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Abstract. Matching markets are often fragmented, organized at a small local level.

While integration of matching markets may lead to welfare gains by expanding choice,

it may also harm some market participants by increasing competition for the same re-

sources. We show that every “good” mechanism fails the monotonicity requirement that

no individuals be hurt by integration. Then we provide characterization results that

identify conditions under which monotonicity becomes compatible with other desirable

properties of matching mechanisms.
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1. Introduction

Allocation of resources such as daycare slots, school seats and vaccines are often con-

ducted at small local levels. For example, in Tokyo, daycare slots and elementary school

seats are allocated within each of the 23 small districts that partitions the city.1 Major

cities in China such as Tianjin and Shanghai have an admission system for kindergartens

where the cities are divided into small districts and a child in a given district can only be

assigned to a school in the district. During the Covid-19 pandemic, Japanese government

adopted the policy to first distribute vaccines to each municipality, such as each of the 23

small districts in Tokyo, which was then responsible for distributing the allotted vaccine

to their residents. In the assignment of children into foster homes in Los Angeles County,

CA, the assignment is conducted at an inefficiently fragmented level of regional offices

(Robinson-Cortes, 2019).2 Facing such fragmentation of the markets, one could hope for

a welfare gain by the integration of the regions. What are the barriers against integration?

Integration entails two opposing effects for the individuals seeking for resources. On the

one hand, it increases the choice because the resources in the integrated region become

available. On the other hand, it increases the competition because the resources that

were originally exclusive to the individuals in a given region become available to more

individuals. The objective of this paper is to understand this tradeoff and characterize

when the first effect dominates; that is, individuals become better off by integration.

For this purpose, we consider a two-sided matching model, where we refer to agents in

the two sides as students and schools.3 A “region structure” partitions the set of students

and schools, and we examine how a change in the region structure affects student welfare.

In particular, we ask if a mechanism in consideration is monotone, meaning that integra-

tion always weakly improves student welfare. Our first theorem (Theorem 1) shows that

every “good” mechanism lacks monotonicity: No mechanism that is strategy-proof, Pareto

efficient and individually rational is monotone. This result demonstrates that a policy-

maker designing a mechanism has to admit competition to sometimes override choice if

they wish to maintain strategy-proofness, Pareto efficiency and individual rationality. Or,

they have to abandon at least one of these three properties to retain monotonicity. Given

this impossibility, we then consider mechanisms that are Pareto efficient and individually

1There are some exceptions to this rule that allow for interdistrict transfers under limited scenarios,

but such transfers are rarely implemented.
2See also Slaugh et al. (2016), who are, to our knowledge, the first to apply tools from matching theory

to the problem of child adoption.
3See Gale and Shapley (1962), Roth (1984), Roth and Peranson (1999), and Abdulkadiroğlu and

Sönmez (2003), among many others, for seminal work in two-sided matching markets.
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rational (while possibly being non-strategy-proof). We show that there exist monotone

mechanisms that satisfy those properties if and only if the set of allowed region structures

has a type of a hierarchical structure (Theorem 2). This result demonstrates that there

is a limit to monotonicity even when the requirement for strategy-proofness is lifted and

completely characterizes such a limit.

Intuitively, the effect of competition is present when schools in a given region prefer the

students in other regions than the students in its own region. We investigate the validity

of this intuition by considering the celebrated deferred acceptance (DA) mechanism. We

show that the DA mechanism (applied to each region) is monotone if and only if the

school preferences favor local students (Proposition 1). However, we also prove that such

a characterization does not hold for other well-known mechanisms such as the top trading

cycles (TTC) mechanism (Shapley and Scarf, 1974), showing that they are not mono-

tone even if school preferences favor locals. Our analysis demonstrates that integration

improves welfare for every student in some practical scenarios under the DA mechanism

while the same cannot be said for other well-known mechanisms. Hence, integration may

face less public opposition under the DA mechanism than under those mechanisms.

