching µ∗ under R such that for every stable

matching µ under R and every i ∈ I, we have µ∗i � µi. Call it a student-optimal stable

matching (or, SOSM) under R.

A mechanism ϕ is a function from the set of preference profile-region structure pairs

to the set of feasible matchings. That is, ϕ(�, R) is a feasible matching under R.

Mechanism ϕ is strategy-proof if

ϕi(�, R) �i ϕi(�′i,�−i, R),

for every region structure R ∈ Q, preference profile �, i ∈ I, and student preferences �′i.9

Mechanism ϕ is individually rational if ϕ(�, R) is individually rational for all � and

R ∈ Q. Similarly, ϕ is Pareto efficient if ϕ(�, R) is Pareto efficient under R for all �
and R ∈ Q.

We say that ϕ is stable if, for any input (�, R), the matching ϕ(�, R) is stable under

R given preference profile �. We say that ϕ is the deferred acceptance mechanism

(or, the DA mechanism) if, for any input (�, R), the matching ϕ(�, R) is the SOSM

under R given preference profile �.

3. Limits of Monotone Mechanisms

We are now ready to introduce the key concept of this paper, monotonicity.

Definition 1. A mechanism ϕ is monotone if, for all R,R′ ∈ Q, r ∈ R, r′ ∈ R′ such

that r ⊆ r′, i ∈ r ∩ I, and �, we have ϕi(�, R′) �i ϕi(�, R).

In words, monotonicity requires that all students be made weakly better off when

regions expand. Two comments are in order. First, another possible definition would be

to require only that the outcome of the mechanism not become Pareto inferior for students

after multiple regions merge with each other. Such a requirement is weak and would be

trivially satisfied by any mechanism that is Pareto efficient such as the TTC mechanism

and the Boston mechanism.10 Second, we do not require schools be weakly better off.

9We note that the definition requires reporting true preferences be a best reply for students only.
10Indeed, the conclusion of Theorem 1 does not hold under this notion of monotonicity as, for instance,

the TTC mechanism then satisfies all the requirements.
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Our negative results (such as Theorem 1) clearly hold under a stronger requirement that

all students and schools be made better off as a result of expansion.

Definition 2. We say that Q admits a merger if there exist R,R′ ∈ Q, distinct

r1, r2 ∈ R and r′ ∈ R′ such that r1 ∪ r2 ⊆ r′.

We regard admitting a merger as a minimal requirement. The condition is satisfied

if, for instance, Q includes the base of regions or the grand region structure (i.e., the

partition consisting of a single cell) and contains at least two region structures.

Theorem 1. Fix an environment (I, S,Q) such that Q admits a merger. There exists no

monotone mechanism that is strategy-proof, Pareto efficient, and individually rational.

Proof. Consider a monotone mechanism ϕ that is Pareto efficient and individually ratio-

nal. We will show that ϕ is not strategy-proof.

Because Q admits a merger, there exist R,R′ ∈ Q with the following property: there

exist distinct r1, r2 ∈ R and r′ ∈ R′ such that r1 ∪ r2 ⊆ r′. Fix such (R,R′, r1, r2, r
′)

arbitrarily.

Let {s1, i1, i′1} ⊆ r1 and {s2, i2} ⊆ r2: Such schools and students exist because regions

are constructed from a base of regions. Consider a preference profile such that:

�i1 : s2, s1, �s1 : i2, i1, i
′
1,

�i′1
: s2, s1, �s2 : i1, i

′
1, i2,

�i2 : s1, s2,

and the capacities of s1 and s2 are both one, while all other schools and students prefer

∅ the most.

By feasibility and the fact that i1, i
′
1 6∈ r2, we have ϕi1(�, R) 6= s2 and ϕi′1

(�, R) 6= s2.

Similarly, we have ϕi2(�, R) 6= s1. These facts and the Pareto efficiency of ϕ imply

ϕi2(�, R) = s2 and either ϕi1(�, R) = s1 or ϕi′1
(�, R) = s1. Assume ϕi1(�, R) = s1—the

proof for the case with ϕi′1
(�, R) = s1 is symmetric.

Consider R′. Because of the monotonicity of ϕ and r1 ∪ r2 ⊆ r′, it must be that

ϕi1(�, R′) �i1 ϕi1(�, R) = s1 and ϕi2(�, R′) �i2 ϕi2(�, R) = s2. This and the Pareto

efficiency of ϕ imply ϕi1(�, R′) = s2 and ϕi2(�, R′) = s1.

