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Abstract

This paper proposes a tractable model that allows us to analyze how agents’

perception of relationships with others determines the structures of networks. In

our model, agents are endowed with their own multi-dimensional characteristics

and their payoffs depend on the social distance between them. We characterize the

clustering coefficient and average path length in stable networks, and analyze how

they are related to the way agents measure social distances. The model predicts

the small-world properties under a class of social distance that violates the trian-

gle inequality. Allowing for heterogeneity in link-formation costs, the model also

accommodates other well-documented empirical patterns of social networks such as

skewed degree distributions, positive assortativity of degrees, and clustering-degree

correlation.
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1 Introduction

The structure of a social network plays an important role in determining the behavior of

agents in various settings, for example, peer effects, opinion formation, and information

diffusion.1 Numerous empirical works have shown that different networks have different

structures, where the structures of networks are evaluated by various measures.2 Two

well-known and well-used measures of network structures are the clustering coefficient

and average path length, which represent a network’s cliquishness and connectedness,

respectively. For example, the “e-mail network,” in which a link represents an incidence

of an email exchange, has a low clustering coefficient and a low average path length (Ebel

et al., 2002). The “coauthorship network,” in which a link represents an incidence of

coauthorship between two economics scholars, has a high clustering coefficient and a high

average path length (Goyal et al., 2006).3 Why do some networks have low clustering

coefficient and/or average path length, while others do not?

To answer our motivating question, let us start from the following casual observation:

E-mail exchanges do not require many similar aspects between the sender of the email and

the receiver, while coauthoring likely needs both parties to have more similar interests.

More generally, in different networks, people have different ways of evaluating their rela-

tionships with others. The present paper argues that this difference in how people evaluate

relationships explains why different networks have different structures. We construct a

model in which agents are endowed with their own multi-dimensional characteristics. We

characterize clustering coefficient and average path length in stable networks, and analyze

how they are related to the way agents measure the distances between their characteris-

tics. The model also produces well-documented empirical patterns, such as skewed degree

distributions, positive assortativity, and negative clustering-degree correlations.

More specifically, this paper models agents’ characteristics, or types, as points in a

multi-dimensional type space, and analyzes how the network structure depends on the

notion of distance in the type space. Each coordinate indicates some aspect of agents’

characteristics, such as jobs, locations, tastes, political views, and so forth. Distance in

the type space, which we call social distance, represents the level or amount of obstacles to

agents’ relations, so agents form links with others who are nearby.4 In order to compute

1See Goyal (2005) and Jackson (2008a), among others, for a survey.
2For references on these empirical works, see, for example, Newman (2003).
3Ebel et al. (2002) finds that the “e-mail network” has a clustering coefficient of 0.034 and the average

path length of 5.0, while Goyal et al. (2006) finds that the “coauthorship network” has a clustering
coefficient of 0.16 and the average path length of 9.5.

4Akerlof (1997), too, uses a notion of social distance to study social decisions such as choices of
educational attainment and childbearing.
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a distance between two agents, it is necessary for them to have a way to integrate and

evaluate the relationships across different dimensions. We consider a class of notions of

distance, the k’th norms, in which the distance between two points in the type space is

the k’th smallest distance among m dimension-wise distances between them, where m

denotes the number of dimensions of the type space.5 This class of distances is both

sufficiently tractable to obtain closed-form solutions, and also rich enough so that we can

gain relevant economic intuition, for example by implementing comparative statics.

Once we formalize the concept of social distance as above, we postulate a simple

network-formation model based on the benefit and cost of link formation. Our assump-

tions here are that the benefit of a link is decreasing in the distance between two agents

involved, and the cost increases linearly with respect to degrees. That is, agents obtain

higher benefits from linking to a closer agent in the type space, while needing to pay a

fixed cost to maintain a link.6 We show that in a unique pairwise stable network, there

exists a cutoff on the distance between any pair of agents below which they form a link

while above which they do not.7 Conversely, for any network generated by a cutoff rule,

there exists a pair of benefit and linear cost functions such that the network is a unique

pairwise stable one.

Based on these results, we then analyze the cutoff rule model, in which agents form

links if the distance between them is no more than some exogenously given cutoff value. As

an approximation of a large network, we focus on the limit of the networks as the number

of agents goes to infinity and then as the cutoff value goes to zero.8 We analytically derive

the limit average path length and clustering coefficient, which vary with k and m, the key

parameters that represent how agents perceive the social distance to the other agents.9

As long as the triangle inequality is violated (i.e., k < m), our model predicts the “small

world” property, so that average path length is small relative to population size. This

result can be viewed as a novel explanation of small-worlds in reality that is based on

multi-dimensionality of social distance.

5As we show in Online Appendix B, the functional form of the k’th norm naturally arises if the benefit
of each link is given by the total equilibrium payoff from games (such as a repeated prisoner’s dilemma)
played at each of m dimensions.

6For example, Selfhout et al. (2009) empirically show that people are likely to be connected if their
preferences for music are similar to each other. Although in practice it is sometimes beneficial for people
to have links with someone who has very different characteristics, we abstract away from this possibility
in this paper.

7The notion of pairwise stability is introduced in Jackson and Wolinsky (1996). It requires that no
pair of agents would want to form a link or no agent strictly wants to sever her own link, with the rest
of the network structure fixed.

8We will elaborate on the interpretations of the large-network limit in Section 6-(a).
9To supplement our analysis, Online Appendix E.5 derives bounds on the convergence rates and also

provides simulation results under fixed population sizes and cutoffs.
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Figure 1: The clustering coefficient is low under k = 1 (the top left panel), but high under

k = 2 (the top right panel) with m = 2. The average path length is low under k = 1 (the bottom

left panel), but high under k = 2 (the bottom right panel) with m = 2

The analytical solutions enable us to study comparative statics. For instance, if m = 2,

our model predicts lower clustering and lower average path length under the 1st norm than

under the 2nd norm. Intuitively, if agents do not care about many aspects, the notion

of social distance does not satisfy the triangle inequality: two agents j and k linked to

a common agent i need not be close to each other, as they may be linked to i through

different aspects of characteristics, leading to a low clustering coefficient (the top panels

in Figure 1). On the other hand, this means that the two separate agents j and k can

be indirectly connected through i, which leads to a low average path length (the bottom

panels in Figure 1). E-mail exchanges do not require many similar aspects between the

sender of the email and the receiver, so k can be small relative to m. In such a case,

a similar reasoning suggests a short average path length and small clustering coefficient,

consistent with the data.

Different networks may be formed based on different sets of “relevant dimensions,”

whose numbers are captured by the parameter m.10 Some dimensions, say religion, might

matter a lot in some networks, but much less in others. Another instance of variation of

10Section 6-(b) discusses the interpretation of m in more detail.
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relevant dimensions is the introduction of new communication technology. It can create

a new dimension through which agents can be linked with each other (such as tastes in

music or views on political issues), even if they are far away with respect to the geographic

dimension. This case can be thought of as increasing m with k being constant.11 An

analogous intuition as above suggests that in such a case both the average path length

and the clustering coefficient decrease.12 This sheds light on a new aspect of the effect of

improved communication technology that seems to be absent in the literature. A standard

way to model the introduction of new communication technology is to represent it as the

decrease of costs for communication or link formation (Gasper and Glaeser (1997) and

Mobius and Rosenblat (2004)). We could do the same by varying the cost function (which

varies the cutoff); however, our limit result suggests that there can be an effect orthogonal

to such a change in linking costs, and it also shows that the effect we identify comes from

the violation of the triangle inequality.

Although the main model assumes homogeneous cutoff values, it may be more natural

to assume that cutoffs are different across people because of heterogeneity in terms of

link formation cost or benefit. We extend the main model by allowing heterogeneous

cutoff values in Section 4, and show that the characterizations of clustering coefficients

and average path lengths and their comparative statics generalize to this case without a

substantial change. This extension allows us to predict other well-documented empirical

patterns of social networks: positive assortativity and degree-clustering correlation. It

also approximately accommodates all possible degree distributions.

Our model is not based on a mechanical link-formation process but is utility-based.

This feature enables us to obtain welfare implications. We show that the pairwise stable

networks are efficient under the linear cost assumption. When the cost function is non-

linear, the existence and uniqueness of pairwise stable networks are not straightforward.

Also, there can exist multiple pairwise stable networks. It is shown in Section 5 that

a pairwise stable network that is generated by the cutoff rule model always exists. We

further show that, under certain conditions, a strongly stable network (a refinement of

pairwise stable networks) generated by the cutoff rule model always exists and is unique.13

Proofs of our central results are in the Appendix. The Online Appendix contains the

proofs of the remaining results and also additional results.

11Chwe (2000) considers a model in which agents’ actions depend on the network structure that is
formed based on distances in a type space, and conducts comparative statics in which the number of
relevant dimensions of the type space varies across networks.

12The decrease of the average path length is consistent with the recent research on Facebook networks
(Backstrom et al. 2012) that finds very small average path lengths.

13The notion of strong stability is introduced in Jackson and van den Nouweland (2005). It corresponds
to the notion of core in cooperative game theory.
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1.1 Related Literature

Violation of triangle inequality : The main idea behind introducing the k’th norm is to

formulate a notion of social distance that does not generally satisfy the triangle inequal-

ity, which will turn out to be crucial for our results. This is also empirically motivated

by the observations in cognitive psychology. The seminal paper on this topic by Tver-

sky and Gati (1982) shows that it is often difficult to represent a person’s perception of

dissimilarities if the standard metrics are used.14 Our approach is also related to that

of multi-dimensional scaling, a statistical technique widely used in various fields such as

cognitive science, information science, and marketing (Richardson (1938) and Torgerson

(1958)). This method represents the given data on dissimilarities between various objects

by embedding them into a multi-dimensional space.15 The data often involve dissimilari-

ties that violate the triangle inequality, preventing the analyst from embedding unless the

metric used in the target space also violates the triangle inequality. Despite the empirical

validity of people’s perception violating the triangle inequality, network formation models

based on such violations are scarce.16

Modeling Heterogeneity : A variety of models have been developed to illuminate why

different networks have different structures. One of the standard assumptions often used

in the economics literature is that people are partitioned into several groups, and the

relationships within a group cost less than the relationships across groups (See Currarini et

al. (2009) and Jackson and Rogers (2005)). Such a modeling assumption leads to networks

with low average path lengths and high clustering coefficients, well-observed properties

of real world networks. While the partitioning of agents implies that an agent belongs to

exactly one group, in reality an agent may well belong to multiple groups (e.g., workplaces

or local communities), or more generally, she might be associated with attitudes or tastes

on a variety of aspects (e.g., political/ethical views or tastes in music/sports). Similarly,

Johnson and Gilles (2000) analyze a one-dimensional spatial model in which links are

formed based on costs that depend on distances between agents; their model does not

capture the violation of the triangle inequality.