This paper belongs to the literature in matching with constraints. Research in this

literature include Abdulkadiroğlu (2005), Ergin and Sönmez (2006), Abraham, Irving

and Manlove (2007), Biro et al. (2010), Hafalir, Yenmez and Yildirim (2013), West-

kamp (2013), Goto et al. (2014), Kamada and Kojima (2015, 2017, 2018, 2023b), Kojima,

Tamura and Yokoo (2018), Aygün and Turhan (2020) and Pathak et al. (2021). The main

departure of the present paper is that we consider integration of multiple markets, while

those earlier contributions treat the relevant market as given.

We note that Kamada and Kojima (2023a) also consider integration of multiple regions

in a matching problem between students and schools and provide an approach complemen-

tary to the present paper. Specifically, their paper studies “partial integration” of regions,

in the sense that the produced matching must satisfy the balancedness constraint: for each

region, the total number of residents of other regions matched to schools in it must be

equal to the total number of its residents matched to a school outside of the region.4 That

is, the paper takes as given the constraint that “full integration” of multiple regions is

infeasible. The present paper, in contrast, studies whether, and to what extent, a full

integration of regions is desirable. Their paper and ours are complementary in this sense.

4Hafalir, Kojima and Yenmez (2022) introduced a balancedness constraint in the context of interdistrict

school choice. A balancedness constraint across individual institutions was introduced by Dur and Ünver

(2019).
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Benefit of integration as well as its possible cost has been a central issue in international

economics for at least two centuries. Ricardo (1821) famously argued that opening up

countries for international trade will benefit all countries through specialization and access

to goods from abroad, broadening choice. Stolper and Samuelson (1941) offered a model

in which, although trade improves overall welfare of a country, some sectors may be made

worse off through competition. Our paper can be thought of as identifying and analyzing

analogous forces of choice and competition in the context of matching problems.

2. Model

2.1. Preliminary Definitions. Let there be a finite set of students I and a finite set of

schools S. Each student i has a strict preference relation �i over the set of schools and

being unmatched (being unmatched is denoted by ∅). For any s, s′ ∈ S ∪ {∅}, we write

s �i s
′ if and only if s �i s

′ or s = s′.

Each school s ∈ S is endowed with a strict preference relation �s over the set of subsets

of students (we use ∅ to denote the empty set with a slight abuse of notation). For any

I ′, I ′′ ⊆ I, we write I ′ �s I
′′ if and only if I ′ �s I

′′ or I ′ = I ′′. We denote by �= (�a)a∈I∪S

the preference profile of all students and schools. For any i, i′ ∈ I ∪ {∅}, we write i �s i
′

if and only if i �s i
′ or i = i′.5

For each s ∈ S, fix a positive integer qs. We assume that preference relation �s is

responsive with capacity qs (Roth, 1985), that is,

(1) For any I ′ ⊆ I with |I ′| ≤ qs, i ∈ I \ I ′ and i′ ∈ I ′, (I ′ ∪ i) \ i′ �s I
′ if and only if

i �s i
′, and

(2) For any I ′ ⊆ I with |I ′| ≤ qs and i′ ∈ I ′, I ′ �s I
′ \ i′ if and only if i′ �s ∅.

(3) ∅ �s I
′ for any I ′ ⊆ I with |I ′| > qs.

In words, we assume that the ranking of a student (or keeping a position vacant) is

independent of her peers, and any set of students exceeding its capacity is unacceptable.

Student i is said to be acceptable to school s if i �s ∅ (and unacceptable otherwise).

Similarly, s is acceptable to i if s �i ∅. It will turn out that only rankings of acceptable

partners matter for our analysis, so we often write only acceptable partners to denote

preferences and priorities. For example,

�i: s, s
′

5We denote singleton set {x} by x when there is no confusion.
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means that school s is the most preferred, s′ is the second most preferred, and s and s′

are the only acceptable schools under preferences �i of student i. We also use analogous

expressions for school preferences.

A matching µ is a mapping that satisfies (i) µi ∈ S ∪ {∅} for all i ∈ I, (ii) µs ⊆ I

for all s ∈ S, and (iii) for any i ∈ I and s ∈ S, µi = s if and only if i ∈ µs. That is, a

matching simply specifies which student is assigned to which school (if any).