Now, consider another preference relation �′i1 of i1 such that

�′i1 : s2,

and let �′:= (�′i1 ,�−i1). Then, by the individual rationality of ϕ, we have ϕi1(�′, R) = ∅.
This and Pareto efficiency of ϕ imply that ϕi′1

(�′, R) = s1 and ϕi2(�′, R) = s2.



9

Now, consider R′ again. Because of the monotonicity of ϕ and r1 ∪ r2 ⊆ r′, it must

be that ϕi′1
(�′, R′) �i′1

ϕi′1
(�′, R) = s1 and ϕi2(�′, R′) �i2 ϕi2(�′, R) = s2. This and

the Pareto efficiency of ϕ imply ϕi′1
(�′, R′) = s2 and ϕi2(�′, R′) = s1. Therefore, ϕi1(�′

, R′) = ∅.
Therefore, ϕi1(�, R′) = s2 �′i1 ∅ = ϕi1(�′, R′), showing that ϕ is not strategy-proof. �

This result demonstrates that every “good” mechanism lacks monotonicity. Specifically,

as long as we require standard desiderata of strategy-proofness, Pareto efficiency, and

individual rationality, the mechanism cannot be monotone. This result thus shows a limit

to the policymakers aiming to achieve monotonicity.

One might wonder why we consider monotonicity for only “one side,” i.e., students,

while considering Pareto efficiency for “two sides,” i.e., both students and schools. The

answer is that those are the weaker conditions than the other alternatives. Therefore, the

impossibility result of Theorem 1 holds even if our (one-sided) monotonicity and/or (two-

sided) Pareto efficiency are replaced with the two-sided version of monotonicity and/or

the one-sided version of Pareto efficiency.

One might also wonder if it is more natural to require stability instead of Pareto effi-

ciency. In response, we note that stability implies Pareto efficiency (recall that our Pareto

efficiency is a “two-sided” notion). Therefore, the impossibility result of Theorem 1 holds

when we replace Pareto efficiency with stability as well. As a consequence of imposing

a weaker requirement, the result is not only applicable to stable mechanisms such as the

DA mechanism but also to other standard ones such as the TTC mechanism.

We note that none of the conditions in Theorem 1 is extraneous: The DA mechanism

and the TTC mechanism satisfy all conditions except for monotonicity. A mechanism

that, for any region structure, produces the SOSM under the base of regions satisfies

all conditions except for Pareto efficiency. A mechanism under which every student is

matched to her first choice in her region satisfies all conditions except for individual

rationality (for schools). A mechanism that satisfies all conditions except for strategy-

proofness is analyzed in the next result. To do so, we begin by introducing a restriction

on the region structures.

Definition 3. The region structuresQ is weakly hierarchical if there exist noR,R′, R′′ ∈
Q such that there are r ∈ R, r′ ∈ R′, and r′′ ∈ R′′ satisfying r ∩ r′ 6= ∅, r 6⊆ r′, r′ 6⊆ r,

and r ∪ r′ ⊆ r′′.
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Note that if Q satisfies the following property that we would call hierarchical, then it is

also weakly hierarchical, hence the name. The property is that for all R,R′ ∈ Q, r ∈ R,

and r′ ∈ R′, we have r ⊆ r′, r′ ⊆ r, or r ∩ r′ = ∅.
The main motivation for considering weak hierarchy is that it proves crucial in char-

acterizing monotonicity. As such, we do not take a stance on whether weak hierarchy is

a stringent requirement. Instead, we provide examples illustrating when regional struc-

tures are weakly hierarchical or not. For instance, if integration is possible only along

an existing government structure, e.g., from districts within a municipality to the entire

municipality, or from municipalities within a county to the entire county, then the region

structures form a hierarchy, and thus a weak hierarchy. In contrast, suppose that there are

three (mutually disjoint) municipalities A, B, and C, and A could be merged only with

B or only with C or with both B and C. This case gives rise to region structures that

are not weakly hierarchical. We note that, while weakly hierarchical region structures

do not necessarily admit a merger or vice versa, any hierarchical region structures with

cardinality of at least two admit a merger.

Theorem 2. Fix an environment (I, S,Q). There is a monotone mechanism that is

Pareto efficient and individually rational if and only if Q is weakly hierarchical.

Proof. “Only if” direction:

Consider a mechanism ϕ that is Pareto efficient and individually rational. We will show

that ϕ is not monotone if Q is not weakly hierarchical.