Explaining stylized facts : We predict patterns of network structures consistent with

stylized facts in terms of clustering coefficients, average path lengths, degrees, and correla-

tions among these measures. There are other papers that derive similar predictions based

14As shown in an earlier version of the paper (Iijima and Kamada, 2014), our functional form of the
k’th norm can be derived from the similarity scale of Tversky (1977).

15The literature on “latent space” tries to embed agents in given network data to multi-dimensional
spaces. Although it also deals with multi-dimensional spaces, its approach differs from ours since it
restricts attention only to Euclidean distance. See, for example, Hoff et al. (2002).

16One exception is Watts et al. (2002) that we discuss in Section 3.2.
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on different approaches from our approach. For example, Jackson and Rogers (2007) con-

sider a growing network formation model in which each period new agents are randomly

connected to old agents while also being able to find connections through local search.

Konig et al. (2014) consider a dynamic myopic adjustment process of network formation

and analyze the set of stochastically stable networks.17 We view our static approach that

focuses on agents’ heterogeneity to be complementary to those dynamic approaches.

Homophily : We assume that social distance describes the similarity between agents’

characteristics, and that similar agents are connected to each other. This assumption

is motivated by a well-observed socio-psychological tendency called homophily (see Pin

and Rogers (2014) for a recent survey on this topic). Our k’th norm provides a tractable

parameterization of homophily and enables us to analyze how different types of homophily

result in different network structures.

Large Networks : We take the limit as the number of agents tend to infinity to approx-

imate large networks, which enables us to obtain analytical solutions. We are not the

first to use this idea. There are models of growing networks in which agents are added

to the population each period (e.g., Price (1976) and Barabási and Albert (1999)), and

a static formation model parameterized by the number of agents which the analyst takes

to infinity. Our model is of the latter type. Here we mention two papers in that category

in which agents’ heterogeneity is emphasized.

First, Jackson (2008b) examines a generalized version of Chung and Lu’s (2002) model

in which agents are partitioned into groups, in order to understand how network structures

are affected by homophily. He shows that under some regulatory conditions, in the limit

of large networks, the average path length of networks is determined only by the number

of agents and the (second-order) average degree, and thus in particular is unaffected by

other details of the model such as the homophily effect. This invariance seems at odds

with our result, and we explain in Section 3.2 why such a difference arises.

Second, the way we take the limits is similar to that of Cabrales et al.’s (2011) network

formation model. They fix the set of types and consider the situation with a sufficiently

large number of agents in each type.

17We note that Konig et al. (2014) have a different prediction in terms of assortativity than ours: they
predict negative assortativity while we predict positive assortativity.
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2 The Model

2.1 Network

N = {1, 2, ..., n} is a finite set of nodes (or, agents). A network g is a set of links between

agents in N . A link between agents i and j is denoted ij. We say ij ∈ g if and only if

there exists a link between agents i and j. Let G(N) denote the set of all the possible

networks defined on the set of agents, N . We focus only on non-directed networks, hence

require ij = ji. We suppose ii 6∈ g for all i ∈ N by convention.

Agent i’s neighbors are j ∈ N with ij ∈ g. Formally, the set of i’s neighbors in g,

denoted by Ni(g), is defined as: Ni(g) = {j ∈ N |ij ∈ g}. Agent i’s degree, qi(g), is the

number of i’s neighbors, i.e. qi(g) = ]Ni(g).

A path between nodes i and j is a sequence of links (i1i2, i2i3, ..., iK−1iK) such that

i1 = i, iK = j, and ik 6= ik′ for all k 6= k′. The path length between i and j, PLij(g), is

the length of the shortest path between i and j. If there exists no path between i and j,

then the path length between i and j is infinite by convention. The average path length,

APL(g), is the average of PLij(g)’s over all ij’s that have finite path lengths.18

The clustering coefficient, Cl(g), is the average of the probability that a given node’s

two neighbors are connected to each other. This measure represents the cliquishness of a

network. Formally, first define agent i’s clustering, Cli(g), for each i with qi(g) > 1, as

follows:

Cli(g) =
|{jk ∈ g|k 6= j, j ∈ Ni(g), k ∈ Ni(g)}|
|{jk|k 6= j, j ∈ Ni(g), k ∈ Ni(g)}|

.

The denominator in the above expression is qi(g)(qi(g)−1)
2

, the number of possible pairs

between i’s neighbors. The numerator is the number of links actually formed among

such pairs. The clustering coefficient of a network g is given by Cl(g) = 1

|N̂ |

∑
i∈N̂ Cli(g)

where N̂ denotes the set of agents with degrees more than one.19 We will suppress each

measure’s dependence on g when there is no risk of confusion.

18Thus, strictly speaking, APL is defined only for nonempty networks, g 6= ∅.
19There is another concept of clustering coefficient, overall clustering, that does not average over agents’

clusterings but over pairs of neighbors: Cl(g) =
∑

i |{jk∈g|j∈Ni(g),k∈Ni(g)}|∑
i |{jk|j∈Ni(g),k∈Ni(g)}| , assuming that the denominator

is positive. Clustering coefficient in this paper gives more weights to the clusterings of low-degree nodes
than does the overall clustering. The results in this paper do not hinge on the specific choice of the
concept of clustering coefficient. Precisely, both concepts give exactly the same set of results in our
model.
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2.2 Type Space and Social Distance

Each agent is assumed to be located on a point in X = [0, 1]m, which we call type space.

Every agent belongs to the type space: Denote by xi = (xi1, ..., xim) ∈ X the point, or

type, associated with agent i ∈ N .

We assume that xi’s are independently and identically distributed according to a

distribution with a strictly positive and continuous probability density function f over

X.20 To simplify the analysis, we will assume that f is the uniform distribution. In Section

6-(b), we confirm that most of our results do not crucially rely on this assumption, and in

Online Appendix E.4 we derive qualitatively similar results under a model with a discrete

type space.

As mentioned in the Introduction, we will consider various notions of distance (or

social distance in other words) in the type space X. Specifically, define a class of social

distances, which we call the k’th norm:

Definition 1. For every pair of agents i and j, the k ’th norm, d(k) : X × X → R+,

measures the distance between them as follows:

d(k)(xi, xj) = |xil − xjl| such that

]{h : |xih − xjh| ≤ |xil − xjl|} ≥ k and ]{h : |xih − xjh| ≥ |xil − xjl|} ≥ m− k + 1.

Note that this definition boils down to

d(k)(i, j) = |xil − xjl| s.t. ]{h : |xih − xjh| < |xil − xjl|} = k − 1

if there is no tie in dimension-wise distances.

To grasp the idea of the definition, suppose, for example, that two agents i and j are

located on the type space X with m = 4. Their locations are xi = (0.3, 0.2, 0.4, 0.6) and

xj = (0.7, 0.7, 0.7, 0.7). Then dimension-wise distances are (0.4, 0.5, 0.3, 0.1). If we use

the 1st norm, then d(1)(xi, xj) = 0.1; if we use the 2nd norm, then d(2)(xi, xj) = 0.3, and

so forth.

Considering the situation where agents use social distances to evaluate the values of

relationships with others, the interpretation of the k’th norm is that if k is large, agents

care about many aspects of other’s types, while if k is small, then they care about very

few aspects of others’ types.21

20Whenever we refer to distributions over X, it is defined with respect to the usual relative topology.
21One implicit assumption that we employ throughout this paper is that all agents use the same measure
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We note that the formulation of the k’th norm treats each dimension symmetrically,

so all the dimensions are equally important. But our main results do not depend too

much on the symmetry.22 By conducting analogous proofs, one can show that our main

results are robust even when the lengths of sides of the type space (or, equivalently the

units of measurement of distances) are different across dimensions. Although it would

be desirable to have a much more complex notion of social distance, the simple class of

distance that we suppose is both tractable and also enough to obtain relevant economic

intuition because, for example, it is easy to implement comparative statics. The most

important property that drives our results in what follows is the violation of the triangle

inequality under k < m. We will make this point clear in Sections 3 and 6-(f).

We will occasionally restrict our attention to the following special cases of interest,

which correspond to k = m and k = 1, respectively: the Max norm, dmax (xi, xj) =

max1≤h≤m{|xih − xjh|} and the Min norm, dmin(xi, xj) = min1≤h≤m{|xih − xjh|}. We

sometimes use the notation d(xi, xj), omitting “(k),” “max,” or “min,” when there is no

risk of confusion.

2.3 Pairwise Stability and Cutoff Rules

An agent’s payoff depends on the distance from each of his neighbors and the number of

his neighbors. We summarize the former component in a benefit term and the latter in a

cost term, as follows:

ui(g) =

 ∑
j∈Ni(g)

b(d(xi, xj))

− c(qi), (1)

where b(·) > 0 is a weakly decreasing, left-continuous function and c(·) is a strictly

increasing function. The term b(d(i, j)) represents the benefit that i obtains from link ij

when the distance between i and j is d(i, j), and c(qi) represents the cost that i pays to

maintain his qi links.23 Let ∆c(q) = c(q + 1) − c(q) denote the marginal cost of adding

of social distance to evaluate the relationships with others. It would be more natural to consider the
situation where different agents use different measures, but we abstract away from this possibility because
our primary objective is to understand why different networks have different structures, and assuming
homogeneous measures is enough for that purpose. Also, it is not obvious what different cutoff levels
we should set for agents with different measures, so the results associated with heterogeneous measures
would have inevitable arbitrariness.

22Marmaros and Sacerdote (2006) claim that geographic proximity and race are more important de-
terminants of social interaction than are common interests, majors, and family background.

23Our specification supposes that the cost of adding a link does not depend on the distance involved.
However, we can easily modify the presentation of the model so that the cost depends on both the degree
and the distance, by appropriately adding/subtracting the same amount of some distance-dependent
portion from both the benefit and cost terms.
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one more link. Cost functions are assumed to be homogeneous across all the agents, and

are either linear (i.e. ∆c(q) is constant), concave (i.e. ∆c(q) is decreasing), or convex

(i.e. ∆c(q) is increasing).24

We introduce two notions that characterize special classes of networks:

Definition 2. A network g is said to be efficient if ∀g′ ∈ G(N),
∑

i∈N ui(g) ≥
∑

i∈N ui(g
′)

holds.