A matching is individually rational if µa �a ∅ for every a ∈ I ∪ S.

2.2. Regions. Fix a base of regions, which is a partition R0 of I∪S. A region structure

R is a partition of I ∪ S such that each r ∈ R is of the form r = r1 ∪ · · · ∪ rk with

r1, . . . , rk ∈ R0. An element r ∈ R is called a region. Note that each s belongs to a

single r ∈ R and each i is a resident of a single r ∈ R. To simplify the exposition of some

results, we hereafter assume that |r ∩ I| ≥ 2 and |r ∩ S| ≥ 1 hold for each r ∈ R0. We

denote by Q a nonempty subset of the set of all region structures.

We call tuple (I, S,Q) an environment.

A matching µ is feasible under R if, for all r ∈ R and i ∈ r∩ I, we have µi ∈ r∪{∅}.
A matching µ is Pareto efficient under R if (i) it is feasible under R and (ii) there exists

no other matching µ′ that is feasible under R and satisfies µ′a �a µa for every a ∈ I ∪ S.

Given a matching µ, a pair (i, s) ∈ I × S is called a blocking pair if s �i µi and

there is I ′ ⊆ µs ∪ {i} such that I ′ �s µs. A matching µ is stable under R if (i) it is

feasible under R, (ii) s = µi implies s �i ∅ and i ∈ µs implies i �s ∅, and (iii) it does not

have any blocking pair (i, s) such that there exists r ∈ R with i, s ∈ r. Gale and Shapley

(1962) imply that there is a unique stable matching µ∗ under R such that for every stable

matching µ under R and every i ∈ I, we have µ∗i � µi. Call it a student-optimal stable

matching (or, SOSM) under R.

A mechanism ϕ is a function from the set of preference profile-region structure pairs

to the set of feasible matchings. That is, ϕ(�, R) is a feasible matching under R.

Mechanism ϕ is strategy-proof if

ϕi(�, R) �i ϕi(�′i,�−i, R),

for every region structure R ∈ Q, preference profile �, i ∈ I, and student preferences �′i.6

Mechanism ϕ is individually rational if ϕ(�, R) is individually rational for all � and

R ∈ Q. Similarly, ϕ is Pareto efficient if ϕ(�, R) is Pareto efficient under R for all �
and R ∈ Q.

6We note that the definition requires reporting true preferences be a best reply for students only.
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We say that ϕ is the deferred acceptance mechanism (or, the DA mechanism) if,

for any input (�, R), the matching ϕ(�, R) is the SOSM under R given preference profile

�.

3. Limits of Monotone Mechanisms

We are now ready to introduce the key concept of this paper, monotonicity.

Definition 1. A mechanism ϕ is monotone if, for all R,R′ ∈ Q, r ∈ R, r′ ∈ R′ such

that r ⊆ r′, i ∈ r ∩ I, and �, we have ϕi(�, R′) �i ϕi(�, R).

In words, monotonicity requires that all students be made weakly better off when

regions expand. Note that we do not require schools be weakly better off. Our negative

results (such as Theorem 1) clearly hold under a stronger requirement that all students

and schools be made better off as a result of expansion.

Definition 2. We say that Q admits a merger if there exist R,R′ ∈ Q, distinct

r1, r2 ∈ R and r′ ∈ R′ such that r1 ∪ r2 ⊆ r′.

We regard admitting a merger as a minimal requirement. The condition is satisfied

if, for instance, Q includes the base of regions or the grand region structure (i.e., the

partition consisting of a single cell) and contains at least two region structures.

Theorem 1. Fix an environment (I, S,Q) such that Q admits a merger. There exists no

monotone mechanism that is strategy-proof, Pareto efficient, and individually rational.

Proof. Consider a monotone mechanism ϕ that is Pareto efficient and individually ratio-

nal. We will show that ϕ is not strategy-proof.

Because Q admits a merger, there exist R,R′ ∈ Q with the following property: there

exist distinct r1, r2 ∈ R and r′ ∈ R′ such that r1 ∪ r2 ⊆ r′. Fix such (R,R′, r1, r2, r
′)

arbitrarily.