Suppose thatQ is not weakly hierarchical. Then, there must exist R,R′, R′′ ∈ Q, r ∈ R,

r′ ∈ R′ and r′′ ∈ R′′ such that r \ r′, r′ \ r and r ∩ r′ are all nonempty and r ∪ r′ ⊆ r′′.

Take such (R,R′, R′′, r, r′, r′′) and take an arbitrary s ∈ r ∩ r′ ∩ S, i ∈ (r \ r′) ∩ I and

i′ ∈ (r′ \ r) ∩ I. Such a school and students exist because regions are constructed from a

base of regions. Consider a preference profile such that:

�i: s, �s: i, i
′,

�i′ : s,

and the capacity of school s is one, while all other schools and students prefer ∅ the most.

By feasibility, Pareto efficiency and the fact that i, s ∈ r and i′, s ∈ r′, we have ϕi(�
, R) = s and ϕi′(�, R′) = s. However, since the capacity of s is one, the assumption that

ϕ is individually rational implies that we must have either ϕi(�, R′′) 6= s, which implies

ϕi(�, R′′) = ∅, or ϕi′(�, R′′) 6= s, which implies ϕi′(�, R′′) = ∅. This implies that either i

is worse off under R′′ compared to under R, or i′ is worse off under R′′ compared to under

R′. Since r ⊆ r′′ and r′ ⊆ r′′, this implies that ϕ is not monotone.
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“If” direction:

Suppose that Q is weakly hierarchical. We construct a monotone mechanism ϕ that is

Pareto efficient and individually rational.

For this purpose, let R =
⋃

R∈QR and define a directed graph with the set of nodes

being R and the set of edges being:

E = {rr′|r, r′ ∈ R, r ( r′ and 6 ∃r′′ ∈ R s.t. r ( r′′ ( r′}.

For every r ∈ R, let c(r) be the maximum length of a path in the graph that leads to

r. Formally, c : R → {0}∪N is a unique function that satisfies the following: (i) c(r) = 0

if there is no r̃ ∈ R with r̃r ∈ E, and (ii) for any r ∈ R such that there is at least one

r̃ ∈ R with r̃r ∈ E,

c(r) = 1 + max
r̃∈R s.t. r̃r∈E

c(r̃).

Say that a matching µ is feasible for r ∈ R if µi ∈ r ∪ {∅} for every student i ∈ r ∩ I
and µs ⊆ r for every school s ∈ r ∩ S.

We define ϕ inductively as follows. Fix �.

Step 0: Consider r such that c(r) = 0. Take an arbitrary matching, denoted µr, that

is feasible for r, Pareto efficient for r and individually rational.11 (Such a matching

exists because the set of all feasible and individually rational matchings is nonempty and

finite.12) For every a ∈ r, we let ϕa(�, R) = µr
a for every R ∈ Q such that r ∈ R.

For any n ≥ 1 such that there is r ∈ R such that c(r) = n, we define Step n as follows.

Step n: Consider r such that c(r) = n. Let S(r) = {r̃ ∈ R|r̃r ∈ E}. Since Q is weakly

hierarchical, any two r̃, r̂ ∈ S(r) are disjoint.

Consider a matching that is feasible for r, denoted by µr,0, such that, for each r̃ ∈ S(r)

and each a ∈ r̃, we set µr,0
a = ϕa(�, R) for some R ∈ Q satisfying r̃ ∈ R (the choice of

R does not matter because ϕa(�, R) = ϕa(�, R′) for any R,R′ ∈ Q satisfying r̃ ∈ R and

r̃ ∈ R′ from Steps 0, . . . , n−1). Note that this µr,0
a is well defined due to Steps 0, . . . , n−1

and the fact that any r̃, r̂ ∈ S(r) are disjoint. Then, take an arbitrary matching, denoted

µr, that is feasible for r and Pareto efficient for r and satisfies µr
a �a µ

r,0
a for all a ∈ I ∪ S

11Say that a matching is Pareto efficient for r if it is feasible for r and there exists no other matching

µ′ that is feasible for r such that µ′
a �a µa for all a ∈ r.

12One way to find such a matching is to implement the DA mechanism for the students and schools

in r.
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such that there exists r̃ with a ∈ r̃ ∈ S(r).13 For every a ∈ r, we let ϕa(�, R) = µr
a for

every R ∈ Q such that r ∈ R.