Definition 3. A network g is pairwise stable if

∀ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij), and

∀ij 6∈ g, ui(g) ≤ ui(g + ij) =⇒ uj(g) > uj(g + ij).25

Pairwise stability is the notion that is proposed by Jackson and Wolinsky (1996). In

a pairwise stable network, no single agent can strictly benefit from deleting a link, and

no two agents can mutually weakly benefit from adding a link between them. We employ

this concept to analyze the situation in which each link is formed based on the players’

mutual agreement.

In this section, we consider how agents form links in a pairwise stable network. In

particular, we will show that a pairwise stable network can be characterized by a class

of simple decision rules, or cutoff rules. Under such a rule, agents have their own cutoff

social distances, above which they do not form links and below which they form links:

Definition 4. g is generated by a cutoff rule with (d̂1, d̂2, ..., d̂n) ∈ Rn
+ if ij ∈ g ⇐⇒

d(xi, xj) ≤ min{d̂i, d̂j}.

We call the above (d̂1, d̂2, ..., d̂n) a cutoff value profile. Note that, given g, a cutoff

value profile is not unique in general. For example, if (d̂1(g), d̂2(g), ..., d̂n(g)) is a cutoff

value profile for g and d̂i ≥ d̂j for all j ∈ N , then (d̂1(g), d̂2(g), .., d̂i(g) + ε, .., d̂n(g)) is also

a cutoff value profile where ε > 0. We say that a cutoff value profile is homogeneous if for

all i, j ∈ N , d̂i = d̂j. Otherwise we say it is heterogeneous. We call a model in which the

network is generated by a cutoff rule a cutoff rule model.

Under general cost functions, a pairwise stable network may be neither unique nor

efficient.26 Moreover, a cutoff value profile does not necessarily exist for a pairwise stable

network, i.e. a pairwise stable network may not be generated by a cutoff rule.27 However,

24Note that the concavity (resp. convexity) in our notation corresponds to the strict concavity (resp.
strict convexity) in usual conventions. We choose this wording just to ease the exposition.

25By convention, we use “g + ij” for g ∪ {ij} and “g − ij” for g\{ij}.
26See Jackson (2005) for the discussion on inefficiency of pairwise stable networks.
27See Online Appendix E.1 for an example of a pairwise stable network in which there is no cutoff

value profile.
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if we focus on linear cost functions, a pairwise stable network satisfies all these properties.

Furthermore, the converse direction is also true, in the sense made clear in the following:

Lemma 1.

1. Suppose that the cost function is linear. Then, a pairwise stable network g exists,

and it is unique and efficient. Furthermore, g is generated by a cutoff rule with a

homogeneous cutoff value profile.

2. Conversely, for any network g that is generated by a cutoff rule with a homogeneous

cutoff value profile, there exists a benefit function b(·) and linear cost function c(·)
such that g is a unique pairwise stable and efficient network with respect to the pair

(b, c).

For Part 1, the proof is constructive. As the marginal cost of any additional link

formation is constant, in a pairwise stable network link ij exists if and only if b(d(i, j)) is

no less than that marginal cost. It is straightforward to see that this type of network is

unique, and that we can also use the distance that equates the benefit and the marginal

cost as a cutoff value. As the marginal cost is homogeneous and constant, this cutoff

value must be homogeneous across agents. Efficiency is also straightforward from the

assumption of constant marginal cost. For Part 2, we simply construct a (b, c) pair such

that agents would want to form a link with others if and only if they are within the cutoff

distance. Uniqueness and efficiency follow directly from Part 1.28

The lemma implies that we are justified in working with the simpler cutoff rule model

instead of working with potentially very complicated benefit-cost functions. Note that the

proposition deals with only linear cost functions. The case with nonlinear cost functions

is discussed in Section 5, in which we show that our main results in Section 3 roughly

carry over even in such a setting. We also note that the proof of the proposition does not

depend on any assumption on d except for symmetry (d(xi, xj) = d(xj, xi)). This is why

the statement is independent of the choice of k and m.

Online Appendix B shows that a model with the cutoff rule under the k’th norm

is equivalent to a model in which the benefit of each link is given by the sum of the

equilibrium payoffs from m different games, where the payoff structure of each game

depends on the distance between the involved players at each dimension. Under this

formulation, the value of k is endogenously determined by the primitives, i.e., the way

the distances enter into the payoff functions of those games.

28The statements hold under the stronger concept of farsighted stability (see Chwe (1994), Page et al.
(2005), and Jackson (2008a, Ch. 11.5)).

11



3 Clustering Coefficient and Average Path Length

In this section, we consider a cutoff rule model with homogeneous cutoff value profile

and analyze how and why different notions of social distances result in different network

structures, characterized by the clustering coefficient and average path length. More

specifically, we consider the limit of the cutoff rule model as the number of agents goes to

infinity and the common cutoff value that we denote by d̂ goes to zero. The proof of Part

2 of Lemma 1 shows that this corresponds to the limit of large pairwise stable networks

where the benefit is scaled down and/or the marginal cost increases while the benefit is

greater than the marginal cost for sufficiently short distances. Lemma 1 shows that the

results in Theorems 1 and 2 in this section characterize the features of the networks in

such a limit.

3.1 Clustering Coefficient

In this subsection, we will analyze how the clustering coefficient depends on the property

of the notion of social distance in consideration. We focus on the clustering coefficient in

the limit as n tends to infinity and then d̂ tends to zero. Formally, we consider the value

of Cl∗, defined as follows:

Cl∗ = lim
d̂→0

Cld̂ where Cl(g)
n→∞−→ Cld̂ almost surely.

We consider this limit value as an approximation of a large network. This approximation

enables us to obtain an analytical formula of the clustering coefficient which facilitates the

comparative statics. In Online Appendix E.5, we examine the tightness of approximation

by deriving the order of |E[Cl(g)] − Cl∗|. We also provide simulation results on the

comparative statics of E[Cl(g)], in order to clarify the extent to which the results that we

provide below are economically meaningful. We will sometimes use the notation Cl∗(k,m)

instead of Cl∗ in order to make it clear that this value depends on the notion of social

distance in consideration.

We note that the average degree goes to infinity as n → ∞ for fixed d̂ > 0. The

resulting network becomes approximately regular among the agents in [d̂, 1− d̂]m, that is,

for any fixed pair of agents i and j in [d̂, 1 − d̂]m, the fraction qi
qj

converges to 1 almost

surely as n goes to infinity.29 In Section 4, we discuss several ways to obtain heterogeneous

degree distributions by extending the model and how robust the asymptotic results are

under the finite-agent case.

29For any d̂ < 1, the probability that the resulting network is complete goes to zero as n→∞.
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Notice the order of the limits. If the order were reversed, this value would be trivially

zero for any value of k. For, if we let d̂ tend to zero with some fixed n, the set of i’s

neighbors would eventually become empty for any i ∈ N almost surely.

In the following we solve for this limit clustering for every pair of k and m.

Theorem 1. For each m and k ≤ m,

Cl∗(k,m) =

(
m

k

)−1(
3

4

)k
.

To understand the intuition, consider the case of m = 2 and k = 1. A typical agent i in

the interior of the type space has three classes of neighbors: (i) those who are close to i only

with respect to the first dimension, (ii) those of only second dimension, and (iii) those of

both dimensions. As the cutoff goes to zero, the probabilities that agent j being the first,

second, and third class, conditional on the event that he is agent i’s neighbor, converge

to 1/2, 1/2, and 0, respectively. This implies that the probability that two randomly

chosen neighbors of i are of the same class converges to 1/2. If two neighbors are in

the same class, then the probability that they are connected to each other approximates

(as d̂→ 0) the probability with which the distance between two randomly chosen points

in a unit interval is no more than 0.5. This probability is 3/4. If two neighbors are in

different classes, then they are connected to each other with probability converging to

zero as d̂→ 0. All in all, the clustering coefficient converges to 1/2 · 3/4 = 3/8 as d̂→ 0.

The first corollary of Theorem 1 is the following comparative statics:

Corollary 1.

1. Cl∗(k,m) is decreasing in m.

2. For m ≥ 2, Cl∗(k+1,m) > Cl∗(k,m) if k > 4
7
m− 3

7
, and Cl∗(k+1,m) < Cl∗(k,m)

if k < 4
7
m− 3

7
.

We note that part 2 of this corollary implies a possibility for a non-monotonic pattern

of Cl∗(k,m): it is decreasing in k when k is small, reaches its minimum, and then is

increasing when k is large.

According to the first part of Corollary 1, if the number of dimensions of the type

space becomes large with fixed k, then the resulting network becomes less cliquish. Thus,

for example, the introduction of new communication technology, which would increase

the number of relevant dimensions, makes a network less cliquish. The second part states

that, with fixed m, there is a nonmonotonic relationship between the clustering coefficient

13



and k. A bit more specifically, networks are more cliquish either when agents care about

very few aspects of others, or when they care about many aspects of others, given that the

number of relevant dimensions are not too few. As we have explained, the “decreasing”

part is quite intuitive. The “increasing” part is due to the combination term,
(
m

k

)−1

. When

m is large and k (< m) is close to m, the change from k to k + 1 makes the number of

possible combinations of dimensions at which two neighbors of agent i are close to each

other significantly lower. Thus the probability of i’s two neighbors being connected with

each other rises as we move from k to k + 1.

We note that, in general, the comparative statics in k or m does not necessarily mean

involving different populations but also comparing different layers of networks for a fixed

population. Such multilayered network data are often available and analyzed in practice

(Kremer and Miguel (2007), Conley and Udry (2010), Baccara et al. (2012)). In particu-

lar, when different networks are defined based on different levels of frequency or strength

of each interaction, it would be reasonable to think that the set of relevant dimensions is

the same. This makes it easier to interpret the comparative statics in k. For example,

Rapoport and Horvath (1961) consider comparisons of different layers of networks for a

fixed population. They observe that networks with links of stronger friendships involve

more overlapping relationships (see footnote 30 for its detail). Assuming that k is not too

small, the second part of Corollary 1 can also explain this empirical evidence.30

The following comparison of two extreme cases –the Max norm and the Min norm– is

instructive.

Corollary 2. If 1 < m < 9, Cl∗(m,m) > Cl∗(1,m) holds. That is, Cl∗ is higher with

the Max norm than with the Min norm.

We omit the proof, which is clear from the formula given in Theorem 1.