Let {s1, i1, i′1} ⊆ r1 and {s2, i2} ⊆ r2: Such schools and students exist because regions

are constructed from a base of regions. Consider a preference profile such that:

�i1 : s2, s1, �s1 : i2, i1, i
′
1,

�i′1
: s2, s1, �s2 : i1, i

′
1, i2,

�i2 : s1, s2,

and the capacities of s1 and s2 are both one, while all other schools and students prefer

∅ the most.
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By feasibility and the fact that i1, i
′
1 6∈ r2, we have ϕi1(�, R) 6= s2 and ϕi′1

(�, R) 6= s2.

Similarly, we have ϕi2(�, R) 6= s1. These facts and the Pareto efficiency of ϕ imply

ϕi2(�, R) = s2 and either ϕi1(�, R) = s1 or ϕi′1
(�, R) = s1. Assume ϕi1(�, R) = s1—the

proof for the case with ϕi′1
(�, R) = s1 is symmetric.

Consider R′. Because of the monotonicity of ϕ and r1 ∪ r2 ⊆ r′, it must be that

ϕi1(�, R′) �i1 ϕi1(�, R) = s1 and ϕi2(�, R′) �i2 ϕi2(�, R) = s2. This and the Pareto

efficiency of ϕ imply ϕi1(�, R′) = s2 and ϕi2(�, R′) = s1.

Now, consider another preference relation �′i1 of i1 such that

�′i1 : s2,

and let �′:= (�′i1 ,�−i1). Then, by the individual rationality of ϕ, we have ϕi1(�′, R) = ∅.
This and Pareto efficiency of ϕ imply that ϕi′1

(�′, R) = s1 and ϕi2(�′, R) = s2.

Now, consider R′ again. Because of the monotonicity of ϕ and r1 ∪ r2 ⊆ r′, it must

be that ϕi′1
(�′, R′) �i′1

ϕi′1
(�′, R) = s1 and ϕi2(�′, R′) �i2 ϕi2(�′, R) = s2. This and

the Pareto efficiency of ϕ imply ϕi′1
(�′, R′) = s2 and ϕi2(�′, R′) = s1. Therefore, ϕi1(�′

, R′) = ∅.
Therefore, ϕi1(�, R′) = s2 �′i1 ∅ = ϕi1(�′, R′), showing that ϕ is not strategy-proof. �

This result demonstrates that every “good” mechanism lacks monotonicity. Specifically,

as long as we require standard desiderata of strategy-proofness, Pareto efficiency, and

individual rationality, the mechanism cannot be monotone. This result thus shows a limit

to the policymakers aiming to achieve monotonicity.

We note that none of the conditions in Theorem 1 is extraneous: The DA mechanism

satisfies all conditions except for monotonicity. A mechanism that always returns an

empty matching, i.e., a matching in which every student is unmatched, satisfies all con-

ditions except for Pareto efficiency. A mechanism under which every student is matched

to her first choice satisfies all conditions except for individual rationality (for schools).

A mechanism that satisfies all conditions except for strategy-proofness is analyzed in the

next result. To do so, we begin by introducing a restriction on the region structures.

Definition 3. The region structuresQ is weakly hierarchical if there exist noR,R′, R′′ ∈
Q such that there are r ∈ R, r′ ∈ R′, and r′′ ∈ R′′ satisfying r ∩ r′ 6= ∅, r 6⊆ r′, r′ 6⊆ r,

and r ∪ r′ ⊆ r′′.

Note that if Q satisfies the following property that we would call hierarchical, then it is

also weakly hierarchical, hence the name. The property is that for all R,R′ ∈ Q, r ∈ R,

and r′ ∈ R′, we have r ⊆ r′, r′ ⊆ r, or r ∩ r′ = ∅. For example, if integration is possible
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only along an existing government structure, e.g., from districts within a municipality

to the entire municipality, or from municipalities within a county to the entire county,

then the region structures form a hierarchy, and thus a weak hierarchy. In contrast,

suppose that there are three (mutually disjoint) municipalities A, B, and C, and A could

be merged only with B or only with C or with both B and C. This case gives rise to

region structures that are not weakly hierarchical. We note that, while weakly hierarchical

region structures do not necessarily admit a merger or vice versa, any hierarchical region

structures with cardinality of at least two admit a merger.