The above procedure pins down ϕa(�, R) for all a ∈ I ∪ S and R ∈ Q. Note that

it follows from the construction that ϕ(�, R) is a feasible matching and it is Pareto

efficient. It is individually rational because at each n and any r ∈ R such that c(r) = n,

the matching µr,0 is individually rational. Finally, ϕ is monotone because for any r, r′ ∈ R
such that r ( r′ and i ∈ r∩I, the construction implies that there is a sequence (r1, . . . , rK)

for some K such that (i) rk ∈ R for every k = 1, . . . , K, (ii) rr1, r1r2, . . . , rK−1rK , rKr′ ∈
E, and (iii) µr′

i �i µ
rK

i � · · · �i µ
r1 � µr

i .

This completes the proof. �

This result shows that there is a limit to monotonicity even when the requirement for

strategy-proofness is lifted. Moreover, the result completely characterizes such a limit,

providing a guidance to the policymaker about when one can guarantee an existence of

a monotone mechanism that satisfies other desirable properties (for examples in which

region structures are weakly hierarchical and not, respectively, refer to the illustrative

paragraph subsequent to Definition 3).

4. When Is DA Monotone?

The preceding section showed senses in which monotonicity is hard to guarantee because

of the competitive effect of integration. Intuitively, the effect of competition is present

when schools in a given region prefer the students in other regions than the students in

their own region. We investigate the validity of this intuition by considering a number of

standard mechanisms in school choice. We find that this intuition is valid under the DA

mechanism but not under other standard mechanisms.

We begin by defining basic concepts for this investigation.

Definition 4. Let �S be a profile of school preferences. A mechanism ϕ is monotone

at �S if, for all R,R′ ∈ Q, r ∈ R, r′ ∈ R′ such that r ⊆ r′, i ∈ r ∩ I, and �′ such that

�′S=�S, we have ϕi(�′, R′) �i ϕi(�′, R).

Definition 5. A school preference relation �s favors locals if there exist no R,R′ ∈
Q, r ∈ R, r′ ∈ R′ with s ∈ r ⊆ r′, i ∈ r ∩ I with i �s ∅, I ′ ⊆ I with I ′ ⊆ r′, I ′ 6⊆ r, and

|I ′| = qs, such that i′ �s i for all i′ ∈ I ′.

13Again, there is such a matching due to finiteness.
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Intuitively, a school s fails to favor locals if a local student i is ranked lower than some

non-local students in a manner that “matters” for matching. Specifically, we require that

there be a set of competing students I ′ ⊆ I such that (i) there are enough students in I ′

to fill the capacity of the school (|I ′| = qs), (ii) all students in I ′ are ranked higher by s

than i (i′ �s i for all i′ ∈ I ′), and (iii) some students in I ′ can compete for a seat with i

only after the expansion of the region (I ′ ⊆ r′ and I ′ 6⊆ r).

The main motivation for considering school preferences that favor locals is that it proves

crucial in characterizing monotonicity of stable mechanisms. Just like for weak hierarchy,

we do not take a stance on whether this condition is a stringent requirement but instead

provide examples illustrating when school preferences favor locals or not. For instance,

if schools are locally funded, as in public schools in the United States, “neighborhood

priorities” are given to students over others, and it is often lexicographic in the sense

that students from a school’s neighborhood have higher priority over others irrespective

of other characteristics of the students, resulting in school preferences that favor locals.

In other cases, by contrast, priorities could be given to students who are not locals. For

example, the assignment of daycare seats in Japan is conducted at the municipality level

and it is so even in cases in which the municipality is a result of a merger of multiple

municipalities: Japan experienced a large number of mergers in the early 21st century,

with more than 3200 in 2001 to less than 1800 in 2011, and yet, to our knowledge,

no municipalities provide priority depending on the applicant’s original municipality of

residence.

Proposition 1. Fix an environment (I, S,Q) and a profile of school preferences �S. The

following statements are equivalent.

(1) There exists a stable mechanism that is monotone at �S.

(2) The DA mechanism is monotone at �S.

(3) School preference relation �s favors locals for all s ∈ S.

Proof. That (2) implies (1) is obvious. In the remainder, we will prove (1) ⇒ (3) and (3)

⇒ (2).

Proof of (1) ⇒ (3): We begin by letting ϕ denote a stable mechanism. Suppose that there

exists s ∈ S such that �s does not favor locals. Then, there exist R,R′ ∈ Q, r ∈ R, r′ ∈ R′

with s ∈ r ⊆ r′, i ∈ r ∩ I with i �s ∅, I ′ ⊆ r′ ∩ I with |I ′| = qs and I ′ 6⊆ r such that

i′ �s i for all i′ ∈ I ′. Take such s, R, R′, r, r′, i, and I ′.