If m < 9 holds then the clustering coefficient is higher if social distances are measured

by the Max norm (k = m) than by the Min norm (k = 1). The intuition is that, under

the Max norm, the triangle inequality provides an upper bound of the distances between

i’s neighbors. Therefore, i’s neighbors are relatively closely located to each other. In

30Rapoport and Horvath (1961) analyze the survey data collected at a junior high school in Ann Arbor
area shortly after the beginning of the 1960-1961 school year. In the survey, students are asked to list
10 friends from the first to the tenth. Based on the data, they generate a network with links of the l’th
and the (l + 1)’th friends, for various values of l. They find that θ, a parameter similar to clustering
coefficient, decreases with respect to l. Roughly speaking, θ is defined by the fraction of the overlap of
the sets of neighbors of two connected agents (The formal definition can be found in Rapoport (1953).
It can be shown that θ is monotone in clustering coefficient in (appropriately defined) large networks).
Assuming that an agent’s closer friends are similar to that agent in terms of more aspects than farther
friends are (an admittedly arguable but reasonably natural assumption to make), this result is consistent
with our result that Cl∗ is increasing in k for values of k close to m.
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Section 6-(f), we explicitly use this fact to derive a lower bound of Cl∗. For the Min

norm, however, such an argument is not possible because the triangle inequality is not

satisfied, so it is possible that i’s neighbors are quite far away from each other. Indeed,

in Example 4 in Online Appendix E.3 we provide a natural extension of the Min norm to

show that the clustering coefficient can be arbitrarily small when the triangle inequality

is violated. This logic gives us a possible explanation as to why the “e-mail network” of

Ebel et al. (2002) has a low clustering coefficient.

3.2 Average Path Length

In this subsection, we solve for the average path length for each k. As in the previous

subsection, we focus on the limit value APL∗, formally defined by:

APL∗ = lim
d̂→0

APLd̂ where APL(g)
n→∞−→ APLd̂ almost surely.

Again, the order of the limits is important. If it were reversed, then it would not be

well-defined, as APL(g) is defined as the average of finite path lengths. As the cutoff

goes to zero with the number of agents fixed, all the pairs of agents would have the path

length ∞ almost surely. Analogously to the analysis of clustering coefficient, in Online

Appendix E.5 we examine the tightness of approximation. We use APL∗(k,m) as before.

For any a ∈ R, denote by dae the minimum integer that does not exceed a. The

following result gives the formula of APL∗ for the k’th norm with k < m.

Theorem 2.

1. For all k and m such that k < m, APL∗(k,m) =
⌈

m
m−k

⌉
.

2. For all m, APL∗(m,m) =∞.

To see the intuition for part 1, consider the case of m = 5 and k = 3, and suppose for a

moment (only in this paragraph) that we are dealing with a continuum of agents. Almost

surely, a pair of agents i and j satisfies dmin(i, j) > 0. Let xi = (0.3, 0.3, 0.3, 0.3, 0.3) and

xj = (0.7, 0.7, 0.7, 0.7, 0.7). Letting x1 = (0.7, 0.7, 0.3, 0.3, 0.3), x2 = (0.7, 0.7, 0.7, 0.7, 0.3),

we construct a path: (xix1, x1x2, x2xj). In each link, the first 5− 3 elements change from

0.3 to 0.7. This change ends in d 5
5−3
e = 3 steps.

The proof for part 2 is simple: generically two randomly chosen points in the type

space have a strictly positive dimension-wise distance for each dimension. Since, under

the Max norm, two agents are linked with each other only if they are within the cutoff
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distance with respect to all dimensions, the path length between any randomly chosen

agents (generically) goes to infinity as the cutoff goes to zero.

There is a striking difference between the k’th norm with k < m and the Max norm

with k = m. With any k < m, the average path length takes some finite value in

the limit as the cutoff goes to zero. But with k = m, the average path length goes to

infinity. Furthermore, the result in part 2 is true also in the case of Euclidean norm,

d(i, j) = [
∑m

k=1(xik − xjk)2]
1
2 . Notice that the triangle inequality is satisfied by the Max

norm (and Euclidean norm), but not by the k’th norm with k < m. Social distances with

the triangle inequality describe situations where an agent’s neighbors cannot be very far

away from each other, suggesting that path lengths in networks tend to be large in such

cases.

As a corollary of this theorem, we have the following comparative statics:

Corollary 3.

1. For all k, APL∗(k,m) is weakly decreasing in m.

2. For all m, APL∗(k,m) is weakly increasing in k.

The proof is straightforward from the formula given in Theorem 2, hence is omitted.

The average path length in a network, in the limit, tends to be small if the type space

is rich (if m is large), and/or if agents do not care about many aspects of the others

(if k is small). The result is intuitive: If sharing only a small number of aspects from

many is sufficient to form a relationship, then each agent has neighbors who have many

aspects of characteristics that are different from his ones. Thus, it is easy to have access

to agents with very different characteristics through the network. The result implies that

the introduction of new communication technology, which would increase the number of

relevant dimensions (m), makes a network closely connected through indirect paths. Also,

since the “e-mail network” of Ebel et al. (2002) is expected to have small k as explained

earlier, the result predicts that it has a low average path length, consistent with data.

This argument shows that the way we can find indirect paths is crucially affected by

k and m. This is the reason for the difference from the result in Jackson (2008b) that we

mentioned in Section 1.1. His model assumes that some non-vanishing fraction of links

among different categories is formed, implying that we can find short indirect paths as in

Chung and Lu’s (2002) model where types of agents are irrelevant. On the other hand,

in our model, the probability that two agents are linked can be zero, depending on k and

m. Hence, k and m are crucial determinants of the way indirect paths can be found.
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Watts et al. (2002) consider a model that shares a similar spirit to ours, studying

stochastic network formation and search on networks. They demonstrate by simulations

that if agents use only one of many “social dimensions” to assess the relationships to

others, the network is more likely to be “searchable.” Searchability here means that their

search process from a randomly-chosen agent to another randomly-chosen agent is com-

plete with a high probability as in the small world experiment of Travers and Milgram

(1969). Our focus is different in that we aim to characterize the network structure and

to understand how it varies with social distance. For this reason we adopted a different

network formation that allows for rich comparative statics.31 Since the models are differ-

ent and we obtain analytical results on network structures while they obtain results on

searchability by simulations, it is difficult to compare their results with ours at a formal

level.

Except for the case under the Max norm, the networks generated in our model are

consistent with empirically observed ones with the “small world” property, i.e. networks

have smaller average path lengths compared with lattice networks and larger clustering

coefficients compared with randomly generated networks.32 This is a well-observed prop-

erty in a variety of networks in reality. The existing network formation models generating

the “small world” property in the literature include the “rewiring” process (Watts and

Strogatz, 1998), hub nodes (Barabasi and Albert, 1999), or partitioning of agents into sev-

eral groups (Jackson and Rogers, 2005). Our model can be seen as giving an alternative

explanation for the “small world” property, which depends on the multi-dimensionality

of the type space.

31For instance, they show that searchability is non-monotonic and eventually decreasing in the number
of social dimensions. This is seemingly inconsistent with our result that the average path length is
monotonically decreasing in m. They claim that the decreasingness is due to the fact that the network
formation process becomes more “random,” and this aspect of the model is orthogonal to our main
argument on the violation of the triangle inequality. By taking the limit as the number of agents goes to
infinity, we isolate this “random network” effect, providing an analytical foundation for their reasoning of
the non-monotonicity. The tractability of our model enables us to obtain further results: We characterize
the clustering coefficient, and show that our results hold for a wide range of degree distributions. Also,
we can conduct comparative statics with respect to k, where it is not clear how one can incorporate the
idea of k > 1 in the model of Watts et al. (2002). Finally, our model is utility-based, so we can conduct
welfare analysis, as we do in Lemma 1.

32Precisely, the average path length in a large lattice network is very large if the expected degree is
moderate. In a random network in which the probability of link formation between any pair of nodes is
p, the clustering coefficient is p. But if the network is large and the expected degree is moderate, p needs
to be very small, resulting in a very low clustering coefficient.
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4 Cutoff Heterogeneity and Other Stylized Facts

In the main section, we assume homogeneous cutoff values for simplicity. In this sec-

tion we extend the model by allowing cutoffs to be heterogeneous across agents. This

allows us to accommodate empirical regularities such as and skewed degree distribution,

clustering-degree correlation, and positive assortativity. Newman (2003) reviews these

three empirical regularities in social networks, and recent studies by Ugander et al. (2011)

and Wilson et al. (2012) find them in Facebook networks. Goyal et al. (2006) also find

clustering-degree correlations in coauthorship networks.

In this section, as an approximation of a model with a large finite population, we

restrict attention to a model with a continuum of agents to avoid technical complications.

There is a continuum of agents with measure 1. Each agent i is associated with her type xi

and relative cutoff value θi. Distributions of xi and θi are independent. The distribution

of xi is uniform as in the main model. The value θi follows a cumulative distribution G

whose support is a subset of [0, 1] and includes 1. Fix d̂ > 0. Each agent i has cutoff value

d̂i = θid̂, that is, agents i and j are connected if and only if d(xi, xj) ≤ min{θid̂, θj d̂}.
In this setup, the number of each agent’s neighbors is infinite. For this reason, in this

section we use the term “degree” to refer to the measure of the set of neighbors rather

than its cardinality.

4.1 Clustering Coefficient and Average Path Length

First we show that the results about clustering coefficient and average path length in

Section 3 extend to the case with general distribution of cutoffs.

Fix k and m. Consider two agents i and j such that θi = θj and xi, xj ∈ [2d̂, 1 −
2d̂]m. By symmetry, their clustering coefficients are equal. Let this value be Cld̂(θi, k,m).

Define:

Cl∗(θi, k,m) = lim
d̂→0

Cld̂(θi, k,m).

Also, let APLd̂(k,m) be the average path length given k and m,33 and let

APL∗(k,m) = lim
d̂→0

APLd̂(k,m).

33Formally, given a tuple (θi, θj , xi, xj) and d̂, k, and m, the path length between agents i and j given d̂,

k and m denoted by PLd̂,k,m(i, j) is uniquely determined. APLd̂(k,m) is the expectation of PLd̂,k,m(i, j)
with respect to two independent draws of θi and θj from G and two independent draws of xi and xj from

the uniform distribution. A formal definition of Cld̂(θi, k,m) can be given in an analogous manner.
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The proof of the following result is based on the same arguments as in Theorems 1 and 2

and thus is omitted.

Theorem 3.

1. There exists h : supp(G) \ {0} → (0, 1) such that, for all θi 6= 0 and for all m and

k ≤ m,

Cl∗(θi, k,m) =

(
m

k

)−1

(h(θi))
k .

2. For all k and m such that k < m, APL∗(k,m) =
⌈

m
m−k

⌉
.