Theorem 2. Fix an environment (I, S,Q). There is a monotone mechanism that is

Pareto efficient and individually rational if and only if Q is weakly hierarchical.

Proof. “Only if” direction:

Consider a mechanism ϕ that is Pareto efficient and individually rational. We will show

that ϕ is not monotone if Q is not weakly hierarchical.

Suppose thatQ is not weakly hierarchical. Then, there must exist R,R′, R′′ ∈ Q, r ∈ R,

r′ ∈ R′ and r′′ ∈ R′′ such that r \ r′, r′ \ r and r ∩ r′ are all nonempty and r ∪ r′ ⊆ r′′.

Take such (R,R′, R′′, r, r′, r′′) and take an arbitrary s ∈ r ∩ r′ ∩ S, i ∈ (r \ r′) ∩ I and

i′ ∈ (r′ \ r) ∩ I. Such a school and students exist because regions are constructed from a

base of regions. Consider a preference profile such that:

�i: s, �s: i, i
′,

�i′ : s,

and the capacity of school s is one, while all other schools and students prefer ∅ the most.

By feasibility, Pareto efficiency and the fact that i, s ∈ r and i′, s ∈ r′, we have ϕi(�
, R) = s and ϕi′(�, R′) = s. However, since the capacity of s is one, the assumption that

ϕ is individually rational implies that we must have either ϕi(�, R′′) 6= s, which implies

ϕi(�, R′′) = ∅, or ϕi′(�, R′′) 6= s, which implies ϕi′(�, R′′) = ∅. This implies that either i

is worse off under R′′ compared to under R, or i′ is worse off under R′′ compared to under

R′. Since r ⊆ r′′ and r′ ⊆ r′′, this implies that ϕ is not monotone.

“If” direction:

Suppose that Q is weakly hierarchical. We construct a monotone mechanism ϕ that is

Pareto efficient and individually rational.
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For this purpose, let R =
⋃

R∈QR and define a directed graph with the set of nodes

being R and the set of edges being:

E = {rr′|r, r′ ∈ R, r ( r′ and 6 ∃r′′ ∈ R s.t. r ( r′′ ( r′}.

For every r ∈ R, let c(r) be the maximum length of a path in the graph that leads to

r. Formally, c : R → {0}∪N is a unique function that satisfies the following: (i) c(r) = 0

if there is no r̃ ∈ R with r̃r ∈ E, and (ii) for any r ∈ R such that there is at least one

r̃ ∈ R with r̃r ∈ E,

c(r) = 1 + max
r̃∈R s.t. r̃r∈E

c(r̃).

Say that a matching µ is feasible for r ∈ R if µi ∈ r ∪ {∅} for every student i ∈ r ∩ I
and µs ⊆ r for every school s ∈ r ∩ S.

We define ϕ inductively as follows. Fix �.

Step 0: Consider r such that c(r) = 0. Take an arbitrary matching, denoted µr, that

is feasible for r, Pareto efficient for r and individually rational.7 (Such a matching exists

because the set of all feasible and individually rational matchings is nonempty and finite.8)

For every a ∈ r, we let ϕa(�, R) = µr
a for every R ∈ Q such that r ∈ R.

For any n ≥ 1 such that there is r ∈ R such that c(r) = n, we define Step n as follows.

Step n: Consider r such that c(r) = n. Let S(r) = {r̃ ∈ R|r̃r ∈ E}. Since Q is weakly

hierarchical, any two r̃, r̂ ∈ S(r) are disjoint.