Consider student preferences such that

(1) s �i′′ ∅ �i′′ s
′ for every s′ ∈ S \ s and i′′ ∈ {i} ∪ I ′,
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(2) ∅ �i′′ s
′ for every s′ ∈ S and i′′ ∈ I \ ({i} ∪ I ′).

First, consider R and region r. Because |I ′ ∩ r| ≤ qs − 1 by |I ′| = qs and I ′ 6⊆ r, stability

implies ϕi(�, R) = s. Next, consider R′ and r′. Because |I ′ ∩ r′| = qs and i′ �s i for all

i′ ∈ I ′, stability implies ϕi(�, R′) = ∅. Therefore, we have shown ϕi(�, R) = s �i ∅ =

ϕi(�, R′), so monotonicity is violated.

Proof of (3) ⇒ (2): Suppose that �s favors locals for each s ∈ S, and let R,R′ ∈ Q, r ∈ R
and r′ ∈ R′ be such that r ⊆ r′. First, consider the DA mechanism between all schools

in r and all students in r′.14 More specifically, consider a version of Gale and Shapley

(1962)’s algorithm that outputs the outcome of the DA mechanism in which applications

by students in r′ \ r are made only after all students in r either are tentatively matched

or have been rejected by all schools that they find acceptable.15 Note that, because �s

favors locals for each s ∈ r∩S, no student in r is rejected after students in r′ \ r begin to

make applications.16 Therefore, at the end of this algorithm, each student in r is matched

to a school that she is matched with at the DA mechanism between all schools in r and

all students in r. Now, because of the well-known comparative statics result that adding

schools make students weakly better off under the DA mechanism (Crawford, 1991), the

DA mechanism between all schools in r′ and all students in r′ places each student in r to

a school that she weakly prefers, showing the monotonicity of the DA mechanism. �

The equivalence between (1) and (2) provides a certain justification of using the DA

mechanism. Specifically, the set of school preference profiles at which the DA mechanism is

monotone is no smaller than the set of school preferences at which there exists a stable and

monotone mechanism. By contrast, some stable mechanisms may violate monotonicity

even at school preferences at which the DA mechanism is monotone.17

14Strictly speaking, we defined the DA mechanism only for each region structure R. However, it is

straightforward to extend the definition to the one that operates between any set of students and any set

of schools.
15We note that the outcome of Gale and Shapley (1962)’s algorithm does not depend on the order of

applications (McVitie and Wilson, 1970).
16Otherwise, the condition in favoring locals is violated by setting I ′ as follows. Consider the first step

after students in r′ \ r begin to make applications at which a student in r gets rejected, and let s be the

school that made that rejection. Let I ′ be the set of all students that are tentatively accepted at s at

that step.
17The following mechanism is not necessarily monotone even at such school preferences, i.e., even when

school preferences favor locals (see the equivalence between (2) and (3)) : it produces the same outcome

as the DA mechanism under some region structure while producing the outcome of the school-proposing

deferred acceptance algorithm under another region structure.
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The equivalence between (2) and (3) verifies the intuition that the negative effect of

competition is caused precisely by schools that do not favor local students in the context

of the DA mechanism.18 Intuitively, when the school preferences favor locals, no student

who is matched with her local school would be “kicked out” when students from other

districts can make applications to the school.19 Conversely, if school preferences do not

favor locals, then there must be an instance where some students are kicked out when a

region expands, violating monotonicity.

The conclusion of no kicking out when schools favor locals holds because we consider

the DA mechanism, and indeed, other mechanisms may fail to have monotonicity even

when schools favor locals. We discuss this point in Example 1 below as well as Examples 2

and 3 in the Appendix.

For the TTC mechanism, the same proof as the one for “(1) ⇒ (3)” of Proposition 1

shows that it is not monotone if �S does not favor locals. It is not necessarily monotone,

however, even if �S favors locals.