3. For all m, APL∗(m,m) =∞.

Notice that the function h does not depend on k or m. The theorem shows the

robustness of the results obtained in the analysis of homogeneous cutoff rule model. In

particular, it shows that the comparative-statics results in Corollaries 1, 2, and 3 generalize

with minor modifications.

4.2 Skewed Degree Distribution

Skewed degree distributions are often found empirically. In particular, the literature has

found scale-free distributions extensively in the real world.34 Here we show that, under

heterogeneous cutoff values, any “relative degree” distribution can be approximated by

tuning the distribution of cutoff values.

Let X̂ = [d̂, 1 − d̂]m ⊂ X. Take agent i with type xi ∈ X̂ and relative cutoff value

θi. Let D(θi) denote the measure of such i’s neighbors. Because the type distribution is

uniform, D depends only on θi and is independent of xi. We write it as a function of θ

by D(θ). We define the relative degree D̂(θi) of agent i with relative cutoff value θi by

D̂(θi) =
D(θi)

D(1)

A relative degree distribution H is the cumulative distribution of relative degrees among

agents in X̂. Here we focus only on the agents in X̂ for simplicity. Note that if cutoff

values are homogeneous then H is concentrated on 1.

34Scale-free distributions, which were originally discovered by Pareto (1896), are observed in a variety
of networks. Pareto (1896) finds that wealth distribution in Italy had the scale-free feature. Note that
scale-free distributions are often found as a property of the tail of degree distributions, so our condition
on the minimum relative degree (i.e., the requirement that there exists r > 0 in Proposition 1) does not
contradict the scale-free properties.
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For example, when θ is uniformly distributed over [0, 1], i.e, G(t) = t, then the relative

degree is computed as D̂(θ) = θk(k(1− θ) + 1). This is decreasing in k. This means that,

when k is higher, there is more degree inequality between agents with higher θ and lower

θ.35

The following result shows that any relative degree distribution H can be approxi-

mately achieved by some relative cutoff distribution G.

Proposition 1. Fix any ε > 0 and a cumulative distribution function H. There is a

distribution G of θ under which H̃ is the relative degree distribution with supr∈[0,1] |H(r)−
H̃(r)| ≤ ε.

In the proof, we first construct H̃ that has finite support and is no more than ε away

from H. Then we construct a distribution G of θ under which H̃ is the relative degree

distribution. This G has finite support and can be found by an iterative procedure that

defines appropriate θ’s in the support from the smallest to the largest.

4.3 Positive Assortativity

One stylized fact about social networks is that they exhibit positive assortativity: an

agent’s neighbors tend to have similar degrees to that of the agent. Here we show that the

introduction of cutoff heterogeneity generates a pattern of assortativity that is consistent

with such a fact. The intuition is simple. First, degrees are increasing in cutoffs. That is,

if agent i has a higher degree than agent j, then i has a higher cutoff than j’s. To make

the argument simple, suppose that i and j are at the same location, x. This means that

i’s neighbors are a superset of the j’s, and the additional neighbors are the ones who are

sufficiently far away from x so that j cannot be a neighbor. That is, those neighbors have

higher cutoffs than the cutoffs of j’s neighbors. This means that there is a lower bound

on the cutoffs of all additional friends that i has, which suggests that i’s neighbors have

on average higher cutoffs than j’s neighbors, implying higher degrees. The result below

formalizes this intuition.

Fix any location x ∈ [2d̂, 1 − 2d̂]m ⊂ X. Let Hd denote the cumulative distribution

function of the relative degrees of the neighbors of an agent at x with cutoff d ≤ d̂.

Proposition 2. Suppose that G admits a density. Then Hd(t) is nonincreasing in d for

all t. In other words, Hd weakly first order stochastically dominates Hd′ if d > d′.

35For instance this increases the Gini index of the relative degree distribution because it lowers the
Lorenz curve pointwise.
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4.4 Clustering-Degree Correlation

In this subsection we show that the model with heterogenous cutoffs generates a prediction

that is consistent with another stylized fact that clusterings are negatively correlated with

degrees. Since relative degrees are strictly increasing and continuous in cutoffs for agents

in [2d̂, 1− 2d̂]m, it suffices to show Cl∗(θi, k,m) is decreasing in θi.

Proposition 3. Assume that G is the uniform distribution over [0, 1]. For all k and m

with k ≤ m, Cl∗(θi, k,m) is strictly decreasing in θi.

The cases with general distribution of cutoffs are cumbersome and we do not delve

into these cases, but summarize key intuitions: There are two effects of an agent i having

a high degree, or equivalently a high cutoff. Consider the additional agents who can be

newly connected to agent i by a marginal increase of i’s cutoff. The first effect is that

these new agents have the highest expected cutoffs because they are the furthest from i.

This suggests that the new agents should contribute to raising i’ clustering. The second

effect is that the new agents are located at the edge of the set of i’s neighbors, which is

the most difficult situation for other neighbors of i to be connected to those new agents.

This suggests that the new agents should contribute to lowering i’s clustering. The result

shows that, with the uniform distribution of relative cutoff values and m = k = 1, the

second effect dominates the first. The reason is that a link can be formed between two

agents only if both agents’ cutoffs are sufficiently high. The first effect pertains only to

the cutoff of one agent so it is not enough to increase agent i’s clustering, while the second

effect says that one agent is far from others so it results in a decrease in clustering.

5 Non-linear Cost Function

In this section, we consider situations in which the cost functions are not necessarily linear.

Nonlinear cost functions may arise under certain situations such as SNS networks in which

the additional cost of forming a link may be decreasing, or friendship networks in which

the additional cost can be increasing because each person has a limited amount of time

to spend with friends. We explain the nontriviality associated with such an extension,

demonstrate a way to overcome it, and provide sufficient conditions under which our

results with linear cost functions are (approximately) robust to this extension.

With a nonlinear cost function, pairwise stability may not determine a unique network

structure. Under a nonlinear cost function, i’s marginal cost to connect with j depends

on the number of links i already has, and there may exist multiple pairwise stable net-

works. We defer the complete description of concrete examples with multiplicity to Online
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Appendix E.1; intuitively, with concave cost functions, the average cost per link is small

when an agent has many links, while she can pay zero cost by not connecting with any-

one. For this reason, in an example in the Online Appendix, an empty network as well

as the complete network are both pairwise stable. With convex cost functions, additional

cost to connect is high, so there is a bound on the number of links that each agent can

have. Depending on to whom an agent is connected, there exist multiple pairwise stable

networks. In another example in the Online Appendix, each agent is involved in exactly

one link, and the cost for the second link is so high that no one wants to deviate without

severing an existing link. For a similar reason, a pairwise stable network is not necessarily

generated by a cutoff rule even with a heterogeneous cutoff value profile.

Despite such difficulty with pairwise stability, a refinement of the concept of pairwise

stability, strong stability (Jackson and van den Nouweland, 2005), can predict a smaller

set (or even a singleton set under certain circumstances) of “stable” networks. By using

this stronger notion of stability, we can show that the resulting network, which turns out

to exist, can be described by the cutoff rule model analyzed in Section 3.

Before defining strong stability, we need one more definition: We say a network g′ is

obtainable from g via deviations by S ⊆ N if

(ij ∈ g′ ∧ ij 6∈ g) =⇒ i, j ∈ S and

(ij ∈ g ∧ ij 6∈ g′) =⇒ {i, j} ∩ S 6= ∅.
That is, g′ is obtainable from g via deviations by S if each newly formed link in g′

involves the agents only from S, and each deleted link in g′ involves at least one agent

from S.

Definition 5. A network g is strongly stable if for any S ⊆ N and g′ that is obtainable

from g via deviations by S, (∃i ∈ S s.t. ui(g
′) > ui(g)) implies (∃j ∈ S s.t. uj(g

′) < uj(g)).

The next proposition states that we are assured to have a pairwise stable network that

is generated by a cutoff rule. Moreover, when the cost function is linear or convex, the

concept of strong stability selects a unique network, and it is again generated by a cutoff

rule, where different agents may use different cutoff values.

Proposition 4. Suppose that the cost function c is linear, concave, or convex. Then,

almost surely, there exists a pairwise stable network that is generated by a cutoff rule.

Furthermore, if c is linear or convex, there exists a unique strongly stable network, and it

is generated by a cutoff rule.

In the proof, we construct an algorithm in which agents make offers to form links with

others at each step. The algorithm stops in a finite number of steps, and generates a
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pairwise (strong, for the case of convex or linear c) stable network. On such a network,

we can find a cutoff value profile, while it may not be homogeneous among the agents.

Now we examine the extent to which cutoff values can be heterogeneous when the

number of nodes is very large. The following proposition shows that the heterogeneity of

a cutoff value profile is small when the marginal cost approaches some constant value as

the number of agents goes to infinity.

Proposition 5. Suppose that b is continuous and strictly decreasing, and that for some

c1 > 0, limd→0 b(d) > c1 and limq→∞∆c(q) = c1 > 0 hold. Then, the cutoff value profile

for a pairwise stable network, (d̂1, ..., d̂n), is such that

min
i∈N

d̂i
n→∞−→ d̂ almost surely and max

i∈N
d̂i

n→∞−→ d̂ almost surely,

where b−1(c1) = d̂ > 0.

For each agent, for a sufficiently large number of nodes, there are sufficiently many

neighbors in his δ-neighborhood. The agent has to be connected with them in a pairwise

stable network. This implies that he has a sufficiently large degree, and hence the cost

function is almost linear when he decides whether or not to connect with agents outside

the δ-neighborhood. Hence, he can be described as if he were using a cutoff that is only

slightly different from some fixed cutoff.

Next, we analyze networks under a heterogeneous cutoff value profile. We assume that

each agent has his own cutoff value, d̂i, and it is distributed in the interval [d̂ − ε, d̂ + ε]

for some ε > 0, according to some (possibly unknown and/or correlated) distribution.

That is, agents are using heterogeneous cutoff values, which deviate from d̂ by at most ε.

Define

Cl∗hetero = lim
d̂→0+

lim
ε→0+

Cld̂,ε where Cl(g)
n→∞−→ Cld̂,ε almost surely.

APL∗hetero = lim
d̂→0+

lim
ε→0+

APLd̂,ε where APL(g)
n→∞−→ APLd̂,ε almost surely.

Note that the order of the limits implies that we consider the situation where the hetero-

geneity of the cutoff values is almost negligible relative to the sizes of the cutoff values

themselves. Note also that there exists a sequence of (b, c) pair that satisfies the as-

sumptions in Proposition 5 such that the corresponding d̂ converges to zero, due to the

analogous argument as in Part 2 of Lemma 1, hence the requirement of d̂ → 0 above is

not vacuous. The next propositions state that the limit values of the clustering coefficient

and the average path length with heterogeneous cutoff values are the same as in the case
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of homogeneous cutoff values.