Consider a matching that is feasible for r, denoted by µr,0, such that, for each r̃ ∈ S(r)

and each a ∈ r̃, we set µr,0
a = ϕa(�, R) for some R ∈ Q satisfying r̃ ∈ R (the choice of

R does not matter because ϕa(�, R) = ϕa(�, R′) for any R,R′ ∈ Q satisfying r̃ ∈ R and

r̃ ∈ R′ from Steps 0, . . . , n−1). Note that this µr,0
a is well defined due to Steps 0, . . . , n−1

and the fact that any r̃, r̂ ∈ S(r) are disjoint. Then, take an arbitrary matching, denoted

µr, that is feasible for r and Pareto efficient for r and satisfies µr
a �a µ

r,0
a for all a ∈ I ∪ S

such that there exists r̃ with a ∈ r̃ ∈ S(r).9 For every a ∈ r, we let ϕa(�, R) = µr
a for

every R ∈ Q such that r ∈ R.

The above procedure pins down ϕa(�, R) for all a ∈ I ∪ S and R ∈ Q. Note that

it follows from the construction that ϕ(�, R) is a feasible matching and it is Pareto

7Say that a matching is Pareto efficient for r if it is feasible for r and there exists no other matching

µ′ that is feasible for r such that µ′
a �a µa for all a ∈ r.

8One way to find such a matching is to implement the DA mechanism for the students and schools in

r.
9Again, there is such a matching due to finiteness.
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efficient. It is individually rational because at each n and any r ∈ R such that c(r) = n,

the matching µr,0 is individually rational. Finally, ϕ is monotone because for any r, r′ ∈ R
such that r ( r′ and i ∈ r∩I, the construction implies that there is a sequence (r1, . . . , rK)

for some K such that (i) rk ∈ R for every k = 1, . . . , K, (ii) rr1, r1r2, . . . , rK−1rK , rKr′ ∈
E, and (iii) µr′

i �i µ
rK

i � · · · �i µ
r1 � µr

i .

This completes the proof. �

This result shows that there is a limit to monotonicity even when the requirement for

strategy-proofness is lifted. Moreover, the result completely characterizes such a limit,

providing a guidance to the policymaker about when one can guarantee an existence of a

monotone mechanism that satisfies other desirable properties.

4. When Is DA Monotone?

The preceding section showed senses in which monotonicity is hard to guarantee because

of the competitive effect of integration. Intuitively, the effect of competition is present

when schools in a given region prefer the students in other regions than the students in

their own region. We investigate the validity of this intuition by considering a number

of standard mechanisms in school choice. We begin by defining basic concepts for this

investigation.

Definition 4. Let �S be a profile of school preferences. A mechanism ϕ is monotone

at �S if, for all R,R′ ∈ Q, r ∈ R, r′ ∈ R′ such that r ⊆ r′, i ∈ r ∩ I, and �′ such that

�′S=�S, we have ϕi(�′, R′) �i ϕi(�′, R).

Definition 5. A school preference relation �s favors locals if there exist no R,R′ ∈
Q, r ∈ R, r′ ∈ R′ with s ∈ r ⊆ r′, i ∈ r ∩ I with i �s ∅, I ′ ⊆ I with I ′ ⊆ r′, I ′ 6⊆ r, and

|I ′| = qs, such that i′ �s i for all i′ ∈ I ′.

Intuitively, a school s fails to favor locals if a local student i is ranked lower than some

non-local students in a manner that “matters” for matching. Specifically, we require that

there be a set of competing students I ′ ⊆ I such that (i) there are enough students in I ′

to fill the capacity of the school (|I ′| = qs), (ii) all students in I ′ are ranked higher by s

than i (i′ �s i for all i′ ∈ I ′), and (iii) some students in I ′ can compete for a seat with i

only after the expansion of the region (I ′ ⊆ r′ and I ′ 6⊆ r).

Proposition 1. Fix an environment (I, S,Q). The DA mechanism is monotone at �S if

and only if �s favors locals for all s ∈ S.