Example 1 (Non-monotonicity of TTC under favoring locals). Let I = {i1, i2, i′}, S =

{s, s′}, Q = {R,R′}, R = {r, r′} where r = {i1, i2, s}, r′ = {i′, s′}, R′ = {r ∪ r′}.20 Let

�i1 : s
′, �s: i1, i2, i

′,

�i2 : s, �s′ : i
′, i1, i2,

�i′ : s, s
′

18 This result is reminiscent of a result by Hafalir, Kojima and Yenmez (2022), who find a condition

under which integration makes every student weakly better off under the DA mechanism. Their setting,

however, differs from ours in that they endow each region with a choice function and only consider region

structures where all regions are separate or all regions are merged, which makes their result logically

unrelated to ours. We also note that their study restricts attention to the DA mechanism, and thus

contains no analogue of the equivalences between (1) and (2) or between (1) and (3).
19Being consistent with this intuition, the proof of (3) ⇒ (2) in fact shows the following stronger

result: For any R ∈ Q and r ∈ R, if school preference relation �s favors locals for all s ∈ r, then for any

student i ∈ r and a region structure R′, the relation r ⊆ r′ ∈ R′ implies that the DA mechanism gives i

a weakly more preferred match under R′ than under R.
20 Strictly speaking, our model assumes that each region is constructed from a base of regions and

hence contains at least two students, a condition violated by r′. This is just for expositional simplicity,

and it is straightforward to modify the present example such that the condition is satisfied.
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where each school’s capacity is 1. Note that �S favors locals. Under this preference

profile, the TTC mechanism returns(
s s′ ∅
i2 i′ i1,

)
and

(
s s′ ∅
i′ i1 i2

)
,

under region structures R and R′, respectively. Hence, in particular, student i2 is assigned

to s under R and she is unmatched under R′, while s �i2 ∅. Thus, monotonicity is violated.

To get the intuition, first note that monotonicity of a mechanism may fail when merging

regions result in a situation where a student who could secure a seat at a local school before

a merger is displaced by some non-local student after the merger. Such displacement does

not occur under the DA mechanism if school preference favor locals. However, the TTC

mechanism is not stable, so such displacement may happen even if school preferences favor

locals. In fact, other unstable mechanisms such as the Boston mechanism (Abdulkadiroğlu

and Sönmez, 2003) and the serial dictatorship also fail to be monotone even if school

preferences favor locals for the same reason.21 Overall, the intuition that the negative

effect of competition is only caused by schools not favoring their local students is valid

under the DA mechanism but not under other standard (but unstable) mechanisms.

5. Conclusion

The present paper investigated the scope for welfare gain in integrating fragmented

matching markets, identifying possible barriers against integration. Our analysis revealed

difficulties with integrating markets in a “monotone” manner in the sense of leaving no

students worse off. Specifically, we found that whether a monotone mechanisms exists

depends on other properties of mechanisms to be required, the class of possible region

structures, and school preferences. Further investigations are in order so as to better

understand the implications of integrations as well as desirable matching mechanisms in

the face of barriers to integration.
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Appendix A. Boston Mechanism and Serial Dictatorship

We provide examples in which the Boston mechanism and the serial dictatorship fail

to be monotone although school preferences favor locals. The intuition for the lack of

monotonicity is essentially the same as for the TTC mechanism (Example 1).

Example 2 (Non-monotonicity of Boston under favoring locals). Let I = {i1, i2, i′}, S =

{s1, s2, s′}, Q = {R,R′}, R = {r, r′} where r = {i1, i2, s1, s2}, r′ = {i′, s′}, R′ = {r∪ r′}.22

Let

�i1 : s1, s2 �s1 : i1, i2, i
′,

�i2 : s1, s2 �s2 : i1, i2, i
′,

�i′ : s2, s
′ �s′ : i

′, i1, i2,

where each school’s capacity is 1. Note that �S favors locals. Under this preference

profile, the Boston mechanism returns(
s1 s2 s′

i1 i2 i′

)
and

(
s1 s2 s′ ∅
i1 i′ ∅ i2

)
,

under region structures R and R′, respectively. Hence, in particular, student i2 is assigned

to s2 under R and she is unmatched under R′, while s2 �i2 ∅. Thus, monotonicity is

violated.

Example 3 (Non-monotonicity of serial dictatorship under favoring locals). Let I =

{i, i′}, S = {s, s′}, Q = {R,R′}, R = {r, r′} where r = {i, s}, r′ = {i′, s′}, R′ = {r ∪ r′}.23

Let

�i: s �s: i, i
′,

�i′ : s, s
′ �s′ : i

′, i,

where each school’s capacity is 1. Note that �S favors locals. Consider serial dictatorship

such that the serial order is i′, i. Under this preference profile, the serial dictatorship

returns (
s s′ ∅
i i′ ∅

)
and

(
s s′ ∅
i′ ∅ i

)
,

under region structures R and R′, respectively. Hence, in particular, student i is assigned

to s under R and she is unmatched at R′, while s �i ∅. Thus, monotonicity is violated.

22The same remark as in footnote 20 applies to this example as well.
23Again, the same remark as in footnote 20 applies to this example as well.