Proposition 6. Cl∗hetero = Cl∗ and APL∗hetero = APL∗.

In the proof of clustering coefficient, given d̂ and ε, we obtain an upper bound and a

lower bound of Cl∗hetero by slightly modifying the calculation in the proof of Proposition

2. Then we show, for any d̂, that these values approach Cl∗ as ε goes to zero. The proof

for the average path length runs parallel to that of clustering, hence is omitted.

Summing up, our main results are almost unchanged under the condition that the

heterogeneity of the cutoff values is almost negligible relative to the cutoff values them-

selves. Combined with Proposition 8, our results in Section 3 carry over even in the case

of nonlinear cost functions provided that they approximate linear functions.

6 Discussions

(a) Interpretations of the contribution:

There are at least two possible ways to interpret our contribution. The first interpreta-

tion is that the analysis gives us insight as to how the underlying mechanism of network

formation affects prominent measures of network structures, namely the clustering coef-

ficient and the average path length. The closed-form solutions of these measures enabled

us to conduct neat comparative statics, but it was obtained in the limit as n→∞. Thus

the theory was obtained at the cost of having very large average degree, which can be

at odds with real networks. We note two remarks on this interpretation. First, although

the average degree must be very large, we can accommodate differences in the average

degrees across networks by having different speeds of d̂ going to zero, and also approx-

imately accommodate all relative degree distributions (Section 4.2). Second, in Online

Appendix E.5 we provide an approximation result that identifies the exact convergence

rate of the two measures as n→∞, and use simulation to further understand the extent

to which the comparative statics is applicable for finite n.

The second interpretation is to see our contribution as giving a guide as to which

parameter in the model is informative of which measure of network structures. Let us be

more specific on this alternative interpretation. Note first that, given the population size

and type distribution, three variables, k, m, and d̂ completely determine the probability

distribution over possible network structures. When the population size is large, however,

the clustering coefficient and average path length is almost deterministic, and in such a

situation we can approximately pin down the values of k and m (Theorems 1 and 2 and

the approximation results in Online Appendix E.5). That is, by using the data of the
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clustering coefficient and the average path length, we can solve for the underlying k and

m. Then, by using the data of the degree distribution, we can pin down the underlying d̂.

This procedure gives us the three key variables (k, m, and d̂), allowing us to use them to

discuss counterfactuals, i.e., what would happen if the type distributions were different.

This is especially important because the type distributions may be (at least partially)

under the control of the designer of the market.

(b) Interpretation of the type space:

The parameter m is the number of dimensions that are “relevant” for network formation.

We assume that this parameter is a sufficient statistics to capture the difference in any

two type spaces, although we allow for the set of relevant dimensions across different

networks to be different. Note that this is partly an assumption, but also partly a result.

For example, one can imagine that different dimensions can be associated with different

cutoffs. Our result shows that, as long as all cutoffs are sufficiently small, even if they are

heterogeneous across dimensions, the clustering coefficients and the average path lengths

are close to their limit values; thus our comparative statics still applies.

In general, it can be difficult to determine the value of m for each situation, which

may be viewed as a weakness of our approach. Nonetheless, we choose to include this

as a parameter of the model because it helps us understand the nature of social distance

and network formations at a conceptual level by conducting comparative statics.36 For

example, in Section 3 we discussed the effect of the introduction of communication tech-

nology. Also, variations in m leads to more flexible predictions that are more convenient

for fitting empirical data.

(c) Robustness to non-uniform type distribution:

Here we briefly discuss the effect of distributional changes on the implied limit clustering

coefficients and average path lengths.37 First, it is straightforward to see that the results

on the limit average path length do not depend on the uniformity of the distribution.

Proposition 7. The conclusions of Theorem 2 and Corollary 3 hold for any full-support

type distribution over X that has a probability density function f .

The results on the clustering coefficients, however, need not generalize, although the

36If we interpret m as the number of all conceivable social characteristics and assume that it is fixed
across all the situations, then the model exhibits unrealistic descriptions of network formations. For
example, political taste, which might be one of relevant aspects in friendship networks, does not seem to
play a significant role in co-authorship network formations.

37As shown in an earlier version of the paper (Iijima and Kamada, 2014), a wide range of relative
degree distributions can be attained in the model by allowing for non-uniform type distributions.
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main insights still carry over. First, the exact values of Cl∗ are no longer valid with a

general distribution f . To grasp the intuition, consider the case withm = 2 and k = 1. For

any point x in the interior of X, the set of its neighbors is a union of the set of the agents

who are close to x with respect to the first dimension, and that of those who are close to x

with respect to the second dimension. One implication of the uniform distribution is that,

when d̂ > 0 is sufficiently small, these two sets have approximately the same expected

number of agents. With a non-uniform distribution, however, this is not the case, and

as a consequence the clustering coefficient becomes higher. The intuition is that if there

are more agents in one set than the other, those agents in the first set are likely to form

clusters, raising the clustering coefficient. In Online Appendix E.2, we provide sufficient

conditions under which the comparative-statics results of the limit clustering coefficient

under the uniform-distribution model generalize. Specifically, we introduce a measure of

asymmetry for each distribution and show that the comparative-statics results are valid

when a distribution is not too asymmetric. The upper bounds on asymmetry are easy to

compute, and we provide them for various values of m’s and k’s.

(d) Network centrality:

Centrality measures of networks have attracted significant attentions since they can be

used to characterize relative importance of agents in various economic settings.38 Under

non-uniform type distributions, our model can be used to examine how centrality interacts

with the nature of social distance. While its full analysis is beyond the scope of the

current paper, let us provide a simple example as an illustration. Suppose that the types

are distributed according to F with m = 2, and the cutoff value is d̂ > 0. Let us

employ betweenness as a measure of centrality. Conditional on agent i’s type being xi,

her expected centrality depends only on xi, and we denote it by C(xi). It is computed as

follows:

C(xi) = EF

[ ∑
j 6=i 6=k

SP (i; jk)

SP (jk)

∣∣∣∣xi
]

where SP (i; jk) is equal to 1 if i constitutes a shortest path between agents j and k and

0 otherwise, and SP (jk) denotes the number of shortest paths between j and k (we used

the convention 0
0

= 0). In this set-up, sets of agents having high centralities are different

for different k’s. To see this point, suppose that d̂ < 0.6 and the type distribution F

admits two mass points (0.2, 0.2) and (0.8, 0.8) with measure p < 0.5 respectively, and

the remaining agents of 1−2p are distributed uniformly over the type space. Take agents

i and i′ with xi = (0.5, 0.5) and xi′ = (0.8, 0.2). Then, we can show that, there exist

38Zenou (2015) provides a survey on this topic.
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p̄ < 0.5 and n̄ < ∞ such that for all p > p̄ and n > n̄, C(xi) > C(xi′) under k = 2 but

C(xi) < C(xi′) under k = 1. This is because, under the Max norm, agent i constitutes

shortest paths between agents at (0.2, 0.2) and agents at (0.8, 0.8) but not under the Min

norm. The converse property holds for agent i′.

(e) Finite agent approximation:

In the main section we focus on characterizing the limit values of the clustering coefficient

and average path length as n→∞ and d̂→ 0. In Online Appendix E.5, we consider the

case of fixed finite n and positive d̂, and obtain bounds of the deviations of the expected

values of clustering coefficient and average path length from the limit values obtained in

the main section. We find that the bound of the clustering coefficient does not depend

on n, because the probability that i’s two neighbors j and k are connected with each

other does not depend on the positions of other agents. Although the average path length

depends on n in general, we conduct simulations to confirm that our main results on

both clustering coefficient and average path length are robust under broad parameter

combinations with finite n.

(f) Discrete type space:

In the main part of this paper, we assumed that agents are distributed over the type

space [0, 1]m according to a strictly positive density. In practice, some dimensions may

be better described by discrete variables. In Online Appendix E.4 we consider the case

with a discrete type space and show that our main qualitative results go through in such

a model.

(g) Role of triangle inequality:

Under a more general class of social distance than the k’th norm, we can formalize the

role of the standard-norm axioms by providing a strictly positive lower bound of the limit

clustering coefficient. Specifically, define social distance by d(xi, xj) = ‖xi − xj‖ where

‖ · ‖ is a standard norm in Rm. That is, for all α ∈ R and y, y′ ∈ Rm, it satisfies (i)

absolute homogeneity: |α|‖y‖ = ‖αy‖ (ii) triangle inequality: ‖y + y′‖ ≤ ‖y‖+ ‖y′‖, and

(iii) separates points: if ‖y‖ = 0 then y is the zero vector.

Fix a type xi of agent i in (0, 1)m and compute a lower bound of the probability that

her two neighbors j and k are connected to each other when d̂ → 0. Because of the

triangle inequality d(xj, xk) ≤ d(xi, xj) + d(xi, xk), j and k are connected to each other

if d(xi, xj) + d(xi, xk) ≤ d̂. To derive a lower bound, we first compute the distribution

of the variables
d(xi,xj)

d̂
and

d(xi,xj)

d̂
conditional on the event that d(x,i xj), d(xi, xk) ≤ d̂,
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using absolute homogeneity and separates points. We then derive the distribution of the

variable q :=
d(xi,xj)+d(xi,xk)

d̂
conditional on the same event. This distribution can be used

to show that
∫ 1

0
mqm−1(1−q)mdq is a lower bound of the limit clustering coefficient, which

is strictly positive. The detailed proof is in Online Appendix E.3, where we derive a better

bound.

On the other hand, such a lower bound cannot be established if we relax the standard-

norm axioms, and the limit clustering coefficient can be arbitrarily low in general. In

Online Appendix E.3 we generalize the Min norm to a class of social distance. Specifically,

for any w > 0, we can find social distance d(·, ·) in that class such that the limit clustering

coefficient is lower than w.

7 Concluding Remarks

In this paper, we proposed a model that provides an explanation as to why some networks

are cliquish (they exhibit high clustering coefficients) and/or closely connected (they have

low average path lengths) while others do not. In our model, agents are endowed with

their own multi-dimensional characteristics. When agents integrate and evaluate the in-

formation about the relationships in different dimensions or groups, we supposed that

they measure the “social distance” between themselves and others by using the “k’th

norm,” in which the distance is the k’th smallest dimension-wise distance. We character-

ized average path length and clustering coefficient in stable networks, and analyzed how

they are related to the way social distances are measured by agents.