Proof. “If” direction:
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Suppose that �s favors locals for each s ∈ S, and let R,R′ ∈ Q, r ∈ R and r′ ∈ R′ be

such that r ⊆ r′. First, consider the DA mechanism between all schools in r and all stu-

dents in r′.10 More specifically, consider a version of Gale and Shapley (1962)’s algorithm

that outputs the outcome of the DA mechanism in which applications by students in r′ \r
are made only after all students in r either are tentatively matched or have been rejected

by all schools that they find acceptable.11 Note that, because �s favors locals for each

s ∈ r ∩ S, no student in r is rejected after students in r′ \ r begin to make applications.12

Therefore, at the end of this algorithm, each student in r is matched to a school that she

is matched with at the DA mechanism between all schools in r and all students in r. Now,

because of the well-known comparative statics result that adding schools make students

weakly better off under the DA mechanism (Crawford, 1991), the DA mechanism between

all schools in r′ and all students in r′ places each student in r to a school that she weakly

prefers, showing the monotonicity of the DA mechanism.

“Only if” direction:

We begin by letting ϕ denote the DA mechanism. Suppose that there exists s ∈ S such

that �s does not favor locals. Then, there exist R,R′ ∈ Q, r ∈ R, r′ ∈ R′ with s ∈ r ⊆ r′,

i ∈ r ∩ I with i �s ∅, I ′ ⊆ r′ ∩ I with |I ′| = qs and I ′ 6⊆ r such that i′ �s i for all i′ ∈ I ′.
Take such s, R, R′, r, r′, i, and I ′.

Consider student preferences such that

(1) s �i′′ ∅ �i′′ s
′ for every s′ ∈ S \ s and i′′ ∈ {i} ∪ I ′,

(2) ∅ �i′′ s
′ for every s′ ∈ S and i′′ ∈ I \ ({i} ∪ I ′).

First, consider R and region r. Because |I ′ ∩ r| ≤ qs − 1 by |I ′| = qs and I ′ 6⊆ r, stability

implies ϕi(�, R) = s. Next, consider R′ and r′. Because |I ′ ∩ r′| = qs and i′ �s i for all

i′ ∈ I ′, stability implies ϕi(�, R′) = ∅. Therefore, we have shown ϕi(�, R) = s �i ∅ =

ϕi(�, R′), so monotonicity is violated. �

10Strictly speaking, we defined the DA mechanism only for each region structure R. However, it is

straightforward to extend the definition to the one that operates between any set of students and any set

of schools.
11We note that the outcome of Gale and Shapley (1962)’s algorithm does not depend on the order of

applications (McVitie and Wilson, 1970).
12Otherwise, the condition in favoring locals is violated by setting I ′ as follows. Consider the first step

after students in r′ \ r begin to make applications at which a student in r gets rejected, and let s be the

school that made that rejection. Let I ′ be the set of all students that are tentatively accepted at s at

that step.
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In the context of the DA mechanism, this result verifies the intuition that the negative

effect of competition is caused precisely by schools that do not favor local students. In-

tuitively, when the school preferences favor locals, no student who is matched with her

local school would be “kicked out” when students from other districts can make appli-

cations to the school. Conversely, if school preferences do not favor locals, then there

must be an instance where some students are kicked out when a region expands, violating

monotonicity.

The conclusion of no kicking out when schools favor locals holds because we consider

the DA mechanism, and indeed, other mechanisms may fail to have monotonicity even

when schools favor locals.13 We discuss this point in Examples 1, 2 and 3.

For TTC, the same proof as the “only if” direction of the Proposition shows that it is

not monotone if �S does not favor locals. It is not necessarily monotone, however, even

if �S favors locals.

Example 1 (Non-monotonicity of TTC under favoring locals). Let I = {i1, i2, i′}, S =

{s, s′}, Q = {R,R′}, R = {r, r′} where r = {i1, i2, s}, r′ = {i′, s′}, R′ = {r ∪ r′}.14 Let

�i1 : s
′, �s: i1, i2, i

′,

�i2 : s, �s′ : i
′, i1, i2,

�i′ : s, s
′

where each school’s capacity is 1. Note that �S favors locals. Under this preference

profile, the TTC mechanism returns(
s s′ ∅
i2 i′ i1,

)
and

(
s s′ ∅
i′ i1 i2

)
,

under region structures R and R′, respectively. Hence, in particular, student i2 is assigned

to s under R and she is unmatched under R′, while s �i2 ∅. Thus, monotonicity is violated.

To get the intuition, first note that monotonicity of a mechanism may fail when merging

regions result in a situation where a student who could secure a seat at a local school before

13One might conjecture that the conclusion of the proposition holds for every stable mechanism. We

note that this is not the case. For example, if we replace the DA mechanism with a mechanism that

produces the same outcome as the DA mechanism under some region structure while producing the

outcome of the school-proposing deferred acceptance algorithm under another region structure, then the

“if” direction of the proposition does not hold for some environments.
14 Strictly speaking, our model assumes that each region is constructed from a base of regions and

hence contains at least two students, a condition violated by r′. This is just for expositional simplicity,

and it is straightforward to modify the present example such that the condition is satisfied.
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a merger is displaced by some non-local student after the merger. Such displacement does

not occur under the DA mechanism if school preference favor locals. However, the TTC

mechanism is not stable, so such displacement may happen even if school preferences favor

locals. In fact, other unstable mechanisms such as the Boston mechanism (Abdulkadiroğlu

and Sönmez, 2003) and the serial dictatorship also fail to be monotone even if school

preferences favor locals for the same reason.15 Overall, the intuition that the negative

effect of competition is only caused by schools not favoring their local students is valid

under the DA mechanism but not under other standard (but unstable) mechanisms.

5. Conclusion

The present paper investigated the scope for welfare gain in integrating fragmented

matching markets, identifying possible barriers against integration. Our analysis revealed

difficulties with integrating markets in a “monotone” manner in the sense of leaving no

students worse off. Specifically, we found that whether a monotone mechanisms exists

depends on other properties of mechanisms to be required, the class of possible region

structures, and school preferences. Further investigations are in order so as to better

understand the implications of integrations as well as desirable matching mechanisms in

the face of barriers to integration.
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Appendix A. Boston Mechanism and Serial Dictatorship

We provide examples in which the Boston mechanism and the serial dictatorship fail

to be monotone although school preferences favor locals. The intuition for the lack of

monotonicity is essentially the same as for the TTC mechanism (Example 1).

Example 2 (Non-monotonicity of Boston under favoring locals). Let I = {i1, i2, i′}, S =

{s1, s2, s′}, Q = {R,R′}, R = {r, r′} where r = {i1, i2, s1, s2}, r′ = {i′, s′}, R′ = {r∪ r′}.16

Let

�i1 : s1, s2 �s1 : i1, i2, i
′,

�i2 : s1, s2 �s2 : i1, i2, i
′,

�i′ : s2, s
′ �s′ : i

′, i1, i2,

where each school’s capacity is 1. Note that �S favors locals. Under this preference

profile, the Boston mechanism returns(
s1 s2 s′

i1 i2 i′

)
and

(
s1 s2 s′ ∅
i1 i′ ∅ i2

)
,

under region structures R and R′, respectively. Hence, in particular, student i2 is assigned

to s2 under R and she is unmatched under R′, while s2 �i2 ∅. Thus, monotonicity is

violated.

Example 3 (Non-monotonicity of serial dictatorship under favoring locals). Let I =

{i, i′}, S = {s, s′}, Q = {R,R′}, R = {r, r′} where r = {i, s}, r′ = {i′, s′}, R′ = {r ∪ r′}.17

Let

�i: s �s: i, i
′,

�i′ : s, s
′ �s′ : i

′, i,

where each school’s capacity is 1. Note that �S favors locals. Consider serial dictatorship

such that the serial order is i′, i. Under this preference profile, the serial dictatorship

returns (
s s′ ∅
i i′ ∅

)
and

(
s s′ ∅
i′ ∅ i

)
,

under region structures R and R′, respectively. Hence, in particular, student i is assigned

to s under R and she is unmatched at R′, while s �i ∅. Thus, monotonicity is violated.

16The same remark as in footnote 14 applies to this example as well.
17Again, the same remark as in footnote 14 applies to this example as well.