One implication of our result is that the introduction of new communication technology

makes a network closely connected but cliquish. Our model is utility-based, which allowed

us to conduct welfare analyses. We considered a room allocation problem as an example

of making use of this fact in our model. We also showed that the assumption of a linear

cost function is not essential to our result by replacing the notion of pairwise stability with

that of strong stability. The Online Appendix contains a number of additional results to

check the robustness of our prediction, including a model with a discrete type space, a

stochastic link-formation model, and an analysis of convergence speeds.

We conclude this paper by explaining how the paper could serve as a basis for fu-

ture works. First, this paper introduced a model of multi-dimensional type space and

a tractable class of measures of distance that violate the triangle inequality, based on

which agents form links. We believe these new ingredients of the model would give us

new insights when analyzing situations in which preferences depend on the similarities

between agents involved. For example, they would be useful in analyzing network for-
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mation models, models of matching markets such as marriage or labor markets, voting

models, and so forth. Moreover, they would also be useful even in the context of biology

literature. For example, Antal et al. (2009) consider an evolutionary model in which in-

dividuals cooperate if their opponent is close to oneself in the phenotype space and show

that evolution can favor cooperators. It would be natural to consider a situation where

cooperation takes place when some but not all aspects of the individuals’ phenotypes are

close to each other. Second, we proved the existence and the uniqueness of a strong stable

network under some regulatory conditions. Proving the existence and the uniqueness of a

strong stable network is often a hard task, but our result suggests that it is not infeasible

if we restrict a class of preferences in a tractable manner.

A Proofs of the Main Results

This appendix contains the proofs of our main results. Proofs of other results can be

found in our online appendix.

A.1 Proof of Theorem 1

Proof. Let the set of points sufficiently away from the boundary be X(d̂) = {xi ∈ X :

0 < xih± d̂ < 1, h = 1, . . . ,m}. Take a point x in X(d̂) and consider a hypothetical agent

situated at the point, named agent i. We will ignore the possibility of the tie in distances,

as it does not occur almost surely, hence does not affect the result. Now, let Bd̂(x) be the

(closed) d̂-neighborhood of point x with respect to the k’th norm.

Fix d̂ > 0 and consider an increasing sequence of agents N(n) and corresponding

networks, g(n), n = 1, 2, · · · , such that N(n) = {1, 2, . . . , n} and g(n) ⊆ g(n + 1). For

each n such that qi(g(n)) ≥ 2, define a probability measure µn over Bd̂(x) as follows:

µn({x}) =

 1
qi(g(n))

if there is an agent (other than i) whose type is x,

0 otherwise.

Let νn = µn × µn, defined over Bd̂(xi) × Bd̂(xi), denote the product measure. Also,

ν∗ denote the uniform distribution over Bd̂(xi) × Bd̂(xi). Glivenko-Cantelli’s Theorem

implies that νn weakly converges to ν∗ almost surely.39

Note that the clustering of i is determined by νn, i.e., this is the probability that

independently chosen two points (by νn) are within d̂ distance, given that the two points

39See, for example, Hildenbrand (1974, p.52).
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are different. Thus we have

Cli(g(n)) =
qi(g(n))

qi(g(n))− 1
νn({(x′, x′′)|d(k)(x′, x′′) ≤ d̂})− 1

qi(g(n))− 1

→a.s. ν∗({(x′, x′′)|d(k)(x′, x′′) ≤ d̂}) (n→∞),

where the convergence is ensured by the fact that the set {(x′, x′′)|d(k)(x′, x′′) ≤ d̂} is a

ν∗-continuity set. Hence we can compute this limit clustering based on the assumption

that there is a continuum of agents uniformly distributed over Bd̂(xi).

Now note that we have:

Cl∗ = lim
d̂→0

lim
n→a.s.∞

 1

n
(
∑

xi∈X(d̂)

Cli(g) +
∑

xj∈X\X(d̂)

Clj(g))

 = lim
d̂→0

lim
n→a.s.∞

 1

n
(
∑

xi∈X(d̂)

Cli(g))

 ,
since vol(X(d̂))

vol(X)
→ 1 as d̂→ 0 where vol(·) denotes the volume of a set (with respect to the

Euclidean norm), and Clj(g) takes only a finite value (a value in [0, 1]) for any j ∈ N .

Consider a randomly chosen x′ ∈ Bd̂(x) according to the uniform distribution over

Bd̂(x). Consider a hypothetical agent situated at x′ and call him j. It is easy to see that

limd̂→0 Pr
(
]{h|xih − x′jh ≤ d̂} = k

)
= 1. So for our result, we consider only the case of

]{h|xih − x′jh ≤ d̂} = k.

Take another agent l, whose type is x′′, and let Z(x, x′) = {x′′ ∈ Bd̂(x)|{h|xih − x′′lh ≤

d̂} = {h|xih − x′jh ≤ d̂}}. Notice that vol(Z(x,x′))
vol(Bd̂(x))

→

(
m

k

)−1

as d̂ → 0. Now, it is

straightforward to see that the probability that x′′ ∈ Bd̂(x) \ Z(x, x′) is connected to x′

goes to 0 as d̂ goes to 0. Thus we only need to consider x′′’s in Z(x, x′). Hence, the

probability that j and l are connected is equal to the probability that the projections of

x′ and x′′ on the restricted k-dimensional space with dimensions in {h|xih − x′jh ≤ d̂} are

within the distance d̂ with respect to the k’th norm.

This probability is simply:

1

(d̂)k

∫ d̂

0

∫ d̂

0

· · ·
∫ d̂

0

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂)k

dy1dy2 · · · dyk =

(
3

4

)k
.

Hence the desired probability is

(
m

k

)−1

·
(

3
4

)k
. Note that this value is independent of

xi. Hence the desired value (which is the average of Cli’s) takes this value as well almost

surely.
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A.2 Proof of Theorem 2

Proof. Part 1:

Take arbitrarily two agents i and j. Almost surely, dmin(xi, xj) > 0. Hence we restrict

attention to the case of dmin(xi, xj) > 0. Fix d̂ > 0 at a value such that d̂ < 1
2
dmin(xi, xj).

It suffices to show that the almost sure limit of PLij becomes exactly the same as the

formula in the statement of the proposition.

First, we show that the formula is an upper bound of PLij. Consider a class of sets

defined by

β(t) = {h ∈ N : |xjl − xhl| <
d̂

2
if l ≤ t(m− k), |xil − xhl| <

d̂

2
otherwise}

for positive integers t < m
m−k . Let T be the largest t that satisfies t < m

m−k . Also, let

β(0) = {i} and β(T + 1) = {j}. Then by definition, we have ιtιt+1 ∈ g for all ιt ∈ β(t)

and ιt+1 ∈ β(t+ 1) for all t = 0, . . . , T .

Now, for any given d̂ > 0, as n goes to infinity, almost surely there is at least one

agent in β(t) for any t = 1, . . . , T . This is because, the probability that no agent belongs

to the area is pn for some p ∈ (0, 1), which goes to zero as n→∞.40 Thus, almost surely,

there exists a path between i and j whose length is no more than T + 1 as n goes to ∞.

Finally, we show that the formula is a lower bound of PLij. To see this, suppose, to

the contrary, that there exists a path with length less than the value above that connects

i and j. But such a path has to have a link ww′ on it such that ]{h|xwh− xw′h ≤ d̂} < k,

so d(k)(w,w′) > d̂. Contradiction.

Hence, we have that APL∗ is exactly the minimum integer that is no less than m
m−k .

Part 2:

Take any pair of points in X, x and y. Consider a pair of hypothetical nodes, i and

j, situated at x and y, respectively. Almost surely, there exists a dimension h such that

|xih − yjh| > 0. Write this value as a > 0. Then, with cutoff d̂ > 0, the path length

between i and j is bounded below by a/d̂. As d̂ > 0 goes to zero, this bound goes to

infinity. Since this argument holds for all the pairs x and y with x 6= y, the proof is

completed.

40This is also a straightforward implication of the second Borel-Cantelli lemma.

31



A.3 Proof of Proposition 1

For convenience, below we abuse notation by treating G (or H) either as a probability

measure over [0, 1] or as a cumulative distribution over [0, 1], depending on the context.

First we prove a lemma that deals with the case of H with finite support.

Lemma 2. Fix any d̂ ∈ (0, 1
2
). For any relative degree distribution H with finite support

that includes 1, there exists a distribution of θ whose support includes 1 such that the

resulting relative degree distribution coincides with H.

Proof. Let µ be the measure over X induced by f . Fix any d̂ ∈ (0, 1
2
) and take any relative

degree distribution H that has finite support that includes 1. Then, there exist K ∈ N
and vectors (r1, . . . , rK) and (w1, . . . , wK) with the properties that (i) 0 < rk < rk+1 for

each k = 1, . . . , K − 1, (ii) rK = 1, and (iii) H({rk}) = wk > 0 for each k = 1, . . . , K.

Since K = 1 corresponds to the case with homogeneous cutoff values where G puts all

the probability mass on 1, it suffices to consider the case with K > 1. For this reason, we

now assume K > 1.

We construct G with finite support consisting of K points, (θ1, . . . , θK), where 0 <

θk < θk+1 holds for all k = 1, . . . , K − 1 and θk is assigned weight wk.

Pick any θ̃1 ∈ (0, 1). Let ψ1(θ̃1) = µ
(
{y ∈ X | d(x, y) ≤ θ̃1d̂}

)
for x ∈ X̂ (which is

independent of x as long as x ∈ X̂). We now compute the sequence (θ̃2, ..., θ̃K) by taking

the following procedure defined by Steps k = 2, . . . , K.

Step k: Conditional on the procedure being not stopped so that (θ̃1, ..., θ̃k−1) has been

obtained, let

ψk(θk) =

(
k−1∑
l=1

(
wl · µ

(
{y ∈ X | d(x, y) ≤ θ̃ld̂}

)))
+

(
1−

k−1∑
l′=1

wl
′

)
·µ
(
{y ∈ X | d(x, y) ≤ θkd̂}

)
(2)

for x ∈ X̂ (which is independent of x as long as x ∈ X̂), where d(·, ·) is the given notion

of social distance. The function ψk is continuous and strictly increasing in θk such that

limθk→θ̃k−1 ψk(θk) = ψk−1(θ̃k−1). If ψk(1) ≥ rk

r1
ψ1(θ̃1), there is a unique value of θk such

that ψk(θk) = rk

r1
ψ1(θ̃1). Let such θk be θ̃k. If ψk(1) < rk

r1
ψ1(θ̃1), then we stop the

procedure.

Step K + 1: If the he procedure is not stopped after any step k = 2, . . . , K, then the

procedure stops at this step.In this case we say that the procedure completes.

If the procedure completes, it uniquely determines a profile (θ̃1, . . . , θ̃K). Also, if G is

such that G({θ̃k}) = wk for each k = 1, . . . K and G
(

[0, 1] \
(⋃K

k=1{θ̃k}
))

= 0, then for

each k = 1, . . . , K, the relative degree of agents with θ̃k is given by rk.
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Next we show that if we pick θ̃1 to be sufficiently small, then the above procedure

completes every step. To see this, note that (2) implies that ψk(1) in each step k is

bounded below by

wK · µ
(
{y ∈ X | d(x, y) ≤ d̂}

)
> 0.

Thus, for each k = 2, . . . , K, the inequality ψk(1) > rk

r1
ψ1(θ̃1) is satisfied for small θ̃1 since

limθ̃1→0 ψ(θ̃1) = 0.

Now, note that by construction there exists θ̄1 ∈ (0, 1) such that the region of θ̃1 such

that the procedure completes is (0, θ̄1]. Again by construction, ψk(θ̃k) < ψk+1(θ̃k+1) for

all k = 1, . . . , K − 1 and ψK((̃θK)) is strictly increasing and continuous in θ̃1 ∈ (0, θ̄1].

Hence, ψK(1) = rK

r1
ψ1(θ̄1) holds. With θ̃1 = θ̄1, use the procedure defined above to

generate a profile (θ̃1, . . . , θ̃K). Note that θ̃K = 1. This leads to the desired construction

by defining G to be a distribution such that G({θ̃k}) = wk for each k = 1, . . . K and

G
(

[0, 1] \
(⋃K

k=1{θ̃k}
))

= 0.

When H does not have a finite support, we can find a distribution H̃ whose support

is finite and includes 1 such that supr∈[0,1] |H(r) − H ′(r)| ≤ ε holds. To do this, fix

ε > 0 and take large natural number N so that ε ≥ 1/2N . For each k = 1, ..., N − 1,

define rk := min{r ∈ [0, 1] : H(r) ≥ k/N}. Also let r0 := 0 and rN := 1. Then

(k−1)/N ≤ H(r) ≤ k/N holds if rk−1 ≤ r < rk for k = 1, ..., N −1. Construct a function

H̃ : [0, 1]→ [0, 1] by setting (i) for each r ∈ [0, 1), H̃(r) = k−1/2
N

where k ∈ {1, . . . , N} is

the unique integer such that r ∈ [rk−1, rk), and (ii) H̃(1) = 1. This H̃ is non-decreasing

and right-continuous and thus a cumulative distribution function. Also, by construction

the support of H̃ includes 1. Hence by Lemma 2 there exists a distribution of θ whose

support includes 1 such that the resulting relative degree distribution coincides with H̃.

Since by constriction of H̃ it must be the case that |H(r) − H̃(r)| ≤ 1
2N
≤ ε for each

r ∈ [0, 1], this completes the proof of Proposition 1.

A.4 Proof of Proposition 2

Proof. Let Ĝ denote the distribution of cutoff θd̂, and ĝ be the corresponding density. Fix

an agent i at x ∈ [2d̂, 1−2d̂]m ⊂ X with cutoff d ≤ d̂. Let W (t) denote the measure of the

mass of agents in x’s t-neighborhood (with respect to the k’th norm), which is continuous

and strictly increasing in t ∈ [0, d̂].

The measure of agents in i’s neighborhood with cutoffs in [τ, τ +dτ ] is W (τ)× ĝ(τ)dτ .

So, the cumulative distribution function of neighbors’ cutoffs, denoted Cd, can be written

as:
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Cd(t) =

∫ t
0
ĝ(τ)W (τ)dτ∫ d

0
ĝ(τ)W (τ)dτ +

∫ d̂
d
ĝ(τ)W (d)dτ

if t < d

and

Cd(t) =

∫ d
0
ĝ(τ)W (τ)dτ +

∫ t
d
ĝ(τ)W (d)dτ∫ d

0
ĝ(τ)W (τ)dτ +

∫ d̂
d
ĝ(τ)W (d)dτ

if t > d. (3)

Now, for t < d < d′,[∫ d′

0

ĝ(τ)W (τ)dτ +

∫ ∞
d′

ĝ(τ)W (d′)dτ

]
−
[∫ d

0

ĝ(τ)W (τ)dτ +

∫ ∞
d

ĝ(τ)W (d)dτ

]

=

∫ d′

d

ĝ(τ)W (τ)dτ −
∫ d′

d

ĝ(τ)W (d)dτ +

∫ d̂

d′
ĝ(τ)[W (d′)−W (d)]dτ

=

∫ d′

d

ĝ(τ)[W (τ)−W (d)]dτ +

∫ ∞
d′

ĝ(τ)[W (d′)−W (d)]dτ ≥ 0.

This means that the denominator of Hd(t) is nondecreasing in d when t < d, and thus

Cd(t) is nonincreasing in d when t < d.

Second, we consider the case with t > d. Differentiating the numerator of (3) with

respect to d, we obtain

ĝ(d)W (d)− ĝ(d)W (d) +

∫ t

d

ĝ(τ)W ′(d)dτ =

∫ t

d

ĝ(τ)W ′(d)dτ.

Differentiating the denominator of (3) with respect to d, we get

ĝ(d)W (d)− ĝ(d)W (d) +

∫ d̂

d

ĝ(τ)W ′(d)dτ =

∫ d̂

d

ĝ(τ)W ′(d)dτ.

Thus all we need to show is that ∫ t
d
ĝ(τ)W ′(d)dτ∫ d̂

d
ĝ(τ)W ′(d)dτ

is nonincreasing in d.41 But this is equal to

1−
∫ d̂
t
ĝ(τ)dτ∫ d̂

d
ĝ(τ)dτ

,

41Sufficiency of this property is elementary, and the detailed proof can be obtained by the authors upon
request.
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which indeed is decreasing in d.

Thus Cd is nonincreasing in d for t > d too. Hence Cd is nonincreasing in d ∈
[0, d̂]. Since the relative degrees are strictly increasing in cutoffs, this shows that Hd(t) is

nonincreasing in d ∈ [0, d̂] for all t.

A.5 Proof of Proposition 3

Proof. We show that an agent’s clustering is strictly decreasing in her cutoff. As discussed

before the statement of the proposition in question, this suffices because degrees are

increasing in cutoffs. We show that this is true in the case with m = k = 1. This suffices

as a proof for general (m, k) pairs because types are independently distributed across

dimensions and thus the clustering under the general case is monotonic to the clustering

under m = k = 1.

Fix agent i and his cutoff d. Let δ(t) be the probability density that i’s neighbor’s

location is xi + t with t > 0. Note that this is decreasing in t. Specifically,

δ(t) =
d̂− t

2
∫ d

0
(d̂− t)dt

=
d̂− t

2d̂d− d2
.

This formula follows because the measure of i’s neighbors with types in [xi + t, xi + t+ dt]

is (d̂− t)dt.
Also, the cumulative distribution of cutoffs, Ĝ, can be written as

Ĝ(t) =
t

d̂

We consider two agents in the set of neighbors of i, with distance t and s. There are

two cases to consider, depending on whether the two agents are on the same side of i or

not.

Suppose first that the agents are on the same side. The probability that these two

neighbors are connected to each other conditional on such an event can be computed as

follows:

Clsame
i =

∫ d
2

0

2δ(t)

(∫ t
2

0

2δ(s)
1− Ĝ(t− s)

1− Ĝ(s)
ds+

∫ 2t

t
2

2δ(s) · 1ds+

∫ d

2t

2δ(s)
1− Ĝ(s− t)

1− Ĝ(t)
ds

)
dt
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+

∫ d

d
2

2δ(t)

(∫ t
2

0

2δ(s)
1− Ĝ(t− s)

1− Ĝ(s)
ds+

∫ d

t
2

2δ(s) · 1ds

)
dt (4)

In order to understand this formula, let jt and js be the agents with distance t and

s, respectively, from agent i. The first term (the integral of t from 0 to d
2
) corresponds

to the case where jt is less than d
2

away from i. There are three subcases for this. The

first is when js is less than t
2

away from i. In such a case, the probability that js and jt

are connected to each other is not one, and such a probability is integrated in the first

integral corresponding to this subcase (the integral from 0 to t
2
). The second subcase is

when js is more than t
2

but less than 2t away from i. In this case, it is probability one

that js and jt are connected to each other. This appears as the integration of 1 from t
2

to 2t. The third subcase corresponds to the situation where js is further away, and this

subcase is expressed in the integral from 2t to d.

The second term (the integral of d
2

to d) corresponds to the case where jt is more

than d
2

away from i, so js is always within the cutoff of jt. Thus there are only two cases

corresponding to the first two subcases in the first case, which is why there are only two

integrals for this case.

Suppose next that the agents are on the different sides from each other. The probability

that these two neighbors are connected to each other conditioning on such an event can

be computed as follows:

Cldifferent
i =

∫ d

0

2δ(t)

(∫ d

0

2δ(s)
1− Ĝ(t+ s)

1− Ĝ(t)

1− Ĝ(t+ s)

1− Ĝ(s)
ds

)
dt. (5)

An analogous classification of cases as for the case with Clsame
i applies to obtain this

formula.

We can use these two numbers to compute agent i’s clustering:

Cli =
Clsame

i + Cldifferent
i

2
.

Let a = d

d̂
. A straightforward calculation shows that (4) and (5) imply, respectively,

Clsame
i =

9a2 − 28a+ 24

6(a− 2)2
, Cldifferent

i =


2(6(a−1)2+a2)

3(a−2)2
if 2d ≤ d̂,

1−2(a−1)4

3a2(a−2)2
if 2d > d̂.
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Thus, for a ∈ [0, 1/2],

Cli =

9a2−28a+24
6(a−2)2

+ 2(6(a−1)2+a2)
3(a−2)2

2
=

37a2 − 76a+ 48

12(a− 2)2
.

Differentiating this expression with respect to a, we obtain −8(4a−3)
3(a−2)3

, which is strictly

negative for a ∈ [0, 1/2].

Also, for a ∈ (1/2, 1],

Cli =

9a2−28a+24
6(a−2)2

+ 1−2(a−1)4

3a2(a−2)2

2
=

5a4 − 12a3 + 16a− 2

12(a− 2)2a2
.

Differentiating this expression with respect to a, we obtain 4(a−1)(2(a−1)2−1)
3(a−2)2a3

, which again

is strictly negative for a ∈ (1/2, 1]. Thus, Cli is strictly decreasing in a ∈ [0, 1], so it is

strictly decreasing in d, completing the proof.
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